WorldWideScience

Sample records for protects sinusoidal endothelial

  1. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  2. Dietary macronutrients and the aging liver sinusoidal endothelial cell.

    Science.gov (United States)

    Cogger, Victoria Carroll; Mohamad, Mashani; Solon-Biet, Samantha Marie; Senior, Alistair M; Warren, Alessandra; O'Reilly, Jennifer Nicole; Tung, Bui Thanh; Svistounov, Dmitri; McMahon, Aisling Clare; Fraser, Robin; Raubenheimer, David; Holmes, Andrew J; Simpson, Stephen James; Le Couteur, David George

    2016-05-01

    Fenestrations are pores within the liver sinusoidal endothelial cells (LSECs) that line the sinusoids of the highly vascularized liver. Fenestrations facilitate the transfer of substrates between blood and hepatocytes. With pseudocapillarization of the hepatic sinusoid in old age, there is a loss of fenestrations. LSECs are uniquely exposed to gut-derived dietary and microbial substrates delivered by the portal circulation to the liver. Here we studied the effect of 25 diets varying in content of macronutrients and energy on LSEC fenestrations using the Geometric Framework method in a large cohort of mice aged 15 mo. Macronutrient distribution rather than total food or energy intake was associated with changes in fenestrations. Porosity and frequency were inversely associated with dietary fat intake, while fenestration diameter was inversely associated with protein or carbohydrate intake. Fenestrations were also linked to diet-induced changes in gut microbiome, with increased fenestrations associated with higher abundance of Firmicutes and reduced abundance of Bacteroidetes Diet-induced changes in levels of several fatty acids (C16:0, C19:0, and C20:4) were also significantly inversely associated with fenestrations, suggesting a link between dietary fat and modulation of lipid rafts in the LSECs. Diet influences fenestrations and these data reflect both the key role of the LSECs in clearing gut-derived molecules from the vascular circulation and the impact these molecules have on LSEC morphology. Copyright © 2016 the American Physiological Society.

  3. An optimized method for mouse liver sinusoidal endothelial cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jeremy, E-mail: jeremy.meyer@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Lacotte, Stéphanie, E-mail: stephanie.lacotte@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Morel, Philippe, E-mail: philippe.morel@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Gonelle-Gispert, Carmen, E-mail: carmen.gonelle@unige.ch [Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland); Bühler, Léo, E-mail: leo.buhler@hcuge.ch [Division of Digestive and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14 (Switzerland); Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève (Switzerland)

    2016-12-10

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  4. An optimized method for mouse liver sinusoidal endothelial cell isolation

    International Nuclear Information System (INIS)

    Meyer, Jeremy; Lacotte, Stéphanie; Morel, Philippe; Gonelle-Gispert, Carmen; Bühler, Léo

    2016-01-01

    The objective of the present study was to develop an accurate and reproducible method for liver sinusoidal endothelial cell (LSEC) isolation in mice. Non-parenchymal cells were isolated using a modified two-step collagenase digestion combined with Optiprep density gradient centrifugation. LSEC were further purified using two prevalent methods, short-term selective adherence and CD146+ magnetic-activated cell sorting (MACS), and compared in terms of cell yield, viability and purity to our purification technique using CD11b cell depletion combined with long-term selective adherence. LSEC purification using our technique allowed to obtain 7.07±3.80 million LSEC per liver, while CD146+ MACS and short-term selective adherence yielded 2.94±1.28 and 0.99±0.66 million LSEC, respectively. Purity of the final cell preparation reached 95.10±2.58% when using our method. In contrast, CD146+ MACS and short-term selective adherence gave purities of 86.75±3.26% and 47.95±9.82%, respectively. Similarly, contamination by non-LSEC was the lowest when purification was performed using our technique, with a proportion of contaminating macrophages of only 1.87±0.77%. Further, isolated cells analysed by scanning electron microscopy presented typical LSEC fenestrations organized in sieve plates, demonstrating that the technique allowed to isolate bona fide LSEC. In conclusion, we described a reliable and reproducible technique for the isolation of high yields of pure LSEC in mice. This protocol provides an efficient method to prepare LSEC for studying their biological functions. - Highlights: • This protocol provides an efficient method to prepare primary mouse LSEC for studying their biological functions. • The liver cell dispersion step was improved by performing a retrograde cannulation of the liver. • The cell yield and the purity obtained were higher than comparative techniques in mice. • Contaminating macrophages were removed by introducing a CD11b- magnetic

  5. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  6. The Relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dmitri Svistounov

    Full Text Available Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished.

  7. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  8. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2 mediated regeneration of sinusoidal endothelial cells

    Science.gov (United States)

    Hooper, Andrea T.; Butler, Jason M.; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N.; Rafii, Shahin

    2011-01-01

    SUMMARY The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2+VEGFR3+Sca1− SECs and VEGFR2+VEGFR3−Sca1+ arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3+Sca1− SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. PMID:19265665

  10. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  11. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  12. New ways of looking at very small holes - using optical nanoscopy to visualize liver sinusoidal endothelial cell fenestrations

    Science.gov (United States)

    Øie, Cristina I.; Mönkemöller, Viola; Hübner, Wolfgang; Schüttpelz, Mark; Mao, Hong; Ahluwalia, Balpreet S.; Huser, Thomas R.; McCourt, Peter

    2018-02-01

    Super-resolution fluorescence microscopy, also known as nanoscopy, has provided us with a glimpse of future impacts on cell biology. Far-field optical nanoscopy allows, for the first time, the study of sub-cellular nanoscale biological structures in living cells, which in the past was limited to electron microscopy (EM) (in fixed/dehydrated) cells or tissues. Nanoscopy has particular utility in the study of "fenestrations" - phospholipid transmembrane nanopores of 50-150 nm in diameter through liver sinusoidal endothelial cells (LSECs) that facilitate the passage of plasma, but (usually) not blood cells, to and from the surrounding hepatocytes. Previously, these fenestrations were only discernible with EM, but now they can be visualized in fixed and living cells using structured illumination microscopy (SIM) and in fixed cells using single molecule localization microscopy (SMLM) techniques such as direct stochastic optical reconstruction microscopy. Importantly, both methods use wet samples, avoiding dehydration artifacts. The use of nanoscopy can be extended to the in vitro study of fenestration dynamics, to address questions such as the following: are they actually dynamic structures, and how do they respond to endogenous and exogenous agents? A logical further extension of these methodologies to liver research (including the liver endothelium) will be their application to liver tissue sections from animal models with different pathological manifestations and ultimately to patient biopsies. This review will cover the current state of the art of the use of nanoscopy in the study of liver endothelium and the liver in general. Potential future applications in cell biology and the clinical implications will be discussed.

  13. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Upregulation of miR21 and repression of Grhl3 by leptin mediates sinusoidal endothelial injury in experimental nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Sahar Pourhoseini

    Full Text Available Sinusoidal endothelial dysfunction (SED has been found to be an early event in nonalcoholic steatohepatitis (NASH progression but the molecular mechanisms underlying its causation remains elusive. We hypothesized that adipokine leptin worsens sinusoidal injury by decreasing functionally active nitric oxide synthase 3 (NOS3 via miR21. Using rodent models of NASH, and transgenic mice lacking leptin and leptin receptor, results showed that hyperleptinemia caused a 4-5 fold upregulation of hepatic miR21 as assessed by qRTPCR. The upregulation of miR21 led to a time-dependent repression of its target protein Grhl3 levels as shown by western blot analyses. NOS3-p/NOS3 ratio which is controlled by Grhl3 was significantly decreased in NASH models. SED markers ICAM-1, VEGFR-2, and E-selectin as assessed by immunofluorescence microscopy were significantly up regulated in the progressive phases of NASH. Lack of leptin or its receptor in vivo, reversed the upregulation of miR21 and restored the levels of Grhl3 and NOS3-p/NOS3 ratio coupled with decreased SED dysfunction markers. Interestingly, leptin supplementation in mice lacking leptin, significantly enhanced miR21 levels, decreased Grhl3 repression and NOS3 phosphorylation. Leptin supplementation in isolated primary endothelial cells, Kupffer cells and stellate cells showed increased mir21 expression in stellate cells while sinusoidal injury was significantly higher in all cell types. Finally miR21 KO mice showed increased NOS3-p/NOS3 ratio and reversed SED markers in the rodent models of NASH. The experimental results described here show a close association of leptin-induced miR21 in aiding sinusoidal injury in NASH.

  15. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells.

    Science.gov (United States)

    Mi, Shengli; Yi, Xiaoman; Du, Zhichang; Xu, Yuanyuan; Sun, Wei

    2018-02-20

    The liver is one of the main metabolic organs, and nearly all ingested drugs will be metabolized by the liver. Only a small fraction of drugs are able to come onto the market during drug development, and hepatic toxicity is a major cause for drug failure. Since drug development is costly in both time and materials, an in vitro liver model that can accelerate bioreactions in the liver and reduce drug consumption is imperative in the pharmaceutical industry. The liver on a chip is an ideal alternative for its controllable environment and tiny size, which means constructing a more biomimetic model, reducing material consumption as well as promoting drug diffusion and reaction. In this study, taking advantage of the laminar flow on chips and using natural degradable gel rat tail Collagen-I, we constructed a liver sinusoid on a chip. By synchronously injecting two kinds of cell-laden collagen, HepG2-laden collagen and HUVEC-laden collagen, we formed two collagen layers with a clear borderline. By controlling the HUVEC density and injection of growth factors, HUVECs in collagen formed a monolayer through self-assembly. Thus, a liver sinusoid on a chip was achieved in a more biomimetic environment with a more controllable and uniform distribution of discrete HUVECs. Viability, album secretion and urea synthesis of the live sinusoid on a chip were analysed on days 3, 5 and 7 after collagen injection with acetaminophen treatment at 0 (control), 10 and 20 mM. The results indicated that our liver sinusoid on a chip was able to maintain bioactivity and function for at least 7 d and was beneficial for hepatotoxic drug screening.

  16. Placental extract ameliorates non-alcoholic steatohepatitis (NASH by exerting protective effects on endothelial cells

    Directory of Open Access Journals (Sweden)

    Akihiro Yamauchi

    2017-09-01

    Full Text Available Non-alcoholic steatohepatitis (NASH is a severe form of fatty liver disease that is defined by the presence of inflammation and fibrosis, ultimately leading to cirrhosis and hepatocellular carcinoma. Treatment with human placental extract (HPE reportedly ameliorates the hepatic injury. We evaluated the effect of HPE treatment in a mouse model of NASH. In the methione- and choline-deficient (MCD diet-induced liver injury model, fibrosis started from regions adjacent to the sinusoids. We administered the MCD diet with high-salt loading (8% NaCl in the drinking water to mice deficient in the vasoprotective molecule RAMP2 for 5 weeks, with or without HPE. In both the HPE and control groups, fibrosis was seen in regions adjacent to the sinusoids, but the fibrosis was less pronounced in the HPE-treated mice. Levels of TNF-α and MMP9 expression were also significantly reduced in HPE-treated mice, and oxidative stress was suppressed in the perivascular region. In addition, HPE dose-dependently increased survival of cultured endothelial cells exposed to 100 μM H2O2, and it upregulated expression of eNOS and the anti-apoptotic factors bcl-2 and bcl-xL. From these observations, we conclude that HPE ameliorates NASH-associated pathologies by suppressing inflammation, oxidative stress and fibrosis. These beneficially effects of HPE are in part attributable to its protective effects on liver sinusoidal endothelial cells. HPE could thus be an attractive therapeutic candidate with which to suppress progression from simple fatty liver to NASH.

  17. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    Science.gov (United States)

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    Hepatic fibrosis is a frequent feature of chronic hepatitis C virus (HCV) infection. Some evidence has suggested the potential role of silent information regulator 1 (SIRT1) in organ fibrosis. The aim of this study was to investigate the effect of HCV core protein on expression of SIRT1 of liver sinusoidal endothelial cell (LSEC) and function of LSEC. LSECs were co-cultured with HepG2 cells or HepG2 cells expressing HCV core protein and LSECs cultured alone were used as controls. After co-culture, the activity and expression levels of mRNA and protein of SIRT1 in LSEC were detected by a SIRT1 fluorometric assay kit, real time-PCR (RT-PCR), Western blot, respectively. The levels of adiponectin receptor 2 (AdipoR2), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by Western blot. Cluster of differentiation 31 (CD31), CD14, and von Willebrand factor (vWf) of LSECs was performed by flow cytometry. The level of reactive oxygen species (ROS) was assayed. Malondialdehyde (MDA), superoxide dismutase (SOD), adiponectin, nitric oxide (NO), and endothelin-1 (ET-1) levels in the co-culture supernatant were measured. The co-culture supernatant was then used to cultivate LX-2 cells. The levels of α-smooth muscle actin (ASMA) and transforming growth factor-β1 (TGF-β1) protein in LX-2 cells were measured by Western blot. Compared with LSEC co-cultured with HepG2 cells group, in LSEC co-cultured with HepG2-core cells group, the activity and expression level of mRNA and protein of SIRT1 reduced; the level of adiponectin reduced and the expression level of AdipoR2 protein decreased; ROS levels increased; the expression level of eNOS, VEGF protein decreased; and the expression level of CD14 decreased; the expression level of vWf and CD31 increased; NO and SOD levels decreased; whereas ET-1 and MDA levels increased; the levels of ASMA and TGF-β1 protein in LX-2 cells increased. SIRT1 activator improved the above-mentioned changes

  18. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta.

    Directory of Open Access Journals (Sweden)

    Jaione Simon-Santamaria

    Full Text Available Liver sinusoidal endothelial cells (LSECs are specialized scavenger cells that mediate high-capacity clearance of soluble waste macromolecules and colloid material, including blood-borne adenovirus. To explore if LSECs function as a sink for other viruses in blood, we studied the fate of virus-like particles (VLPs of two ubiquitous human DNA viruses, BK and JC polyomavirus, in mice. Like complete virions, VLPs specifically bind to receptors and enter cells, but unlike complete virions, they cannot replicate. 125I-labeled VLPs were used to assess blood decay, organ-, and hepatocellular distribution of ligand, and non-labeled VLPs to examine cellular uptake by immunohisto- and -cytochemistry. BK- and JC-VLPs rapidly distributed to liver, with lesser uptake in kidney and spleen. Liver uptake was predominantly in LSECs. Blood half-life (∼1 min, and tissue distribution of JC-VLPs and two JC-VLP-mutants (L55F and S269F that lack sialic acid binding affinity, were similar, indicating involvement of non-sialic acid receptors in cellular uptake. Liver uptake was not mediated by scavenger receptors. In spleen, the VLPs localized to the red pulp marginal zone reticuloendothelium, and in kidney to the endothelial lining of vasa recta segments, and the transitional epithelium of renal pelvis. Most VLP-positive vessels in renal medulla did not express PV-1/Meca 32, suggesting location to the non-fenestrated part of vasa recta. The endothelial cells of these vessels also efficiently endocytosed a scavenger receptor ligand, formaldehyde-denatured albumin, suggesting high endocytic activity compared to other renal endothelia. We conclude that LSECs very effectively cleared a large fraction of blood-borne BK- and JC-VLPs, indicating a central role of these cells in early removal of polyomavirus from the circulation. In addition, we report the novel finding that a subpopulation of endothelial cells in kidney, the main organ of polyomavirus persistence, showed

  19. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    Science.gov (United States)

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  20. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  1. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  2. Protective effects of dark chocolate on endothelial function and diabetes.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio

    2013-11-01

    Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.

  3. Defibrotide Stimulates Angiogenesis and Protects Endothelial Cells from Calcineurin Inhibitor-Induced Apoptosis via Upregulation of AKT/Bcl-xL.

    Science.gov (United States)

    Wang, Xiangmin; Pan, Bin; Hashimoto, Yuko; Ohkawara, Hiroshi; Xu, Kailin; Zeng, Lingyu; Ikezoe, Takayuki

    2018-01-01

    Sinusoidal obstruction syndrome is a life-threatening complication that can occur after haematopoietic stem cell transplantation. Defibrotide (DF) has been approved for the treatment of individuals with severe sinusoidal obstruction syndrome following haematopoietic stem cell transplantation in the European Union and the United States. However, the precise mechanisms by which DF protects endothelial cells remain to be elucidated. In this study, we found that DF stimulated angiogenesis in vitro and in vivo as assessed by vascular tube formation, scratch-wound repair and Matrigel plug assays. These effects were associated with an activation of pro-survival signalling pathways, including AKT (protein kinase B), ERK (extracellular signal-regulated kinases) and p38. More importantly, DF alleviated calcineurin inhibitor-induced growth inhibition and apoptosis of human umbilical vein endothelial cells and human hepatic sinusoidal endothelial cells in parallel with upregulation of anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL), which was mediated by AKT (protein kinase B). Notably, these effects were abrogated when Bcl-xL was depleted by small interfering RNA (ribonucleic acid). In addition, DF counteracted calcineurin inhibitor-induced activation of nuclear factor-κB and Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signalling and production of cytokines in vascular endothelial cell-derived EA.hy926 cells. Taken together, DF has pro-angiogenic, anti-apoptotic and anti-inflammatory effects on endothelial cells. DF is a potentially useful agent to prevent the development of, and treat individuals with, endothelial cell injury-related complications after haematopoietic stem cell transplantation. Schattauer GmbH Stuttgart.

  4. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    International Nuclear Information System (INIS)

    Chen Ping; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-01-01

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-κB in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [ 3 H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-κB expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that in the OG

  5. Regorafenib suppresses sinusoidal obstruction syndrome in rats.

    Science.gov (United States)

    Okuno, Masayuki; Hatano, Etsuro; Nakamura, Kojiro; Miyagawa-Hayashino, Aya; Kasai, Yosuke; Nishio, Takahiro; Seo, Satoru; Taura, Kojiro; Uemoto, Shinji

    2015-02-01

    Sinusoidal obstruction syndrome (SOS), a form of drug-induced liver injury related to oxaliplatin treatment, is associated with postoperative morbidity after hepatectomy. This study aimed to examine the impact of regorafenib, the first small-molecule kinase inhibitor to show efficacy against metastatic colorectal cancer, on a rat model of SOS. Rats with monocrotaline (MCT)-induced SOS were divided into two groups according to treatment with either regorafenib (6 mg/kg) or vehicle alone, which were administered at 12 and 36 h, respectively, before MCT administration. Histopathologic examination and serum biochemistry tests were performed 48 h after MCT administration. Sinusoidal endothelial cells were evaluated by immunohistochemistry and electron microscopy. To examine whether regorafenib preserved remnant liver function, a 30% hepatectomy was performed in each group. The rats in the vehicle group displayed typical SOS features, whereas these features were suppressed in the regorafenib group. The total SOS scores were significantly lower in the regorafenib group than in the vehicle group. Immunohistochemistry and electron microscopy showed that regorafenib had a protective effect on sinusoidal endothelial cells. The postoperative survival rate after 7 d was significantly better in the regorafenib group than that in the vehicle group (26.7% versus 6.7%, P Regorafenib reduced the phosphorylation of extracellular signal-regulated kinase, which induced matrix metalloproteinase-9 (MMP-9) activation and decreased the activity of MMP-9, one of the crucial mediators of SOS development. Regorafenib suppressed MCT-induced SOS, concomitant with attenuating extracellular signal-regulated kinase phosphorylation, and MMP-9 activation, suggesting that regorafenib may be a favorable agent for use in combination with oxaliplatin-based chemotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Qidantongmai Protects Endothelial Cells Against Hypoxia-Induced ...

    African Journals Online (AJOL)

    induced damage. The ability of QDTM to modulate the serum VEGF-A level may play an important role in its effects on endothelial cells. Key words: Traditional Chinese Medicine, human umbilical vein endothelial cells, hypoxia, VEGF ...

  7. Decrease of PECAM-1-gene-expression induced by proinflammatory cytokines IFN-γ and IFN-α is reversed by TGF-β in sinusoidal endothelial cells and hepatic mononuclear phagocytes

    Directory of Open Access Journals (Sweden)

    Ramadori Giuliano

    2008-05-01

    Full Text Available Abstract Background and aim The mechanisms of transmigration of inflammatory cells through the sinusoids are still poorly understood. This study aims to identify in vitro conditions (cytokine treatment which may allow a better understanding of the changes in PECAM (platelet endothelial cell adhesion molecule-1-gene-expression observed in vivo. Methods and results In this study we show by immunohistochemistry, that there is an accumulation of ICAM-1 (intercellular cell adhesion molecule-1 and ED1 positive cells in necrotic areas of livers of CCl4-treated rats, whereas there are few PECAM-1 positive cells observable. After the administration of CCl4, we could detect an early rise of levels of IFN-γ followed by an enhanced TGF-β protein level. As shown by Northern blot analysis and surface protein expression analysed by flow cytometry, IFN-γ-treatment decreased PECAM-1-gene-expression in isolated SECs (sinusoidal endothelial cells and mononuclear phagocytes (MNPs in parallel with an increase in ICAM-1-gene-expression in a dose and time dependent manner. In contrast, TGF-β-treatment increased PECAM-1-expression. Additional administration of IFN-γ to CCl4-treated rats and observations in IFN-γ-/- mice confirmed the effect of IFN-γ on PECAM-1 and ICAM-1-expression observed in vitro and increased the number of ED1-expressing cells 12 h after administration of the toxin. Conclusion The early decrease of PECAM-1-expression and the parallel increase of ICAM-1-expression following CCl4-treatment is induced by elevated levels of IFN-γ in livers and may facilitate adhesion and transmigration of inflammatory cells. The up-regulation of PECAM-1-expression in SECs and MNPs after TGF-β-treatment suggests the involvement of PECAM-1 during the recovery after liver damage.

  8. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

    Science.gov (United States)

    Im, Wooseok; Chung, Jin-Young; Bhan, Jaejun; Lim, Jiyeon; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2012-01-01

    Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside Rg3 prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by β-galactosidase (β-gal) staining. Staining with 4′-6-Diamidino-2-phenylindole verified that most adherent cells (93±2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of β-gal-positive EPCs was decreased from 93.8±2.0% to 62.5±3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms. PMID:23717107

  9. Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol.

    Directory of Open Access Journals (Sweden)

    Daniëlle M P H J Boesten

    Full Text Available Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM and high glucose (30 mM or diabetic stressors (e.g. SIN-1 using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite. Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions.

  10. Mathematical Models of the Sinusoidal Screen Family

    Directory of Open Access Journals (Sweden)

    Tajana Koren

    2011-06-01

    Full Text Available In this paper we will define a family of sinusoidal screening elements and explore the possibilities of their application in graphic arts, securities printing and design solutions in photography and typography editing. For this purpose mathematical expressions of sinusoidal families were converted into a Postscript language. The introduction of a random variable results in a countless number of various mutations which cannot be repeated without knowing the programming code itself. The use of the family of screens in protection of securities is thus of great importance. Other possible application of modulated sinusoidal screens is related to the large format color printing. This paper will test the application of sinusoidal screens in vector graphics, pixel graphics and typography. The development of parameters in the sinusoidal screen element algorithms gives new forms defined within screening cells with strict requirements of coverage implementation. Individual solutions include stochastic algorithms, as well as the autonomy of screening forms in regard to multicolor printing channels.

  11. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  12. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  13. Sinusoidal obstruction syndrome (SOS) related to chemotherapy for colorectal liver metastases: factors predictive of severe SOS lesions and protective effect of bevacizumab.

    Science.gov (United States)

    Hubert, Catherine; Sempoux, Christine; Humblet, Yves; van den Eynde, Marc; Zech, Francis; Leclercq, Isabelle; Gigot, Jean-François

    2013-11-01

    The most frequent presentation of chemotherapy-related toxicity in colorectal liver metastases (CRLM) is sinusoidal obstruction syndrome (SOS). The purpose of the present study was to identify preoperative factors predictive of SOS and to establish associations between type of chemotherapy and severity of SOS. A retrospective study was carried out in a tertiary academic referral hospital. Patients suffering from CRLM who had undergone resection of at least one liver segment were included. Grading of SOS on the non-tumoral liver parenchyma was accomplished according to the Rubbia-Brandt criteria. A total of 151 patients were enrolled and divided into four groups according to the severity of SOS (grades 0-3). Multivariate analysis identified oxaliplatin and 5-fluorouracil as chemotherapeutic agents responsible for severe SOS lesions (P SOS lesions (P = 0.005). Univariate analysis identified the score on the aspartate aminotransferase : platelets ratio index (APRI) as the most significant biological factor predictive of severe SOS lesions. Splenomegaly is also significantly associated with the occurrence of severe SOS lesions. The APRI score and splenomegaly are effective as factors predictive of SOS. Bevacizumab has a protective effect against SOS. © 2013 International Hepato-Pancreato-Biliary Association.

  14. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    Science.gov (United States)

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  15. Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.

    Science.gov (United States)

    Jiang, Yue-Hua; Guo, Jin-Hao; Wu, Sai; Yang, Chuan-Hua

    2017-08-01

    Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg -1 ·d -1 ) for 6 weeks, using valsartan (13.5 mg·kg -1 ·d -1 ) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 -6 mol·L -1 Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    Science.gov (United States)

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  17. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis.

    Science.gov (United States)

    Dufton, Neil P; Peghaire, Claire R; Osuna-Almagro, Lourdes; Raimondi, Claudio; Kalna, Viktoria; Chuahan, Abhishek; Webb, Gwilym; Yang, Youwen; Birdsey, Graeme M; Lalor, Patricia; Mason, Justin C; Adams, David H; Randi, Anna M

    2017-10-12

    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL 4 )-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFβ signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.

  18. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    International Nuclear Information System (INIS)

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E.

    2006-01-01

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of γ-glutamylcysteine synthetase-heavy subunit (γ-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis

  19. Sinusoidal obstruction syndrome.

    Science.gov (United States)

    Valla, Dominique-Charles; Cazals-Hatem, Dominique

    2016-09-01

    Sinusoidal obstruction syndrome (SOS) is characterized by damage to small hepatic vessels affecting particularly sinusoidal endothelium. Damaged sinusoids can be associated with a partial or complete occlusion of small hepatic veins, hence the previous denomination of hepatic veno-occlusive disease (VOD). Exposure to certain exogenous toxins appears to be specific to this condition and is frequently included in its definition. Typical histopathological features of SOS in a liver biopsy specimen are presented in the text. The purpose of this article is to provide an overview on the different entities corresponding to this general definition. Such entities include: (i) liver disease related to pyrrolizidine alcaloids; (ii) liver injury related to conditioning for hematopoietic stem cell transplantation; (iii) vascular liver disease occurring in patients treated with chemotherapy for liver metastasis of colorectal cancer; and (iv) other liver diseases related to toxic agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...

  1. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    International Nuclear Information System (INIS)

    Zhou Yijun; Wang Jiahe; Zhang Jin

    2006-01-01

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-κB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-κB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease

  3. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  4. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  5. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation.

    Science.gov (United States)

    Mo, Jiao; Yang, Renhua; Li, Fan; Zhang, Xiaochao; He, Bo; Zhang, Yue; Chen, Peng; Shen, Zhiqiang

    2018-03-15

    Scutellarin is the major constituent responsible for the clinical benefits of Erigeron breviscapus (Vant.) Hand.-Mazz which finds a long history of ethnopharmacological use in Traditional Chinese Medicine. Scutellarin as a pure compound is now under investigation for its protections against various tissue injuries. This study aims to examine the effects of scutellarin on oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage, and then to evaluate the therapeutic efficacy of scutellarin in preventing atherosclerosis in rats. Radical scavenging ability of scutellarin was determined in vitro. Impact of scutellarin on endothelium-dependent relaxation (EDR) of rabbit thoracic aortic rings upon 1, 1-diphenyl-2-picrylhydrazyl (DPPH) challenge was measured. Influences of scutellarin pre-treatment on the levels of reactive oxygen species (ROS), activities of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase and catalase, and the expression of SOD1 and NADPH oxidase 4 (Nox4) in human umbilical vein endothelial cells (HUVECs) injured by H 2 O 2 were examined. Anti-atherosclerotic effect of scutellarin was evaluated in rats fed with high fat diet (HFD). Scutellarin showed potent antioxidant activity in vitro. Pretreatment of scutellarin retained the EDR of rabbit thoracic aortic rings damaged by DPPH. In H 2 O 2 injured-HUVECs the deleterious alterations in ROS levels and antioxidant enzymes activity were reversed by scutellarin and the mRNA and protein expression of SOD1 and Nox4 were restored also. Oral administration of scutellarin dose-dependently ameliorated hyperlipidemia in HFD-fed rats and alleviated oxidative stress in rat serum, mimicking the effects of reference drug atorvastatin. Scutellarin protects against oxidative stress-induced vascular endothelial dysfunction and endothelial cell damage in vitro and prevents atherosclerosis in vivo through antioxidation. The results rationalize further investigation into the

  6. Adiponectin protects palmitic acid induced endothelial inflammation and insulin resistance via regulating ROS/IKKβ pathways.

    Science.gov (United States)

    Zhao, Wenwen; Wu, Chuanhong; Li, Shaojing; Chen, Xiuping

    2016-12-01

    Endothelial inflammation and insulin resistance (IR) has been closely associated with endothelial dysfunction. Adiponectin (APN), an adipocyte-secreted hormone from adipose tissues, showed cardioprotective effects. Here, the protective effect of APN on palmitic acid (PA)-induced endothelial inflammation and IR was investigated. Cultured human umbilical vein endothelial cells (HUVECs) were treated with PA without or without APN pretreatment. The expression of inflammatory cytokines TNF-α, IL-6, adhesion molecule ICAM-1 were determined by western blotting, ELISA, and real-time PCR. The protein expression and protein-protein interaction were determined by western blotting and immunoprecipitation. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) production were monitored with fluorescence probes. PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1 at protein and mRNA levels, which was significantly inhibited by APN. PA treatment caused increase of ROS generation, NOX2, p-IKKβ, p-IκBα, p-p65 expression, and p-IκBα-IKKβ interaction, which were all partly reversed by APN. ROS scavenger N-acetylcysteine (NAC) and NF-κB inhibitor PDTC showed similar effect on PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1. Furthermore, APN and NAC pretreatment restored PA-induced increase of p-IRS-1(S307), decrease of p-IRS-1(Tyr). In addition, insulin-triggered expression of p-IRS-1(Tyr), p-PI3K, p-AKT, p-eNOS and NO generation were inhibited by PA, which were also restored by both APN and NAC. These results suggested that APN ameliorated endothelial inflammation and IR through ROS/IKKβ pathway. This study shed new insights into the mechanisms of APN's cardiovascular protective effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PX-18 Protects Human Saphenous Vein Endothelial Cells under Arterial Blood Pressure.

    Science.gov (United States)

    Kupreishvili, Koba; Stooker, Wim; Emmens, Reindert W; Vonk, Alexander B A; Sipkens, Jessica A; van Dijk, Annemieke; Eijsman, Leon; Quax, Paul H; van Hinsbergh, Victor W M; Krijnen, Paul A J; Niessen, Hans W M

    2017-07-01

    Arterial blood pressure-induced shear stress causes endothelial cell apoptosis and inflammation in vein grafts after coronary artery bypass grafting. As the inflammatory protein type IIA secretory phospholipase A 2 (sPLA 2 -IIA) has been shown to progress atherosclerosis, we hypothesized a role for sPLA 2 -IIA herein. The effects of PX-18, an inhibitor of both sPLA 2 -IIA and apoptosis, on residual endothelium and the presence of sPLA 2 -IIA were studied in human saphenous vein segments (n = 6) perfused at arterial blood pressure with autologous blood for 6 hrs. The presence of PX-18 in the perfusion blood induced a significant 20% reduction in endothelial cell loss compared to veins perfused without PX18, coinciding with significantly reduced sPLA 2 -IIA levels in the media of the vein graft wall. In addition, PX-18 significantly attenuated caspase-3 activation in human umbilical vein endothelial cells subjected to shear stress via mechanical stretch independent of sPLA 2 -IIA. In conclusion, PX-18 protects saphenous vein endothelial cells from arterial blood pressure-induced death, possibly also independent of sPLA 2 -IIA inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy.

    Directory of Open Access Journals (Sweden)

    Bridget Sackey-Aboagye

    Full Text Available Liver sinusoidal endothelial cells (LSECs are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.

  9. Protective effect of atorvastatin on radiation-induced endothelial cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Xinze, Ran; Huaien, Zheng; Fengchao, Wang; Xi, Ran; Aiping, Wang; Jing, Han; Yanqi, Zhang; Jun, Chen [Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing (China)

    2009-04-15

    Objective: To explore the protective effect of atorvastatin on irradiated endothelium and the thrombomodulin (TM) expression. Methods: Cultured human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC) were treated by atorvastatin at the final concentration of 10 {mu}mol/ml for 10 min, and then irradiated with 2 and 25 Gy. Cell cycles status and TM expression were quantitatively measured by flow cytometry 24 hours after irradiation. Protein C activation in endothelial cells was also assessod. Results: After administration with atorvastatin for 24 h, the TM expression increased by 77%, 59% and 61% in normal control group, 2 Gy group and 25 Gy group, respectively (t=27.395, 26.420, 58.065; P=0.000). The protein C levels decreased by 23% and 34% compared with the normal group post-irradiation to 2 and 25 Gy, but increased by 79% and 76% compared with the irradiated control group after administration with atorvastatin. The rates of cell apoptosis decreased by 6% and 16% in 2 Gy and 25 Gy groups, respectively after administration with atorvastatin for 24 h (t=4.178, 17.863; P=0.000). Conclusions: Atorva statin can protect endothelia cell from irradiation-induced apeptosis by increasing TM expression and protein C activation. (authors)

  10. Protective effect of atorvastatin on radiation-induced endothelial cell injury

    International Nuclear Information System (INIS)

    Ran Xinze; Zheng Huaien; Wang Fengchao; Ran Xi; Wang Aiping; Han Jing; Zhang Yanqi; Chen Jun

    2009-01-01

    Objective: To explore the protective effect of atorvastatin on irradiated endothelium and the thrombomodulin (TM) expression. Methods: Cultured human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC) were treated by atorvastatin at the final concentration of 10 μmol/ml for 10 min, and then irradiated with 2 and 25 Gy. Cell cycles status and TM expression were quantitatively measured by flow cytometry 24 hours after irradiation. Protein C activation in endothelial cells was also assessod. Results: After administration with atorvastatin for 24 h, the TM expression increased by 77%, 59% and 61% in normal control group, 2 Gy group and 25 Gy group, respectively (t=27.395, 26.420, 58.065; P=0.000). The protein C levels decreased by 23% and 34% compared with the normal group post-irradiation to 2 and 25 Gy, but increased by 79% and 76% compared with the irradiated control group after administration with atorvastatin. The rates of cell apoptosis decreased by 6% and 16% in 2 Gy and 25 Gy groups, respectively after administration with atorvastatin for 24 h (t=4.178, 17.863; P=0.000). Conclusions: Atorva statin can protect endothelia cell from irradiation-induced apeptosis by increasing TM expression and protein C activation. (authors)

  11. Aqueous extracts of Tribulus terrestris protects against oxidized low-density lipoprotein-induced endothelial dysfunction.

    Science.gov (United States)

    Jiang, Yue-hua; Yang, Chuan-hua; Li, Wei; Wu, Sai; Meng, Xian-qing; Li, Dong-na

    2016-03-01

    demonstrated potential lowering lipid benefits, anti-hypertension and endothelial protective effects. It also suggested that the JAK2/STAT3 and/or PI3K/AKT pathway might be a very important pathway which was involved in the pharmacological mechanism of TT as the vascular protective agent.

  12. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  13. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro

    International Nuclear Information System (INIS)

    Ran Xinze; Zong Zhaowen; Liu Dengqun; Su Yongping; Zheng Huaien; Ran Xi; Xiang Guiming

    2010-01-01

    Vascular endothelial cells are very sensitive to ionizing radiation, and it is important to develop effective prevent agents and measures in radiation exposure protection. In the present study, the protective effects of atorvastatin on irradiated human umbilical vein endothelial cells (HUVEC) and the possible mechanisms were explored. Cultured HUVEC were treated by atorvastatin at a final concentration of 10 μmol/ml for 10 minutes, and then irradiated at a dose of 2 Gy or 25 Gy. Twenty-four hours after irradiation, apoptosis of HUVEC was monitored by flow cytometry, and the expression of thrombomodulin (TM) and protein C activation in HUVEC was respectively assessed by flow cytometry and spectrophotometry. After treatment with atorvastatin for 24 h, the rate of cell apoptosis decreased by 6% and 16% in cells irradiated with 2 Gy and 25 Gy, respectively. TM expression increased by 77%, 59%, and 61% in untreated cells, 2 Gy irradiation-treated cells, and 25 Gy irradiation-treated cells, respectively. The protein C levels in 2 Gy and 25 Gy irradiation-treated cells were reduced by 23% and 34% when compared with untreated cells, but up-regulated by 79% and 76% when compared with cells which were irradiated and treated with atorvastatin. In conclusion, these data indicate that atorvastatin exerts protective effects on irradiated HUVEC by reducing apoptosis by up-regulating TM expression and enhancing protein C activation in irradiated HUVEC. (author)

  14. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xinze, Ran; Zhaowen, Zong; Dengqun, Liu; Yongping, Su; Huaien, Zheng [College of Preventive Medicine, Third Military Medical Univ., Chongqing (China); Xi, Ran; Guiming, Xiang [Xinqiao Hospital, Third Military Medical Univ., Chongqing (China)

    2010-09-15

    Vascular endothelial cells are very sensitive to ionizing radiation, and it is important to develop effective prevent agents and measures in radiation exposure protection. In the present study, the protective effects of atorvastatin on irradiated human umbilical vein endothelial cells (HUVEC) and the possible mechanisms were explored. Cultured HUVEC were treated by atorvastatin at a final concentration of 10 {mu}mol/ml for 10 minutes, and then irradiated at a dose of 2 Gy or 25 Gy. Twenty-four hours after irradiation, apoptosis of HUVEC was monitored by flow cytometry, and the expression of thrombomodulin (TM) and protein C activation in HUVEC was respectively assessed by flow cytometry and spectrophotometry. After treatment with atorvastatin for 24 h, the rate of cell apoptosis decreased by 6% and 16% in cells irradiated with 2 Gy and 25 Gy, respectively. TM expression increased by 77%, 59%, and 61% in untreated cells, 2 Gy irradiation-treated cells, and 25 Gy irradiation-treated cells, respectively. The protein C levels in 2 Gy and 25 Gy irradiation-treated cells were reduced by 23% and 34% when compared with untreated cells, but up-regulated by 79% and 76% when compared with cells which were irradiated and treated with atorvastatin. In conclusion, these data indicate that atorvastatin exerts protective effects on irradiated HUVEC by reducing apoptosis by up-regulating TM expression and enhancing protein C activation in irradiated HUVEC. (author)

  15. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  16. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction.

    Science.gov (United States)

    Liu, Yan; Li, Dan; Zhang, Yuhua; Sun, Ruifang; Xia, Min

    2014-04-15

    Adiponectin is an adipose tissue-secreted adipokine with beneficial effects on the cardiovascular system. In this study, we evaluated a potential role for adiponectin in the protective effects of anthocyanin on diabetes-related endothelial dysfunction. We treated db/db mice on a normal diet with anthocyanin cyanidin-3-O-β-glucoside (C3G; 2 g/kg diet) for 8 wk. Endothelium-dependent and -independent relaxations of the aorta were then evaluated. Adiponectin expression and secretion were also measured. C3G treatment restores endothelium-dependent relaxation of the aorta in db/db mice, whereas diabetic mice treated with an anti-adiponectin antibody do not respond. C3G treatment induces adiponectin expression and secretion in cultured 3T3 adipocytes through transcription factor forkhead box O1 (Foxo1). Silencing Foxo1 expression prevented C3G-stimulated induction of adiponectin expression. In contrast, overexpression of Foxo1-ADA promoted adiponectin expression in adipocytes. C3G activates Foxo1 by increasing its deacetylation via silent mating type information regulation 2 homolog 1 (Sirt1). Furthermore, purified anthocyanin supplementation significantly improved flow-mediated dilation (FMD) and increased serum adiponectin concentrations in patients with type 2 diabetes. Changes in adiponectin concentrations positively correlated with FMD in the anthocyanin group. Mechanistically, adiponectin activates cAMP-PKA-eNOS signaling pathways in human aortic endothelial cells, increasing endothelial nitric oxide bioavailability. These results demonstrate that adipocyte-derived adiponectin is required for anthocyanin C3G-mediated improvement of endothelial function in diabetes.

  17. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  18. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  19. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  20. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Massimiliano Migliori

    Full Text Available Several studies demonstrated that endothelium dependent vasodilatation is impaired in cardiovascular and chronic kidney diseases because of oxidant stress-induced nitric oxide availability reduction. The Mediterranean diet, which is characterized by food containing phenols, was correlated with a reduced incidence of cardiovascular diseases and delayed progression toward end stage chronic renal failure. Previous studies demonstrated that both red and white wine exert cardioprotective effects. In particular, wine contains Caffeic acid (CAF, an active component with known antioxidant activities.The aim of the present study was to investigate the protective effect of low doses of CAF on oxidative stress-induced endothelial injury.CAF increased basal as well as acetylcholine-induced NO release by a mechanism independent from eNOS expression and phosphorylation. In addition, low doses of CAF (100 nM and 1 μM increased proliferation and angiogenesis and inhibited leukocyte adhesion and endothelial cell apoptosis induced by hypoxia or by the uremic toxins ADMA, p-cresyl sulfate and indoxyl sulfate. The biological effects exerted by CAF on endothelial cells may be at least in part ascribed to modulation of NO release and by decreased ROS production. In an experimental model of kidney ischemia-reperfusion injury in mice, CAF significantly decreased tubular cell apoptosis, intraluminal cast deposition and leukocyte infiltration.The results of the present study suggest that CAF, at very low dosages similar to those observed after moderate white wine consumption, may exert a protective effect on endothelial cell function by modulating NO release independently from eNOS expression and phosphorylation. CAF-induced NO modulation may limit cardiovascular and kidney disease progression associated with oxidative stress-mediated endothelial injury.

  1. Cytotoxicity towards human endothelial cells, induced by neutrophil myeloperoxidase: protection by ceftazidime

    Directory of Open Access Journals (Sweden)

    M. Mathy-Hartert

    1995-01-01

    Full Text Available We investigated the effects of the antibiotic ceftazidime (CAZ on the cytolytic action of the neutrophil myeloperoxidase–hydrogen peroxide–chloride anion system (MPO/H2O2/Cl−. In this system, myeloperoxidase catalyses the conversion of H2O2 and CI− to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC were capable of taking up active MPO. In presence of H2O2 (10−4 M, this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of 51Cr from HUVEC and expressed as an index of cytotoxicity (IC. Dose dependent protection was obtained for CAZ concentrations ranging from 10−5 to 10−3 M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H2O2, but when cytolysis was achieved with H2O2 or O2− generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H2O2 was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon. So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.

  2. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    International Nuclear Information System (INIS)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael; Lulla, Aaron; Araujo, Jesus A.

    2015-01-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  3. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Lulla, Aaron [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Araujo, Jesus A., E-mail: JAraujo@mednet.ucla.edu [Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA 90095 (United States); Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (United States); Molecular Biology Institute, University of California, Los Angeles (United States)

    2015-05-01

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects

  4. Endothelial chimerism and vascular sequestration protect pancreatic islet grafts from antibody-mediated rejection

    Science.gov (United States)

    Chen, Chien-Chia; Pouliquen, Eric; Broisat, Alexis; Andreata, Francesco; Racapé, Maud; Bruneval, Patrick; Kessler, Laurence; Ahmadi, Mitra; Bacot, Sandrine; Saison-Delaplace, Carole; Marcaud, Marina; Van Huyen, Jean-Paul Duong; Loupy, Alexandre; Villard, Jean; Demuylder-Mischler, Sandrine; Morelon, Emmanuel; Tsai, Meng-Kun; Kolopp-Sarda, Marie-Nathalie; Koenig, Alice; Mathias, Virginie; Ghezzi, Catherine; Dubois, Valerie; Defrance, Thierry

    2017-01-01

    Humoral rejection is the most common cause of solid organ transplant failure. Here, we evaluated a cohort of 49 patients who were successfully grafted with allogenic islets and determined that the appearance of donor-specific anti-HLA antibodies (DSAs) did not accelerate the rate of islet graft attrition, suggesting resistance to humoral rejection. Murine DSAs bound to allogeneic targets expressed by islet cells and induced their destruction in vitro; however, passive transfer of the same DSAs did not affect islet graft survival in murine models. Live imaging revealed that DSAs were sequestrated in the circulation of the recipients and failed to reach the endocrine cells of grafted islets. We used murine heart transplantation models to confirm that endothelial cells were the only accessible targets for DSAs, which induced the development of typical microvascular lesions in allogeneic transplants. In contrast, the vasculature of DSA-exposed allogeneic islet grafts was devoid of lesions because sprouting of recipient capillaries reestablished blood flow in grafted islets. Thus, we conclude that endothelial chimerism combined with vascular sequestration of DSAs protects islet grafts from humoral rejection. The reduced immunoglobulin concentrations in the interstitial tissue, confirmed in patients, may have important implications for biotherapies such as vaccines and monoclonal antibodies. PMID:29202467

  5. Analysis of Active Components in Salvia Miltiorrhiza Injection Based on Vascular Endothelial Cell Protection

    Directory of Open Access Journals (Sweden)

    Shen Jie

    2014-09-01

    Full Text Available Correlation analysis based on chromatograms and pharmacological activities is essential for understanding the effective components in complex herbal medicines. In this report, HPLC and measurement of antioxidant properties were used to describe the active ingredients of Salvia miltiorrhiza injection (SMI. HPLC results showed that tanshinol, protocatechuic aldehyde, rosmarinic acid, salvianolic acid B, protocatechuic acid and their metabolites in rat serum may contribute to the efficacy of SMI. Assessment of antioxidant properties indicated that differences in the composition of serum powder of SMI caused differences in vascular endothelial cell protection. When bivariate correlation was carried out it was found that salvianolic acid B, tanshinol and protocatechuic aldehyde were active components of SMI because they were correlated to antioxidant properties.

  6. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    Science.gov (United States)

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  7. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  8. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica

    Science.gov (United States)

    Chen, Anjin; Zhang, Fang; Shi, Jie; Zhao, Xue; Yan, Meixing

    2016-10-01

    Several studies have indicated that fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica could inhibit the activation of platelets directly by reducing the platelet aggregation. To explore the direct effect of LMW fucoidan on the platelet system furthermore and examine the possible mechanism, the endothelial protection and inhibits platelet activation effects of two LMW fucoidan were investigated. In the present study, Endothelial injury model of rats was made by injection of adrenaline (0.4 mg kg-1) and human umbilical vein endothelial cells were cultured. vWF level was be investigated in vivo and in vitro as an important index of endothelial injury. LMW fucoidan could significantly reduce vWF level in vascular endothelial injury rats and also significantly reduce vWF level in vitro. The number of EMPs was be detected as another important index of endothelial injury. The results showed that LMW fucoidan reduced EMPs stimulated by tumor necrosis factor. In this study, it was found that by inhibiting platelet adhesion, LMW fucoidan played a role in anti-thrombosis and the specific mechanism of action is to inhibit the flow of extracellular Ca2+. All in a word, LMW fucoidan could inhibit the activation of platelets indirectly by reducing the concentration of EMPs and vWF, at the same time; LMW fucoidan inhibited the activation of platelets directly by inhibiting the flow of extracellular Ca2+.

  9. Decreased plasma levels of the endothelial protective sphingosine-1-phosphate are associated with dengue-induced plasma leakage

    NARCIS (Netherlands)

    Michels, M.; Japtok, L.; Alisjahbana, B.; Wisaksana, R.; Sumardi, U.; Puspita, M.; Kleuser, B.; Mast, Q. de; Ven, A.J.A.M. van der

    2015-01-01

    BACKGROUND: A transient endothelial hyperpermeability is a hallmark of severe dengue infections. Sphingosine-1-phosphate (S1P) maintains vascular integrity and protects against plasma leakage. We related plasma S1P levels to dengue-induced plasma leakage and studied mechanisms that may underlie the

  10. Sinusoids theory and technological applications

    CERN Document Server

    Kythe, Prem K

    2014-01-01

    A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI.The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and...

  11. Galantamine and carbon monoxide protect brain microvascular endothelial cells by heme oxygenase-1 induction

    International Nuclear Information System (INIS)

    Nakao, Atsunori; Kaczorowski, David J.; Zuckerbraun, Brian S.; Lei Jing; Faleo, Gaetano; Deguchi, Kentaro; McCurry, Kenneth R.; Billiar, Timothy R.; Kanno, Shinichi

    2008-01-01

    Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H 2 O 2 -induced cell death of mvECs in association with HO-1 induction. These protective effects were completely reversed by nuclear factor-κB (NF-κB) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-κB activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease

  12. Protection by deferoxamine from endothelial injury: A possible link with inhibition of intracellular xanthine oxidase

    International Nuclear Information System (INIS)

    Rinaldo, J.E.; Gorry, M.

    1990-01-01

    Hydroxyl radical scavengers and xanthine oxidase inhibitors protect cultured bovine pulmonary endothelial cells (BPAEC) from lytic injury by the endotoxin lipopolysaccharide (LPS). We hypothesized that exposure of BPAEC to cytotoxic concentrations of LPS activated intracellular xanthine oxidase, and that intracellular iron-dependent hydroxyl radical formation (a Fenton reaction) ensued, resulting in cell lysis. To test this, the protective effects of deferoxamine against H2O2 and LPS-induced cytotoxicity to BPAEC was assessed by 51Cr release. Preincubation with 0.4 mM deferoxamine conferred 67 +/- 15% (mean +/- SE) protection from LPS-induced cytotoxicity but 48 h of preincubation were required to induce significant protection. Significant protection form a classical Fenton reaction model, injury by 50 microM H2O2, could be induced by a 1-h preincubation with a 0.4 mM deferoxamine. The dissociated time course suggested that deferoxamine might work by different mechanisms in these models. The effects of LPS and deferoxamine on BPAEC-associated xanthine oxidase (XO) and xanthine dehydrogenase (XD) activity were assessed using a spectrofluorophotometric measurement of the conversion of pterin to isoxanthopterin. BPAEC had 106 +/- 7 microU/mg XD+XO activity; XO activity constituted 48 +/- 1% of total XO+XD activity. LPS at a cytotoxic concentration did not alter XO, XD, or percent XO. Deferoxamine had striking proportional inhibitory effects on XO and XD in intact cells. XO+XD activity fell to 6 +/- 1% of control levels during a 48-h exposure of BPAEC to deferoxamine. Deferoxamine did not inhibit XO+XD ex vivo

  13. Vochysia rufa Stem Bark Extract Protects Endothelial Cells against High Glucose Damage

    Directory of Open Access Journals (Sweden)

    Neire Moura de Gouveia

    2017-02-01

    Full Text Available Background: Increased oxidative stress by persistent hyperglycemia is a widely accepted factor in vascular damage responsible for type 2 diabetes complications. The plant Vochysia rufa (Vr has been used in folk medicine in Brazil for the treatment of diabetes. Thus; the protective effect of a Vr stem bark extract against a challenge by a high glucose concentration on EA.hy926 (EA endothelial cells is evaluated. Methods: Vegetal material is extracted with distilled water by maceration and evaporated until dryness under vacuum. Then; it is isolated by capillary electrophoresis–tandem mass spectrometry. Cell viability is evaluated on EA cells treated with 0.5–100 µg/mL of the Vr extract for 24 h. The extract is diluted at concentrations of 5, 10 and 25 µg/mL and maintained for 24 h along with 30 mM of glucose to evaluate its protective effect on reduced glutathione (GSH; glutathione peroxidase (GPx and reductase (GR and protein carbonyl groups. Results: V. rufa stem bark is composed mainly of sugars; such as inositol; galactose; glucose; mannose; sacarose; arabinose and ribose. Treatment with Vr up to 100 µg/mL for 24 h did not affect cell viability. Treatment of EA cells with 30 mM of glucose for 24 h significantly increased the cell damage. EA cells treated with 30 mM of glucose showed a decrease of GSH concentration and increased Radical Oxygen Species (ROS and activity of antioxidant enzymes and protein carbonyl levels; compared to control. Co-treatment of EA with 30 mM glucose plus 1–10 μg/mL Vr significantly reduced cell damage while 5–25 μg/mL Vr evoked a significant protection against the glucose insult; recovering ROS; GSH; antioxidant enzymes and carbonyls to baseline levels. Conclusion: V. rufa extract protects endothelial cells against oxidative damage by modulating ROS; GSH concentration; antioxidant enzyme activity and protein carbonyl levels.

  14. Tumor cytotoxicity by endothelial cells. Impairment of the mitochondrial system for glutathione uptake in mouse B16 melanoma cells that survive after in vitro interaction with the hepatic sinusoidal endothelium.

    Science.gov (United States)

    Ortega, Angel L; Carretero, Julian; Obrador, Elena; Gambini, Juan; Asensi, Miguel; Rodilla, Vicente; Estrela, José M

    2003-04-18

    High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.

  15. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  17. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation.

    Directory of Open Access Journals (Sweden)

    Atsushi Ishikado

    Full Text Available Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2(-/- mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1, and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2(-/- mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE, an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA rather than that in eicosapentaenoic acid (EPA. Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.

  18. TLQP-21 protects human umbilical vein endothelial cells against high-glucose-induced apoptosis by increasing G6PD expression.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556-576. Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs, we demonstrated that TLQP-21 (10 or 50 nM dose-dependently prevented apoptosis under high-glucose (30 mmol/L conditions (the normal glucose concentration is 5.6 mmol/L. TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH and a reduction in the levels of reactive oxygen species (ROS. TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD, which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.

  19. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  20. OS041. Apolipoprotein A-I protects normal integration of the trophoblast into endothelial cellular networks in an in vitro model of preeclampsia.

    Science.gov (United States)

    Charlton, F; Xu, B; Makris, A; Hennessy, A; Rye, K-A

    2012-07-01

    Failure of the trophoblast to appropriately invade uterine spiral arteries is thought to be an initiating event in preeclampsia, a disorder associated with endothelial dysfunction. A dyslipidemia characterised by low plasma levels of high density lipoproteins (HDL) and elevated triglycerides has also been described in preeclampsia. The pro-inflammatory cytokine TNF-α inhibits trophoblast invasion of uterine endothelial cells. Previous work using an in vitro JEG-3 cell/Uterine endothelial cell co-culture model investigated the effect of apoliopoprotein A-I, the main apolipoprotein component of HDL, on trophoblast incorporation into endothelial tubules in the presence and absence of TNF-α. These effects are now investigated using the human invasive trophoblast cell line HTR-8/SVneo. This study asks if apoA-I, which has established anti-inflammatory properties, can protect against the deleterious effect of TNF-α on trophoblast-endothelial cell interactions. The in vitro trophoblast-uterine endothelial cell co-culture model was used to investigate the effect of apoA-I on trophoblast incorporation into endothelial tubules in the presence and absence of TNF-α. Uterine endothelial cells were pre-incubated with lipid free apoA-I (final apoA-I concentration 1 mg/mL) for 16h prior to seeding on matrigel coated plates. Tubules formed within 4h. Fluorescence-labelled HTR-8/SVneo trophoblast cells were then co-cultured with the endothelial cells±TNF-α (final concentration of 0.2ng/mL). Bright field and fluorescent images were captured after 24h. The effect of TNF-α on HTR-8/SVneo cell invasion was quantified with Image J software. Integration of HTR-8/SVneo trophoblast cells into uterine endothelial tubular networks was also imaged using live cell imaging techniques (Zeiss Axiovert). TNF-α inhibited HTR-8/SVneo (trophoblast) cell integration into endothelial tubular structures by 24.1±3.7% pintegration of trophoblast into endothelial tubular structures in the presence

  1. Defibrotide sodium for the treatment of hepatic veno-occlusive disease/sinusoidal obstruction syndrome.

    Science.gov (United States)

    Richardson, Paul G; Triplett, Brandon M; Ho, Vincent T; Chao, Nelson; Dignan, Fiona L; Maglio, Michelle; Mohty, Mohamad

    2018-02-01

    Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is an unpredictable condition associated with endothelial-cell damage due to conditioning for hematopoietic stem-cell transplantation (HSCT) or chemotherapy without HSCT. Mortality in patients with VOD/SOS and multi-organ dysfunction (MOD) may be >80%. Areas covered: Defibrotide is the only approved drug for the treatment of severe hepatic VOD/SOS after HSCT in the European Union and hepatic VOD/SOS with renal or pulmonary dysfunction in the United States. Its efficacy in patients with VOD/SOS with MOD post-HSCT was demonstrated in a clinical-trial program that included a historically controlled treatment study, a phase 2 trial, and a large T-IND expanded-access program that also included patients without MOD and who received chemotherapy without HSCT. Expert commentary: Defibrotide appears to protect endothelial cells and restore the thrombolytic-fibrinolytic balance. It addresses a significant clinical need and has demonstrated favorable Day +100 survival and overall adverse-event rates that seem similar to control groups receiving supportive care alone. Currently, defibrotide is under investigation for the prevention of VOD/SOS in high-risk pediatric and adult patients.

  2. The Role of Plasma Transfusion in Massive Bleeding: Protecting the Endothelial Glycocalyx?

    Directory of Open Access Journals (Sweden)

    Stefano Barelli

    2018-04-01

    Full Text Available Massive hemorrhage is a leading cause of death worldwide. During the last decade several retrospective and some prospective clinical studies have suggested a beneficial effect of early plasma-based resuscitation on survival in trauma patients. The underlying mechanisms are unknown but appear to involve the ability of plasma to preserve the endothelial glycocalyx. In this mini-review, we summarize current knowledge on glycocalyx structure and function, and present data describing the impact of hemorrhagic shock and resuscitation fluids on glycocalyx. Animal studies show that hemorrhagic shock leads to glycocalyx shedding, endothelial inflammatory changes, and vascular hyper-permeability. In these animal models, plasma administration preserves glycocalyx integrity and functions better than resuscitation with crystalloids or colloids. In addition, we briefly present data on the possible plasma components responsible for these effects. The endothelial glycocalyx is increasingly recognized as a critical component for the physiological vasculo-endothelial function, which is destroyed in hemorrhagic shock. Interventions for preserving an intact glycocalyx shall improve survival of trauma patients.

  3. The anti-hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice.

    Directory of Open Access Journals (Sweden)

    Francois Leblond

    Full Text Available To demonstrate that p53 modulates endothelial function and the stress response to a high-fat western diet (WD.Three-month old p53+/+ wild type (WT and p53+/- male mice were fed a regular or WD for 3 months. Plasma levels of total cholesterol (TC and LDL-cholesterol were significantly elevated (p<0.05 in WD-fed WT (from 2.1±0.2 mmol/L to 3.1±0.2, and from 0.64±0.09 mmol/L to 1.25±0.11, respectively but not in p53+/- mice. The lack of cholesterol accumulation in WD-fed p53+/- mice was associated with high bile acid plasma concentrations (p53+/- =  4.7±0.9 vs. WT =  3.3±0.2 μmol/L, p<0.05 concomitant with an increased hepatic 7-alpha-hydroxylase mRNA expression. While the WD did not affect aortic endothelial relaxant function in p53+/- mice (WD =  83±5 and RD =  82±4% relaxation, it increased the maximal response to acetylcholine in WT mice (WD =  87±2 vs. RD =  62±5% relaxation, p<0.05 to levels of p53+/-. In WT mice, the rise in TC associated with higher (p<0.05 plasma levels of pro-inflammatory keratinocyte-derived chemokine, and an over-activation (p<0.05 of the relaxant non-nitric oxide/non-prostacyclin endothelial pathway. It is likely that in WT mice, activations of these pathways are adaptive and contributed to maintain endothelial function, while the WD neither promoted inflammation nor affected endothelial function in p53+/- mice.Our data demonstrate that low endogenous p53 expression prevents the rise in circulating levels of cholesterol when fed a WD. Consequently, the endothelial stress of hypercholesterolemia is absent in young p53+/- mice as evidenced by the absence of endothelial adaptive pathway over-activation to minimize stress-related damage.

  4. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice.

    Science.gov (United States)

    Manrique, Camila; Lastra, Guido; Ramirez-Perez, Francisco I; Haertling, Dominic; DeMarco, Vincent G; Aroor, Annayya R; Jia, Guanghong; Chen, Dongqing; Barron, Brady J; Garro, Mona; Padilla, Jaume; Martinez-Lemus, Luis A; Sowers, James R

    2016-04-01

    Consumption of a diet high in fat and refined carbohydrates (Western diet [WD]) is associated with obesity and insulin resistance, both major risk factors for cardiovascular disease (CVD). In women, obesity and insulin resistance abrogate the protection against CVD likely afforded by estrogen signaling through estrogen receptor (ER)α. Indeed, WD in females results in increased vascular stiffness, which is independently associated with CVD. We tested the hypothesis that loss of ERα signaling in the endothelium exacerbates WD-induced vascular stiffening in female mice. We used a novel model of endothelial cell (EC)-specific ERα knockout (EC-ERαKO), obtained after sequential crossing of the ERα double floxed mice and VE-Cadherin Cre-recombinase mice. Ten-week-old females, EC-ERαKO and aged-matched genopairs were fed either a regular chow diet (control diet) or WD for 8 weeks. Vascular stiffness was measured in vivo by pulse wave velocity and ex vivo in aortic explants by atomic force microscopy. In addition, vascular reactivity was assessed in isolated aortic rings. Initial characterization of the model fed a control diet did not reveal changes in whole-body insulin sensitivity, aortic vasoreactivity, or vascular stiffness in the EC-ERαKO mice. Interestingly, ablation of ERα in ECs reduced WD-induced vascular stiffness and improved endothelial-dependent dilation. In the setting of a WD, endothelial ERα signaling contributes to vascular stiffening in females. The precise mechanisms underlying the detrimental effects of endothelial ERα in the setting of a WD remain to be elucidated.

  5. Cosmology and the Sinusoidal Potential

    Science.gov (United States)

    Bartlett, David F.

    2006-06-01

    The nature of dark matter (and dark energy) remains a mystery. An alternative is being explored by several scientists: changing Newton's (and Einstein's) field equations. The sinusoidal potential is the latest attempt[1]. Here the gravitational law is alternately attractive and repulsive:φ = -GM cos(kor)/r, where λo=2π/ko = 1/20 of the distance from the sun to the center of the Milky Way. The proposal accommodates several structural features of the Milky Way including, paradoxically, its spiral shape and flat rotation curve. The sinusoidal potential's unique feature is strong galactic tidal forces (dg/dr). These may explain why the new planetoid Sedna is securely between the Kuiper Belt and the Oort cloud and why distant comets are more influenced by galactic tides that are in the r, rather than the z-direction.At this meeting I discuss the consequences of the sinusoidal potential for cosmology. Here the alternation of attraction and repulsion gives (i) an open universe, and (ii) gravitational lensing which is usually weak, but occasionally very strong. An open universe is one that, asymptotically, has a size R which varies directly as time t. The open universe conflicts both with the old Einstein-deSitter model (R α t2/3} and the new accelerating one. The evidence for an accelerating universe decisively rejects the Einstein-deSitter model. The rejection of an open (or empty) universe is less secure. This rejection is influenced by the different ways the groups studying the brightness of supernovae use the HST. Surprising additional inputs include neutrino masses, the equivalence principle, LSB galaxies, and "over-luminous" Sn1a. I thank Mostafa Jon Dadras and Patrick Motl for early help and John Cumalat for continual support. [1] D.F. Bartlett, "Analogies between electricity and gravity", Metrologia 41, S115-S124 (2004).

  6. Naringin Protects Against High Glucose-Induced Human Endothelial Cell Injury Via Antioxidation and CX3CL1 Downregulation

    Directory of Open Access Journals (Sweden)

    Guilin Li

    2017-08-01

    Full Text Available Background/Aims: The induction of endothelial injury by hyperglycemia in diabetes has been widely accepted. Naringin is a bio-flavonoid. Some studies showed that naringin alleviates diabetic complications, but the exact mechanisms by which naringin improves diabetic anomalies are not yet fully understood. The aim of this research was to study the protective effect of naringin on high glucose-induced injury of human umbilical vein endothelial cells (HUVECs. Methods: HUVECs were cultured with or without high glucose in the absence or presence of naringin for 5 days. The expression of CX3CL1 was determined by quantitative real-time RT-PCR (qPCR and western blot. The cellular bioenergetic analysis oxygen consumption rate (OCR was measured with a Seahorse Bioscience XF analyzer. Results: The production of reactive oxygen species (ROS, the expression of CX3CL1 and the level of AKT phosphorylation were increased in HUVECs cultured with high glucose compared with controls. However, naringin rescued these increases in ROS production, CX3CL1 expression and AKT phosphorylation. Nitric oxide (NO production and OCR were lower in the high glucose group, and naringin restored the changes induced by high glucose. Molecular docking results suggested that Naringin might interact with the CX3CL1 protein. Conclusion: Naringin protects HUVECs from high-glucose-induced damage through its antioxidant properties by downregulating CX3CL1 and by improving mitochondrial function.

  7. Leonurine protects against tumor necrosis factor-α-mediated inflammation in human umbilical vein endothelial cells.

    Science.gov (United States)

    Liu, Xinhua; Pan, Lilong; Wang, Xianli; Gong, Qihai; Zhu, Yi Zhun

    2012-05-01

    Leonurine, a bioactive alkaloid compound in Herba leonuri, has various pharmacological activities, including antioxidant and anti-apoptotic capacities. This study was conducted to test the hypothesis that leonurine was able to attenuate tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) activation and the underlying molecular mechanisms. Mitogen-activated protein kinases (MAPK) activation, nuclear factor-κB (NF-κB) activation, and inflammatory mediators expression were detected by Western blot or enzyme-liked immunosorbent assay, intracellular reactive oxygen species (ROS) and NF-κB p65 translocation were measured by immunofluorescence, endothelial cell-monocyte interaction was detected by microscope. Leonurine inhibited U937 cells adhesion to TNF-α-activated HUVEC in a concentration dependent manner. Treatment with leonurine blocked TNF-α-induced mRNA and protein expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), cyclooxygenase-2, and monocyte chemoattractant protein-1 in endothelial cells. In addition, leonurine attenuated TNF-α-induced intracellular ROS production in HUVEC. Furthermore, leonurine also suppressed the TNF-α-activated p38 phosphorylation and IκBα degradation. Subsequently, reduced NF-κB p65 phosphorylation, nuclear translocation, and DNA-binding activity were also observed. Our results demonstrated for the first time that the anti-inflammatory properties of leonurine in endothelial cells, at least in part, through suppression of NF-κB activation, which may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus.

    Science.gov (United States)

    Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan

    2014-08-01

    Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.

  9. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    Science.gov (United States)

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  10. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  11. Distinct deleterious effects of cyclosporine and tacrolimus and combined tacrolimus-sirolimus on endothelial cells: protective effect of defibrotide.

    Science.gov (United States)

    Carmona, Alba; Díaz-Ricart, Maribel; Palomo, Marta; Molina, Patricia; Pino, Marc; Rovira, Montserrat; Escolar, Ginés; Carreras, Enric

    2013-10-01

    Endothelial dysfunction seems to be a key factor in the development of several complications observed early after hematopoietic stem cell transplantation (HSCT). The conditioning regimen and many other factors associated with the procedure are responsible for this endothelial damage. The effects of immunosuppressive agents on endothelial function have not been explored in detail. We evaluated the effects of 3 drugs commonly used in HSCT: 2 calcineurin inhibitors, cyclosporine A (CSA) and tacrolimus (TAC), and an inhibitor of mTOR, sirolimus (SIR). We also evaluated the effect of the combination of TAC and SIR (TAC+SIR), which is used increasingly in clinical practice. Microvascular endothelial cells (HMEC-1) were exposed to these drugs to evaluate changes in (1) intercellular adhesion molecule (ICAM)-1 expression on the cell surface, assessed by immunofluorescence labeling and expressed as the mean gray value (MGV); (2) reactivity of the extracellular matrix (ECM) toward platelets, upon exposure of the ECM to circulating blood; and (3) whole-blood clot formation, assessed by thromboelastometry. Studies were conducted in the absence and presence of defibrotide (DF) to assess its possible protective effect. The exposure of HMEC-1 to CSA and TAC+SIR significantly increased the expression of ICAM-1 (157.5 ± 11.6 and 153.4 ± 9.5 MGV, respectively, versus 105.7 ± 6.5 MGV in controls [both P < .05]). TAC applied alone increased ICAM-1 slightly (120.3 ± 8.2 MGV), and SIR had no effect (108.9 ± 7.4 MGV). ECM reactivity increased significantly only in response to CSA (surface covered by platelets of 41.2% ± 5.4% versus 30.1% ± 2.0%, P < .05). DF attenuated all these changes. No significant changes in the viscoelastic properties of clot formation were observed in any condition with blood samples incubated in vitro. In conclusion, CSA and TAC+SIR had a proinflammatory effect, but only CSA exhibited an additional prothrombotic effect. Interestingly, DF exerted clear

  12. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  13. Habitual aerobic exercise does not protect against micro- or macrovascular endothelial dysfunction in healthy estrogen-deficient postmenopausal women.

    Science.gov (United States)

    Santos-Parker, Jessica R; Strahler, Talia R; Vorwald, Victoria M; Pierce, Gary L; Seals, Douglas R

    2017-01-01

    Aging causes micro- and macrovascular endothelial dysfunction, as assessed by endothelium-dependent dilation (EDD), which can be prevented and reversed by habitual aerobic exercise (AE) in men. However, in estrogen-deficient postmenopausal women, whole forearm microvascular EDD has not been studied, and a beneficial effect of AE on macrovascular EDD has not been consistently shown. We assessed forearm blood flow in response to brachial artery infusions of acetylcholine (FBF ACh ), a measure of whole forearm microvascular EDD, and brachial artery flow-mediated dilation (FMD), a measure of macrovascular EDD, in 12 premenopausal sedentary women (Pre-S; 24 ± 1 yr; V̇o 2max = 37.5 ± 1.6 ml·kg -1 ·min -1 ), 25 estrogen-deficient postmenopausal sedentary women (Post-S; 62 ± 1 yr; V̇o 2max = 24.7 ± 0.9 ml·kg -1 ·min -1 ), and 16 estrogen-deficient postmenopausal AE-trained women (Post-AE; 59 ± 1 yr; V̇o 2max = 40.4 ± 1.4 ml·kg -1 ·min -1 ). FBF ACh was lower in Post-S and Post-AE compared with Pre-S women (135 ± 9 and 116 ± 17 vs. 193 ± 21 AUC, respectively, both P stress. This is the first study to demonstrate that habitual aerobic exercise may not protect against age/menopause-related whole forearm microvascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, consistent with recent findings regarding macrovascular endothelial function. This is in contrast to what is observed in healthy middle-aged and older aerobic exercise-trained men. Copyright © 2017 the American Physiological Society.

  14. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  15. Resveratrol self-emulsifying system increases the uptake by endothelial cells and improves protection against oxidative stress-mediated death.

    Science.gov (United States)

    Amri, Ahmed; Le Clanche, Solenn; Thérond, Patrice; Bonnefont-Rousselot, Dominique; Borderie, Didier; Lai-Kuen, René; Chaumeil, Jean-Claude; Sfar, Souad; Charrueau, Christine

    2014-04-01

    The aim of the present study was to develop and characterize a resveratrol self-emulsifying drug delivery system (Res-SEDDS), and to compare the uptake of resveratrol by bovine aortic endothelial cells (BAECs), and the protection of these cells against hydrogen peroxide-mediated cell death, versus a control resveratrol ethanolic solution. Three Res-SEDDSs were prepared and evaluated. The in vitro self-emulsification properties of these formulations, the droplet size and the zeta potential of the nanoemulsions formed on adding them to water under mild agitation conditions were studied, together with their toxicity on BAECs. An optimal atoxic formulation (20% Miglyol® 812, 70% Montanox® 80, 10% ethanol 96% v/v) was selected and further studied. Pre-incubation of BAECs for 180 min with 25 μM resveratrol in the nanoemulsion obtained from the selected SEDDS significantly increased the membrane and intracellular concentrations of resveratrol (for example, 0.076±0.015 vs. ethanolic solution 0.041±0.016 nmol/mg of protein after 60 min incubation, p<0.05). Resveratrol intracellular localization was confirmed by fluorescence confocal microscopy. Resveratrol nanoemulsion significantly improved the endothelial cell protection from H2O2-induced injury (750, 1000 and 1500 μM H2O2) in comparison with incubation with the control resveratrol ethanolic solution (for example, 55±6% vs. 38±5% viability after 1500 μM H2O2 challenge, p<0.05). In conclusion, formulation of resveratrol as a SEDDS significantly improved its cellular uptake and potentiated its antioxidant properties on BAECs. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Evaluation of the antioxidant and endothelial protective effects of Lysimachia christinae Hance (Jin Qian Cao) extract fractions.

    Science.gov (United States)

    Wu, Ning-Hua; Ke, Zhi-Qiang; Wu, Shan; Yang, Xiao-Song; Chen, Qing-Jie; Huang, Sheng-Tang; Liu, Chao

    2018-04-10

    Lysimachia christinae Hance is a traditional Chinese medicine with diuretic, detumescent, and detoxifying effects. Our aimed to optimize the extraction protocol to maximize the yield of flavonoids from Lysimachia christinae Hance, and evaluate the pharmacological activities of four fractions, namely, petroleum ether (PE), ethyl acetate (EA), n-butanol (NB), and aqueous (AQ) fractions, of the ethanolic extract of Lysimachia christinae Hance. The flavonoid monomers in the crude extract were characterized via high performance liquid chromatography (HPLC), were used as markers for extract quality control and standardization. The total flavonoid, total phenolic, and total polysaccharide contents of each fraction were determined by spectrophotometry. Further, the in vitro free radical (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide, and hydroxyl radicals) scavenging activities, and antioxidant capacity in endothelial cells were evaluated for each fraction. After optimizing the extraction protocol to maximize the total flavonoid yield from L. christinae Hance, the NB fractions had the highest total flavonoid (39.4 ± 4.55 mg RE/g), total phenolic (41.1 ± 3.07 mg GAE/g) and total polysaccharide (168.1 ± 7.07 mg GE/g); In addition, the NB fraction of the ethanolic extract of L. christinae Hance reveal the strongest radical-scavenging activity, antioxidant activity and protective effects against H 2 O 2 -induced injury in HUVECs. Among the four fractions of L. christinae Hance, the NB fraction showed the most potent antioxidant and endothelial protective effects, which may be attributed to its high flavonoid, phenolic contents and optimal portfolio of different active ingredients of NB fractions of the ethanolic extract of L. christinae Hance. This study might improve our understanding of the pharmacological activities of L. christinae Hance, thereby facilitating its use in disease prevention and treatment.

  17. Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects.

    Science.gov (United States)

    Sauvet, Fabien; Arnal, Pierrick J; Tardo-Dino, Pierre Emmanuel; Drogou, Catherine; Van Beers, Pascal; Bougard, Clément; Rabat, Arnaud; Dispersyn, Garance; Malgoyre, Alexandra; Leger, Damien; Gomez-Merino, Danielle; Chennaoui, Mounir

    2017-04-01

    Sleep loss is a risk factor for cardiovascular events mediated through endothelial dysfunction. To determine if 7weeks of exercise training can limit cardiovascular dysfunction induced by total sleep deprivation (TSD) in healthy young men. 16 subjects were examined during 40-h TSD, both before and after 7weeks of interval exercise training. Vasodilatation induced by ACh, insulin and heat (42°C) and pulse wave velocity (PWV), blood pressure and heart rate (HR) were assessed before TSD (controlday), during TSD, and after one night of sleep recovery. Biomarkers of endothelial activation, inflammation, and hormones were measured from morning blood samples. Before training, ACh-, insulin- and heat-induced vasodilatations were significantly decreased during TSD and recovery as compared with the control day, with no difference after training. Training prevented the decrease of ACh-induced vasodilation related to TSD after sleep recovery, as well as the PWV increase after TSD. A global lowering effect of training was found on HR values during TSD, but not on blood pressure. Training induces the decrease of TNF-α concentration after TSD and prevents the increase of MCP-1 after sleep recovery. Before training, IL-6 concentrations increased. Cortisol and testosterone decreased after TSD as compared with the control day, while insulin and E-selectin increased after sleep recovery. No effect of TSD or training was found on CRP and sICAM-1. In healthy young men, a moderate to high-intensity interval training is effective at improving aerobic fitness and limiting vascular dysfunction induced by TSD, possibly through pro-inflammatory cytokine responses.(ClinicalTrial:NCT02820649). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  19. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  20. Galalctic Tides & the Sinusoidal Potential

    Science.gov (United States)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  1. EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway.

    Science.gov (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2017-03-28

    Ginkgo bilob a extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, γ-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

  2. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  3. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    Science.gov (United States)

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  4. Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress

    Science.gov (United States)

    Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2013-01-01

    Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10–100 µmol/l. What’s more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress. PMID:24098758

  5. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress.

    Directory of Open Access Journals (Sweden)

    Wenlu Li

    Full Text Available Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC, protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT formation, cell account, lactate dehydrogenase (LDH release and Rhodamine 123 staining. Advanced glycation end-products (AGEs formation and receptor for advanced glycation end-products (RAGE expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10-100 µmol/l. What's more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress.

  6. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression.

    Science.gov (United States)

    Lee, Seung Eun; Yang, Hana; Son, Gun Woo; Park, Hye Rim; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2015-06-26

    The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.

  7. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1

    Directory of Open Access Journals (Sweden)

    Carolina Emilia Storniolo

    2014-01-01

    Full Text Available Epidemiological and clinical studies have reported that olive oil reduces the incidence of cardiovascular disease. However, the mechanisms involved in this beneficial effect have not been delineated. The endothelium plays an important role in blood pressure regulation through the release of potent vasodilator and vasoconstrictor agents such as nitric oxide (NO and endothelin-1 (ET-1, respectively, events that are disrupted in type 2 diabetes. Extra virgin olive oil contains polyphenols, compounds that exert a biological action on endothelial function. This study analyzes the effects of olive oil polyphenols on endothelial dysfunction using an in vitro model that simulates the conditions of type 2 diabetes. Our findings show that high glucose and linoleic and oleic acids decrease endothelial NO synthase phosphorylation, and consequently intracellular NO levels, and increase ET-1 synthesis by ECV304 cells. These effects may be related to the stimulation of reactive oxygen species production in these experimental conditions. Hydroxytyrosol and the polyphenol extract from extra virgin olive oil partially reversed the above events. Moreover, we observed that high glucose and free fatty acids reduced NO and increased ET-1 levels induced by acetylcholine through the modulation of intracellular calcium concentrations and endothelial NO synthase phosphorylation, events also reverted by hydroxytyrosol and polyphenol extract. Thus, our results suggest a protective effect of olive oil polyphenols on endothelial dysfunction induced by hyperglycemia and free fatty acids.

  8. Sinusoidal Obstruction Syndrome (Hepatic Veno-Occlusive Disease)

    Science.gov (United States)

    Fan, Cathy Q.; Crawford, James M.

    2014-01-01

    Hepatic sinusoidal obstruction syndrome (SOS) is an obliterative venulitis of the terminal hepatic venules, which in its more severe forms imparts a high risk of mortality. SOS, also known as veno-occlusive disease (VOD), occurs as a result of cytoreductive therapy prior to hematopoietic stem cell transplantation (HSCT), following oxaliplatin-containing adjuvant or neoadjuvant chemotherapy for colorectal carcinoma metastatic to the liver and treated by partial hepatectomy, in patients taking pyrrolizidine alkaloid-containing herbal remedies, and in other particular settings such as the autosomal recessive condition of veno-occlusive disease with immunodeficiency (VODI). A central pathogenic event is toxic destruction of hepatic sinusoidal endothelial cells (SEC), with sloughing and downstream occlusion of terminal hepatic venules. Contributing factors are SEC glutathione depletion, nitric oxide depletion, increased intrahepatic expression of matrix metalloproteinases and vascular endothelial growth factor (VEGF), and activation of clotting factors. The clinical presentation of SOS includes jaundice, development of right upper-quadrant pain and tender hepatomegaly, ascites, and unexplained weight gain. Owing to the potentially critical condition of these patients, transjugular biopsy may be the preferred route for liver biopsy to exclude other potential causes of liver dysfunction and to establish a diagnosis of SOS. Treatment includes rigorous fluid management so as to avoid excessive fluid overload while avoiding too rapid diuresis or pericentesis, potential use of pharmaceutics such as defibrotide, coagulolytic agents, or methylprednisolone, and liver transplantation. Proposed strategies for prevention and prophylaxis include reduced-intensity conditioning radiation for HSCT, treatment with ursodeoxycholic acid, and inclusion of bevacizumab with oxaliplatin-based chemotherapeutic regimes. While significant progress has been made in understanding the pathogenesis

  9. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice

    Science.gov (United States)

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B.; Carter, A. Brent; Rowe, Steven M.; Matalon, Sadis; Thannickal, Victor J.; Agarwal, Anupam

    2015-01-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1+/+, HO-1−/−, and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1−/− mice exhibited more severe emphysema compared with HO-1+/+ or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1+/+, HO-1−/−, and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1−/− PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1+/+ PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema. PMID:26071551

  10. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice.

    Science.gov (United States)

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B; Carter, A Brent; Rowe, Steven M; Matalon, Sadis; Thannickal, Victor J; Agarwal, Anupam; Antony, Veena B

    2015-08-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema. Copyright © 2015 the American Physiological Society.

  11. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Multidrug-resistance-associated protein plays a protective role in menadione-induced oxidative stress in endothelial cells.

    Science.gov (United States)

    Takahashi, Kyohei; Shibata, Tomohito; Oba, Tatsuya; Ishikawa, Tetsuya; Yoshikawa, Masahito; Tatsunami, Ryosuke; Takahashi, Kazuhiko; Tampo, Yoshiko

    2009-02-13

    Menadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs). BAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody. Intracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells. We conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.

  13. Encryption in Chaotic Systems with Sinusoidal Excitations

    Directory of Open Access Journals (Sweden)

    G. Obregón-Pulido

    2014-01-01

    Full Text Available In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we consider that the security level is increased.

  14. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  15. Unidirectional Motion of Vehicle on Sinusoidal Path

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. Unidirectional Motion of Vehicle on Sinusoidal Path: Can it Cause Illusory Forward and Backward Motion? Anuj Bhatnagar. Classroom Volume 17 Issue 4 April 2012 pp 387-392 ...

  16. Riding the Ferris Wheel: A Sinusoidal Model

    Science.gov (United States)

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2011-01-01

    When thinking of models for sinusoidal waves, examples such as tides of the ocean, daily temperatures for one year in your town, light and sound waves, and certain types of motion are used. Many textbooks [1, p. 222] also present a "Ferris wheel description problem" for students to work. This activity takes the Ferris wheel problem out of the…

  17. Model selection and comparison for independents sinusoids

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2014-01-01

    In the signal processing literature, many methods have been proposed for estimating the number of sinusoidal basis functions from a noisy data set. The most popular method is the asymptotic MAP criterion, which is sometimes also referred to as the BIC. In this paper, we extend and improve this me...

  18. Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.

    Science.gov (United States)

    Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E

    2016-05-01

    Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling.

    Science.gov (United States)

    Mahmoud, Ayman M; Wilkinson, Fiona L; Jones, Alan M; Wilkinson, James A; Romero, Miguel; Duarte, Juan; Alexander, M Yvonne

    2017-01-01

    Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress. Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1-C4) incorporating sulfate groups to mimic the structure of heparan sulfate. Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1-C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate. The small molecule glycomimetics, C1-C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4.

    Directory of Open Access Journals (Sweden)

    Heling Chu

    Full Text Available Vascular endothelial growth factor (VEGF has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH is largely unknown. Our previous study has shown aquaporin-4 (AQP4 plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165 was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+ and AQP4 knock-out (AQP4(-/- mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+ mice at each time point, but had no effect on AQP4(-/- mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/- mice, but not AQP4(+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK and extracellular signal-regulated kinase (p-ERK and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to

  1. [Defibrotide therapy for patients with sinusoidal obstruction syndrome after hematopoietic stem cell transplantation].

    Science.gov (United States)

    Yakushijin, Kimikazu; Okamura, Atsuo; Ono, Kanako; Kawano, Yuko; Kawano, Hiroki; Funakoshi, Yohei; Kawamori, Yuriko; Nishikawa, Shinichiro; Minagawa, Kentaro; Sada, Akiko; Shimoyama, Manabu; Yamamoto, Katsuya; Katayama, Yoshio; Matsui, Toshimitsu

    2009-01-01

    Sinusoidal obstruction syndrome (SOS) is one of the life-threatening complications caused by endothelial damage to the hepatic sinusoids after hematopoietic stem cell transplantation. However, a satisfactory treatment for SOS has not yet been established. Defibrotide has anti-thrombotic, anti-ischemic, anti-inflammatory, and thrombolytic properties without systemic anticoagulant effects. We treated eight post-transplant SOS patients with defibrotide. Three patients responded to the therapy and the initial response was observed within a week. In addition to the improvement of liver function, rapid recovery of response to diuretic drugs followed by the improvement of renal function was observed. All of the five patients with respiratory dysfunction died despite administration of defibrotide, suggesting that early treatment might lead to better outcomes. There were no severe adverse effects directly due to defibrotide administration. Defibrotide seems to be a promising treatment for SOS, and the initiation of a clinical study in Japan would be important.

  2. The in vitro protection of human decay accelerating factor and hDAF/heme oxygenase-1 transgenes in porcine aortic endothelial cells against sera of Formosan macaques.

    Science.gov (United States)

    Tu, C-F; Tai, H-C; Wu, C-P; Ho, L-L; Lin, Y-J; Hwang, C-S; Yang, T-S; Lee, J-M; Tseng, Y-L; Huang, C-C; Weng, C-N; Lee, P-H

    2010-01-01

    To mitigate hyperacute rejection, pigs have been generated with alpha-Gal transferase gene knockout and transgenic expression of human decay accelerating factor (hDAF), MCP, and CD59. Additionally, heme-oxygenase-1 (HO-1) has been suggested to defend endothelial cells. Sera (MS) (0%, 1%, 5%, 10%, and 15%) from Formosan macaques (Macaca cyclopis, MC), an Old World monkey wildly populated in Taiwan, was used to test the protective in vitro, effects of hDAF or hDAF/hHO-1 on porcine aortic endothelial cells (pAEC) derived from hDAF(+), hDAF(+)/hHO-1(+), and hDAF(+)/hHO-1(-) and 1 nontransgenic pAEC. Ten percent human serum (HS) served as a positive control. When MS addition increased to 10% or 15%, all transgenic pAEC exhibited a greater survival than nontransgenic pAEC. Noticeably, 15% MS reduced survived to 40% in nontransgenic and transgenic pAEC, respectively. These results revealed that hDAF exerted protective effects against MC complement activation. However, comparing with 10% MS and HS in pAEC of nontransgenic pigs, the survivability was higher in HS, suggesting that complement activation by MS was more toxic than that by HS. Furthermore, hDAF(+)/hHO-1(+) showed no further protection against effects of MS on transgenic pAEC. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Biphase sinusoidal oscillator based on negative resistor.

    Science.gov (United States)

    Bayard, Jean

    2010-06-01

    This paper describes a biphase sinusoidal generator which provides two signals: v(ref)=V(M) sin(omegat) and v(out)=V(M) sin(omegat+DeltaPhi), where DeltaPhi is in the range 0, pi/2 or -pi/2, 0 and is not dependent on the frequency value. It is based on a negative resistor and it requires very few components. SPICE simulations and measurements on an experimental setup confirm the theoretical analysis.

  4. CAT-1 as a novel CAM stabilizes endothelial integrity and mediates the protective actions of L-Arg via a NO-independent mechanism.

    Science.gov (United States)

    Guo, Lu; Tian, Shuang; Chen, Yuguo; Mao, Yun; Cui, Sumei; Hu, Aihua; Zhang, Jianliang; Xia, Shen-Ling; Su, Yunchao; Du, Jie; Block, Edward R; Wang, Xing Li; Cui, Zhaoqiang

    2015-10-01

    Interendothelial junctions play an important role in the maintenance of endothelial integrity and the regulation of vascular functions. We report here that cationic amino acid transporter-1 (CAT-1) is a novel interendothelial cell adhesion molecule (CAM). We identified that CAT-1 protein localized at cell-cell adhesive junctions, similar to the classic CAM of VE-cadherin, and knockdown of CAT-1 with siRNA led to an increase in endothelial permeability. In addition, CAT-1 formed a cis-homo-dimer and showed Ca(2+)-dependent trans-homo-interaction to cause homophilic cell-cell adhesion. Co-immunoprecipitation assays showed that CAT-1 can associate with β-catenin. Furthermore, we found that the sub-cellular localization and function of CAT-1 are associated with cell confluency, in sub-confluent ECs CAT-1 proteins distribute on the entire surface and function as L-Arg transporters, but most of the CAT-1 in the confluent ECs are localized at interendothelial junctions and serve as CAMs. Further functional characterization has disclosed that extracellular L-Arg exposure stabilizes endothelial integrity via abating the cell junction disassembly of CAT-1 and blocking the cellular membrane CAT-1 internalization, which provides the new mechanisms for L-Arg paradox and trans-stimulation of cationic amino acid transport system (CAAT). These results suggest that CAT-1 is a novel CAM that directly regulates endothelial integrity and mediates the protective actions of L-Arg to endothelium via a NO-independent mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Protective effect of anti-oxidants on endothelial function in young Korean-Asians compared to Caucasians

    Science.gov (United States)

    Yim, Jongeun; Petrofsky, Jerrold; Berk, Lee; Daher, Noha; Lohman, Everett; Moss, Abigail; Cavalcanti, Paula

    2012-01-01

    Summary Background Previous studies show that Asians have an impaired blood flow response (BFR) to occlusion after a single high fat (HF) meal. The mechanism is believed to be the presence and susceptibility to high free radicals in their blood. The free radical concentration after a HF meal has not been examined in Asians. Further the BFR to heat after a single HF meal in Koreans has not been measured. Material/Methods This study evaluated postprandial endothelial function by measuring the BFR to vascular occlusion and local heat before and after a HF meal and the interventional effects of anti-oxidant vitamins on improving endothelial function in young Korean-Asians (K) compared to Caucasians (C) with these assessments. Ten C and ten K participated in the study (mean age 25.3±3.6 years old). BFR to vascular occlusion and local heat and oxidative stress were assessed after a single low fat (LF) and HF meal at 2 hours compared to baseline. After administration of vitamins (1000 mg of vitamin C, 800 IU of vitamin E, and 300 mg of Coenzyme Q-10) for 14 days, the same measurements were made. Results This study showed that the skin BFR to vascular occlusion and local heat following a HF meal significantly decreased and free radicals significantly increased at 2 hours compared to baseline in K (pvitamins were given, the BFR to vascular occlusion and local heat before and after HF meal were not significantly different in K and C. Conclusions These findings suggest that even a single HF meal can reduce endothelial response to stress through an oxidative stress mechanism but can be blocked by antioxidants, probably through scavenging free radicals in K. Since endothelial function improved even before a HF meal in K, endothelial damage from an Americanized diet may be reduced in K by antioxidants. PMID:22847195

  6. Mapping surface properties of sinusoidal roughness standards by TPM

    International Nuclear Information System (INIS)

    Liu, X; Rubert, P

    2005-01-01

    We report our investigation on the surface properties of sinusoidal roughness standards made from pure electroformed nickel. Two specimens having a sinusoidal profile with nominal R a of 0.36 μm and a peak spacing of 25 μm are chosen for this investigation. One specimen is further treated with a hard protective coating of nickel-boron. The surface topography, friction, hardness and Young's modulus of the specimens were measured by a novel instrument, the multi-function Tribological Probe Microscope (TPM). The results show that hardness of these two specimens is 14.1 GPa for uncoated specimen and 25.7 GPa for the coated one, while the Young's modulus is 188 GPa and 225 GPa, respectively. The ramping force was set to 3mN for both the specimens and the effect of the tip penetration was investigated by comparing the topography measurements before and after hardness mapping. It has been found out that there is no significant change in the averaged profiles over the scanned area, which indicates the topography distortion seen in the multi-function mapping, is recoverable. Cross correlation between topography and its corresponding hardness/Young's modulus has been carried out and the result will be discussed in the paper

  7. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  8. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Arfian, Nur [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Vignon-Zellweger, Nicolas; Nakayama, Kazuhiko; Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and

  9. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets.

    Science.gov (United States)

    Kreutter, Guillaume; Kassem, Mohamad; El Habhab, Ali; Baltzinger, Philippe; Abbas, Malak; Boisrame-Helms, Julie; Amoura, Lamia; Peluso, Jean; Yver, Blandine; Fatiha, Zobairi; Ubeaud-Sequier, Geneviève; Kessler, Laurence; Toti, Florence

    2017-11-01

    Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H 2 O 2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eM aPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H 2 O 2 -treated rat islets with increased viability (62% versus 48% H 2 O 2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    Science.gov (United States)

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  11. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    Science.gov (United States)

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  12. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio

    2012-09-01

    Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (Pwave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.

  13. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway.

    Science.gov (United States)

    Yang, Guang; Qian, Chen; Wang, Ning; Lin, Chenyu; Wang, Yan; Wang, Guangyun; Piao, Xinxin

    2017-05-01

    Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.

  14. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  15. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways.

    Science.gov (United States)

    Liu, Shumin; Sun, Zhengwu; Chu, Peng; Li, Hailong; Ahsan, Anil; Zhou, Ziru; Zhang, Zonghui; Sun, Bin; Wu, Jingjun; Xi, Yalin; Han, Guozhu; Lin, Yuan; Peng, Jinyong; Tang, Zeyao

    2017-05-01

    Homocysteine (Hcy) induced vascular endothelial injury leads to the progression of endothelial dysfunction in atherosclerosis. Epigallocatechin gallate (EGCG), a natural dietary antioxidant, has been applied to protect against atherosclerosis. However, the underlying protective mechanism of EGCG has not been clarified. The present study investigated the mechanism of EGCG protected against Hcy-induced human umbilical vein endothelial cells (HUVECs) apoptosis. Methyl thiazolyl tetrazolium assay (MTT), transmission electron microscope, fluorescent staining, flow cytometry, western blot were used in this study. The study has demonstrated that EGCG suppressed Hcy-induced endothelial cell morphological changes and reactive oxygen species (ROS) generation. Moreover, EGCG dose-dependently prevented Hcy-induced HUVECs cytotoxicity and apoptotic biochemical changes such as reducing mitochondrial membrane potential (MMP), decreasing Bcl-2/Bax protein ratio and activating caspase-9 and 3. In addition, EGCG enhanced the protein ratio of p-Akt/Akt, endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) formation in injured cells. In conclusion, the present study shows that EGCG prevents Hcy-induced HUVECs apoptosis via modulating mitochondrial apoptotic and PI3K/Akt/eNOS signaling pathways. Furthermore, the results indicate that EGCG is likely to represent a potential therapeutic strategy for atherosclerosis associated with Hyperhomocysteinemia (HHcy).

  16. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  17. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  18. Mechanism of the protective effects of the combined treatment with rhynchophylla total alkaloids and sinapine thiocyanate against a prothrombotic state caused by vascular endothelial cell inflammatory damage.

    Science.gov (United States)

    Li, Yunlun; Zhang, Xinya; Yang, Wenqing; Li, Chao; Chu, Yanjun; Jiang, Haiqiang; Shen, Zhenzhen

    2017-06-01

    The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition.

  19. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Xing-Wei; Li, Wei-Fen; Li, Wei-Wei; Ren, Kan-Han; Fan, Chao-Ming; Chen, Ying-Ying; Shen, Yue-Liang

    2011-03-01

     Scutellaria baicalensis Georgi (Labiatae) (SbG), one of the fifty fundamental herbs of Chinese herbology, has been reported to have anti-asthmatic, antifungal, antioxidative, and anti-inflammatory activities.  This study was designed to determine the protective effects of the extract of SbG against the acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells (HUVEC).  The MTT reduction assay was employed to determine cell viability. The total cellular glutathione (GSH) level was detected using a colorimetric GSH assay kit. Cellular GSH production was conducted by detecting the mRNA expression levels of γ-glutamylcysteine ligase catalytic subunit and modifier subunit.  Concentration-dependent cytotoxic effects of acrolein were observed while SbG could effectively protect the acrolein-induced oxidative damage. The protective mechanism was investigated, showing that the increased GSH content in the SbG-incubated HUVE cells was associated with the protective effects of SbG-treated cells. Further RT-PCR data confirmed the elevated mRNA expressions of GSH synthesis enzymes.  The current study strongly indicated that SbG could be a potential antioxidant against oxidative stress in treating cardiovascular diseases.

  20. Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

    Directory of Open Access Journals (Sweden)

    Isabelle Riederer

    Full Text Available BACKGROUND: Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31, endoglin (CD105 and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary macrovascular human umbilical vein endothelial cells (HUVECs only express UL16 binding protein 2 (ULBP2 and the major histocompatibility complex (MHC class I chain-related protein MIC-A (MIC-A as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70, intercellular adhesion molecule ICAM-1 (CD54 and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD plus IL-2 (TKD/IL-2-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54 and HLA-E expression on the former which drops to the initial low levels (below 5% when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected. CONCLUSION/SIGNIFICANCE: These data emphasize that an irradiation

  1. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  2. "Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.

    Science.gov (United States)

    Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin

    2011-06-01

    In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

  3. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  4. Compressed Domain Packet Loss Concealment of Sinusoidally Coded Speech

    DEFF Research Database (Denmark)

    Rødbro, Christoffer A.; Christensen, Mads Græsbøll; Andersen, Søren Vang

    2003-01-01

    We consider the problem of packet loss concealment for voice over IP (VoIP). The speech signal is compressed at the transmitter using a sinusoidal coding scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out working directly on the quantized sinusoidal parameters......, based on time-scaling of the packets surrounding the missing ones. Subjective listening tests show promising results indicating the potential of sinusoidal speech coding for VoIP....

  5. Parametric modeling for damped sinusoids from multiple channels

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; So, Hing Cheung; Christensen, Mads Græsbøll

    2013-01-01

    frequencies and damping factors are then computed with the multi-channel weighted linear prediction method. The estimated sinusoidal poles are then matched to each channel according to the extreme value theory of distribution of random fields. Simulations are performed to show the performance advantages......The problem of parametric modeling for noisy damped sinusoidal signals from multiple channels is addressed. Utilizing the shift invariance property of the signal subspace, the number of distinct sinusoidal poles in the multiple channels is first determined. With the estimated number, the distinct...... of the proposed multi-channel sinusoidal modeling methodology compared with existing methods....

  6. Stochastic analysis/synthesis using sinusoidal atoms

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2008-01-01

    This work proposes a method for re-synthesizing music for use in perceptual experiments regarding structural changes and in music creation. Atoms are estimated from music audio, modelled in a stochastic model, and re-synthesized from the model pa- rameters. The atoms are found by splitting...... sinusoids into short segments, and modelled into amplitude and envelope shape, frequency, time and duration. A simple model for creating envelopes with percussive, sustained or crescendo shape is presented. Single variable and joint probability density functions are created from the atom parameters and used...... to re-create sounds with the same distribution of the atoms parameters. A novel method for visualization music, the musigram, permits a better understanding of the re- synthesized sounds....

  7. Sinusoidal Order Estimation Using Angles between Subspaces

    Directory of Open Access Journals (Sweden)

    Søren Holdt Jensen

    2009-01-01

    Full Text Available We consider the problem of determining the order of a parametric model from a noisy signal based on the geometry of the space. More specifically, we do this using the nontrivial angles between the candidate signal subspace model and the noise subspace. The proposed principle is closely related to the subspace orthogonality property known from the MUSIC algorithm, and we study its properties and compare it to other related measures. For the problem of estimating the number of complex sinusoids in white noise, a computationally efficient implementation exists, and this problem is therefore considered in detail. In computer simulations, we compare the proposed method to various well-known methods for order estimation. These show that the proposed method outperforms the other previously published subspace methods and that it is more robust to the noise being colored than the previously published methods.

  8. Variable Dimension Trellis-Coded Quantization of Sinusoidal Parameters

    DEFF Research Database (Denmark)

    Larsen, Morten Holm; Christensen, Mads G.; Jensen, Søren Holdt

    2008-01-01

    In this letter, we propose joint quantization of the parameters of a set of sinusoids based on the theory of trellis-coded quantization. A particular advantage of this approach is that it allows for joint quantization of a variable number of sinusoids, which is particularly relevant in variable...

  9. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-κB translocation

    International Nuclear Information System (INIS)

    Yang Yongzhen; Yang Yusong; Xu Ya; Lick, Scott D.; Awasthi, Yogesh C.; Boor, Paul J.

    2008-01-01

    Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-κB plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-κB mediated gene expression, but conflicting results on 4-HNE's effect on NF-κB have been reported. We compared the effect of 4-HNE on iNOS and the NF-κB pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a α-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-κB (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS

  10. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  11. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.

    Science.gov (United States)

    Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo

    2015-07-01

    Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial

  12. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic-hemorrhagic stroke.

    Directory of Open Access Journals (Sweden)

    Julius L Decano

    Full Text Available Identification of juvenile protective factors (JPFs which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a 'master-switch JPF-role' in stroke pathogenesis, juvenile EPC therapy alone should delay stroke-onset. Using a hypertensive, transgenic-hyperlipidemic rat model of spontaneous ischemic-hemorrhagic stroke, spTg25, we tested the hypothesis that freshly isolated juvenile EPCs are JPFs that can attenuate stroke progression and delay stroke onset.FACS analysis revealed that CD45- [CD34+/KDR+] EPCs decrease with progression to stroke in spTg25 rats, exhibit differential expression of the dual endodthelin-1/VEGFsp receptor (DEspR and undergo differential DEspR-subtype specific changes in number and in vitro angiogenic tube-incorporation. In vivo EPC infusion of male, juvenile non-expanded cd45-[CD34+/KDR+] EPCs into female stroke-prone rats prior to stroke attenuated progression and delayed stroke onset (P<0.003. Detection of Y-chromosome DNA in brain microvessels of EPC-treated female spTg25 rats indicates integration of male EPCs into female rat brain microvessels. Gradient-echo MRI showed delay of ischemic-hemorrhagic lesions in EPC-treated rats. Real-time RT-PCR pathway-specific array-analysis revealed age-associated gene expression changes in CD45-[CD34+/KDR]EPC subtypes, which were accelerated in stroke-prone rats. Pro-angiogenic genes implicated in intimal hyperplasia were increased in stroke-prone rat EPCs (P<0.0001, suggesting a maladaptive endothelial repair system which acts like a double-edged sword repairing while predisposing to age-associated intimal hyperplasia.Altogether, the data

  13. Wine and endothelial function.

    Science.gov (United States)

    Caimi, G; Carollo, C; Lo Presti, R

    2003-01-01

    In recent years many studies have focused on the well-known relationship between wine consumption and cardiovascular risk. Wine exerts its protective effects through various changes in lipoprotein profile, coagulation and fibrinolytic cascades, platelet aggregation, oxidative mechanisms and endothelial function. The last has earned more attention for its implications in atherogenesis. Endothelium regulates vascular tone by a delicate balancing among vasorelaxing (nitric oxide [NO]) and vasoconstrincting (endothelins) factors produced by endothelium in response to various stimuli. In rat models, wine and other grape derivatives exerted an endothelium-dependent vasorelaxing capacity especially associated with the NO-stimulating activity of their polyphenol components. In experimental conditions, reservatrol (a stilbene polyphenol) protected hearts and kidneys from ischemia-reperfusion injury through antioxidant activity and upregulation of NO production. Wine polyphenols are also able to induce the expression of genes involved in the NO pathway within the arterial wall. The effects of wine on endothelial function in humans are not yet clearly understood. A favorable action of red wine or dealcoholized wine extract or purple grape juice on endothelial function has been observed by several authors, but discrimination between ethanol and polyphenol effects is controversial. It is, however likely that regular and prolonged moderate wine drinking positively affects endothelial function. The beneficial effects of wine on cardiovascular health are greater if wine is associated with a healthy diet. The most recent nutritional and epidemiologic studies show that the ideal diet closely resembles the Mediterranean diet.

  14. Defibrotide: An Oligonucleotide for Sinusoidal Obstruction Syndrome.

    Science.gov (United States)

    Aziz, May T; Kakadiya, Payal P; Kush, Samantha M; Weigel, Kylie; Lowe, Denise K

    2018-02-01

    To review the efficacy and safety of defibrotide as well as its pharmacology, mechanism of action, pharmacokinetics (PK), drug-drug interactions, dosing, cost considerations, and place in therapy. A PubMed search was performed through August 2017 using the terms defibrotide, oligonucleotide, hepatic veno-occlusive disease (VOD), sinusoidal obstruction syndrome (SOS), and hematopoietic cell transplantation (HCT). Other data sources were from references of identified studies, review articles, and conference abstracts plus manufacturer product labeling and website, the Food and Drug Administration website, and clinicaltrials.gov. English-language trials that examined defibrotide's pharmacodynamics, mechanism, PK, efficacy, safety, dosing, and cost-effectiveness were included. Trials have confirmed the safety and efficacy of defibrotide for treatment of VOD/SOS in adult and pediatric HCT patients, with complete response rates and day +100 overall survival rates ranging from 25.5% to 76% and 35% to 64%, respectively. The British Committee for Standards in Haematology/British Society for Blood and Marrow Transplantation Guidelines recommend defibrotide prophylaxis in pediatric and adult HCT patients with risk factors for VOD/SOS; however, its prophylactic use in the United States is controversial. Although there are efficacy data to support this strategy, cost-effectiveness data have not shown it to be cost-effective. Defibrotide has manageable toxicities, with low rates of grade 3 to 4 adverse effects. Defibrotide is the first medication approved in the United States for the treatment of adults and children with hepatic VOD/SOS, with renal or pulmonary dysfunction following HCT. Data evaluating defibrotide for VOD/SOS prevention are conflicting and have not shown cost-effectiveness.

  15. Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria

    Science.gov (United States)

    Painter, Ted; Spanias, Andreas

    2003-12-01

    This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.

  16. Adaptive Feedforward Cancellation of Sinusoidal Disturbances in Superconducting RF Cavities

    CERN Document Server

    Kandil, T H; Hartung, W; Khalil, H; Popielarski, J; Vincent, J; York, R C

    2004-01-01

    A control method, known as adaptive feedforward cancellation (AFC) is applied to damp sinusoidal disturbances due to microphonics in superconducting RF (SRF) cavities. AFC provides a method for damping internal, and external sinusoidal disturbances with known frequencies. It is preferred over other schemes because it uses rudimentary information about the frequency response at the disturbance frequencies, without the necessity of knowing an analytic model (transfer function) of the system. It estimates the magnitude and phase of the sinusoidal disturbance inputs and generates a control signal to cancel their effect. AFC, along with a frequency estimation process, is shown to be very successful in the cancellation of sinusoidal signals from different sources. The results of this research may significantly reduce the power requirements and increase the stability for lightly loaded continuous-wave SRF systems.

  17. Asymptotic Theory of the Least Squares Estimators of Sinusoidal Signal

    National Research Council Canada - National Science Library

    Kundu, Debasis

    1997-01-01

    ... normality are derived for the sinusoidal signal under the assumption of normal error (Kundu; 1993) and under the assumptions of independent and identically distributed random variables in Kundu and Mitra...

  18. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    NARCIS (Netherlands)

    Gremmels, Hendrik; De Jong, Olivier G.; Hazenbrink, Diënty H.; Fledderus, Joost O.; Verhaar, Marianne C.

    2017-01-01

    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2

  19. The endothelial protein C receptor rs867186-GG genotype is associated with increased soluble EPCR and could mediate protection against severe malaria

    DEFF Research Database (Denmark)

    Shabani, Estela; Opoka, Robert O; Bangirana, Paul

    2016-01-01

    The endothelial protein C receptor (EPCR) appears to play an important role in Plasmodium falciparum endothelial cell binding in severe malaria (SM). Despite consistent findings of elevated soluble EPCR (sEPCR) in other infectious diseases, field studies to date have provided conflicting data abo...

  20. Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins

    Directory of Open Access Journals (Sweden)

    Meina Shi

    2015-01-01

    Full Text Available Scutellarin (SCU is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant. Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs against hypoxia-reoxygenation (HR injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE. Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS. Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6, heat shock 60 kDa protein 1 (HSPD1, and chaperonin containing TCP1 subunit 6A isoform (CCT6A might play important roles in the effects of SCU.

  1. Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins.

    Science.gov (United States)

    Shi, Meina; Liu, Yingting; Feng, Lixing; Cui, Yingbo; Chen, Yajuan; Wang, Peng; Wu, Wenjuan; Chen, Chen; Liu, Xuan; Yang, Weimin

    2015-01-01

    Scutellarin (SCU) is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant.) Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs) against hypoxia-reoxygenation (HR) injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE). Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS). Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6), heat shock 60 kDa protein 1 (HSPD1), and chaperonin containing TCP1 subunit 6A isoform (CCT6A) might play important roles in the effects of SCU.

  2. A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations.

    Directory of Open Access Journals (Sweden)

    Dalit May

    Full Text Available Portal hypertension (PH is a common complication and a leading cause of death in patients with chronic liver diseases. PH is underlined by structural and functional derangement of liver sinusoid vessels and its fenestrated endothelium. Because in most clinical settings PH is accompanied by parenchymal injury, it has been difficult to determine the precise role of microvascular perturbations in causing PH. Reasoning that Vascular Endothelial Growth Factor (VEGF is required to maintain functional integrity of the hepatic microcirculation, we developed a transgenic mouse system for a liver-specific-, reversible VEGF inhibition. The system is based on conditional induction and de-induction of a VEGF decoy receptor that sequesters VEGF and preclude signaling. VEGF blockade results in sinusoidal endothelial cells (SECs fenestrations closure and in accumulation and transformation of the normally quiescent hepatic stellate cells, i.e. provoking the two processes underlying sinusoidal capillarization. Importantly, sinusoidal capillarization was sufficient to cause PH and its typical sequela, ascites, splenomegaly and venous collateralization without inflicting parenchymal damage or fibrosis. Remarkably, these dramatic phenotypes were fully reversed within few days from lifting-off VEGF blockade and resultant re-opening of SECs' fenestrations. This study not only uncovered an indispensible role for VEGF in maintaining structure and function of mature SECs, but also highlights the vasculo-centric nature of PH pathogenesis. Unprecedented ability to rescue PH and its secondary manifestations via manipulating a single vascular factor may also be harnessed for examining the potential utility of de-capillarization treatment modalities.

  3. Converter for Measurement of non-sinusoidal current peak value

    DEFF Research Database (Denmark)

    Butvin, P.; Nielsen, Otto V; Brauer, Peter

    1997-01-01

    A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current.......A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current....

  4. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  5. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction.

    Science.gov (United States)

    Schwabl, Philipp; Hambruch, Eva; Seeland, Berit A; Hayden, Hubert; Wagner, Michael; Garnys, Lukas; Strobel, Bastian; Schubert, Tim-Lukas; Riedl, Florian; Mitteregger, Dieter; Burnet, Michael; Starlinger, Patrick; Oberhuber, Georg; Deuschle, Ulrich; Rohr-Udilova, Nataliya; Podesser, Bruno K; Peck-Radosavljevic, Markus; Reiberger, Thomas; Kremoser, Claus; Trauner, Michael

    2017-04-01

    Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl 4 , 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl 4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl 4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; pportal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut. Copyright

  6. Supplementation of a γ-tocopherol-rich mixture of tocopherols in healthy men protects against vascular endothelial dysfunction induced by postprandial hyperglycemia.

    Science.gov (United States)

    Mah, Eunice; Noh, Sang K; Ballard, Kevin D; Park, Hea Jin; Volek, Jeff S; Bruno, Richard S

    2013-01-01

    Postprandial hyperglycemia induces oxidative stress responses, impairs vascular endothelial function (VEF) and increases the risk of cardiovascular disease. We hypothesized that the antioxidant and anti-inflammatory activities of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) would protect against vascular dysfunction that is otherwise caused by postprandial hyperglycemia by decreasing oxidative stress and proinflammatory responses, and improving nitric oxide (NO•) homeostasis. In a randomized, crossover study, healthy men (n=15; 21.8 ± 0.8 years) completed a fasting oral glucose challenge (75 g) with or without prior supplementation of γ-TmT (5 days). Brachial artery flow-mediated dilation (FMD), plasma glucose, insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine and asymmetric dimethylarginine (ADMA) were measured at regular intervals during a 3-h postprandial period. Supplementation of γ-TmT increased (P.05). Postprandial FMD decreased 30%-44% (P<.05) following glucose ingestion, but was maintained with γ-TmT. Supplementation of γ-TmT also attenuated postprandial increases in MDA that occurred following glucose ingestion. Plasma arginine decreased (P<.05) in both trials to a similar extent regardless of γ-TmT supplementation. However, the ratio of ADMA/arginine increased time-dependently in both trials (P<.05), but to a lesser extent following γ-TmT supplementation (P<.05). Inflammatory proteins were unaffected by glucose ingestion or γ-TmT. Collectively, these findings support that short-term supplementation of γ-TmT maintains VEF during postprandial hyperglycemia possibly by attenuating lipid peroxidation and disruptions in NO• homeostasis, independent of inflammation. Published by Elsevier Inc.

  7. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK

    Science.gov (United States)

    Huang, Shujie; Zhu, Pengli

    2016-01-01

    Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs. PMID:26799794

  8. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  9. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  10. Bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Valladares, C. E.; Hanson, W. B.; Mcclure, J. P.; Cragin, B. L.

    1983-01-01

    By using the Ogo 6 satellite, McClure and Hanson (1973) have discovered sinusoidal irregularities in the equatorial F region ion number density. In the present investigation, a description is provided of the properties of a distinct category of sinusoidal irregularities found in equatorial data from the AE-C and AE-E satellites. The observed scale sizes vary from about 300 m to 3 km in the direction perpendicular to B, overlapping with and extending the range observed by using Ogo 6. Attention is given to low and high resolution data, a comparison with Huancayo ionograms, the confinement of 'bottomside sinusoidal' (BSS) irregularities essentially to the bottomside of the F layer, spectral characteristics, and BSS, scintillation, and ionosonde observations.

  11. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance.

    Science.gov (United States)

    Palomo, Marta; Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel

    2016-03-31

    Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. © 2016 by The American Society of Hematology.

  12. Some New Results on the Estimation of Sinusoids in Noise

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær

    2012-01-01

    This thesis is concerned with the problem of estimating sinusoidal parameters from noisy observations. This field of research is applicable to solving problems in a large number of areas such as music and speech processing, electrocardiography, seismology, radar and sonar processing, astronomy....... Third, an efficient algorithm for performing inference and interpolation in a dynamic sinusoidal model is proposed. This method is applied to packet-loss concealment, and listening tests indicate that the proposed algorithm can be used for this purpose. Fourth, the Capon filtering method for amplitude...

  13. CNNs for sinusoidal signal recognition in hearing rehabilitation

    Science.gov (United States)

    Carnimeo, Leonarda; Giaquinto, Antonio

    2003-04-01

    In this paper, a contribution is given to provide a tool to the recognition of sinusoidal signals with a particular reference to the field of pediatric hearing rehabilitation. To this purpose, a synthesis technique previously developed by the authors' is used to design a Cellular Neural Network for an Associative Memory able to compare submitted discrete-time sinusoidal signals with memorized ones. A robustness analysis of the synthesized associative memory is also developed both for noisy inputs and for parameter variations. Simulation results are then reported to illustrate the performances of the designed network.

  14. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL.

    Directory of Open Access Journals (Sweden)

    Wei Yu

    Full Text Available Although the 30K family proteins are important anti-apoptotic molecules in silkworm hemolymph, the underlying mechanism remains to be investigated. This is especially the case in human vascular endothelial cells (HUVECs. In this study, a 30K protein, 30Kc6, was successfully expressed and purified using the Bac-to-Bac baculovirus expression system in silkworm cells. Furthermore, the 30Kc6 expressed in Escherichia coli was used to generate a polyclonal antibody. Western blot analysis revealed that the antibody could react specifically with the purified 30Kc6 expressed in silkworm cells. The In vitro cell apoptosis model of HUVEC that was induced by oxidized low density lipoprotein (Ox-LDL and in vivo atherosclerosis rabbit model were constructed and were employed to analyze the protective effects of the silkworm protein 30Kc6 on these models. The results demonstrated that the silkworm protein 30Kc6 significantly enhanced the cell viability in HUVEC cells treated with Ox-LDL, decreased the degree of DNA fragmentation and markedly reduced the level of 8-isoprostane. This could be indicative of the silkworm protein 30Kc6 antagonizing the Ox-LDL-induced cell apoptosis by inhibiting the intracellular reactive oxygen species (ROS generation. Furthermore, Ox-LDL activated the cell mitogen activated protein kinases (MAPK, especially JNK and p38. As demonstrated with Western analysis, 30Kc6 inhibited Ox-LDL-induced cell apoptosis in HUVEC cells by preventing the MAPK signaling pathways. In vivo data have demonstrated that oral feeding of the silkworm protein 30Kc6 dramatically improved the conditions of the atherosclerotic rabbits by decreasing serum levels of total triglyceride (TG, high density lipoprotein cholesterol (HDL-C, low density lipoprotein cholesterol (LDL-C and total cholesterol (TC. Furthermore, 30Kc6 alleviated the extent of lesions in aorta and liver in the atherosclerotic rabbits. These data are not only helpful in understanding the anti

  15. Trans-sinusoidal maxillary distraction in three cleft patients.

    NARCIS (Netherlands)

    Wenghoefer, M.H.; Martini, M.; Nadjmi, N.; Schutyser, F.A.C.; Jagtman, A.K.; Bergé, S.J.

    2006-01-01

    The trans-sinusoidal maxillary distractor (TS-MD) was used to achieve maxillary advancement in three patients with repaired cleft lip and palate. After preoperative computer-aided planning of the distraction vectors, each TS-MD was bent on a stereolithographic model of the maxilla of the patient.

  16. Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...

    African Journals Online (AJOL)

    The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...

  17. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  18. Evoked responses to sinusoidally modulated sound in unanaesthetized dogs

    NARCIS (Netherlands)

    Tielen, A.M.; Kamp, A.; Lopes da Silva, F.H.; Reneau, J.P.; Storm van Leeuwen, W.

    1. 1. Responses evoked by sinusoidally amplitude-modulated sound in unanaesthetized dogs have been recorded from inferior colliculus and from auditory cortex structures by means of chronically indwelling stainless steel wire electrodes. 2. 2. Harmonic analysis of the average responses demonstrated

  19. Deep-etched sinusoidal polarizing beam splitter grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lv, Peng

    2010-04-01

    A sinusoidal-shaped fused-silica grating as a highly efficient polarizing beam splitter (PBS) is investigated based on the simplified modal method. The grating structure depends mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These ratios can be used as a guideline for the grating design at different wavelengths. A sinusoidal-groove PBS grating is designed at a wavelength of 1310 nm under Littrow mounting, and the transmitted TM and TE polarized waves are mainly diffracted into the zeroth order and the -1st order, respectively. The grating profile is optimized by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient (>95.98%) over the O-band wavelength range (1260-1360 nm) for both TE and TM polarizations. The sinusoidal grating can exhibit higher diffraction efficiency, larger extinction ratio, and less reflection loss than the rectangular-groove PBS grating. By applying wet etching technology on the rectangular grating, which was manufactured by holographic recording and inductively coupled plasma etching technology, the sinusoidal grating can be approximately fabricated. Experimental results are in agreement with theoretical values.

  20. Using piecewise sinusoidal basis functions to blanket multiple wire segments

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available This paper discusses application of the piecewise sinusoidal (PWS) basis function (BF) over a chain of several wire segments, for example as a multiple domain basis function. The usage of PWS BF is compared to results based on the piecewise linear...

  1. Pelagic behaviour of reservoir fishes: sinusoidal swimming and associated behaviour

    OpenAIRE

    JAROLÍM, Oldřich

    2009-01-01

    Annotation Long-term fixed-location hydroacoustic study with uplooking transducer was performed during 2005 in Římov reservoir, Czech Republic. It dealt mainly with fish behaviour in the open water of reservoir, especially with sinusoidal swimming behaviour. The dependence of pelagic fish behaviour on environmental conditions was also studied.

  2. BPM Offset Determination by Sinusoidal Quadrupole K-modulation

    CERN Document Server

    Baer, T; Wenninger, J

    2011-01-01

    To ensure an adequate orbit steering that maximizes the machine aperture, a good knowledge of the BPM measurement offsets is crucial. During this MD, a sinusoidal k-modulation of individually powered quadrupoles was performed to determine the offsets of the nearby BPMs. An accuracy of 10µm for the determination of the absolute beam position is reached.

  3. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  4. Unified design of sinusoidal-groove fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Cao, Hongchao; Lu, Peng

    2010-10-20

    A general design rule of deep-etched subwavelength sinusoidal-groove fused-silica grating as a highly efficient polarization-independent or polarization-selective device is studied based on the simplified modal method, which shows that the device structure depends little on the incident wavelength, but mainly on the ratio of groove depth to incident wavelength and the ratio of wavelength to grating period. These two ratios could be used as the design guidelines for wavelength-independent structure from deep ultraviolet to far infrared. The optimized grating profile with a different function as a polarizing beam splitter, a polarization-independent two-port beam splitter, or a polarization-independent grating with high efficiency of -1st order is obtained at a wavelength of 1064 nm, and verified by using the rigorous coupled-wave analysis. The performance of the sinusoidal grating is better than a conventional rectangular one, which could be useful for practical applications.

  5. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    International Nuclear Information System (INIS)

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-01-01

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  6. Electric stimulation with sinusoids and white noise for neural prostheses

    Directory of Open Access Journals (Sweden)

    Daniel K Freeman

    2010-02-01

    Full Text Available We are investigating the use of novel stimulus waveforms in neural prostheses to determine whether they can provide more precise control over the temporal and spatial pattern of elicited activity as compared to conventional pulsatile stimulation. To study this, we measured the response of retinal ganglion cells to both sinusoidal and white noise waveforms. The use of cell-attached and whole cell patch clamp recordings allowed the responses to be observed without significant obstruction from the stimulus artifact. Electric stimulation with sinusoids elicited robust responses. White noise analysis was used to derive the linear kernel for the ganglion cell’s spiking response as well as for the underlying excitatory currents. These results suggest that in response to electric stimulation, presynaptic retinal neurons exhibit bandpass filtering characteristics with peak response that occur 25ms after onset. The experimental approach demonstrated here may be useful for studying the temporal response properties of other neurons in the CNS.

  7. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  8. STUDIES ON ENDOTHELIAL REACTIONS

    Science.gov (United States)

    Foot, Nathan Chandler

    1923-01-01

    operative. On the other hand, there may be an increase in the phagocytic activity of the endothelium of the sinusoids which might take up more bacteria under these changed conditions. Several investigators have claimed, recently, that there is an increased activity of the liver endothelium following splenectomy, their experiments being directed chiefly toward determining the fate of the erythrocytes. Pearce (1918) in reporting the effects of experimental splenectomy in dogs, states that there are definite compensatory changes in the lymph nodes, in the form of an increased proliferation of endothelial phagocytes, and that the stellate cells of the liver sinusoids often show a similar compensatory increase in number. In both cases the cells are, apparently, formed in situ rather than transported to the organs. He says: ‘Such findings suggest the development of a compensatory function on the part of the lymph-nodes and possibly the liver,’ and suggests that, in times of stress ‘the stellate cells of the liver thus assume, in part at least, the function of destroying red blood-corpuscles by phagocytosis.’ Incidentally, he presents an excellent discussion of the history and subject of splenectomy. Motohashi (1922) reports a great increase in the hemophagic power of the hepatic endothelium and an increase in the number of endothelial elements, after some 45 days following splenectomy in rabbits. Nishikawa and Takagi (1922) have observed similar phenomena with white rats, the Kupffer cells taking up erythrocytes in large numbers in splenectomized animals, whereas controls never show similar propensities on the part of these cells. It may be that different substances cause different reactions on the part of the hepatic endothelium. Contributory Experiment.—A side experiment was performed with five rabbits, two splenectomized and three controls, into which uniform doses of pneumococci were injected intravenously. They all died of septicemia after a few days. The results

  9. Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model.

    Science.gov (United States)

    Jantzen, Alexandra E; Lane, Whitney O; Gage, Shawn M; Jamiolkowski, Ryan M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Lawson, Jeffrey H; Truskey, George A; Achneck, Hardean E

    2011-11-01

    Titanium (Ti) is commonly utilized in many cardiovascular devices, e.g. as a component of Nitinol stents, intra- and extracorporeal mechanical circulatory assist devices, but is associated with the risk of thromboemboli formation. We propose to solve this problem by lining the Ti blood-contacting surfaces with autologous peripheral blood-derived late outgrowth endothelial progenitor cells (EPCs) after having previously demonstrated that these EPCs adhere to and grow on Ti under physiological shear stresses and functionally adapt to their environment under flow conditions ex vivo. Autologous fluorescently-labeled porcine EPCs were seeded at the point-of-care in the operating room onto Ti tubes for 30 min and implanted into the pro-thrombotic environment of the inferior vena cava of swine (n = 8). After 3 days, Ti tubes were explanted, disassembled, and the blood-contacting surface was imaged. A blinded analysis found all 4 cell-seeded implants to be free of clot, whereas 4 controls without EPCs were either entirely occluded or partially thrombosed. Pre-labeled EPCs had spread and were present on all 4 cell-seeded implants while no endothelial cells were observed on control implants. These results suggest that late outgrowth autologous EPCs represent a promising source of lining Ti implants to reduce thrombosis in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sinusoidal modulation analysis for optical system MTF measurements.

    Science.gov (United States)

    Boone, J M; Yu, T; Seibert, J A

    1996-12-01

    The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.

  11. Propiedades de transporte de una superred de grafeno tipo sinusoidal

    OpenAIRE

    J. A. Briones-Torres; I. Rodríguez-Vargas

    2015-01-01

    En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por medio de sustratos mixtos junto con la aplicación de un campo perpendicular sobre el sustrato de Óxido de Silicio (SiO2), la otra por medio de potenciales alternados aplicados perpendicularmente sobre la sábana de...

  12. Ageing monitoring in IGBT module under sinusoidal loading

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Rannestad, Bjørn

    2015-01-01

    This paper presents monitoring of ageing in high power insulated gate bipolar transistor (IGBT) modules subjected to sinusoidal loading at nominal power level. On-state voltage for IGBT, diode, and rise in interconnection resistance are used as ageing parameters. These are measured in three...... different ways: calibration of power modules after 24 h of operation, offline characterization every 5 min of operation, and continuous measurement during normal converter operation. Four power modules are tested, which are cycled to different degradation levels by number of cycles, where one is tested...

  13. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  14. Propiedades de transporte de una superred de grafeno tipo sinusoidal

    Directory of Open Access Journals (Sweden)

    J. A. Briones-Torres

    2015-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes en grafeno. Consideramos una superred con potencial sinusoidal o polaridad invertida, para ello consideramos dos maneras de crearla, una por medio de sustratos mixtos junto con la aplicación de un campo perpendicular sobre el sustrato de Óxido de Silicio (SiO2, la otra por medio de potenciales alternados aplicados perpendicularmente sobre la sábana de grafeno. Calculamos las propiedades de transmisión, transporte y estructura electrónica, variando diferentes parámetros como ángulo de incidencia, anchos de pozos y barreras y diferente número de barreras. Se encontró (1 el importante papel que juega el efecto Klein en tales estructuras, (2 las propiedades de transmisión y transporte presentan cierta simetría respecto del origen de la energía, y (3 el carácter sinusoidal del sistema trae consigo una baja en el nivel de energía de las subbandas en el espectro de estados acotados, además las degenera y origina que la apertura-cierre de las minibandas sea en el mismo nivel de energía.

  15. Observation of Sinusoidal Voltage Behaviour in Silver Doped YBCO

    Science.gov (United States)

    Altinkok, Atilgan; Olutas, Murat; Kilic, Kivilcim; Kilic, Atilla

    The influence of bi-directional square wave (BSW) current was investigated on the evolution of the V - t curves at different periods (P) , temperatures and external magnetic fields. It was observed that slow transport relaxation measurements result in regular sinusoidal voltage oscillations which were discussed mainly in terms of the dynamic competition between pinning and depinning.The symmetry in the voltage oscillations was attributed to the elastic coupling between the flux lines and the pinning centers along grain boundaries and partly inside the grains. This case was also correlated to the equality between flux entry and exit along the YBCO/Ag sample during regular oscillations. It was shown that the voltage oscillations can be described well by an empirical expression V (t) sin(wt + φ) . We found that the phase angle φgenerally takes different values for the repetitive oscillations. Fast Fourier Transform analysis of the V - t oscillations showed that the oscillation period is comparable to that (PI) of the BSW current. This finding suggests a physical mechanism associated with charge density waves (CDWs), and, indeed, the weakly pinned flux line system in YBCO/Ag resembles the general behavior of CDWs. At certain values of PI, amplitude of BSW current, H and T, the YBCO/Ag sample behaves like a double-integrator, since it converts the BSW current to sinusoidal voltage oscillations in time.

  16. Removal of Stationary Sinusoidal Noise from Random Vibration Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian; Cap, Jerome S.

    2018-02-01

    In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.

  17. Hydraulic testing in granite using the sinusoidal variation of pressure

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Noy, D.J.

    1982-09-01

    Access to two boreholes at the Carwynnen test site in Cornwall enabled the trial of a number of innovative approaches to the hydrogeology of fractured crystalline rock. These methods ranged from the use of seisviewer data to measure the orientation of fractures to the use of the sinusoidal pressure technique to measure directional hydraulic diffusivity. The testing began with a short programme of site investigation consisting of borehole caliper and seisviewer logging followed by some single borehole hydraulic tests. The single borehole hydraulic testing was designed to assess whether the available boreholes and adjacent rock were suitable for testing using the sinusoidal method. The main testing methods were slug and pulse tests and were analysed using the fissured porous medium analysis proposed in Barker and Black (1983). Derived hydraulic conductivity (K) ranged from 2 x 10 -12 m/sec to 5 x 10 -7 m/sec with one near-surface zone of high K being perceived in both boreholes. The results were of the form which is typical of fractured rock and indicated a combination of high fracture frequency and permeable granite matrix. The results are described and discussed. (author)

  18. Antibodies against AT1 receptors are associated with vascular endothelial and smooth muscle function impairment: protective effects of hydroxysafflor yellow A.

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    Full Text Available Ample evidence has shown that autoantibodies against AT1 receptors (AT1-AA are closely associated with human cardiovascular disease. The aim of this study was to investigate mechanisms underlying AT1-AA-induced vascular structural and functional impairments in the formation of hypertension, and explore ways for preventive treatment. We used synthetic peptide corresponding to the sequence of the second extracellular loop of the AT1 receptor (165-191 to immunize rats and establish an active immunization model. Part of the model received preventive therapy by losartan (20 mg/kg/day and hyroxysafflor yellow A (HSYA (10 mg/kg/day. The result show that systolic blood pressure (SBP and heart rate (HR of immunized rats was significantly higher, and closely correlated with the plasma AT1-Ab titer. The systolic response of thoracic aortic was increased, but diastolic effects were attenuated markedly. Histological observation showed that the thoracic aortic endothelium of the immunized rats became thinner or ruptured, inflammatory cell infiltration, medial smooth muscle cell proliferation and migration, the vascular wall became thicker. There was no significant difference in serum antibody titer between losartan and HSYA groups and the immunized group. The vascular structure and function were reversed, and plasma biochemical parameters were also improved significantly in the two treatment groups. These results suggest that AT1-Ab could induce injury to vascular endothelial cells, and proliferation of smooth muscle cells. These changes were involved in the formation of hypertension. Treatment with AT1 receptor antagonists and anti oxidative therapy could block the pathogenic effect of AT1-Ab on vascular endothelial and smooth muscle cells.

  19. Endothelial dysfunction in the regulation of portal hypertension

    Science.gov (United States)

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  20. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid.

    Science.gov (United States)

    Lin, Liteng; Cai, Mingyue; Deng, Shaohui; Huang, Wensou; Huang, Jingjun; Huang, Xinghua; Huang, Mingsheng; Wang, Yong; Shuai, Xintao; Zhu, Kangshun

    2017-10-01

    Portal hypertension (PH), a leading cause of mortality in cirrhosis, lacks effective clinical therapeutic strategies. The increased thromboxane A 2 (TXA 2 ), derived primarily from the upregulation of cyclooxygenase-1 (COX-1) in cirrhotic liver sinusoidal endothelial cells (LSECs), is responsible for hepatic endothelial dysfunction and PH. Thus, blocking the COX-1 pathway in cirrhotic LSECs may benefit the treatment of PH. In this study, hyaluronate-graft-polyethylenimine (HA-PEI) was synthesized for the targeted delivery of COX-1 siRNA to LSECs. Compared to non-targeted PEI, HA-PEI mediated much more efficient siRNA delivery, which resulted in potent targeted gene silencing in LSECs. In vivo, HA-PEI notably increased the accumulation of siRNA along the sinusoidal lining of the liver, inhibited over-activation of the COX-1/TXA 2 pathway in LSECs, and successfully reduced portal pressure in cirrhotic mice. These results highlight the potential of HA-PEI complexed siRNA to serve as a LSECs-specific nanomedical system for effective gene therapy in PH. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    Science.gov (United States)

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  2. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  3. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    Science.gov (United States)

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  4. New Realizations of Single OTRA-Based Sinusoidal Oscillators

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chien

    2014-01-01

    Full Text Available This study proposes three new sinusoidal oscillators based on an operational transresistance amplifier (OTRA. Each of the proposed oscillator circuits consists of one OTRA combined with a few passive components. The first circuit is an OTRA-based minimum RC oscillator. The second circuit is capable of providing independent control on the condition of oscillation without affecting the oscillation frequency. The third circuit exhibits independent control of oscillation frequency through a capacitor. This study first introduces the OTRA and the related formulations of the proposed oscillator circuits, and then discusses the nonideal effects, sensitivity analyses, and frequency stability of the presented circuits. The proposed oscillators exhibit low sensitivities and good frequency stability. Because the presented circuits feature low impedance output, they can be connected directly to the next stage without cascading additional voltage buffers. HSPICE simulations and experimental results confirm the feasibility of the new oscillator circuits.

  5. One-dimensional plasma photonic crystals with sinusoidal densities

    International Nuclear Information System (INIS)

    Qi, L.; Shang, L.; Zhang, S.

    2014-01-01

    Properties of electromagnetic waves with normal and oblique incidence have been studied for one-dimensional plasma layers with sinusoidal densities. Wave transmittance as a function of wave frequency exhibits photonic band gaps characteristic of photonic crystals. For periodic structures, increasing collision frequency is demonstrated to lead to greater absorption, increasing the modulation factor enlarges the gap width, and increasing incidence angle can change the gap locations of the two polarizations. If a defect layer is introduced by inserting a new plasma layer in the center, a defect mode may appear within the gap. Periodic number, collision frequency, and modulation factor can affect magnitude of the defect mode. The incidence angle enables the frequency to be tuned. Defect layer thickness affects both frequency and number of defect modes. These results may provide theoretical guidance in designing tunable narrow-band filters

  6. Response of resonant gravitational wave detectors to damped sinusoid signals

    International Nuclear Information System (INIS)

    Pai, A; Celsi, C; Pallottino, G V; D'Antonio, S; Astone, P

    2007-01-01

    Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes

  7. Plasma characteristics in non-sinusoidally excited CCP discharges

    Science.gov (United States)

    Lafleur, Trevor; Booth, Jean-Paul

    2012-10-01

    Using particle-in-cell (PIC) simulations we perform a characterization of the plasma response to positive pulse-type voltage excitations (with a repetition frequency of 13.56 MHz) in a geometrically symmetric CCP reactor (with a gap length of 2 cm) operated with argon (for pressures between 20-500 mTorr). Use of these non-sinusoidal waveforms generates an electrical asymmetry effect in the system, which necessitates the formation of a DC bias. This DC bias, together with the shape of the voltage waveforms used, produces a number of new phenomena that are not present in typical sinusoidal discharges: (1) the plasma density and ion flux can be increased as the pulse width is reduced, (2) a significant asymmetry in the ion fluxes to the powered and grounded electrodes develops as the pressure increases, (3) the average ion energy striking the grounded electrode remains low and approximately constant as the pulse width decreases, and (4) the sheath at the grounded electrode never fully collapses; electrons are no longer lost in sharp pulses, but escape essentially throughout the rf cycle. Effects (1) and (3) above offer the possibility for a new form of control in these types of discharges, where the ion flux can be increased while the ion energy on the grounded electrode can be kept small and essentially constant. This effect has recently been exploited to control the crystallinity of silicon thin films [1], where the low ion bombarding energy was found to improve the quality of films grown. [4pt] [1] Johnson E V, Pouliquen S, Delattre P A, and Booth J P, J. Non-Cryst. Solids 2012, in press.

  8. Nematic liquid crystals on sinusoidal channels: the zigzag instability.

    Science.gov (United States)

    Silvestre, Nuno M; Romero-Enrique, Jose M; Telo da Gama, Margarida M

    2017-01-11

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  9. Representative Sinusoids for Hepatic Four-Scale Pharmacokinetics Simulations.

    Directory of Open Access Journals (Sweden)

    Lars Ole Schwen

    Full Text Available The mammalian liver plays a key role for metabolism and detoxification of xenobiotics in the body. The corresponding biochemical processes are typically subject to spatial variations at different length scales. Zonal enzyme expression along sinusoids leads to zonated metabolization already in the healthy state. Pathological states of the liver may involve liver cells affected in a zonated manner or heterogeneously across the whole organ. This spatial heterogeneity, however, cannot be described by most computational models which usually consider the liver as a homogeneous, well-stirred organ. The goal of this article is to present a methodology to extend whole-body pharmacokinetics models by a detailed liver model, combining different modeling approaches from the literature. This approach results in an integrated four-scale model, from single cells via sinusoids and the organ to the whole organism, capable of mechanistically representing metabolization inhomogeneity in livers at different spatial scales. Moreover, the model shows circulatory mixing effects due to a delayed recirculation through the surrounding organism. To show that this approach is generally applicable for different physiological processes, we show three applications as proofs of concept, covering a range of species, compounds, and diseased states: clearance of midazolam in steatotic human livers, clearance of caffeine in mouse livers regenerating from necrosis, and a parameter study on the impact of different cell entities on insulin uptake in mouse livers. The examples illustrate how variations only discernible at the local scale influence substance distribution in the plasma at the whole-body level. In particular, our results show that simultaneously considering variations at all relevant spatial scales may be necessary to understand their impact on observations at the organism scale.

  10. Defibrotide for the management of sinusoidal obstruction syndrome in patients who undergo haemopoietic stem cell transplantation.

    Science.gov (United States)

    Coutsouvelis, John; Avery, Sharon; Dooley, Michael; Kirkpatrick, Carl; Spencer, Andrew

    2016-11-01

    Sinusoidal obstruction syndrome, previously known as veno-occlusive disease (VOD/SOS), is a complication in patients undergoing haemopoietic stem cell transplantation (HSCT). Severe VOD/SOS, including progression to multi-organ failure, has resulted in a mortality of greater than 80%. Defibrotide's varying pharmacological actions, particularly on endothelial cells, make it is a useful agent to consider for prophylaxis and treatment of VOD/SOS. Barriers to its routine use include the high acquisition cost and the fact that neither the oral or parenteral formulations are licensed products in many countries at this time. This review summarises available literature on the use of defibrotide in the management of VOD/SOS. Publications consist predominantly of single centre cohort studies and case series. Available evidence indicates that defibrotide is effective in the management of VOD/SOS. Using defibrotide prophylaxis should also be considered, especially in the paediatric setting, where there are available results from a large, open label, randomized controlled trial. Patient outcome data from the larger studies and compassionate programs can inform consensus recommendations on dosing regimen and criteria for the treatment of VOD/SOS with defibrotide in the adult population. The reviewed literature indicates an effective and safe dose for treatment is 25mg/kg/day, continued for at least 14days or until complete response is achieved. Further studies are required to determine the optimal dose and duration of treatment in both paediatric patients and adults. Recent recommendations and a phase 3 trial using historical controls indicate that defibrotide should be included as a pharmacotherapy option in protocols guiding management of VOD/SOS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment.

    Science.gov (United States)

    Pham, Phuc H; Tong, Winnie W L; Misk, Ehab; Jones, Ginny; Lumsden, John S; Bols, Niels C

    2017-11-01

    Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  13. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  14. Protective effects of pioglitazone on vascular endothelial cell dysfunction induced by high glucose via inhibition of IKKα/β-NFκB signaling mediated by PPARγ in vitro.

    Science.gov (United States)

    Chen, Chunxiang; Peng, Shaorong; Chen, Fanghui; Liu, Lili; Li, Zhouxue; Zeng, Guohua; Huang, Qiren

    2017-12-01

    PIO, a synthetic ligand for PPARγ, is used clinically to treat T2DM. However, little is known about its protective effects on endothelium and the underlying mechanisms. In this study, we sought to investigate the protective effects of PIO on endothelium and its probable mechanisms: 95% confluent wild type (WT) HUVECs and PPARγ Low -HUVECs that we first injured with HG (33 mmol·L -1 ) were first pretreated with 10 μmol·L -1 of GW9662 for 30 min, and then treated the cells with different concentrations of PIO (5, 10, or 20 μmol·L -1 ) for 24 h. Finally, we measured the levels of NO, ET1, TNFα, and IL6 in the cell culture supernatant. These cells were then used to determine cell viability, caspase3 activity, the levels of IKKα/β mRNA, IKKα/β, and NFκB-p65. Severe dysfunction and activation of IKKα/β-NFκB signaling occurred after we exposed HUVECs to HG. Conversely, treatment with PIO significantly attenuated the dysfunction and the activation of IKKα/β-NFκB signaling induced by HG in a dose-dependent manner. Moreover, the protective effects of PIO were completely abrogated by GW9662 or down-regulation of PPARγ. Taken together, the results indicate that PIO protects HUVECs against the HG-induced dysfunction through the inhibition of IKKα/β-NFκB signaling mediated by PPARγ.

  15. DISPLAY OF PIXEL LOSS AND REPLICATION IN REPROJECTING RASTER DATA FROM THE SINUSOIDAL PROJECTION

    Science.gov (United States)

    Recent studies show the sinusoidal projection to be a superior planar projection for representing global raster datasets. This study uses the sinusoidal projection as a basis for evaluating pixel loss and replication in eight other planar map projections. The percent of pixels ...

  16. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  17. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    International Nuclear Information System (INIS)

    Conotte, R.; Colet, J.-M.

    2014-01-01

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. 1 H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea

  18. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    Energy Technology Data Exchange (ETDEWEB)

    Conotte, R.; Colet, J.-M., E-mail: jean-marie.colet@umons.ac.be

    2014-04-15

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.

  19. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  20. Perception of the dynamic visual vertical during sinusoidal linear motion.

    Science.gov (United States)

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the

  1. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  2. Radioprotection of mouse CNS endothelial cells in vivo

    International Nuclear Information System (INIS)

    Lyubimova, N.; Coultas, P.; Martin, R.

    1996-01-01

    Full text: Radioprotection using the minor groove binding DNA ligand Hoechst 33342 has been demonstrated in vitro, and more recently in vivo, in mouse lung. Intravenous administration was used for the lung studies, and both endothelial and alveolar epithelial cells-showed good up-take. Radiation damage to the endothelial cell population has also been postulated as important in late developing radionecrosis of spinal cord and brain. Endothelial cell density in brain can be readily determined by a fluorescent-histochemical technique. Treatment with a monoamine oxidase inhibitor and subsequent injection with L-DOPA results in an accumulation of dopamine (DA) in CNS endothelial cells. DA is converted to a fluorophore by exposure to paraformaldehyde, and cell numbers assayed by fluorescence microscopy. Earlier studies used this technique to monitor post-irradiation changes in endothelial cell density in rodent brain and showed the loss, within 24 hours, of a sensitive subpopulation comprising about 15% of the endothelial cells. Ten minutes after intravenous injection of Hoechst 33342 (80mg/kg) the ligand is confined by its limited penetration to the endothelial cells in mouse brain. When we irradiated at this time, there was protection against early endothelial cell loss. Ablation of the sensitive subpopulation in unprotected mice takes place over a dose range of 1 to 3 Gy γ-rays, but doses between 12 to 20 Gy are required in the presence of ligand. This protection equates to a very high dose modification factor of about 7 and possibly reflects a suppression of apoptosis in the sensitive endothelial subpopulation. The extent to which there is enhanced survival in the endothelial population as a whole and how the observed protection affects late CNS necrosis development has yet to be determined. However present results clearly show potential for the use of DNA-binding radioprotectors with limited penetration for investigations into the relative significance of

  3. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver

    DEFF Research Database (Denmark)

    Ding, Bi-Sen; Liu, Catherine H; Sun, Yue

    2016-01-01

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 ...

  4. Isothermal sinusoidal analysis of balanced compound Vuilleumier heat pumps

    International Nuclear Information System (INIS)

    Finkelstein, T.

    1992-01-01

    This paper reports on Vuilleumier heat pumps with balanced compounding which have been under investigation for about fifteen years but have not yet reached the stage of commercial utilization. Previously published analytical treatment based upon isothermal treatment of the variable-volume spaces resulted in closed form solution of considerable complexity of the coupled differential equations but applied only to free piston machines. In contrast, the procedure presented here is based on previously demonstrated sinusoidal excursions of the reciprocators. It is of the same order of accuracy, but much more simple and usable. It was found that there is only negligible difference between the results of the present and the previous approach. Additionally, the treatment presented here is applicable to kinematic machines, as well as to free piston machines. For the latter design, an equation for the natural frequency is also derived. Ideal proportions and practical expressions for the energy streams are derived. Gas forces are plotted versus displacement and it is shown that they are equivalent to a linear spring, which is of importance for the concept of a free-piston design

  5. Sinusoidal Wave Estimation Using Photogrammetry and Short Video Sequences

    Directory of Open Access Journals (Sweden)

    Ewelina Rupnik

    2015-12-01

    Full Text Available The objective of the work is to model the shape of the sinusoidal shape of regular water waves generated in a laboratory flume. The waves are traveling in time and render a smooth surface, with no white caps or foam. Two methods are proposed, treating the water as a diffuse and specular surface, respectively. In either case, the water is presumed to take the shape of a traveling sine wave, reducing the task of the 3D reconstruction to resolve the wave parameters. The first conceived method performs the modeling part purely in 3D space. Having triangulated the points in a separate phase via bundle adjustment, a sine wave is fitted into the data in a least squares manner. The second method presents a more complete approach for the entire calculation workflow beginning in the image space. The water is perceived as a specular surface, and the traveling specularities are the only observations visible to the  cameras, observations that are notably single image. The depth ambiguity is removed given additional constraints encoded within the law of reflection and the modeled parametric surface. The observation and constraint equations compose a single system of equations that is solved with the method of least squares adjustment. The devised approaches are validated against the data coming from a capacitive level sensor and on physical targets floating on the surface. The outcomes agree to a high degree.

  6. Defibrotide in Severe Sinusoidal Obstruction Syndrome: Medicine and Economic Issues.

    Science.gov (United States)

    Steelandt, Julie; Bocquet, François; Cordonnier, Anne-Laure; De Courtivron, Charlotte; Fusier, Isabelle; Paubel, Pascal

    2017-02-01

    In Europe, Defitelio (defibrotide) has a Market Authorization in curative treatment of severe sinusoidal obstruction syndrome (SOS) but not in prophylaxis (2013). In France, defibrotide has had a compassionate-use program since 2009. Today, the high cost of defibrotide remains a major hurdle for hospital budgets. Medicine and economic issues were evaluated for the 39 hospitals of the French Public Assistance-Hospitals of Paris (AP-HP). We analyzed literature reviews, consumption, and expenditures through AP-HP data in 2014 and patient profiles with defibrotide in the corresponding diagnostic-related groups (DRGs) and consulted a board of hematologists. Finally, 18 publications were selected. Between 2011 and 2014 consumption increased to €5.2M. In 2014, 80 patients receiving defibrotide were mainly ascribed to the DRG "hematopoietic stem cell transplantation" levels 3 or 4. The tariffs attributed to drugs (€3544 to 4084) cover a small part of treatment costs (€97,524 for an adult). French experts thus recommended a harmonization of indications in prophylaxis (off-label use), improvement of pretransplant care, and optimization of the number of vials used. The economic impact led experts to change their practices. They recommended the restriction of defibrotide use to SOS curative treatment and to high-risk situations in prophylaxis. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    Science.gov (United States)

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  8. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury.

    Science.gov (United States)

    Ribera, Jordi; Pauta, Montse; Melgar-Lesmes, Pedro; Córdoba, Bernat; Bosch, Anna; Calvo, Maria; Rodrigo-Torres, Daniel; Sancho-Bru, Pau; Mira, Aurea; Jiménez, Wladimiro; Morales-Ruiz, Manuel

    2017-11-01

    Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl 4 A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl 4 -treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P livers correlated with a significant decrease in liver fibrosis ( P livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization. Copyright © 2017 the American

  9. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells.

    Science.gov (United States)

    Ware, Brenton R; Durham, Mitchell J; Monckton, Chase P; Khetani, Salman R

    2018-03-01

    Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.

  10. Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L.) Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-induced Stress

    Science.gov (United States)

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH• free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases. PMID:23109851

  11. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H(2)O(2)-induced stress.

    Science.gov (United States)

    Luo, Fenglei; Lv, Qiang; Zhao, Yuqin; Hu, Guibing; Huang, Guodi; Zhang, Jiukai; Sun, Chongde; Li, Xian; Chen, Kunsong

    2012-01-01

    Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L.) cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM) fruit (7.49 mg/g DW). Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC). Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH(•) free-radical scavenging capacities and ferric reducing ability of plasma (FRAP) than by l-ascorbic acid (Vc) or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC) under H(2)O(2)-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H(2)O(2) stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.

  12. Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L. Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-induced Stress

    Directory of Open Access Journals (Sweden)

    Kunsong Chen

    2012-09-01

    Full Text Available Mangiferin is a natural xanthonoid with various biological activities. Quantification of mangiferin in fruit peel, pulp, and seed kernel was carried out in 11 Chinese mango (Mangifera indica L. cultivars. The highest mangiferin content was found in the peel of Lvpimang (LPM fruit (7.49 mg/g DW. Efficient purification of mangiferin from mango fruit peel was then established for the first time by combination of macroporous HPD100 resin chromatography with optimized high-speed counter-current chromatography (HSCCC. Purified mangiferin was identified by both HPLC and LC-MS, and it showed higher DPPH free-radical scavenging capacities and ferric reducing ability of plasma (FRAP than by l-ascorbic acid (Vc or Trolox. In addition, it showed significant protective effects on human umbilical vein endothelial cells (HUVEC under H2O2-induced stress. Cells treated with mangiferin resulted in significant enhanced cell survival under of H2O2 stress. Therefore, mangiferin from mango fruit provides a promising perspective for the prevention of oxidative stress-associated diseases.

  13. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  14. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  15. Computationally Efficient Amplitude Modulated Sinusoidal Audio Coding using Frequency-Domain Linear Prediction

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jensen, Søren Holdt

    2006-01-01

    A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...

  16. Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation

    Science.gov (United States)

    Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.

    2011-04-01

    The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.

  17. Inverse modelling and pulsating torque minimization of salient pole non-sinusoidal synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Ait-gougam, Y.; Ibtiouen, R.; Touhami, O. [Laboratoire de Recherche en Electrotechnique, Ecole Nationale Polytechnique, BP 182, El-Harrach 16200 (Algeria); Louis, J.-P.; Gabsi, M. [Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE), CNRS UMR 8029, Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2008-01-15

    Sinusoidal motor's mathematical models are usually obtained using classical d-q transformation in the case of salient pole synchronous motors having sinusoidal field distribution. In this paper, a new inverse modelling for synchronous motors is presented. This modelling is derived from the properties of constant torque curves in the Concordia's reference frame. It takes into account the non-sinusoidal field distribution; EMF, self and mutual inductances having non-sinusoidal variations with respect to the angular rotor position. Both copper losses and torque ripples are minimized by adapted currents waveforms calculated from this model. Experimental evaluation was carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed method in reducing torque ripple. (author)

  18. Influence of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink

    International Nuclear Information System (INIS)

    Om, N I; Gunnasegaran, P; Rajasegaran, S

    2013-01-01

    In this paper, the effect of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink (MCHS) is numerically investigated. This investigation covers Reynolds number in the range of 100 ≤ Re ≤ 1000 and pure water is used as a working fluid. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method (FVM). The water flow field and heat transfer performance inside the sinusoidal microchannels is simulated and the results are compared with the straight microchannels. The effect of using sinusoidal microchannels on temperature distribution, Nusselt number, friction factor and thermal resistance is presented in this paper. It is found that with same rectangular cross-section, sinusoidal microchannels have a better heat transfer performance compared to the straight microchannels.

  19. Walking strategies of visually impaired people on trapezoidal- and sinusoidal-section tactile groundsurface indicators.

    Science.gov (United States)

    Ranavolo, A; Conte, C; Iavicoli, S; Serrao, M; Silvetti, A; Sandrini, G; Pierelli, F; Draicchio, F

    2011-03-01

    The visual system in walking serves to perceive feedback or feed-forward signals. Therefore, visually impaired persons (VIP) have biased motor control mechanisms. The use of leading indicators (LIs) and long canes helps to improve their walking efficiency. The aims of this study were to compare the walking efficiency of VIP on trapezoidal- and sinusoidal-section LIs using an optoelectronic motion analysis system. VIP displayed a significantly longer stance phase, a shorter swing phase and shorter step and stride lengths when they walked on the sinusoidal LI than when they walked on the trapezoidal LI. Compared with the trapezoidal LI, VIP walking on the sinusoidal LI displayed significantly lower joint ranges of motion. The centre of mass lateral displacement was wider for VIP walking on the sinusoidal LI than on the trapezoidal LI. Some significant differences were also found in sighted persons walking on both LIs. In conclusion, the trapezoidal shape enabled visually impaired subjects to walk more efficiently, whereas the sinusoidal shape caused dynamic balance problems. STATEMENT OF RELEVANCE: These findings suggest that VIP can walk more efficiently, with a lower risk of falls, on trapezoidal-section than on sinusoidal-section LIs. These results should be considered when choosing the most appropriate ground tactile surface indicators for widespread use.

  20. Crashworthiness Analysis and Evaluation of Fuselage Section with Sub-floor Composite Sinusoidal Specimens

    Directory of Open Access Journals (Sweden)

    H.L. Mou

    Full Text Available Abstract Crashworthiness is one of the main concerns in civil aviation safety particularly with regard to the increasing ratio of carbon fiber reinforced plastic (CFRP in aircraft primary structures. In order to generate dates for model validations, the mechanical properties of T700/3234 were obtained by material performance tests, and energy-absorbing results were gained by quasi-static crushing tests of composite sinusoidal specimens. The correctness of composite material model and single-layer finite element model of composite sinusoidal specimens were verified based on the simulation results and test results that were in good agreement. A typical civil aircraft fuselage section with composite sinusoidal specimens under cargo floor was suggested. The crashworthiness of finite element model of fuselage section was assessed by simulating the vertical drop test subjected to 7 m/s impact velocity, and the influences of different thickness of sub-floor composite sinusoidal specimens on crashworthiness of fuselage section were also analyzed. The simulation results show that the established finite element model can accurately simulate the crushing process of composite sinusoidal specimens; the failure process of fuselage section is more stable, and the safety of occupants can be effectively improved because of the smaller peak accelerations that was limited to human tolerance, a critical thickness of sub-floor composite sinusoidal specimens can restrict the magnitude of acceleration peaks, which has certain reference values for enhancing crashworthiness capabilities of fuselage section and improving the survivability of passengers.

  1. Interrogation of transcriptomic changes associated with drug-induced hepatic sinusoidal dilatation in colorectal cancer.

    Science.gov (United States)

    Jarzabek, Monika A; Proctor, William R; Vogt, Jennifer; Desai, Rupal; Dicker, Patrick; Cain, Gary; Raja, Rajiv; Brodbeck, Jens; Stevens, Dale; van der Stok, Eric P; Martens, John W M; Verhoef, Cornelis; Hegde, Priti S; Byrne, Annette T; Tarrant, Jacqueline M

    2018-01-01

    Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.

  2. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  3. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    Science.gov (United States)

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  4. Endothelial cells in the eyes of an immunologist.

    Science.gov (United States)

    Young, M Rita

    2012-10-01

    Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles

  5. Transplantation of endothelial progenitor cells ameliorates vascular dysfunction and portal hypertension in carbon tetrachloride-induced rat liver cirrhotic model.

    Science.gov (United States)

    Sakamoto, Masaharu; Nakamura, Toru; Torimura, Takuji; Iwamoto, Hideki; Masuda, Hiroshi; Koga, Hironori; Abe, Mitsuhiko; Hashimoto, Osamu; Ueno, Takato; Sata, Michio

    2013-01-01

    In cirrhosis, sinusoidal endothelial cell injury results in increased endothelin-1 (ET-1) and decreased nitric oxide synthase (NOS) activity, leading to portal hypertension. However, the effects of transplanted endothelial progenitor cells (EPCs) on the cirrhotic liver have not yet been clarified. We investigated whether EPC transplantation reduces portal hypertension. Cirrhotic rats were created by the administration of carbon tetrachloride (CCl(4) ) twice weekly for 10 weeks. From week 7, rat bone marrow-derived EPCs were injected via the tail vein in this model once a week for 4 weeks. Endothelial NOS (eNOS), vascular endothelial growth factor (VEGF) and caveolin expressions were examined by Western blots. Hepatic tissue ET-1 was measured by a radioimmunoassay (RIA). Portal venous pressure, mean aortic pressure, and hepatic blood flow were measured. Endothelial progenitor cell transplantation reduced liver fibrosis, α-smooth muscle actin-positive cells, caveolin expression, ET-1 concentration and portal venous pressure. EPC transplantation increased hepatic blood flow, protein levels of eNOS and VEGF. Immunohistochemical analyses of eNOS and isolectin B4 demonstrated that the livers of EPC-transplanted animals had markedly increased vascular density, suggesting reconstitution of sinusoidal blood vessels with endothelium. Transplantation of EPCs ameliorates vascular dysfunction and portal hypertension, suggesting this treatment may provide a new approach in the therapy of portal hypertension with liver cirrhosis. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  6. Manifestations and management of veno-occlusive disease/sinusoidal obstruction syndrome in the era of contemporary therapies.

    Science.gov (United States)

    Tewari, Priti; Wallis, Whitney; Kebriaei, Partow

    2017-02-01

    The concept of veno-occlusive disease (VOD), along with our understanding of it, has historically been and remains an evolving phenomenon. This review presents a broad view of VOD, also known as sinusoidal obstruction syndrome (SOS), including (1) traditional hematopoietic stem cell transplant-associated VOD/SOS, (2) late-onset VOD/SOS, (3) pulmonary VOD, and (4) VOD/SOS associated with chemotherapy only. Several VOD/SOS management modalities exist that include modes for both prophylaxis and treatment. An extensive review of the literature on monoclonal antibodies, both approved and pending approval by the US Food and Drug Administration, reveals that only a few have been associated with an increased risk for VOD/SOS. In fact, bevacizumab appears to have a protective effect against the development of VOD/SOS. As the landscape of cancer treatment changes, careful attention needs to be focused on how new therapies affect the incidence of VOD/SOS.

  7. Evolution of endothelial keratoplasty.

    Science.gov (United States)

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  8. Trifluoperazine: corneal endothelial phototoxicity

    International Nuclear Information System (INIS)

    Hull, D.S.; Csukas, S.; Green, K.

    1983-01-01

    Trifluoperazine is used for the treatment of psychiatric disorders. Perfusion of corneal endothelial cells with trifluoperazine-HC1 concurrent with exposure to long wavelength ultraviolet light resulted in a corneal swelling rate greater than that found in perfused corneas not exposed to ultraviolet light. Exposure of endothelial cells to 25 W incandescent light during perfusion with trifluoperazine-HC1 did not result in a higher corneal swelling rate compared to those perfused in the dark. The increased corneal swelling rate could be produced by pre-exposure of the trifluoperazine-HC1 perfusing solution to ultraviolet light suggesting the production of toxic photoproducts during exposure of trifluoperazine-HC1 to ultraviolet light. Perfusion of corneal endothelial cells with non-ultraviolet illuminated trifluoperazine-HC1 had no effect on endothelial cell membranes or ultrastructure. This is in contrast to cells perfused with trifluoperazine-HC1 that had been exposed to ultraviolet light in which there was an alteration of mitochondria and a loss of cytoplasmic homogeneity. The data imply that the trifluoperazine-HC1 photoproduct had an adverse effect on cellular transport mechanisms. The study also further demonstrates the value of the corneal endothelial cell model for identifying the physiological and anatomical changes occuring in photo-induced toxic reactions. (author)

  9. Mitochondria and Endothelial Function

    Science.gov (United States)

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  10. The effects of hydroxychloroquine on endothelial dysfunction.

    Science.gov (United States)

    Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M

    2016-10-01

    Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  11. The endothelial glycocalyx protects against myocardial edema

    NARCIS (Netherlands)

    van den Berg, Bernard M.; Vink, Hans; Spaan, Jos A. E.

    2003-01-01

    Myocardial tissue edema attributable to increased microvascular fluid loss contributes to cardiac dysfunction after myocardial ischemia, cardiopulmonary bypass, hypertension, and sepsis. Recent studies suggest that carbohydrate structures on the luminal surface of microvascular endothelium are

  12. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress

    DEFF Research Database (Denmark)

    Ng, Hooi Hooi; Leo, Chen Huei; O'Sullivan, Kelly

    2017-01-01

    and decreased basal nitric oxide (NO) availability. SeTal (1mM) co-treatment prevented high glucose-induced endothelial dysfunction and oxidative stress in the mouse aorta. The presence of a cyclooxygenase inhibitor, indomethacin significantly improved the sensitivity to ACh in high glucose-treated aortae......, but had no effect in SeTal-treated aortae. Our data show that SeTal has potent antioxidant activity in isolated mouse aortae and prevents high glucose-induced endothelial dysfunction by decreasing superoxide levels, increasing basal NO availability and normalising the contribution of vasoconstrictor......Hyperglycaemia increases the generation of reactive oxidants in blood vessels and is a major cause of endothelial dysfunction. A water-soluble selenium-containing sugar (1,4-Anhydro-4-seleno-d-talitol, SeTal) has potent antioxidant activity in vitro and is a promising treatment to accelerate wound...

  13. An Adaptive Filter for the Removal of Drifting Sinusoidal Noise Without a Reference.

    Science.gov (United States)

    Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei

    2016-01-01

    This paper presents a method for filtering sinusoidal noise with a variable bandwidth filter that is capable of tracking a sinusoid's drifting frequency. The method, which is based on the adaptive noise canceling (ANC) technique, will be referred to here as the adaptive sinusoid canceler (ASC). The ASC eliminates sinusoidal contamination by tracking its frequency and achieving a narrower bandwidth than typical notch filters. The detected frequency is used to digitally generate an internal reference instead of relying on an external one as ANC filters typically do. The filter's bandwidth adjusts to achieve faster and more accurate convergence. In this paper, the focus of the discussion and the data is physiological signals, specifically electrocorticographic (ECoG) neural data contaminated with power line noise, but the presented technique could be applicable to other recordings as well. On simulated data, the ASC was able to reliably track the noise's frequency, properly adjust its bandwidth, and outperform comparative methods including standard notch filters and an adaptive line enhancer. These results were reinforced by visual results obtained from real ECoG data. The ASC showed that it could be an effective method for increasing signal to noise ratio in the presence of drifting sinusoidal noise, which is of significant interest for biomedical applications.

  14. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  15. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  16. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    OpenAIRE

    Abhirup Lahiri

    2011-01-01

    This paper reports two new circuit topologies using second-generation current conveyors (CCIIs) for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs) using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantag...

  17. Light scattering by sinusoidal surfaces: illumination windows and harmonics in standards.

    Science.gov (United States)

    Marx, E; Lettieri, T R; Vorburger, T V

    1995-03-01

    Sinusoidal surfaces can be used as material standards to help calibrate instruments that measure the angular distribution of the intensity of light scattered by arbitrary surfaces, because the power in the diffraction peaks varies over several orders of magnitude. The calculated power in the higher-order diffraction peaks from sinusoidal surfaces expressed in terms of Bessel functions is much smaller than the values determined from angular distributions that are measured or computed from measured profiles, both of which are determined mainly by the harmonic contents of the profile. The finite size of the illuminated area, represented by an illumination window, gives rise to a background that is much larger than the calculated power in the higher-order peaks. For a rectangular window of a size equal to an even number of periods of the sinusoid, a computation of the power distribution produces minima at or near the location of the diffraction angles for higher-order diffraction angles.

  18. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    Directory of Open Access Journals (Sweden)

    Abhirup Lahiri

    2011-01-01

    Full Text Available This paper reports two new circuit topologies using second-generation current conveyors (CCIIs for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantageous feature of frequency tuning through two grounded elements. Application of the proposed circuits as a wide-frequency range digitally controlled sinusoid generator is exhibited wherein the digital frequency control has been enabled by replacing both the capacitors by two identical variable binary capacitor banks tunable by means of the same binary code. SPICE simulations of the CMOS implementation of the oscillators using 0.35 μm TSMC CMOS technology parameters and bipolar implementation of the oscillators using process parameters for NR200N-2X (NPN and PR200N-2X (PNP of bipolar arrays ALA400-CBIC-R have validated their workability. One of the oscillators (with CMOS implementation is exemplified as a digitally controlled sinusoid generator with frequency generation from 25 kHz to 6.36 MHz, achieved by switching capacitors and with power consumption of 7 mW in the entire operating frequency range.

  19. Estimation of the second heart sound split using windowed sinusoidal models

    DEFF Research Database (Denmark)

    Sæderup, Rasmus Gundorf; Hoang, Poul; Winther, Simon

    2018-01-01

    to the potential overlap between A2 and P2. In this paper, a model-based approach is proposed where both A2 and P2 are modeled as windowed sinusoids with their sum forming the S2 signal. Estimation of the model parameters and the S2 split form a non-convex optimization problem, where a local minimum is obtained...... using a sequential optimization procedure. First, the window parameters are found as the solution to a regularized least squares problem. Then, the frequencies and phases of the sinusoids are found by locating the maximal peaks of the heart signals’ frequency magnitudes, and using the corresponding...

  20. The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    Science.gov (United States)

    Kim, Mihwa; Ham, Ahrom; Kim, Katelyn Yu-Mi; Brown, Kevin M.; Lee, H. Thomas

    2014-01-01

    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation. PMID:24945528

  1. Band structure and optical properties of sinusoidal superlattices: ZnSe1-xTex

    International Nuclear Information System (INIS)

    Yang, G.; Lee, S.; Furdyna, J. K.

    2000-01-01

    This paper examines the band structure and optical selection rules in superlattices with a sinusoidal potential profile. The analysis is motivated by the recent successful fabrication of high quality ZnSe 1-x Te x superlattices in which the composition x varies sinusoidally along the growth direction. Although the band alignment in the ZnSe 1-x Te x sinusoidal superlattices is staggered (type II), they exhibit unexpectedly strong photoluminescence, thus suggesting interesting optical behavior. The band structure of such sinusoidal superlattices is formulated in terms of the nearly-free-electron (NFE) approximation, in which the superlattice potential is treated as a perturbation. The resulting band structure is unique, characterized by a single minigap separating two wide, free-electron-like subbands for both electrons and holes. Interband selection rules are derived for optical transitions involving conduction and valence-band states at the superlattice Brillouin-zone center, and at the zone edge. A number of transitions are predicted due to wave-function mixing of different subband states. It should be noted that the zone-center and zone-edge transitions are especially easy to distinguish in these superlattices because of the large width of the respective subbands. The results of the NFE approximation are shown to hold surprisingly well over a wide range of parameters, particularly when the period of the superlattice is short. (c) 2000 The American Physical Society

  2. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrausch, A.; Heusdens, R.; Jensen, J.; Holdt Jensen, S.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  3. A perceptual model for sinusoidal audio coding based on spectral integration

    NARCIS (Netherlands)

    Van de Par, S.; Kohlrauch, A.; Heusdens, R.; Jensen, J.; Jensen, S.H.

    2005-01-01

    Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of

  4. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets

    Science.gov (United States)

    Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2018-01-01

    Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.

  5. Efficiency enhancement of a self-propelled pitching profile using non-sinusoidal trajectories

    Science.gov (United States)

    Mekadem, M.; Chihani, E.; Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2017-11-01

    A symmetrical profile is subjected to non-sinusoidal pitching motion. The airfoil has a chord length c = 0.006 m and a semi-circular leading edge with a diameter of D = 0.001 m. The extrados and intrados are two straight lines that intersect at a tapered trailing edge, and the pitching pivot point is positioned at the leading edge. The pitching frequency is in the range of 1 based upon the maximum profile thickness D varies in the range of 35 <= Re <= 210 , which matches insect's Reynolds numbers. The foil movement is executed using the dynamic mesh technique and a user defined function (UDF). The adopted mesh has 70,445 nodes with 5,1960 quadrilateral cells. The results are in good agreement with prior experiments, and, compared to sinusoidal oscillations, show that non-sinusoidal flapping trajectories lead to advancing velocity increase of 550%. Additionally, if improved propulsive efficiency is sought, non-sinusoidal flapping lead to better thrust.

  6. Measurement of definite integral of sinusoidal signal absolute value third power using digital stochastic method

    Directory of Open Access Journals (Sweden)

    Beljić Željko

    2017-01-01

    Full Text Available In this paper a special case of digital stochastic measurement of the third power of definite integral of sinusoidal signal’s absolute value, using 2-bit AD converters is presented. This case of digital stochastic method had emerged from the need to measure power and energy of the wind. Power and energy are proportional to the third power of wind speed. Anemometer output signal is sinusoidal. Therefore an integral of the third power of sinusoidal signal is zero. Two approaches are proposed for the third power calculation of the wind speed signal. One approach is to use absolute value of sinusoidal signal (before AD conversion for which there is no need of multiplier hardware change. The second approach requires small multiplier hardware change, but input signal remains unchanged. For the second approach proposed minimal hardware change was made to calculate absolute value of the result after AD conversion. Simulations have confirmed theoretical analysis. Expected precision of wind energy measurement of proposed device is better than 0,00051% of full scale. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  7. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  8. Iron Losses in Electrical Machines Due to Non Sinusoidal Alternating Fluxes

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Walker, J.A.; Dorrell, D. G.

    2007-01-01

    This paper shows how the flux waveform in the core of an electrical machine can be vary non- sinusoidally which complicates the calculation of the iron loss in a machine. A set of tests are conducted on a steel sample using an Epstein square where harmonics are injected into the flux waveform which...... of a machine....

  9. Stress singularities in a model of a wood disk under sinusoidal pressure

    Science.gov (United States)

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  10. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels

    Science.gov (United States)

    Huang, Houxue; Wu, Huiying; Zhang, Chi

    2018-05-01

    Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α  =  0 to π) and different relative wavy amplitudes (β  =  A/l  =  0.05 to 0.4), but the same average hydraulic diameters (D h  =  160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β  =  0.05), the Nusselt number increased noticeably with the phase difference for Re  >  250, but the effect was insignificant for Re  reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re  >  300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.

  11. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Fukuoka

    Full Text Available Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency, breath-by-breath ventilation (V̇E and gas exchange (CO2 output (V̇CO2 and O2 uptake (V̇O2 responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min. The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW was significantly greater than that during sinusoidal cycling (SC, and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward and muscle afferent feedback.

  12. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    Science.gov (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  13. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  14. Endothelial RIG-I activation impairs endothelial function

    Energy Technology Data Exchange (ETDEWEB)

    Asdonk, Tobias, E-mail: tobias.asdonk@ukb.uni-bonn.de [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Motz, Inga; Werner, Nikos [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Coch, Christoph; Barchet, Winfried; Hartmann, Gunther [Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany); Nickenig, Georg; Zimmer, Sebastian [Department of Medicine/Cardiology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn (Germany)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  15. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HCAEC biology in vitro. ► EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 μg of the RIG-ligand 3pRNA (RNA with triphosphate at the 5′end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  16. Flow-induced endothelial cell alignment requires the RhoGEF Trio as a scaffold protein to polarize active Rac1 distribution

    NARCIS (Netherlands)

    Kroon, Jeffrey; Heemskerk, Niels; Kalsbeek, Martin J. T.; de Waard, Vivian; van Rijssel, Jos; van Buul, Jaap D.

    2017-01-01

    Endothelial cells line the lumen of the vessel wall and are exposed to flow. In linear parts of the vessel, the endothelial cells experience laminar flow, resulting in endothelial cell alignment in the direction of flow, thereby protecting the vessel wall from inflammation and permeability. In order

  17. Effect of propionyl-L-carnitine on human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Scheffer, M.A.

    1991-01-01

    A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no

  18. The two dynamical states in sinusoidal potentials: An analog simulation experiment

    Science.gov (United States)

    Sawkmie, Ivan Skhem; Mahato, Mangal C.

    2018-04-01

    The phenomenon of stochastic resonance (SR) is usually found to occur theoretically as well as experimentally in bi-stable systems [1]. Recently, it was numerically shown that SR is found to occur in underdamped (friction coefficient γ) sinusoidal potentials also. The occurrence of SR is explained in terms of two competing dynamical states of trajectories as a response to the external periodic drive. We setup an analog simulation experiment similar to the analog simulation work done earlier to study stochastic nonlinear dynamics [2], to verify the existence of the two dynamical states and to investigate the occurrence of SR in sinusoidal potentials obtained earlier [3]. We discuss our experimental setup and the results obtained in detail.

  19. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends.

    Science.gov (United States)

    Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F

    2017-01-15

    We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.

  20. Levitation performance of high-T{sub c} superconductor in sinusoidal guideway magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, J.S.; Jing, H.; Jiang, M.; Zheng, J.; Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-12-01

    The vertical component of the Halbach array's magnetic field exhibits a sinusoid distribution because of the closed magnetic flux area between two neighbouring poles, so this field can be regarded as the sinusoidal magnetic field. This article mainly discusses the influence of the closed flux region on the levitation performance of the bulk high-temperature superconductor (HTS). Moreover, the levitation performance is compared between the closed and diverging region of magnetic flux. The experimental results can be analyzed by the magnetic circuit theory and the frozen-image model. The analysis indicates that the closed region of magnetic flux can influence the levitation performance of bulk HTS obviously and provide an extra useful guidance force. These conclusions are helpful to optimize the HTS Maglev system.

  1. New Results on Single-Channel Speech Separation Using Sinusoidal Modeling

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2011-01-01

    We present new results on single-channel speech separation and suggest a new separation approach to improve the speech quality of separated signals from an observed mix- ture. The key idea is to derive a mixture estimator based on sinusoidal parameters. The proposed estimator is aimed at finding...... mixture estimator used in binary masks and the Wiener filtering approach, it is observed that the proposed method achieves an acceptable perceptual speech quality with less cross- talk at different signal-to-signal ratios. Moreover, the method is independent of pitch estimates and reduces the computational...... complexity of the separation by replacing the short-time Fourier transform (STFT) feature vectors of high dimensionality with sinusoidal feature vectors. We report separation results for the proposed method and compare them with respect to other benchmark methods. The improvements made by applying...

  2. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Science.gov (United States)

    Aftab, S M A; Ahmad, K A

    2017-01-01

    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  3. Flow and heat transfer characteristics in a channel having furrowed wall based on sinusoidal wave

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiansheng; Gao, Xiaoming; Li, Weiyi [Tianjin University, Tianjin (Switzerland)

    2015-11-15

    The effect of wall geometry on the flow and heat transfer in a channel with one lower furrowed and an upper flat wall kept at a uniform temperature is investigated by large eddy simulation. Three channels, one with sinusoidal wavy surface having the ratio (amplitude to wavelength) α/λ=0.05 and the other two with furrowed surface derived from the sinusoidal curve, are considered. The numerical results show that the streamwise vortices center is located near the lower wall and vary along the streamwise on various furrow surfaces. The furrow geometry increases the pressure drag and decreases the friction drag of the furrowed surface compared with that of the smooth surface; consequently, the total drag is increased for the augment of pressure drag. As expected, the heat transfer performance has been improved. Finally, a thermal performance factor is defined to evaluate the performance of the furrowed wall.

  4. Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs

    OpenAIRE

    Prungsak Uttaphut

    2012-01-01

    An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circui...

  5. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shingo; Namekata, Naoto, E-mail: nnao@phys.cst.nihon-u.ac.jp; Inoue, Shuichiro [Institute of Quantum Science, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Tsujino, Kenji [Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  6. [The sequential use of local vacuum magnetotherapy and papaverine electrophoresis with sinusoidal modulated currents in impotence].

    Science.gov (United States)

    Karpukhin, I V; Bogomol'nyĭ, V A

    1997-01-01

    105 patients with chronic nonspecific prostatitis were examined and treated with papaverin electrophoresis using sinusoidal modulated currents (SMC) and local vacuum magnetotherapy (LVMT). Papaverin SMC electrophoresis and LVMT stimulated cavernous circulation. The highest stimulation was achieved at successive use of LVMT and the electrophoresis. LVMT followed by the electrophoresis maintained good cavernous circulation for 5-6 hours after the procedure in the course of which several spontaneous erections were observed.

  7. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Science.gov (United States)

    Yao, Atsushi; Sugimoto, Takaya; Odawara, Shunya; Fujisaki, Keisuke

    2018-05-01

    We report core loss properties of permanent magnet synchronous motors (PMSM) with amorphous magnetic materials (AMM) core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO) core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space) harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  8. Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Javaid

    2017-12-01

    Full Text Available Sample mixing is difficult in microfluidic devices because of laminar flow. Micromixers are designed to ensure the optimal use of miniaturized devices. The present study aims to design a chaotic-advection-based passive micromixer with enhanced mixing efficiency. A serpentine-shaped microchannel with sinusoidal side walls was designed, and three cases, with amplitude to wavelength (A/λ ratios of 0.1, 0.15, and 0.2 were investigated. Numerical simulations were conducted using the Navier–Stokes equations, to determine the flow field. The flow was then coupled with the convection–diffusion equation to obtain the species concentration distribution. The mixing performance of sinusoidal walled channels was compared with that of a simple serpentine channel for Reynolds numbers ranging from 0.1 to 50. Secondary flows were observed at high Reynolds numbers that mixed the fluid streams. These flows were dominant in the proposed sinusoidal walled channels, thereby showing better mixing performance than the simple serpentine channel at similar or less mixing cost. Higher mixing efficiency was obtained by increasing the A/λ ratio.

  9. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  10. NON-PHARMACOLOGICAL CONCEPTS OF ENDOTHELIAL DYSFUNCTION IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Mirjana Bakic

    2007-04-01

    Full Text Available Endothelium plays an important role in maintaining normal vascular tonus and blood fluidity reducing thrombocyte activity and adhesion of leukocytes as well as limiting response of vascular inflammation. However, in certain pathological conditions such as hypercholesterolemia, hypertension, and diabetes, endothelium improves vasoconstriction, inflammation and thrombocytic events.Non-pharmacological concept is based on recognition of genetic factors, environmental factors, or combination of risk factors for the occurrence of endothelial dysfunction, general and individual education of the significance of adequate nutrition, physical activity and regulation of body weight, regular check-ups and the application of antioxidants which can regulate and protect several aspects of endothelial functions.

  11. Effects of vitrectomy combined with cataract surgery on the corneal endothelial cells in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Lei Zhan

    2017-08-01

    Full Text Available AIM: To investigate the effects of vitrectomy combined with cataract surgery on the corneal endothelial cells in diabetic retinopathy. METHODS: A retrospective study was designed. 160 patients(160 eyeswith diabetic retinopathy from Jan 2015 to Feb 2017 were divided into two groups according to cataract. 74 patients(74 eyeswere operated on vitrectomy, and 86 patients(86 eyeson vitrectomy combined with phacoemulsification cataract surgery and capsular bag implantation of foldable intraocular lens. To record the change of corneal endothelial cells density, average cellular area, coefficient of variation and percentage of hexagonal endothelial cell before and after treatment with Topcon corneal specular microscope. RESULTS: Before and after surgery, the results of corneal endothelial cells density, average cellular area, coefficient of variation and percentage of hexagonal endothelial cell in simple vitrectomy group were no significant difference(P>0.05; After treatment corneal endothelial cells density and percentage of hexagonal endothelial cell were changed with statistical difference as the same as average cellular area and coefficient of variation(PPCONCLUSION: It has certain influence on the corned endothelial cells when using vitrectomy combined with cataract surgery in diabetic retinopathy. For patients with indications, it should be paid attention to protecting the corneal endothelial cells.

  12. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  13. Papillary endothelial hyperplasia in angiokeratoma.

    Science.gov (United States)

    Mehta, Anurag; Sayal, Satish Kumar; Raman, Deep Kumar; Sood, Aradhana

    2003-01-01

    Papillary endothelial hyperplasia (Masson's tumour) is a reactive proliferation of endothelium producing papillary structures with fibrovascular cores. Dilatation, stasis and accompanying inflammation have been incriminated as the inciting events, evident by the presence of this lesion in haemorrhoids, urethral caruncles and laryngeal polyps. We present here a case of papillary endothelial hyperplasia in angiokeratoma hitherto undescribed despite sharing common etiopathogenetic features of dilatation and stasis with other aforementioned lesions.

  14. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function.

    Science.gov (United States)

    Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J

    2017-11-01

    Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r  = -0.49, P = 0.003), p21 ( r  = -0.38, P = 0.03), and p16 ( r  = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function

  15. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    Science.gov (United States)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  16. THE RESONANT OVERVOLTAGE IN NON-SINUSOIDAL MODE OF MAIN ELECTRIC NETWORK

    Directory of Open Access Journals (Sweden)

    V. G. Kuznetsov

    2018-04-01

    Full Text Available Purpose. The resonant overvoltage arises in main electrical networks as a result of random coincidence of some parameters of circuit and its mode and it may exist for a relatively long time. Therefore, the traditional means of limitation of short duration commutation surges are not effective in this case. The study determines conditions of appearance and development of non-sinusoidal mode after switching idle autotransformer to the overhead line of extra high voltage. The purpose of the paper is to choice measures for prevention overvoltage, too. Methodology. The study has used the result of extra high voltage line testing, the methods of electric circuit theory and the simulation in the MATLAB & Simulink package. Results. The simulation model of the extra high voltage transmission line for the study of resonant non-sinusoidal overvoltage is developed. The conditions for the appearance of resonant circuits in the real power line are found and harmonic frequency in which overvoltage arises are obtained. The study proposes using the controlled switching device as a measure to prevent resonance surges and determines the appropriate settings. Originality. The expression for calculation of resonant length of extra high voltage line was derived. The special investigation of processes in the resonant circuit of the extra high voltage transmission line for higher harmonic components of voltage is carried out. The program of switching for control apparatus that prevents non-sinusoidal overvoltage has been developed at the first time. Practical value. The using of the proposed settings of controlled switchgear will prevent the occurrence of hazardous resonant surge on higher harmonic components of voltage.

  17. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  18. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Tam, L.M. [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)], E-mail: fstlmt@umac.mo; Chen, J.H. [Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (China); Chen, H.K. [Department of Mechanical Engineering, Hsiuping Institute of Technology, Taichung, Taiwan (China); Wai Meng Si Tou [Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Av. Padre Thomas Pereira S.J., Taipa, Macau (China)

    2008-11-15

    A system with more than one positive Lyapunov exponent can be classified as a hyperchaotic system. In this study, a sinusoidal perturbation was designed for generating hyperchaos from the Chen-Lee chaotic system. The hyperchaos was identified by the existence of two positive Lyapunov exponents and bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters c, {epsilon}, and {omega}. It was found that this method not only can enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. In addition, two interesting dynamical behaviors, Hopf bifurcation and intermittency, were also found in this study.

  19. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  20. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation

    International Nuclear Information System (INIS)

    Tam, L.M.; Chen, J.H.; Chen, H.K.; Wai Meng Si Tou

    2008-01-01

    A system with more than one positive Lyapunov exponent can be classified as a hyperchaotic system. In this study, a sinusoidal perturbation was designed for generating hyperchaos from the Chen-Lee chaotic system. The hyperchaos was identified by the existence of two positive Lyapunov exponents and bifurcation diagrams. The system is hyperchaotic in several different regions of the parameters c, ε, and ω. It was found that this method not only can enhance or suppress chaotic behavior, but also induces chaos in non-chaotic parameter ranges. In addition, two interesting dynamical behaviors, Hopf bifurcation and intermittency, were also found in this study

  1. Simply Adjustable Sinusoidal Oscillator Based on Negative Three-Port Current Conveyors

    Directory of Open Access Journals (Sweden)

    R. Sotner

    2010-09-01

    Full Text Available The paper deals with sinusoidal oscillator employing two controlled second-generation negative-current conveyors and two capacitors. The proposed oscillator has a simple circuit configuration. Electronic (voltage adjusting of the oscillation frequency and condition of oscillation are possible. The presented circuit is verified in PSpice utilizing macro models of commercially available negative current conveyors. The circuit is also verified by experimental measurements. Important characteristics and drawbacks of the proposed circuit and influences of real active elements in the designed circuit are discussed in detail.

  2. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  3. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    Science.gov (United States)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  4. Sinusoidal Obstruction Syndrome During Chemotherapy of Pediatric Cancers and its Successful Management With Defibrotide.

    Science.gov (United States)

    Kizilocak, Hande; Dikme, Gürcan; Özdemir, Nihal; Kuruğoğlu, Sebuh; Adaletli, İbrahim; Erkan, Tülay; Celkan, Tiraje

    2017-10-01

    Sinusoidal obstruction syndrome (SOS) is a life-threatening complication generally occurring after hematopoietic stem cell transplantation. SOS after standard dose chemotherapy in malignancies is rare. Between the year 1995 and 2016, 414 patients were diagnosed with acute lymphoblastic leukemia and 113 patients were diagnosed with Wilms tumor in our institution. Among these patients, 4 patients with acute lymphoblastic leukemia (0.96%) and 2 patients with Wilms tumor (1.7%) developed SOS during treatment. SOS behaves like a local disseminated intravascular coagulation. Defibrotide has proved to be effective in SOS. In this article, we report our experience with defibrotide in SOS.

  5. Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube

    Directory of Open Access Journals (Sweden)

    M. Abdulhameed

    2015-12-01

    Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.

  6. Electromagnetic characterization of current transformer with toroidal core under sinusoidal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koprivica, Branko, E-mail: branko.koprivica@ftn.kg.ac.rs; Milovanovic, Alenka, E-mail: alenka.milovanovic@ftn.kg.ac.rs

    2016-04-01

    The aim of this paper is to present a new procedure for the electromagnetic analysis of a measuring current transformer under sinusoidal conditions in its electrical and magnetic circuit. The influence of the magnetic hysteresis has been taken into account using the measured inverse magnetization curve and phase lag between the time waveforms of the magnetic field and the magnetic induction. Using the proposed analysis, ratio and phase errors of the current transformer have been calculated. The results of the calculation have been compared with experimental results and a good agreement has been found.

  7. Sinusoidal excitation on the Chua's circuit simulation of limit cycles and chaos

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1994-01-01

    of charging”, and stable limit cycle behaviour based on the balance between the energy lost in the regions with mainly positive losses and the energy gained in the regions with mainly negative losses. Convergence problems observed in connection with simulation of the ideal piecewise-linear model are solved......Experiments with modelling and simulation of sinusoidal excitation on Chua's circuit are presented. It is demonstrated that the behaviour of the circuit is based on the interaction of two different kinds of energy balance: chaotic behaviour based on a balance between two unstable “states...

  8. Voltage-Mode Four-Phase Sinusoidal Generator and Its Useful Extensions

    Directory of Open Access Journals (Sweden)

    Sudhanshu Maheshwari

    2013-01-01

    Full Text Available This paper introduces a new voltage-mode second-order sinusoidal generator circuit with four active elements and six passive elements, including grounded capacitors. The frequency and condition of oscillation can be independently controlled. The effect of active element’s nonidealities and parasitic effects is also studied; the proposed topology is good in absorbing several parasitic elements involved with the active elements. The circuit is advantageous for generating high frequency signals which is demonstrated for 25 MHz outputs. Several circuit extensions are also given which makes the new proposal useful for real circuit adoption. The proposed theory is validated through simulation results.

  9. Endothelial-regenerating cells: an expanding universe.

    Science.gov (United States)

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  10. Sustained apnea induces endothelial activation.

    Science.gov (United States)

    Eichhorn, Lars; Dolscheid-Pommerich, Ramona; Erdfelder, Felix; Ayub, Muhammad Ajmal; Schmitz, Theresa; Werner, Nikos; Jansen, Felix

    2017-09-01

    Apnea diving has gained worldwide popularity, even though the pathophysiological consequences of this challenging sport on the human body are poorly investigated and understood. This study aims to assess the influence of sustained apnea in healthy volunteers on circulating microparticles (MPs) and microRNAs (miRs), which are established biomarkers reflecting vascular function. Short intermittent hypoxia due to voluntary breath-holding affects circulating levels of endothelial cell-derived MPs (EMPs) and endothelial cell-derived miRs. Under dry laboratory conditions, 10 trained apneic divers performed maximal breath-hold. Venous blood samples were taken, once before and at 4 defined points in time after apnea. Samples were analyzed for circulating EMPs and endothelial miRs. Average apnea time was 329 seconds (±103), and SpO 2 at the end of apnea was 79% (±12). Apnea was associated with a time-dependent increase of circulating endothelial cell-derived EMPs and endothelial miRs. Levels of circulating EMPs in the bloodstream reached a peak 4 hours after the apnea period and returned to baseline levels after 24 hours. Circulating miR-126 levels were elevated at all time points after a single voluntary maximal apnea, whereas miR-26 levels were elevated significantly only after 30 minutes and 4 hours. Also miR-21 and miR-92 levels increased, but did not reach the level of significance. Even a single maximal breath-hold induces acute endothelial activation and should be performed with great caution by subjects with preexisting vascular diseases. Voluntary apnea might be used as a model to simulate changes in endothelial function caused by hypoxia in humans. © 2017 Wiley Periodicals, Inc.

  11. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Science.gov (United States)

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  12. Diffraction Efficiency Testing of Sinusoidal and Blazed Off-Plane Reflection Gratings

    Science.gov (United States)

    Tutt, James H.; McEntaffer, Randall L.; Marlowe, Hannah; Miles, Drew M.; Peterson, Thomas J.; Deroo, Casey T.; Scholze, Frank; Laubis, Christian

    2016-09-01

    Reflection gratings in the off-plane mount have the potential to enhance the performance of future high resolution soft X-ray spectrometers. Diffraction efficiency can be optimized through the use of blazed grating facets, achieving high-throughput on one side of zero-order. This paper presents the results from a comparison between a grating with a sinusoidally grooved profile and two gratings that have been blazed. The results show that the blaze does increase throughput to one side of zero-order; however, the total throughput of the sinusoidal gratings is greater than the blazed gratings, suggesting the method of manufacturing the blazed gratings does not produce precise facets. The blazed gratings were also tested in their Littrow and anti-Littrow configurations to quantify diffraction efficiency sensitivity to rotations about the grating normal. Only a small difference in the energy at which efficiency is maximized between the Littrow and anti-Littrow configurations is seen with a small shift in peak efficiency towards higher energies in the anti-Littrow case. This is due to a decrease in the effective blaze angle in the anti-Littrow mounting. This is supported by PCGrate-SX V6.1 modeling carried out for each blazed grating which predicts similar response trends in the Littrow and anti-Littrow orientations.

  13. Biliary obstruction dissipates bioelectric sinusoidal-canalicular barrier without altering taurocholate uptake

    International Nuclear Information System (INIS)

    Cotting, J.; Zysset, T.; Reichen, J.

    1989-01-01

    To study immediate events during extrahepatic cholestasis, we investigated the effect of short-term biliary obstruction on the bioelectrical sinusoidal-canalicular barrier in the rat using molecular weight-matched uncharged and negatively charged inert solute pairs. The bioelectrical barrier averaged -22 +/- 5 and -18 +/- 4 mV (NS) using the pair carboxy-/methoxyinulin and ferrocyanide/sucrose, respectively. After a 20-min biliary obstruction both decreased by 61 and 11%, respectively, but only the large molecular weight pair (the inulins) returned to base line after release of the obstruction. Inert solute clearances were increased after short biliary obstruction depending on molecular size and negative charge (ferrocyanide greater than sucrose greater than carboxyinulin greater than inulin), suggesting that both permeability and bioelectrical barriers were affected by obstruction. The hepatic extraction in vivo of a passively transported drug not excreted into bile (D-propranolol) was not affected by obstruction, whereas that of an actively transported drug (glycocholate) decreased from 66 +/- 8 to 41 +/- 20% during biliary obstruction (P less than 0.01). Unidirectional transfer of glycocholate was not affected by short-term biliary obstruction in the situ perfused rat liver; however, 2 min after [14C]glycocholate administration, increased return was observed in hepatic venous effluent in obstructed animals. Our findings demonstrate a loss of the bioelectrical barrier immediately after short-term biliary obstruction. Decreased hepatic extraction in the view of unaltered sinusoidal uptake demonstrates regurgitation of bile into blood during short-term biliary obstruction

  14. The 3-D alignment of objects in dynamic PET scans using filtered sinusoidal trajectories of sinogram

    International Nuclear Information System (INIS)

    Kostopoulos, Aristotelis E.; Happonen, Antti P.; Ruotsalainen, Ulla

    2006-01-01

    In this study, our goal is to employ a novel 3-D alignment method for dynamic positron emission tomography (PET) scans. Because the acquired data (i.e. sinograms) often contain noise considerably, filtering of the data prior to the alignment presumably improves the final results. In this study, we utilized a novel 3-D stackgram domain approach. In the stackgram domain, the signals along the sinusoidal trajectory signals of the sinogram can be processed separately. In this work, we performed angular stackgram domain filtering by employing well known 1-D filters: the Gaussian low-pass filter and the median filter. In addition, we employed two wavelet de-noising techniques. After filtering we performed alignment of objects in the stackgram domain. The local alignment technique we used is based on similarity comparisons between locus vectors (i.e. the signals along the sinusoidal trajectories of the sinogram) in a 3-D neighborhood of sequences of the stackgrams. Aligned stackgrams can be transformed back to sinograms (Method 1), or alternatively directly to filtered back-projected images (Method 2). In order to evaluate the alignment process, simulated data with different kinds of additive noises were used. The results indicated that the filtering prior to the alignment can be important concerning the accuracy

  15. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition.

    Science.gov (United States)

    Wang, Chenxing; Kemao, Qian; Da, Feipeng

    2017-10-02

    Fringe-based optical measurement techniques require reliable fringe analysis methods, where empirical mode decomposition (EMD) is an outstanding one due to its ability of analyzing complex signals and the merit of being data-driven. However, two challenging issues hinder the application of EMD in practical measurement. One is the tricky mode mixing problem (MMP), making the decomposed intrinsic mode functions (IMFs) have equivocal physical meaning; the other is the automatic and accurate extraction of the sinusoidal fringe from the IMFs when unpredictable and unavoidable background and noise exist in real measurements. Accordingly, in this paper, a novel bidimensional sinusoids-assisted EMD (BSEMD) is proposed to decompose a fringe pattern into mono-component bidimensional IMFs (BIMFs), with the MMP solved; properties of the resulted BIMFs are then analyzed to recognize and enhance the useful fringe component. The decomposition and the fringe recognition are integrated and the latter provides a feedback to the former, helping to automatically stop the decomposition to make the algorithm simpler and more reliable. A series of experiments show that the proposed method is accurate, efficient and robust to various fringe patterns even with poor quality, rendering it a potential tool for practical use.

  16. Identification of a single sinusoidal bile salt uptake system in skate liver

    International Nuclear Information System (INIS)

    Fricker, G.; Hugentobler, G.; Meier, P.J.; Kurz, G.; Boyer, J.L.

    1987-01-01

    To identify the sinusoidal bile acid uptake system(s) of skate liver, photoaffinity labeling and kinetic transport studies were performed in isolated plasma membranes as well as intact hepatocytes. In both preparations photoaffinity labeling with the photolabile bile salt derivative revealed the presence of a predominant bile salt binding polypeptide with an apparent molecular weight of 54,000. The [ 3 H]-labeling of this polypeptide was inhibited by taurocholate and cholate in a concentration-dependent manner and was virtually abolished by 1 mM of the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Kinetic studies of hepatic uptake with taurocholate, cholate, and the photoreactive bile salt derivative indicated the involvement of a single transport system, and all three substrates mutually competed with the uptake of each other. Finally, irreversible inhibition of the bile salt uptake system of photoaffinity labeling of hepatocytes with high concentrations of photolabile derivative reduced the V max but the K m of taurocholate uptake. These findings strongly indicate that a single polypeptide with an apparent molecular weight of 54,000 is involved in sinusoidal bile salt uptake into skate hepatocytes. These findings contrast with similar studies in rat liver that implicate both a 54,000- and 48,000-K polypeptide in bile salt uptake and are consistent with a single Na + -independent transport mechanism for hepatic bile salt uptake in this primitive vertebrate

  17. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    Science.gov (United States)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  18. CFD study on NACA 4415 airfoil implementing spherical and sinusoidal Tubercle Leading Edge.

    Directory of Open Access Journals (Sweden)

    S M A Aftab

    Full Text Available The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c, the wavelength (0.25c is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.

  19. A Comparison Study of Sinusoidal PWM and Space Vector PWM Techniques for Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Ömer Türksoy

    2017-06-01

    Full Text Available In this paper, the methods used to control voltage source inverters which have been intensively investigated in recent years are compared. Although the most efficient result is obtained with the least number of switching elements in the inverter topologies, the method used in the switching is at least as effective as the topology. Besides, the selected switching method to control the inverter will play an effective role in suppressing harmonic components while producing the ideal output voltage. There are many derivatives of pulse width modulation techniques that are commonly used to control voltage source inverters. Some of widespread methods are sinusoidal pulse width modulation and space vector pulse width modulation techniques. These modulation techniques used for generating variable frequency and amplitude output voltage in voltage source inverters, have been simulated by using MATLAB/SIMULINK. And, the total harmonic distortions of the output voltages are compared. As a result of simulation studies, sinusoidal pulse width modulation has been found to have more total harmonic distortion in output voltages of voltage source inverters in the simulation. Space vector pulse width modulation has been shown to produce a more efficient output voltage with less total harmonic distortion.

  20. Controlled generation of nonlinear resonances through sinusoidal lattice modes in Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Das, Priyam; Panigrahi, Prasanta K

    2015-01-01

    We study Bose–Einstein condensate in the combined presence of time modulated optical lattice and harmonic trap in the mean-field approach. Through the self-similar method, we show the existence of sinusoidal lattice modes in this inhomogeneous system, commensurate with the lattice potential. A significant advantage of this system is wide tunability of the parameters through chirp management. The combined effect of the interaction, harmonic trap and lattice potential leads to the generation of nonlinear resonances, exactly where the matter wave changes its direction. When the harmonic trap is switched off, the BEC undergoes a nonlinear compression for the static optical lattice potential. For better understanding of chirp management and the nature of the sinusoidal excitation, we investigate the energy spectrum of the condensate, which clearly reveals the generation of nonlinear resonances in the appropriate regime. We have also identified a classical dynamical phase transition occurring in the system, where loss of superfluidity takes the superfluid phase to an insulating state. (paper)

  1. Nonparenchymal cells cultivated from explants of fibrotic liver resemble endothelial and smooth muscle cells from blood vessel walls

    International Nuclear Information System (INIS)

    Voss, B.; Rauterberg, J.; Pott, G.; Brehmer, U.; Allam, S.; Lehmann, R.; von Bassewitz, D.B.

    1982-01-01

    Tissue specimens from human fibrotic liver obtained by needle biopsy were cultured. Two cell types emerged from the tissue explants. From their morphology and biosynthetic products they resembled smooth muscle cells and endothelial cells from blood vessel walls. In the endothelial cells, factor VIII-associated protein was demonstrated by indirect immunofluorescence. Synthesis of collagen types I and III, basement membrane collagen types IV and V, and fibronectin by both cell types was observed by immunofluorescence microscopy. Homogeneous cultures of smooth muscle cells were observed in subcultures. After incubation with [ 14 C]glycine, collagen was isolated and characterized by CM cellulose chromatography, and consisted mainly of types I and III. These data suggest involvement of mesenchymal cells in hepatic fibrosis; they presumably originate from blood vessel or sinusoidal walls

  2. EGb761 provides a protective effect against Aβ1-42 oligomer-induced cell damage and blood-brain barrier disruption in an in vitro bEnd.3 endothelial model.

    Directory of Open Access Journals (Sweden)

    Wen-bin Wan

    Full Text Available Alzheimer's disease (AD is the most common form of senile dementia which is characterized by abnormal amyloid beta (Aβ accumulation and deposition in brain parenchyma and cerebral capillaries, and leads to blood-brain barrier (BBB disruption. Despite great progress in understanding the etiology of AD, the underlying pathogenic mechanism of BBB damage is still unclear, and no effective treatment has been devised. The standard Ginkgo biloba extract EGb761 has been widely used as a potential cognitive enhancer for the treatment of AD. However, the cellular mechanism underlying the effect remain to be clarified. In this study, we employed an immortalized endothelial cell line (bEnd.3 and incubation of Aβ(1-42 oligomer, to mimic a monolayer BBB model under conditions found in the AD brain. We investigated the effect of EGb761 on BBB and found that Aβ1-42 oligomer-induced cell injury, apoptosis, and generation of intracellular reactive oxygen species (ROS, were attenuated by treatment with EGb761. Moreover, treatment of the cells with EGb761 decreased BBB permeability and increased tight junction scaffold protein levels including ZO-1, Claudin-5 and Occludin. We also found that the Aβ(1-42 oligomer-induced upregulation of the receptor for advanced glycation end-products (RAGE, which mediates Aβ cytotoxicity and plays an essential role in AD progression, was significantly decreased by treatment with EGb761. To our knowledge, we provide the first direct in vitro evidence of an effect of EGb761 on the brain endothelium exposed to Aβ(1-42 oligomer, and on the expression of tight junction (TJ scaffold proteins and RAGE. Our results provide a new insight into a possible mechanism of action of EGb761. This study provides a rational basis for the therapeutic application of EGb761 in the treatment of AD.

  3. The endothelial border to health

    DEFF Research Database (Denmark)

    Hansen, Nina Wærling; Hansen, Anker Jon; Sams, Anette

    2017-01-01

    player for maintenance of health and for development of a number of diseases. Endothelial dysfunction is known to be an important component of type 2 diabetes, but is also assumed to be involved in many other diseases, for example, rheumatoid arthritis, inflammatory bowel disease, asthma...... extracellular proteins form epitopes for potential specific antibody formation upon interactions with reducing sugars. This paper reviews the endothelial metabolism, biology, inflammatory processes, physical barrier functions, and summarizes evidence that although stochastic in nature, endothelial responses...... to hyperglycemia are major contributors to disease pathophysiology. We present molecular and mechanistic evidence that both biological and physical barriers, protein function, specific immunity, and inflammatory processes are compromised by hyperglycemic events and thus, hyperglycemic events alone should...

  4. Core losses of a permanent magnet synchronous motor with an amorphous stator core under inverter and sinusoidal excitations

    Directory of Open Access Journals (Sweden)

    Atsushi Yao

    2018-05-01

    Full Text Available We report core loss properties of permanent magnet synchronous motors (PMSM with amorphous magnetic materials (AMM core under inverter and sinusoidal excitations. To discuss the core loss properties of AMM core, a comparison with non-oriented (NO core is also performed. In addition, based on both experiments and numerical simulations, we estimate higher (time and space harmonic components of the core losses under inverter and sinusoidal excitations. The core losses of PMSM are reduced by about 59% using AMM stator core instead of NO core under sinusoidal excitation. We show that the average decrease obtained by using AMM instead of NO in the stator core is about 94% in time harmonic components.

  5. Calculation of the mean path length of the Epstein frame under non-sinusoidal excitations using the double Epstein method

    International Nuclear Information System (INIS)

    Marketos, Philip; Zurek, Stan; Moses, Anthony J.

    2008-01-01

    This paper discusses the effect of non-sinusoidal excitation on the mean path length of the Epstein frame. Two different steels, a non-oriented (NO) steel and a high-permeability grain-oriented (HGO) electrical steel have been tested under pure sinusoidal and non-sinusoidal excitations and the mean path length of the Epstein frame has been re-calculated. Results indicate that the actual mean path of the Epstein frame depends not only on the material permeability and anisotropy but also on the peak flux density and magnetising frequency. The amount of distortion of the excitation frequency also has an effect on the value of the actual mean path length of the Epstein frame

  6. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  7. Proteomic analysis of endothelial cold-adaptation

    Directory of Open Access Journals (Sweden)

    Zieger Michael AJ

    2011-12-01

    Full Text Available Abstract Background Understanding how human cells in tissue culture adapt to hypothermia may aid in developing new clinical procedures for improved ischemic and hypothermic protection. Human coronary artery endothelial cells grown to confluence at 37°C and then transferred to 25°C become resistant over time to oxidative stress and injury induced by 0°C storage and rewarming. This protection correlates with an increase in intracellular glutathione at 25°C. To help understand the molecular basis of endothelial cold-adaptation, isolated proteins from cold-adapted (25°C/72 h and pre-adapted cells were analyzed by quantitative proteomic methods and differentially expressed proteins were categorized using the DAVID Bioinformatics Resource. Results Cells adapted to 25°C expressed changes in the abundance of 219 unique proteins representing a broad range of categories such as translation, glycolysis, biosynthetic (anabolic processes, NAD, cytoskeletal organization, RNA processing, oxidoreductase activity, response-to-stress and cell redox homeostasis. The number of proteins that decreased significantly with cold-adaptation exceeded the number that increased by 2:1. Almost half of the decreases were associated with protein metabolic processes and a third were related to anabolic processes including protein, DNA and fatty acid synthesis. Changes consistent with the suppression of cytoskeletal dynamics provided further evidence that cold-adapted cells are in an energy conserving state. Among the specific changes were increases in the abundance and activity of redox proteins glutathione S-transferase, thioredoxin and thioredoxin reductase, which correlated with a decrease in oxidative stress, an increase in protein glutathionylation, and a recovery of reduced protein thiols during rewarming from 0°C. Increases in S-adenosylhomocysteine hydrolase and nicotinamide phosphoribosyltransferase implicate a central role for the methionine

  8. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  9. Identical phase oscillators with global sinusoidal coupling evolve by Mobius group action.

    Science.gov (United States)

    Marvel, Seth A; Mirollo, Renato E; Strogatz, Steven H

    2009-12-01

    Systems of N identical phase oscillators with global sinusoidal coupling are known to display low-dimensional dynamics. Although this phenomenon was first observed about 20 years ago, its underlying cause has remained a puzzle. Here we expose the structure working behind the scenes of these systems by proving that the governing equations are generated by the action of the Mobius group, a three-parameter subgroup of fractional linear transformations that map the unit disk to itself. When there are no auxiliary state variables, the group action partitions the N-dimensional state space into three-dimensional invariant manifolds (the group orbits). The N-3 constants of motion associated with this foliation are the N-3 functionally independent cross ratios of the oscillator phases. No further reduction is possible, in general; numerical experiments on models of Josephson junction arrays suggest that the invariant manifolds often contain three-dimensional regions of neutrally stable chaos.

  10. Exponential sinusoidal model for predicting temperature inside underground wine cellars from a Spanish region

    Energy Technology Data Exchange (ETDEWEB)

    Mazarron, Fernando R.; Canas, Ignacio [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2008-07-01

    This article develops a mathematical model for determining the annual cycle of air temperature inside traditional underground wine cellars in the Spanish region of ''Ribera del Duero'', known because of the quality of its wines. It modifies the sinusoidal analytical model for soil temperature calculation. Results obtained when contrasting the proposed model with experimental data of three subterranean wine cellars for 2 years are satisfactory. The RMSE is below 1 C and the index of agreement is above 0.96 for the three cellars. When using the average of experimental data corresponding to the 2 years' time, results improve noticeably: the RMSE decreases by more than 30% and the mean d reaches 0.99. This model should be a useful tool for designing underground wine cellars making the most of soil energy advantages. (author)

  11. Real-time detection of musical onsets with linear prediction and sinusoidal modeling

    Science.gov (United States)

    Glover, John; Lazzarini, Victor; Timoney, Joseph

    2011-12-01

    Real-time musical note onset detection plays a vital role in many audio analysis processes, such as score following, beat detection and various sound synthesis by analysis methods. This article provides a review of some of the most commonly used techniques for real-time onset detection. We suggest ways to improve these techniques by incorporating linear prediction as well as presenting a novel algorithm for real-time onset detection using sinusoidal modelling. We provide comprehensive results for both the detection accuracy and the computational performance of all of the described techniques, evaluated using Modal, our new open source library for musical onset detection, which comes with a free database of samples with hand-labelled note onsets.

  12. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  13. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  14. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  15. Iron losses evaluation in soft magnetic materials with a sinusoidal voltage supply

    DEFF Research Database (Denmark)

    Nedelcu, Steluţa; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    This paper presents an evaluation method of for specific iron losses in non-oriented laminated steel suitable for electric motors and transformers in the case of a sinusoidal excitation. The model is based on the separation of loss contribution due to hysteresis, eddy currents and excess losses...... (between 0.35 mm and 0.65 mm) and alloy compositions. Hysteresis and eddy currents loss coefficients have been considered as dependent on the frequency. For curve fitting of these coefficients third and fourth polynomials were employed, with good result for all the frequencies and magnetic flux density...... and it is proposing an identification procedure for the model coefficients from multi-frequency single sheet tests. The frequencies used are in the range 10 Hz and 150 Hz and with the values of magnetic flux density in the range 0.1 T and 1.4 T. The model was applied on six magnetic materials of different thicknesses...

  16. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  17. Earlier defibrotide initiation post-diagnosis of veno-occlusive disease/sinusoidal obstruction syndrome improves Day +100 survival following haematopoietic stem cell transplantation.

    Science.gov (United States)

    Richardson, Paul G; Smith, Angela R; Triplett, Brandon M; Kernan, Nancy A; Grupp, Stephan A; Antin, Joseph H; Lehmann, Leslie; Miloslavsky, Maja; Hume, Robin; Hannah, Alison L; Nejadnik, Bijan; Soiffer, Robert J

    2017-07-01

    Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a progressive, potentially fatal complication of conditioning for haematopoietic stem cell transplant (HSCT). The VOD/SOS pathophysiological cascade involves endothelial-cell activation and damage, and a prothrombotic-hypofibrinolytic state. Severe VOD/SOS (typically characterized by multi-organ dysfunction) may be associated with >80% mortality. Defibrotide is approved for treating severe hepatic VOD/SOS post-HSCT in the European Union, and for hepatic VOD/SOS with renal or pulmonary dysfunction post-HSCT in the United States. Previously, defibrotide (25 mg/kg/day in 4 divided doses for a recommended ≥21 days) was available through an expanded-access treatment protocol for patients with VOD/SOS. Data from this study were examined post-hoc to determine if the timing of defibrotide initiation post-VOD/SOS diagnosis affected Day +100 survival post-HSCT. Among 573 patients, defibrotide was started on the day of VOD/SOS diagnosis in approximately 30%, and within 7 days in >90%. The relationship between Day +100 survival and treatment initiation before/after specific days post-diagnosis showed superior survival when treatment was initiated closer to VOD/SOS diagnosis with a statistically significant trend over time for better outcomes with earlier treatment initiation (P defibrotide should not be delayed after diagnosis of VOD/SOS. © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  18. Endothelial dysfunction after non-cardiac surgery

    DEFF Research Database (Denmark)

    Søndergaard, E S; Fonnes, S; Gögenur, I

    2015-01-01

    was to systematically review the literature to evaluate the association between non-cardiac surgery and non-invasive markers of endothelial function. METHODS: A systematic search was conducted in MEDLINE, EMBASE and Cochrane Library Database according to the PRISMA guidelines. Endothelial dysfunction was described only...... transplantation and vascular surgery respectively) had an improvement in endothelial dysfunction 1 month after surgery. CONCLUSION: Endothelial function changes in relation to surgery. Assessment of endothelial function by non-invasive measures has the potential to guide clinicians in the prevention or treatment...

  19. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T

    1997-01-01

    To elucidate the physiological role of the Ca2+ binding protein parvalbumin, we have generated transgenic mice carrying the full-length complementary DNA (cDNA) of rat parvalbumin under the control of the heavy-metal inducible metallothionein IIA promoter. Immunohistochemical and biochemical...... methods have been used to detect the presence of ectopic parvalbumin expression in different tissues. Here we show the expression of parvalbumin in endothelial cells lining the liver sinusoids in situ and after isolation in vitro. The hemodynamic effects of endothelin 1, a peptide hormone mediating potent...... vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  20. In vivo targeting of surface-modified liposomes to metastatically growing colon carcinoma cells and sinusoidal endothelial cells in the rat liver.

    NARCIS (Netherlands)

    Scherphof, GL; Kamps, JAAM; Koning, GA

    1997-01-01

    We prepared immunoliposomes by covalent coupling of a randomly thiolated monoclonal antibody against the rat colon adenocarcinoma cell line CC531 to MPB-PE on the outer surface of conventional as well as PEGylated liposomes of about 100-nm diameter. We attempted to target these immunoliposomes in

  1. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Directory of Open Access Journals (Sweden)

    Ping Zheng

    2017-05-01

    Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  2. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/D and the length between two successive corrugated sections p/D are varied in the ra...

  3. Additional Energy Losses from Asymmetric and Non-Sinusoidal Current in an Electrical Facility and Methods of their Reduction

    OpenAIRE

    Tarasov, Evgeny Vladimirovich; Bulyga, Leonid Leonidovich; Ushakov, Vasily Yakovlevich; Kharlov, Nikolay Nikolaevich

    2015-01-01

    Influence of the asymmetry and higher harmonics of current on the operation of an electrical facility is analyzed. The level of additional losses from the asymmetric and non-sinusoidal currents is evaluated for a 110 kV electrical network in the Siberian Region of the Russian Federation. Methods for reducing the additional energy losses in the electrical facility are suggested.

  4. Generation of sinusoidal fringes with a holographic phase grating and a phase-only spatial light modulator

    International Nuclear Information System (INIS)

    Berberova, Natalia; Stoykova, Elena; Sainov, Ventseslav

    2012-01-01

    A variety of pattern projection methods for the three-dimensional capture of objects is based on the generation of purely sinusoidal fringes. This is not an easy task, especially when a portable non-interferometric system for outdoor usage is required. The use of phase gratings with coherent illumination as a possible solution has the advantage of providing good stability and a large measurement volume. In this work, we analyze the quality of fringes projected with two sinusoidal phase gratings. The first grating is recorded on a silver-halide holographic plate by means of a Michelson interferometer. The spatial resolution of the silver-halide material used is greater than 6000 lines per millimeter, and the recorded grating is practically analogous to a smooth variation of the phase profile. The second grating is formed as a sinusoidal phase variation on a liquid crystal-on-silicon phase-only reflective display with a resolution of 1920×1080 pixels, a pixel pitch of 8 μm and 256 phase levels. The frequency content of the fringes projected with both gratings is analyzed and compared on the basis of the calculated Fresnel diffraction pattern, taking into account that the sinusoidal phase distribution in the case of a spatial light modulator is both sampled and quantized. Experimental fringe patterns projected using both gratings are also provided.

  5. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    Science.gov (United States)

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  6. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  7. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  8. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    Science.gov (United States)

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  9. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  10. A nanoengineered peptidic delivery system with specificity for human brain capillary endothelial cells

    DEFF Research Database (Denmark)

    Wu, Linping; Moghimi, Seyed Moein

    2016-01-01

    , without manipulating the integrity of the BBB. This may be achieved by simultaneous and appropriate nanoparticle surface decoration with polymers that protect nanoparticles against rapid interception by body's defenses and ligands specific for cerebral capillary endothelial cells. To date, the binding...... avidity of the majority of the so-called ‘brain-specific’ nanoparticles to the brain capillary endothelial cells has been poor, even during in vitro conditions. We have addressed this issue and designed a versatile peptidic nanoplatform with high binding avidity to the human cerebral capillary endothelial...... cells. This was achieved by selecting an appropriate phage-derived peptide with high specificity for human brain capillary endothelial cells, which following careful structural modifications spontaneously formed a nanoparticle-fiber network. The peptidic network was characterized fully and its uptake...

  11. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.

    Science.gov (United States)

    Sepehrinezhad, Alireza; Toufigh, Vahab

    2018-05-25

    Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition

  12. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  13. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    Science.gov (United States)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  14. Nebivolol: impact on cardiac and endothelial function and clinical utility

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2012-03-01

    heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This paper reviews the pharmacology structure and properties of nebivolol, focusing on endothelial dysfunction, clinical utility, comparative efficacy, side effects, and quality of life in general with respect to the other antihypertensive agents.Keywords: beta-blockers, nebivolol, oxidative stress, endothelial function, cardiovascular protection, nitric oxide

  15. Astrocyte–endothelial interactions and blood–brain barrier permeability*

    Science.gov (United States)

    Abbott, N Joan

    2002-01-01

    The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain

  16. Challenges in pediatric endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2014-01-01

    Full Text Available We performed endothelial keratoplasty (EK in three eyes of two siblings (2.5 years, male and 3.5 years, female with congenital hereditary endothelial dystrophy (CHED and report the intraoperative and postoperative difficulties. Repeated iris prolapse, apprehension of crystalline lens touch due to positive vitreous pressure, and need for frequent air injections to attach the graft were intraoperative challenges in all three eyes. These were addressed by use of Sheet′s glide instead of Busin′s glide during graft insertion and suturing of main and side ports before air injection. One eye had graft dislocation on second postoperative day due to eye rubbing by the child. Graft was repositioned with air and a venting incision was created. Postoperative examination required repeated general anesthesia. Corneal edema resolved completely in all three eyes. Present case series highlights the possible intraoperative and postoperative challenges and their solutions in pediatric EK for CHED.

  17. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  18. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  19. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters.

    Science.gov (United States)

    Cohen, Michael X

    2017-09-27

    The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing new opportunities for understanding brain function, but also new challenges for appropriately dealing with the increase in dimensionality. Multivariate source separation analysis methods have been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the data and are widely used for cleaning, classifying and source-localizing multichannel neural time series data. Most source separation methods produce a spatial component (that is, a weighted combination of channels to produce one time series); here, this is extended to apply source separation to a time series, with the idea of obtaining a weighted combination of successive time points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage source separation procedure, in which an optimal spatial filter is first constructed and then its optimal temporal basis function is computed. This second stage is achieved with a time-delay-embedding matrix, in which additional rows of a matrix are created from time-delayed versions of existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an empirical electroencephalogram study on theta-band activity during response conflict. Spatiotemporal source separation has several advantages, including defining empirical filters without the need to apply sinusoidal narrowband filters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Bevacizumab exacerbates sinusoidal obstruction syndrome (SOS) in the animal model and increases MMP 9 production.

    Science.gov (United States)

    Jafari, Azin; Matthaei, Hanno; Wehner, Sven; Tonguc, Tolga; Kalff, Jörg C; Manekeller, Steffen

    2018-04-24

    Thanks to modern multimodal treatment the ouctome of patients with colorectal cancer has experienced significant improvements. As a downside, agent specific side effects have been observed such as sinusoidal obstruction syndrome (SOS) after oxaliplatin chemotherapy (OX). Bevazicumab targeting VEGF is nowadays comprehensively used in combination protocols with OX but its impact on hepatotoxicity is thus far elusive and focus of the present study. After MCT administration 67% of animals developed SOS. GOT serum concentration significantly increased in animals developing SOS ( p SOS. In contrast, animals receiving VEGF developed SOS merely in 40% while increasing the VEGF dose led to a further decrease in SOS development to 25%. MMP 9 concentration in animals developing SOS was significantly higher compared to controls ( p SOS paralleled by MMP 9 production. Therefore, OX-Bevacizumab combination therapies should be administered with caution, especially if liver parenchyma damage is apparent. Male Sprague-Dawley rats were gavaged Monocrotaline (MCT) to induce SOS. Recombinant VEGF or an Anti-VEGF antibody was administered to MCT-treated rats and the hepatotoxic effect monitored in defined time intervals. MMP 9 expression in the liver was measured by ELISA.

  1. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Lou, Hai Yan [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Yi Xiang J. [Dept. of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Xu, Xiao Jun; Zhang, Min Ming [Dept. of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China)

    2014-04-15

    To describe the CT and MRI features of hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal medicine Gynura segetum. The CT and MRI features of 16 consecutive Gynura segetum induced HSOS cases (12 men, 4 women) were analyzed. Eight patients had CT; three patients had MRI, and the remaining five patients had both CT and MRI examinations. Based on their clinical presentations and outcomes, the patients were classified into three categories: mild, moderate, and severe. The severity of the disease was also evaluated radiologically based on the abnormal hepatic patchy enhancement in post-contrast CT or MRI images. Ascites, patchy liver enhancement, and main right hepatic vein narrowing or occlusion were present in all 16 cases. Hepatomegaly and gallbladder wall thickening were present in 14 cases (87.5%, 14/16). Periportal high intensity on T2-weighted images was present in 6 cases (75%, 6/8). Normal liver parenchymal enhancement surrounding the main hepatic vein forming a clover-like sign was observed in 4 cases (25%, 4/16). The extent of patchy liver enhancement was statistically associated with clinical severity classification (kappa = 0.565). Ascites, patchy liver enhancement, and the main hepatic veins narrowing were the most frequent signs of herbal medicine induced HSOS. The grade of abnormal patchy liver enhancement was associated with the clinical severity.

  2. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    Science.gov (United States)

    Beaskoetxea, U.; Navarro-Cía, M.; Beruete, M.

    2016-07-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n  =  -1 and n  =  -2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation.

  3. Broadband frequency and angular response of a sinusoidal bull’s eye antenna

    International Nuclear Information System (INIS)

    Beaskoetxea, U; Beruete, M; Navarro-Cía, M

    2016-01-01

    A thorough experimental study of the frequency and beaming angle response of a metallic leaky-wave bull’s eye antenna working at 77 GHz with a sinusoidally corrugated profile is presented. The beam scanning property of these antennas as frequency is varied is experimentally demonstrated and corroborated through theoretical and numerical results. From the experimental results the dispersion diagram of the n   =  −1 and n   =  −2 space harmonics is extracted, and the operation at different frequency regimes is identified and discussed. In order to show the contribution of each half of the antenna, numerical examples of the near-field behavior are also displayed. Overall, experimental results are in good qualitative and quantitative agreement with theoretical and numerical calculations. Finally, an analysis of the beamwidth as a function of frequency is performed, showing that it can achieve values below 1.5° in a fractional bandwidth of 4% around the operation frequency, which is an interesting frequency-stable broadside radiation. (paper)

  4. Experimental study of fluid flow in the entrance of a sinusoidal channel

    International Nuclear Information System (INIS)

    Oviedo-Tolentino, F.; Romero-Mendez, R.; Hernandez-Guerrero, A.; Giron-Palomares, B.

    2008-01-01

    An experimental flow visualization study of the entrance section of channels formed with sinusoidal plates was made. The experiments were conducted in a water tunnel and a laser illuminated particle tracking was used as the technique of flow visualization. The geometric parameters of the plates were maintained constant while the distance between plates, phase angle, and the Reynolds number were varied during the experiments. The flow regimes that were found in the experiments are steady, unsteady and significantly-mixed flows. Instabilities of the flow first appear near the exit of the channel, and move closer to the inlet waves as the Reynolds number grows, but in the first wave from inlet the flow is always steady. The results show that, for all other parameters fixed, the Reynolds number at which unsteady flow first appears grows with the distance between plates. The phase angle that best promotes unsteady flow depends on the average distance between plates: for certain average distance between plates, there is a phase angle that best disturbs the flow. For the set of parameters used in this experiment, a channel with eight waves is sufficiently long and the flow features presented in the first eight waves of a longer channel will be similar to what was observed here

  5. Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock

    Science.gov (United States)

    Liu, L.; Ding, J.; Zhai, Z.; Luo, X.

    2018-04-01

    Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell-Plesset (BP) effect, the Rayleigh-Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (a_0 ) and wavelengths (λ ) are found to evolve differently in the converging geometry. For the very small a_0 /λ interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small a_0 /λ cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

  6. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  7. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  8. Hepatic sinusoidal obstruction syndrome caused by herbal medicine: CT and MRI features

    International Nuclear Information System (INIS)

    Zhou, Hua; Lou, Hai Yan; Wang, Yi Xiang J.; Xu, Xiao Jun; Zhang, Min Ming

    2014-01-01

    To describe the CT and MRI features of hepatic sinusoidal obstruction syndrome (HSOS) caused by herbal medicine Gynura segetum. The CT and MRI features of 16 consecutive Gynura segetum induced HSOS cases (12 men, 4 women) were analyzed. Eight patients had CT; three patients had MRI, and the remaining five patients had both CT and MRI examinations. Based on their clinical presentations and outcomes, the patients were classified into three categories: mild, moderate, and severe. The severity of the disease was also evaluated radiologically based on the abnormal hepatic patchy enhancement in post-contrast CT or MRI images. Ascites, patchy liver enhancement, and main right hepatic vein narrowing or occlusion were present in all 16 cases. Hepatomegaly and gallbladder wall thickening were present in 14 cases (87.5%, 14/16). Periportal high intensity on T2-weighted images was present in 6 cases (75%, 6/8). Normal liver parenchymal enhancement surrounding the main hepatic vein forming a clover-like sign was observed in 4 cases (25%, 4/16). The extent of patchy liver enhancement was statistically associated with clinical severity classification (kappa = 0.565). Ascites, patchy liver enhancement, and the main hepatic veins narrowing were the most frequent signs of herbal medicine induced HSOS. The grade of abnormal patchy liver enhancement was associated with the clinical severity.

  9. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flagellum motion in 2-D: Work rate and efficiency of the non-sinusoidal approach

    Science.gov (United States)

    Viridi, Sparisoma; Nuraini, Nuning; Stephanie, Monica; Rifqi, Ainur; Christina, Dina; Thania, Elsa; Sihite, Erland

    2018-03-01

    Today microorganisms have been widely used to support human life. Some examples include foodstuffs (Spirulina.sp), to help with medical needs, for mining purposes and more. On the other hand, the development of technology is also very big influence on human life. The combination of technology and health science will be very useful if we can develop it. One is the cancer treatment by utilizing the movement of the flagella to be made a nanorobot used as a carrier of cancer drugs. Movement of flagella that resembles the shape of the arc and straight line can be searched formulation and then applied to the manufacture of nanorobot tail. Then the nanorobot will carry a cancer drug that leads directly to the cancer cells. So hopefully with this nanorobot, can minimize the death of healthy cells around cancer cells. From the results of research and analysis of the movement of flagella, it can be concluded that the smaller the mass of the flagella, the greater the efficiency will be or will be more efficient. So, the energy needed nanorobot will be smaller. Model with non-sinusoidal approach (Brokaw, 1965) is discussed in this work and formulation to get the energy efficiency is proposed and analyzed. Unfortunately, there is a negative value in the formulation.

  11. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  12. Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control

    Science.gov (United States)

    Kiuchi, Mitsuyuki; Ohnishi, Tokuo

    This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.

  13. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  14. Safety and effects of prophylactic defibrotide for sinusoidal obstruction syndrome in hematopoietic stem cell transplantation.

    Science.gov (United States)

    Park, Meerim; Park, Hyeon Jin; Eom, Hyeon-Seok; Kwon, Young Joo; Park, Jeong A; Lim, Yeon Jung; Yoon, Jong Hyung; Kong, Sun-Young; Ghim, Thad T; Lee, Hye Won; Yun, Tak; Park, Byung-Kiu

    2013-01-28

    Sinusoidal obstruction syndrome (SOS) is a serious complication of hematopoietic stem cell transplantation (HSCT), with a mortality rate of up to 90%. We report our experience on the use of defibrotide for SOS prophylaxis in HSCT. We retrospectively reviewed data of 49 patients who received defibrotide as SOS prophylaxis during the course of HSCT at the National Cancer Center, Goyang, Korea, between August 2005 and July 2008. Thirty-four patients (69.4%) were classified as a high-risk group for developing SOS. Defibrotide was well-tolerated, without any grade 3 or 4 toxicity. The median value of maximum total bilirubin within 100 days after HSCT was within the normal range. SOS was diagnosed in only 1 patient, who underwent autologous HSCT due to relapsed medulloblastoma. There was no day 100 treatment-related mortality in our study. Defibrotide appears to be a safe prophylaxis for SOS. This study suggests that it could be effective to use prophylactic defibrotide in advance to improve HSCT outcomes in patients at risk of SOS.

  15. Successful treatment with defibrotide for sinusoidal obstruction syndrome after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Yakushijin, Kimikazu; Matsui, Toshimitsu; Okamura, Atsuo; Yamamoto, Katsuya; Ito, Mitsuhiro; Chihara, Kazuo

    2005-01-01

    Sinusoidal obstruction syndrome (SOS) (formerly known as hepatic veno-occlusive disease (VOD)) is a life-threatening complication subsequent to hematopoietic stem cell transplantation. However, no completely satisfactory strategies for the treatment of SOS have been established yet. Defibrotide is a single-stranded polydeoxyribonucleotide with anti-thrombotic, anti-ischemic, anti-inflammatory and thrombolytic properties, but without systemic anticoagulant effects, and some encouraging results have been reported in western countries. We treated four patients with defibrotide for SOS, since there seemed to be no possibility to cure the patients with conventionally available treatments in Japan. All patients showed evidence of multiple organ failure at the start of the treatment. Defibrotide was administered intravenously in normal saline in four divided doses for 14 to 27 days. Three patients (75%) responded to the therapy, while one died of SOS and cytomegalovirus infection despite intensive therapy. None of the patients suffered from significant adverse effects such as severe hemorrhage. This is the first report dealing with the treatment with defibrotide of Japanese patients with SOS. Because defibrotide is considered to be promising for the treatment of SOS, it is important to start a phase II study as soon as possible.

  16. The Role of Thromboelastography in Pediatric Patients with Sinusoidal Obstructive Syndrome Receiving Defibrotide.

    Science.gov (United States)

    Gendreau, Joanna L; Knoll, Christine; Adams, Roberta H; Su, Leon L

    2017-04-01

    Sinusoidal obstructive syndrome (SOS) is a potentially fatal form of hepatic injury after hematopoietic stem cell transplantation. Patients can develop liver dysfunction, portal hypertension, ascites, coagulopathies, and multisystem organ failure. The mortality rate of severe SOS has been reported as high as 98% by day 100 after transplantation. Defibrotide, which is now approved for the treatment of SOS, has significantly decreased mortality. Defibrotide is a polynucleotide with profibrinolytic, anti-ischemic, and anti-inflammatory activity. These properties can increase the risk of life-threatening bleeding in this patient population. Previous protocols have suggested maintaining international normalized ratio ≤ 1.5, platelets > 30 k/uL, and fibrinogen ≥ 150 mg/dL to minimize this risk of bleeding. However, this can be challenging in fluid-sensitive patients with SOS. Thromboelastography (TEG) is a functional assay that evaluates the balance of procoagulant and anticoagulant proteins. In this series, TEG was used to guide defibrotide therapy as well as blood product transfusions in SOS patients with abnormal coagulation studies. Each patient recovered from SOS and had no bleeding complications. A randomized clinical trial is the next step in supporting the use of TEG in SOS patients with abnormal coagulation studies receiving defibrotide therapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Defibrotide for the treatment of sinusoidal obstruction syndrome: evaluation of response to therapy and patient outcomes.

    Science.gov (United States)

    Coutsouvelis, John; Avery, Sharon; Dooley, Michael; Kirkpatrick, Carl; Spencer, Andrew

    2018-03-01

    Defibrotide is an agent used to treat sinusoidal obstruction syndrome (SOS/VOD) in patients undergoing haemopoietic stem cell transplantation. The aim of this study was to evaluate the effectiveness of defibrotide used within institutional guidelines for the treatment of SOS/VOD in patients undergoing haemopoietic stem cell transplantation (HSCT). Data for 23 patients was retrospectively reviewed to evaluate the effectiveness of defibrotide and the utility of response criteria to direct therapy as specified within institution guidelines. Patients met institutional criteria for a diagnosis of SOS/VOD based on predominantly Baltimore criteria and received defibrotide. Stabilisation or improvement in symptoms and biochemical markers was required for continuation of therapy with defibrotide. Overall, 14 patients responded to therapy. Survival at day 100 post HSCT was 70%. Median serum (total) bilirubin concentrations in all evaluable patients had decreased at days 5 and 10 (p defibrotide, there was a decrease in the proportion of patients exhibiting hepatomegaly (p = 0.02), ascites (p Defibrotide to treat SOS/VOD and continued based on attainment of early response was effective management of this condition. Defibrotide should be considered in any consensus protocol providing guidance on the management of SOS/VOD, with future studies considered to assess appropriate time points for response to therapy during treatment.

  18. Diagnostic performance of Contrast-enhanced CT in Pyrrolizidine Alkaloids-induced Hepatic Sinusoidal Obstructive Syndrome

    Science.gov (United States)

    Kan, Xuefeng; Ye, Jin; Rong, Xinxin; Lu, Zhiwen; Li, Xin; Wang, Yong; Yang, Ling; Xu, Keshu; Song, Yuhu; Hou, Xiaohua

    2016-01-01

    Hepatic sinusoidal obstruction syndrome (HSOS) can be caused by pyrrolizidine alkaloids(PAs)-containing herbals. Since PAs exposure is obscure and clinical presentation of HSOS is unspecific, it is challenge to establish the diagnosis of PAs-induced HSOS. Gynura segetum is one of the most wide-use herbals containing PAs. The aim of our study is to describe the features of contrast-enhanced computed tomography (CT) in gynura segetum-induced HSOS, and then determine diagnostic performance of radiological signs. We retrospectively analyzed medical records and CT images of HSOS patients (71 cases) and the controls (222 cases) enrolled from January 1, 2008, to Oct 31, 2015. The common findings of contrast CT in PAs-induced HSOS included: ascites (100%), hepatomegaly (78.87%), gallbladder wall thickening (86.96%), pleural effusion (70.42%), hepatic vein narrowing (87.32%), patchy liver enhancement (92.96%), and heterogeneous hypoattenuation (100%); of these signs, patchy enhancement and heterogeneous hypoattenuation were valuable features. Then, the result of diagnostic performance demonstrated that contrast CT possessed better performance in diagnosing PAs-induced HSOS compared with various parameters of Seattle criteria. In conclusion, the patients with PAs-induced HSOS display distinct radiologic features at CT-scan, which reveals that contrast-enhanced CT provides an effective noninvasive method for diagnosing PAs-induced HSOS. PMID:27897243

  19. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    Science.gov (United States)

    Yu, M.; Wang, S. Q.; Fu, J.; Peng, Y. X.

    2013-02-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  20. Unsteady flow damping force prediction of MR dampers subjected to sinusoidal loading

    International Nuclear Information System (INIS)

    Yu, M; Fu, J; Wang, S Q; Peng, Y X

    2013-01-01

    So far quasi-steady models are usually used to design magnetorheological (MR) dampers, but these models are not sufficient to describe the MR damper behavior under unsteady dynamic loading, for fluid inertia is neglected in quasi-steady models, which will bring more error between computer simulation and experimental results. Under unsteady flow model, the fluid inertia terms will bring error calculated upto 10%, so it is necessary to be considered in the governing equation. In this paper, force-stroke behavior of MR damper with flow mode due to sinusoidal loading excitation is mainly investigated, to simplify the analysis, the one-dimensional axisymmetric annular duct geometry of MR dampers is approximated as a rectangular duct. The rectangular duct can be divided into 3 regions for the velocity profile of the incompressible MR fluid flow, in each region, a partial differential equation is composed of by Navier-Stokes equations, boundary conditions and initial conditions to determine the velocity solution. In addition, in this work, not only Bingham plastic model but the Herschel—Bulkley model is adopted to analyze the MR damper performance. The damping force resulting from the pressure drop of unsteady MR dampers can be obtained and used to design or size MR dampers. Compared with the quasi-steady flow damping force, the damping force of unsteady MR dampers is more close to practice, particularly for the high-speed unsteady movement of MR dampers.

  1. Improvement of stability of sinusoidally driven atmospheric pressure plasma jet using auxiliary bias voltage

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Kim

    2015-12-01

    Full Text Available In this study, we have proposed the auxiliary bias pulse scheme to improve the stability of atmospheric pressure plasma jets driven by an AC sinusoidal waveform excitation source. The stability of discharges can be significantly improved by the compensation of irregular variation in memory voltage due to the effect of auxiliary bias pulse. From the parametric study, such as the width, voltage, and onset time of auxiliary bias pulse, it has been demonstrated that the auxiliary bias pulse plays a significant role in suppressing the irregular discharges caused by the irregular variation in memory voltage and stable discharge can be initiated with the termination of the auxiliary bias pulse. As a result of further investigating the effects of the auxiliary pulse scheme on the jet stability under various process conditions such as the distance between the jet head and the counter electrode, and carrier gas flow, the jet stability can be improved by adjusting the amplitude and number of the bias pulse depending on the variations in the process conditions.

  2. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.

    Science.gov (United States)

    Kang, M J; Ji, H-S; Lee, S J

    2010-01-01

    In-vitro experiments were carried out to investigate the haemodynamic and haemorheological behaviours of haemodiluted blood flow through a microstenosis using a micro-particle image velocimetry (PIV) technique. The micro-PIV system employed in this study consisted of a two-head neodymium:yttrium-aluminium-garnet (Nd:YAG) laser, a cooled charge-coupled device camera, and a delay generator. To simulate blood flow in a stenosed vascular vessel, a polydimethylsiloxane (PDMS) microchannel with a sinusoidal throat of 80 per cent severity was employed. The width and depth of the microchannel were 100 microm and 50 microm, respectively. To compare the flow characteristics in the microstenosis, the same experiments were repeated in a straight microchannel under the same flow conditions. Using a syringe pump, human blood with 5 per cent haematocrit was supplied into the microstenosis channel. The flow characteristics and transport of blood cells through the microstenosis were investigated with various flowrates. The mean velocity fields were nearly symmetric with respect to the channel centreline. In the contraction section, the oncoming blood flow was accelerated rapidly, and the maximum velocity at the throat was almost 4.99 times faster than that of the straight microchannel without stenosis. In the diffusion section, the blood cells show rolling, deformation, twisting, and tumbling motion due to the flow-choking characteristics at the stenotic region. The results from this study will provide useful basic data for comparison with those obtained by clinical researchers.

  3. Effects of chronic alcoholism in the sensitivity to luminance contrast in vertical sinusoidal gratings

    Directory of Open Access Journals (Sweden)

    Éllen Dias Nicácio da Cruz

    2016-01-01

    Full Text Available Abstract The aim of this study was to measure visual contrast sensitivity (CS of luminance using vertical sinusoidal gratings with spatial frequencies of 0.6, 2.5, 5.0 and 20.0 cycles per degree of visual angle in chronic alcoholics in abstinence period. The participants were 20 volunteers (26–59 years of age divided into two groups: the study group (SG consisted of 10 volunteers with a clinical history of chronic alcoholism abstinence and the control group (CG consisted of 10 healthy volunteers. Each group had five female and five male participants. All participants had normal or corrected visual acuity and were free of identifiable diseases. The psychophysical method of forced choice between two temporal alternatives (2AFC was used to measure visual CS of luminance of 41.2 cd/m2. The results showed significant differences between groups for all spatial frequencies tested (p< 0.001. These results suggest alterations in the visual perception related to chronic alcohol consumption even after years of abstinence.

  4. Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls

    Science.gov (United States)

    Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew

    2017-11-01

    The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.

  5. Resveratrol: A Multifunctional Compound Improving Endothelial Function

    OpenAIRE

    Li, Huige; F?rstermann, Ulrich

    2009-01-01

    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression a...

  6. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  7. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    DEFF Research Database (Denmark)

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels

    2018-01-01

    afferent arterioles. Urinary sodium excretion was determined by use of metabolic cages. EC-MR transgenics had markedly decreased MR expression in isolated aortic endothelial cells as compared to littermates (WT). Blood pressure and effective renal plasma flow at baseline and following AngII infusion...... vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused......Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal...

  8. The electronic states calculated using the sinusoidal potential for Cd1-xZnxS quantum dot superlattices

    International Nuclear Information System (INIS)

    Sakly, A.; Safta, N.; Mejri, H.; Lamine, A. Ben

    2011-01-01

    Research highlights: → This paper is dedicated to structures based on Cd 1-x Zn x S. - Abstract: The present work reports on a theoretical investigation of superlattices based on Cd 1-x Zn x S quantum dots embedded in an insulating material. The system to model is assumed to be a series of flattened cylindrical quantum dots with a finite barrier at the boundary and is studied using a sinusoidal potential. The electronic states of both Γ 1 - (ground) and Γ 2 - (first excited) minibands have been computed as a function of inter-quantum dot separation and Zn composition. An analysis of the results shows that the widths of Γ 1 - and Γ 2 - minibands decrease as the superlattice period and Zn content increase separately. Moreover, the sinusoidal shape of the confining potential accounts for the coupling between quantum dots quantitatively less than the Kronig-Penney potential model.

  9. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    Science.gov (United States)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  10. Large right ventricular sinusoids in an infant with aorta-left ventricular tunnel and proximal right coronary artery atresia.

    Science.gov (United States)

    Chen, Peter C; Spinner, Joseph A; Heinle, Jeffrey S

    2018-07-01

    We report a 1-month-old infant diagnosed with an aorta-left ventricular tunnel, ventricular septal defect, and right coronary atresia with right ventricular sinusoids. The patient's anatomy and physiology did not indicate right-ventricular-dependent coronary circulation, and therefore right ventricular decompression could be performed without compromising coronary perfusion during surgical correction. A detailed understanding of the coronary anatomy is critical in managing this defect when coronary anomalies are present.

  11. Additional Energy Losses from Asymmetric and Non-Sinusoidal Current in an Electrical Facility and Methods of their Reduction

    Directory of Open Access Journals (Sweden)

    Tarasov Evgeniy V.

    2015-01-01

    Full Text Available Influence of the asymmetry and higher harmonics of current on the operation of an electrical facility is analyzed. The level of additional losses from the asymmetric and non-sinusoidal currents is evaluated for a 110 kV electrical network in the Siberian Region of the Russian Federation. Methods for reducing the additional energy losses in the electrical facility are suggested.

  12. Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity

    KAUST Repository

    Elwakil, Ahmed S.

    2009-04-28

    Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.

  13. Endothelial Function in Migraine With Aura – A Systematic Review

    DEFF Research Database (Denmark)

    Butt, Jawad H; Franzmann, Ulriche; Kruuse, Christina

    2015-01-01

    in migraineurs, and several studies on endothelial markers in the areas of inflammation, oxidative stress, and coagulation found increased endothelial activation in migraineurs, particularly in MA. One study, assessing cerebral endothelial function using transcranial Doppler sonography, reported lower...

  14. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  15. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    International Nuclear Information System (INIS)

    Yépez, L.D.; Carrillo, J.L.; Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P.

    2016-01-01

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  16. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    Energy Technology Data Exchange (ETDEWEB)

    Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)

    2016-06-15

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  17. Gemtuzumab ozogamicin-induced sinusoidal obstructive syndrome treated with defibrotide: a case report.

    Science.gov (United States)

    Lannoy, D; Decaudin, B; Grozieux de Laguérenne, A; Barrier, F; Pignon, J M; Wetterwald, M; Odou, P

    2006-08-01

    New treatments for relapse of acute myeloid leukaemia (AML), include gemtuzumab ozogamicin (GO), an anti-CD33 monoclonal antibody. We describe a second case of GO-induced sinusoidal obstructive syndrome (SOS) effectively treated with defibrotide (DF). No stem-cell transplantation was involved. On day 23 after the first GO dose, a patient presented with ascites, weight gain, liver enlargement and pain in the right upper quadrant. Sudden hepatic cytolysis (transaminases at six times the normal range: grade 3) and cholestasis [alkaline phosphatase ALP and gamma-glutamyltransferase (GGT) respectively at four and eight times the normal range: grade 2] were observed but there was no evidence of increase serum bilirubin. Treatment with DF (Prociclide), Crinos; 10 mg/kg/day, or 200 mg, q.i.d.) improved the hepatic abnormality within a few days (serum transaminases decreased from 312 to 103 IU/L for aspartate aminotransferase (AST) and from 141 to 80 IU/L for alanine aminotransferase (ALT) within 3 days ALP increased from 253 to 383 IU/L and gamma-GT from 238 to 417 IU/L 4 days after administration of DF. The clinical and biological features of our case suggest a direct involvement of GO in causing SOS, even when used as monotherapy, without allogenic stem-cell transplantation. Low dose DF (10 mg/kg/day) given early during the development of SOS associated with GO was effective. Unfortunately, in our case the patient eventually died of multi-organ failure probably because of failure of GO.

  18. Treatment of sinusoidal obstruction syndrome with defibrotide: a single-center experience.

    Science.gov (United States)

    Sucak, G T; Aki, Z S; Yagcí, M; Yegin, Z A; Ozkurt, Z N; Haznedar, R

    2007-06-01

    Sinusoidal obstruction syndrome (SOS) is a frequent, troubling, and potentially fatal complication of hematopoietic stem cell transplantation. Despite promising results with defibrotide (DF), no treatment has been established as standard. DF is a single-stranded polydeoxyribonucleotide, obtained from controlled depolymerization of porcine intestinal mucosal cells. It has antithrombotic, antiischemic, antiinflammatory, and thrombolytic properties without significant side effects. We retrospectively evaluated the charts of 80 consecutive patients, with 89 hematopoietic stem cell transplants for hematologic malignancies. The results of early initiation of DF treatment in 14 patients with SOS are presented in this study. Fourteen patients, 8 males and 6 females % median age 40.5 years (range, 16-46 years) were diagnosed to have SOS. Disease severity was classified as severe in 6 (42.85%), moderate in 4 (28.57%), and mild in 4 (28.57%) patients. We treated 14 patients with DF for a median of 21.5 days (range, 4-39 days). All 14 patients received DF after the diagnosis of SOS. Three patients with severe and all of the patients with mild to moderate SOS responded to treatment with complete resolution of SOS-related signs and symptoms. All patients responding to DF were alive at 100 days posttransplantation. There was no significant drug-related side effect among patients treated with DF. With an overall response rate of 78.56% and a 50% complete response rate in severe SOS cases and minimal side effects, we suggest that DF is the best available agent to treat SOS.

  19. Sinusoidal Obstruction Syndrome during Treatment for Wilms' Tumor: A Life-threatening Complication

    Science.gov (United States)

    Totadri, Sidharth; Trehan, Amita; Bansal, Deepak; Jain, Richa

    2017-01-01

    Context: Survival rates exceed 90% in Wilms' tumor (WT). Actinomycin-D (ACT-D) which is indispensable in the management of WT is associated with the development of sinusoidal obstruction syndrome (SOS), a potentially fatal complication. Aims: The aim is to study the presentation, management, and outcome of SOS complicating ACT-D administration in WT. Settings and Design: Retrospective file review conducted in a Pediatric Hematology-Oncology unit. Materials and Methods: Patients diagnosed and treated for WT from January 2012 to December 2015 were analyzed. SOS was diagnosed clinically, based on McDonalds criteria, requiring two of the following: jaundice, hepatomegaly and/or right upper quadrant pain, weight gain with or without ascites. Results: Of 104 patients treated, SOS occurred in 5 (4.8%). Age: 6 months to 5 years, 3 were girls. Tumor involved left kidney in 3, right in 1 and a horseshoe kidney in 1. Histopathology was consistent with WT in 4 and clear cell sarcoma kidney in 1. One had pulmonary metastases. Three developed SOS preoperatively and two during adjuvant chemotherapy. None received radiotherapy. Clinical manifestations comprised of jaundice, hepatomegaly, ascites/weight gain, respiratory distress, hypotension, and encephalopathy. Laboratory findings included thrombocytopenia, elevated serum transaminases, and coagulopathy. Treatment included fluid restriction, broad spectrum antibiotics, and transfusional support. Two children received N-acetyl cysteine infusion. Defibrotide was administered to two patients. Four recovered and one succumbed to multi-organ failure. Two patients were safely re-challenged with 50% doses of ACT-D. Conclusions: SOS is a clinical diagnosis. Systematic supportive care can enable complete recovery. Under close monitoring, re-challenge of ACT-D can be performed in gradually escalating doses. PMID:29333010

  20. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  1. Sinusoidal Obstruction Syndrome during Treatment for Wilms' Tumor: A Life-threatening Complication.

    Science.gov (United States)

    Totadri, Sidharth; Trehan, Amita; Bansal, Deepak; Jain, Richa

    2017-01-01

    Survival rates exceed 90% in Wilms' tumor (WT). Actinomycin-D (ACT-D) which is indispensable in the management of WT is associated with the development of sinusoidal obstruction syndrome (SOS), a potentially fatal complication. The aim is to study the presentation, management, and outcome of SOS complicating ACT-D administration in WT. Retrospective file review conducted in a Pediatric Hematology-Oncology unit. Patients diagnosed and treated for WT from January 2012 to December 2015 were analyzed. SOS was diagnosed clinically, based on McDonalds criteria, requiring two of the following: jaundice, hepatomegaly and/or right upper quadrant pain, weight gain with or without ascites. Of 104 patients treated, SOS occurred in 5 (4.8%). Age: 6 months to 5 years, 3 were girls. Tumor involved left kidney in 3, right in 1 and a horseshoe kidney in 1. Histopathology was consistent with WT in 4 and clear cell sarcoma kidney in 1. One had pulmonary metastases. Three developed SOS preoperatively and two during adjuvant chemotherapy. None received radiotherapy. Clinical manifestations comprised of jaundice, hepatomegaly, ascites/weight gain, respiratory distress, hypotension, and encephalopathy. Laboratory findings included thrombocytopenia, elevated serum transaminases, and coagulopathy. Treatment included fluid restriction, broad spectrum antibiotics, and transfusional support. Two children received N-acetyl cysteine infusion. Defibrotide was administered to two patients. Four recovered and one succumbed to multi-organ failure. Two patients were safely re-challenged with 50% doses of ACT-D. SOS is a clinical diagnosis. Systematic supportive care can enable complete recovery. Under close monitoring, re-challenge of ACT-D can be performed in gradually escalating doses.

  2. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  3. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    Directory of Open Access Journals (Sweden)

    Lam Ghai Lim

    2016-07-01

    Full Text Available A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function, with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  4. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach.

    Science.gov (United States)

    Lim, Lam Ghai; Pao, William K S; Hamid, Nor Hisham; Tang, Tong Boon

    2016-07-04

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a 'sine-like' function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design.

  5. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells

    Science.gov (United States)

    Hattori, Koichi; Dias, Sergio; Heissig, Beate; Hackett, Neil R.; Lyden, David; Tateno, Masatoshi; Hicklin, Daniel J.; Zhu, Zhenping; Witte, Larry; Crystal, Ronald G.; Moore, Malcolm A.S.; Rafii, Shahin

    2001-01-01

    Tyrosine kinase receptors for angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) are expressed not only by endothelial cells but also by subsets of hematopoietic stem cells (HSCs). To further define their role in the regulation of postnatal hematopoiesis and vasculogenesis, VEGF and Ang-1 plasma levels were elevated by injecting recombinant protein or adenoviral vectors expressing soluble VEGF165, matrix-bound VEGF189, or Ang-1 into mice. VEGF165, but not VEGF189, induced a rapid mobilization of HSCs and VEGF receptor (VEGFR)2+ circulating endothelial precursor cells (CEPs). In contrast, Ang-1 induced delayed mobilization of CEPs and HSCs. Combined sustained elevation of Ang-1 and VEGF165 was associated with an induction of hematopoiesis and increased marrow cellularity followed by proliferation of capillaries and expansion of sinusoidal space. Concomitant to this vascular remodeling, there was a transient depletion of hematopoietic activity in the marrow, which was compensated by an increase in mobilization and recruitment of HSCs and CEPs to the spleen resulting in splenomegaly. Neutralizing monoclonal antibody to VEGFR2 completely inhibited VEGF165, but not Ang-1–induced mobilization and splenomegaly. These data suggest that temporal and regional activation of VEGF/VEGFR2 and Ang-1/Tie-2 signaling pathways are critical for mobilization and recruitment of HSCs and CEPs and may play a role in the physiology of postnatal angiogenesis and hematopoiesis. PMID:11342585

  6. Abl family kinases regulate endothelial barrier function in vitro and in mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Chislock

    Full Text Available The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg, as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR, Kit, colony stimulating factor 1 receptor (CSF1R, and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca(2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use

  7. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  8. PKA and Epac1 regulate endothelial integrity and migration through parallel and independent pathways

    NARCIS (Netherlands)

    Lorenowicz, Magdalena J.; Fernandez-Borja, Mar; Kooistra, Matthijs R. H.; Bos, Johannes L.; Hordijk, Peter L.

    2008-01-01

    The vascular endothelium provides a semi-permeable barrier, which restricts the passage Of fluid, macromolecules and cells to the surrounding tissues. Cyclic AMP promotes endothelial barrier function and protects the endothelium against pro-inflammatory mediators. This study analyzed the relative

  9. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  10. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  11. Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling

    Directory of Open Access Journals (Sweden)

    Yizhou Ye

    2016-01-01

    Full Text Available Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.

  12. Restoration of Endothelial Function in Pparα−/− Mice by Tempol

    Directory of Open Access Journals (Sweden)

    Neerupma Silswal

    2015-01-01

    Full Text Available Peroxisome proliferator activated receptor alpha (PPARα is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.

  13. Sex Differences Influencing Micro- and Macrovascular Endothelial Phenotype In Vitro.

    Science.gov (United States)

    Huxley, Virginia H; Kemp, Scott S; Schramm, Christine; Sieveking, Steve; Bingaman, Susan; Yu, Yang; Zaniletti, Isabella; Stockard, Kevin; Wang, Jianjie

    2018-06-09

    (macro- versus microvessel) and sex influenced multiple phenotypic characteristics. Statistical model analysis of EC growth demonstrated an hierarchy of variable importance, recapitulated for other phenotypic characteristics, wherein predictions assuming EC homogeneity Sex Sex and Vessel Origin. Further, patterns of EC mRNA expression by vessel origin and by sex did not predict protein expression. Overall the study demonstrated that accurate assessment of sex-linked EC dysfunction first requires understanding of EC function by position in the vascular tree and by sex. Results from a single EC tissue source/species/sex cannot provide universal insight into the mechanisms regulating in vivo endothelial function in health, no less disease. (250) This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function.

    Science.gov (United States)

    Zuchi, Cinzia; Ambrosio, Giuseppe; Lüscher, Thomas F; Landmesser, Ulf

    2010-08-01

    An "unhealthy" diet is considered as a main cause of increased atherosclerotic cardiovascular disease in the industrialized countries. There is a substantial interest in the potential cardiovascular protective effects of "nutraceuticals," that is food-derived substances that exert beneficial health effects. The correct understanding of cardiovascular effects of these compounds will have important implications for cardiovascular prevention strategies. Endothelial dysfunction is thought to play an important role in development and progression of atherosclerosis, and the characterization of the endothelial effects of several nutraceuticals may provide important insights into their potential role in cardiovascular prevention. At the same time, the analysis of the endothelial effects of nutraceuticals may also provide valuable insights into mechanisms of why certain nutraceuticals may not be effective in cardiovascular prevention, and it may aid in the identification of food-derived substances that may have detrimental cardiovascular effects. These findings further support the notion that nutraceuticals do need support from large clinical outcome trials with respect to their efficacy and safety profile for cardiovascular prevention, before their widespread use can be recommended. In fact, the term nutraceutical was coined to encourage an extensive and profound research activity in this field, and numerous large-scale clinical outcome trials to examine the effects of nutraceuticals on cardiovascular events have now been performed or are still ongoing. Whereas it is possible that single nutraceuticals may be effective in cardiovascular prevention, this field of research provides also valuable insights into which food components may be particularly important for cardiovascular prevention, to further advice the composition of a particularly healthy diet. The present review summarizes recent studies on the endothelial effects of several nutraceuticals, that have been

  15. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    International Nuclear Information System (INIS)

    Li, Zhao; Jin, Zhu-Qiu

    2012-01-01

    Highlights: ► Cardiac tight junctions are present between coronary endothelial cells. ► Ischemic preconditioning preserves the structural and functional integrity of tight junctions. ► Myocardial edema is prevented in hearts subjected to ischemic preconditioning. ► Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood–heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs–Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but decreased the expression of ZO-2 in the cytoskeleton. IPC maintained the structure of TJs. Cardiac EBA content and edema were reduced in IPC hearts. IPC enhanced the translocation of ZO-2 from cytosol to cytoskeleton. In conclusion, TJs occur in

  16. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence.

    Science.gov (United States)

    Yamagata, Kazuo

    2018-02-04

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.

  17. Do Coffee Polyphenols Have a Preventive Action on Metabolic Syndrome Associated Endothelial Dysfunctions? An Assessment of the Current Evidence

    Science.gov (United States)

    Yamagata, Kazuo

    2018-01-01

    Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716

  18. Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2017-12-01

    Full Text Available A numerical study of the unsteady mixed convection heat transfer characteristics of an Ag–water nanofluid confined within a square shape lid-driven cavity has been carried out. The Galerkin weighted residual of the finite element method has been employed to investigate the effects of the periodicity of sinusoidal boundary condition for a wide range of Grashof numbers (Gr (105 to 107 with the parametric variation of sinusoidal even and odd frequency, N, from 1 to 6 at different instants (for τ = 0.1 and 1. It has been observed that both the Grashof number and the sinusoidal even and odd frequency have a significant influence on the streamlines and isotherms inside the cavity. The heat transfer rate enhanced by 90% from the heated surface as the Grashof number (Gr increased from 105 to 107 at sinusoidal frequency N = 1 and τ = 1.

  19. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong; Shusheng, Li

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate the attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.

  20. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver.

    Science.gov (United States)

    Ding, Bi-Sen; Liu, Catherine H; Sun, Yue; Chen, Yutian; Swendeman, Steven L; Jung, Bongnam; Chavez, Deebly; Cao, Zhongwei; Christoffersen, Christina; Nielsen, Lars Bo; Schwab, Susan R; Rafii, Shahin; Hla, Timothy

    2016-12-22

    Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P 1 ) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this "maladaptive repair" phenotype was recapitulated in mice that lack S1P 1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P 1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P 1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.

  1. CMOS-based active RC sinusoidal oscillator with four-phase quadrature outputs and single-resistance-controlled (SRC) tuning laws

    OpenAIRE

    Lahiri, Abhirup; Herencsár, Norbert

    2012-01-01

    This paper proposes a very compact CMOS realization of active RC sinusoidal oscillator capable of generating four quadrature voltage outputs. The oscillator is based on the cascade of lossless and lossy integrators in loop. The governing laws for the condition of oscillation (CO) and the frequency of oscillation (FO) are single-resistance-controlled (SRC) and which allow independent FO tuning. Unlike previously reported SRC-based sinusoidal oscillators based on the active building block (ABB)...

  2. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations

    Science.gov (United States)

    Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin

    2018-03-01

    Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.

  3. Femtosecond laser cutting of endothelial grafts: comparison of endothelial and epithelial applanation.

    Science.gov (United States)

    Bernard, Aurélien; He, Zhiguo; Gauthier, Anne Sophie; Trone, Marie Caroline; Baubeau, Emmanuel; Forest, Fabien; Dumollard, Jean Marc; Peocʼh, Michel; Thuret, Gilles; Gain, Philippe

    2015-02-01

    Stromal surface quality of endothelial lamellae cut for endothelial keratoplasty with a femtosecond laser (FSL) with epithelial applanation remains disappointing. Applanation of the endothelial side of the cornea, mounted inverted on an artificial chamber, has therefore been proposed to improve cut quality. We compared lamellar quality after FSL cutting using epithelial versus endothelial applanation. Lamellae were cut with an FSL from organ-cultured corneas. After randomization, 7 were cut with epithelial applanation and 7 with endothelial applanation. Lamellae of 50-, 75-, and 100-μm thickness were targeted. Thickness was measured by optical coherence tomography before and immediately after cutting. Viable endothelial cell density was quantified immediately after cutting using triple labeling with Hoechst/ethidium/calcein-AM coupled with image analysis with ImageJ. The stromal surface was evaluated by 9 masked observers using semiquantitative scoring of scanning electronic microscopy images. Histology of 2 samples was also analyzed before lamellar detachment. Precision (difference in target/actual thickness) and thickness regularity [coefficient of variation (CV) of 10 measurements] were significantly better with endothelial applanation (precision: 18 μm; range, 10-30; CV: 11%; range, 8-12) than with epithelial applanation (precision: 84 μm; range, 54-107; P = 0.002; CV: 24%; range, 13-47; P = 0.001). Endothelial applanation provided thinner lamellae. However, viable endothelial cell density was significantly lower after endothelial applanation (1183 cells/mm2; range, 787-1725 versus 1688 cells/mm2; range, 1288-2025; P = 0.018). FSL cutting of endothelial lamellae using endothelial applanation provides thinner more regular grafts with more predictable thickness than with conventional epithelial applanation but strongly reduces the pool of viable endothelial cells.

  4. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    Science.gov (United States)

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  5. Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression.

    Science.gov (United States)

    Gentile, C; Tesoriere, L; Allegra, M; Livrea, M A; D'Alessio, P

    2004-12-01

    It has been suggested that some pigments would have antioxidant properties and that their presence in dietary constituents would contribute to reduce the risk of oxidative stress-correlated diseases. Among others, inflammatory response depends on redox status and may implicate oxidative stress. Vascular endothelial cells are a direct target of oxidative stress in inflammation. We have tested the impact of the free radical scavenger and antioxidant properties of betalains from the prickle pear in an in vitro model of endothelial cells. Here we show the capacity of betalains to protect endothelium from cytokine-induced redox state alteration, through ICAM-1 inhibition.

  6. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  7. Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation

    Science.gov (United States)

    Santos, Abel; Yoo, Jeong Ha; Rohatgi, Charu Vashisth; Kumeria, Tushar; Wang, Ye; Losic, Dusan

    2016-01-01

    This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic mode is used with the aim of engineering the effective medium of NAA in a sinusoidal fashion. A precise control over the different anodisation parameters (i.e. anodisation period, anodisation amplitude, anodisation offset, number of pulses, anodisation temperature and pore widening time) makes it possible to engineer the characteristic reflection peaks and interferometric colours of NAA-RFs, which can be finely tuned across the UV-visible-NIR spectrum. The effect of the aforementioned anodisation parameters on the photonic properties of NAA-RFs (i.e. characteristic reflection peaks and interferometric colours) is systematically assessed in order to establish for the first time a comprehensive rationale towards NAA-RFs with fully controllable photonic properties. The experimental results are correlated with a theoretical model (Looyenga-Landau-Lifshitz - LLL), demonstrating that the effective medium of these photonic nanostructures can be precisely described by the effective medium approximation. NAA-RFs are also demonstrated as chemically selective photonic platforms combined with reflectometric interference spectroscopy (RIfS). The resulting optical sensing system is used to assess the reversible binding affinity between a model drug (i.e. indomethacin) and human serum albumin (HSA) in real-time. Our results demonstrate that this system can be used to determine the overall pharmacokinetic profile of drugs, which is a critical aspect to be considered for the implementation of efficient medical therapies.This study is the first realisation of true optical rugate filters (RFs) based on nanoporous anodic alumina (NAA) by sinusoidal waves. An innovative and rationally designed sinusoidal pulse anodisation (SPA) approach in galvanostatic

  8. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  9. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients

    Directory of Open Access Journals (Sweden)

    Isri Nasifah

    2017-10-01

    Full Text Available Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP, endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP, endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (p0.05 between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients.

  10. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients.

    Science.gov (United States)

    Nasifah, Isri; Soeharto, Setyawati; Nooryanto, Mukhamad

    Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO) in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG) at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (pgranatum extract. The level of NO was insignificant (p>0.05) between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  11. Dai-kenchu-to attenuates rat sinusoidal obstruction syndrome by inhibiting the accumulation of neutrophils in the liver.

    Science.gov (United States)

    Narita, Masato; Hatano, Etsuro; Tamaki, Nobuyuki; Yamanaka, Kenya; Yanagida, Atsuko; Nagata, Hiromitsu; Asechi, Hiroyuki; Takada, Yasutsugu; Ikai, Iwao; Uemoto, Shinji

    2009-06-01

    Sinusoidal obstruction syndrome (SOS) is drug-induced liver injury that occurs in patients who receive hematopoietic cell transplantation and oxaliplatin-contained chemotherapy. The aim of study was to investigate the pharmacological treatment of SOS using a traditional Japanese medicine, Dai-kenchu-to (DKT). Male Sprague-Dawley rats were treated with monocrotaline (MCT) to induce SOS. The rats were divided into three groups: control, MCT and MCT+DKT groups. In the MCT+DKT group, DKT was gavaged at 12 h after MCT treatment and given every 12 h until the end of the protocol. The rats of MCT group were treated with water instead of DKT. At 48 h after MCT treatment, blood and liver samples were collected. In the MCT+DKT group, the macroscopic and histological findings revealed liver congestion, sinusoidal alteration and the destruction of sinusoidal lining, which were comparable with those of the MCT group. However, the area of hepatic necrosis and serum AST levels significantly decreased in the MCT+DKT group compared with those of the MCT group. Treatment with DKT resulted in the reduction of neutrophil accumulation, myeloperoxidase activity and the expression of cytokine-induced neutrophil chemoattractant (CINC) and intracellular adhesion molecule-1 (ICAM-1) mRNA in the liver compared with those of the MCT group. Treatment with processed ginger, one of the ingredients in DKT, resulted in similar effects to those shown by DKT. Dai-kenchu-to attenuates MCT-induced liver injury by preventing neutrophil-induced liver injury through blockage of upregulation of CINC and ICAM-1 mRNA level.

  12. СURRENT FILTERING IN A THREE-PHASE THREE-WIRE POWER SYSTEM AT ASYMMETRIC SINUSOIDAL VOLTAGES

    Directory of Open Access Journals (Sweden)

    M. Yu. Artemenko

    2018-04-01

    Full Text Available Purpose. Investigation of the optimal current distribution between source, shunt active filter and reactive compensator of a three-phase three-wire system that provides consumption of a sinusoidal symmetric current under asymmetric source voltages with minimal power losses was provided. Methodology. The tasks were solved by conducting theoretical and experimental studies. The main provisions of the theory of electrical circuits, the apparatus of mathematical analysis, methods for solving linear differential and algebraic equations, elements of matrix and complex calculus and vector algebra are used. During the development, modern methods and software of computer simulation of electrical engineering complexes and dynamic systems were applied: Matlab-Simulink, MATHCAD. Originality. The principle of compensating current distribution between PAF and reactive compensator of a three-phase three-wire power system with asymmetric sinusoidal voltage was proposed at which the input current is equal to the positive-sequence active current and rms value of PAF current is minimal. The feasibility to compensate the inactive sinusoidal Fryze current by reactive elements under arbitrary combination of load and source parameters was proved and expression for direct calculation of the reactive compensator parameters for generation of inactive Fryze current in the source unbalanced mode was obtained. Practical value. The simulative example for transmission line load showed that combined application of PAF and reactive compensator with the specified distribution of compensating currents ensured a reduction of power losses in 3.273 times and rms value of the SAF current is 12.9 % of rms value total compensation current.

  13. [Effect of 50 Hz 1.8 mT sinusoidal electromagnetic fields on bone mineral density in growing rats].

    Science.gov (United States)

    Gao, Yu-Hai; Zhou, Yan-Feng; Li, Shao-Feng; Li, Wen-Yuan; Xi, Hui-Rong; Yang, Fang-Fang; Chen, Ke-Ming

    2017-12-25

    To study effects of 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) on bone mineral density (BMD) in SD rats. Thirty SD rats weighted(110±10) and aged 1 month were randomly divided into control group and electromagnetic field group, 15 in each group. Normal control group of 50 Hz 0 mT density and sinusoidal electromagnetic field group of 50 Hz 1.8 mT were performed respectively with 1.5 h/d and weighted weight once a week, and observed food-intake. Rats were anesthesia by intraperitoneal injection and dual energy X-ray absorptiometry were used to detect bone density of whole body, and detected bone density of femur and vertebral body. Osteocalcin and tartrate-resistant acid phosphatase 5b were detected by ELSA; weighted liver, kidney and uterus to calculate purtenance index, then detected pathologic results by HE. Compared with control group, there was no significant change in weight every week, food-intake every day; no obvious change of bone density of whole body at 2 and 4 weeks, however bone density of whole body, bone density of excised femur and vertebra were increased at 6 weeks. Expression of OC was increased, and TRACP 5b expression was decreased. No change of HE has been observed in liver, kidney and uterus and organic index. 50 Hz 1.8 mT sinusoidal electromagnetic fields could improve bone formation to decrease relevant factors of bone absorbs, to improve peak bone density of young rats, in further provide a basis for clinical research electromagnetic fields preventing osteoporosis foundation.

  14. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  15. The endothelial αENaC contributes to vascular endothelial function in vivo

    DEFF Research Database (Denmark)

    Tarjus, Antoine; Maase, Martina; Jeggle, Pia

    2017-01-01

    The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α β γ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldo......-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo....

  16. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  17. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  18. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    Science.gov (United States)

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  19. Carnosol promotes endothelial differentiation under H2O2-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Ou Shulin

    2017-01-01

    Full Text Available Oxidative stress causes deregulation of endothelial cell differentiation. Carnosol is a potent antioxidant and antiinflammatory compound. In the present study, we examined whether the antioxidant effect of carnosol might protect bone marrow stem cells against H2O2-induced oxidative stress and promote endothelial differentiation. We examined cell viability by the MTT assay; oxidative stress and apoptosis were analyzed through changes in ROS levels, apoptotic ratio and caspase-3 activity; changes in protein expression of OCT-4, Flk-1, CD31 and Nrf-2 were assessed by Western blot analysis. H2O2 treatment increased oxidative stress and reduced cell viability, while the stem cell marker OCT-4 and endothelial markers Flk-1, CD31 were significantly downregulated as a result of the treatment with H2O2. Treatment with carnosol improved the antioxidant status, increased OCT-4 expression and promoted endothelial differentiation. This study provides evidence that carnosol could increase the antioxidant defense mechanism and promote endothelial differentiation.

  20. Expression and Function of the Homeostatic Molecule Del-1 in Endothelial Cells and the Periodontal Tissue

    Directory of Open Access Journals (Sweden)

    Jieun Shin

    2013-01-01

    Full Text Available Developmental endothelial locus-1 (Del-1 is an endothelial cell-secreted protein that limits the recruitment of neutrophils by antagonizing the interaction between the LFA-1 integrin on neutrophils and the intercellular adhesion molecule (ICAM-1 on endothelial cells. Mice with genetic or age-associated Del-1 deficiency exhibit increased neutrophil infiltration in the periodontium resulting in inflammatory bone loss. Here we investigated additional novel mechanisms whereby Del-1 could interfere with neutrophil recruitment and inflammation. Treatment of human endothelial cells with Del-1 did not affect the expression of endothelial molecules involved in the leukocyte adhesion cascade (ICAM-1, VCAM-1, and E-selectin. Moreover, genetic or age-associated Del-1 deficiency did not significantly alter the expression of these adhesion molecules in the murine periodontium, further ruling out altered adhesion molecule expression as a mechanism whereby Del-1 regulates leukocyte recruitment. Strikingly, Del-1 inhibited ICAM-1-dependent chemokine release (CXCL2, CCL3 by neutrophils. Therefore, Del-1 could potentially suppress the amplification of inflammatory cell recruitment mediated through chemokine release by infiltrating neutrophils. Interestingly, Del-1 was itself regulated by inflammatory stimuli, which generally exerted opposite effects on adhesion molecule expression. The reciprocal regulation between Del-1 and inflammation may contribute to optimally balance the protective and the potentially harmful effects of inflammatory cell recruitment.

  1. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Beryl Wen

    Full Text Available Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416 expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  2. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  3. An ?All-laser? Endothelial Transplant

    OpenAIRE

    Rossi, Francesca; Canovetti, Annalisa; Malandrini, Alex; Lenzetti, Ivo; Pini, Roberto; Menabuoni, Luca

    2015-01-01

    The ?all laser? assisted endothelial keratoplasty is a procedure that is performed with a femtosecond laser used to cut the donor tissue at an intended depth, and a near infrared diode laser to weld the corneal tissue. The proposed technique enables to reach the three main goals in endothelial keratoplasty: a precise control in the thickness of the donor tissue; its easy insertion in the recipient bed and a reduced risk of donor lenticule dislocation. The donor cornea thickness is measured in...

  4. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  5. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  6. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  8. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  9. Sinusoidal obstruction syndrome (veno-occlusive disease in a patient receiving bevacizumab for metastatic colorectal cancer: a case report

    Directory of Open Access Journals (Sweden)

    Agarwal Vijay

    2008-07-01

    Full Text Available Abstract Introduction We present the case of a patient with colon cancer who, while receiving bevacizumab, developed sinusoidal obstruction syndrome (veno-occlusive disease (SOSVOD. Certain antitumour agents such as 6-mercaptopurine and 6-thioguanine have also been reported to initiate hepatic SOSVOD in isolated cases. There have been no reports so far correlating bevacizumab with SOSVOD. Case presentation A 77-year-old man was being treated with oxaliplatin and a modified de Gramont regimen of 5-fluorouracil for metastatic colon cancer. Bevacizumab (7.5 mg/kg was added from the seventh cycle onwards. Protracted neutropenia and thrombocytopenia led to discontinuation of oxaliplatin after the ninth cycle. A computed tomography scan showed complete response and bevacizumab was continued for another 3 months, after which time the patient developed right hypochondrial pain, transudative ascites, splenomegaly and abnormal liver function tests. Upper gastrointestinal endoscopy showed oesophageal varices. Liver biopsy showed features considered to be consistent with SOSVOD. Bevacizumab was stopped and a policy of watchful waiting was adopted. He tolerated the acute damage to his liver and subsequently the ascites resolved and liver function tests normalised. Conclusion We need to be aware that bevacizumab can cause sinusoidal obstruction syndrome (veno-occlusive disease and that the occurrence of ascites should not be attributed to progressive disease without appropriate evaluation.

  10. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    Science.gov (United States)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  11. Contrast-enhanced ultrasonography of hepatocellular carcinoma: Correlation between quantitative parameters and arteries in neoangiogenesis or sinusoidal capillarization

    International Nuclear Information System (INIS)

    Pei Xiaoqing; Liu Longzhong; Zheng Wei; Cai Muyan; Han Feng; He Jiehua; Li Anhua; Chen Minshan

    2012-01-01

    Objective: The quantitative parameters in contrast-enhanced ultrasonography-time–intensity curve of hepatocellular carcinoma (HCC) were studied to explore their potential importance in monitoring the effects of anti-angiogenic therapy for HCC. Methods: 115 HCC patients were studied with contrast-enhanced ultrasonography-time–intensity curve (CEUS-TIC) and with immunohistochemical analysis of tissue sections. The CEUS images were analyzed off-line to obtained quantitative parameters including maximum of intensity (IMAX), rise time (RT), time to peak (TTP), mean transit time (mTT), rise slope (RS), and washout time (WT). Monoclonal antibodies specific for smooth muscle actin and anti-CD34 were used to observe unpaired arteries (UAs) and microvessel area (MVA) of sinusoidal capillarization, respectively. The UAs and MVA of 82 HCC cases were successfully stained. Results: The number of UAs had moderate correlation with RT (r = −0.446), TTP (r = −0.432), and RS (r = 0.431) (P < 0.05), and it had mild correlation with IMAX (r = 0.303) and WT (r = 0.285) (P < 0.05). MVA of sinusoidal capillarization had no correlation with perfusion parameters. Conclusion: Quantitative CEUS-TIC parameters reflecting hemodynamics of tumors are correlated with UAs, but not with MVA, and they might be used to monitor the effects of anti-angiogenic therapy on HCC.

  12. Responses of Medullary Lateral Line Units of the Goldfish, Carassius auratus, to Amplitude-Modulated Sinusoidal Wave Stimuli

    Directory of Open Access Journals (Sweden)

    Ramadan Ali

    2010-01-01

    Full Text Available This paper describes the responses of brainstem lateral line units in goldfish, Carassius auratus, to constant-amplitude and to amplitude-modulated sinusoidal water motions. If stimulated with constant-amplitude sinusoidal water motions, units responded with phasic (50% or with sustained (50% increases in dicharge rate. Based on isodisplacement curves, units preferred low (33 Hz, 12.5%, mid (50 Hz, 10% and 100 Hz, 30% or high (200 Hz, 47.5% frequencies. In most units, responses were weakly phase locked to the carrier frequency. However, at a carrier frequency of 50 Hz or 100 Hz, a substantial proportion of the units exhibited strong phase locking. If stimulated with amplitude-modulated water motions, units responded with a burst of discharge to each modulation cycle, that is, units phase locked to the amplitude modulation frequency. Response properties of brainstem units were in many respects comparable to those of midbrain units, suggesting that they emerge first in the lateral line brainstem.

  13. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  14. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  15. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  16. Reduced Ang2 expression in aging endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ebenbauer, B. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Kaun, C.; Maurer, G. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Huber, K. [Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); 3rd Medical Department, Wilhelminenhospital, Vienna (Austria); Sigmund Freud University, Medical Faculty, Vienna (Austria); Wojta, J. [Department of Internal Medicine II, Medical University of Vienna, Vienna (Austria); Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna (Austria); Core Facilities, Medical University of Vienna, Vienna (Austria)

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  17. Reduced Ang2 expression in aging endothelial cells

    International Nuclear Information System (INIS)

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-01-01

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  18. Effects of Nebivolol on Endothelial Gene Expression during Oxidative Stress in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ulisse Garbin

    2008-01-01

    Full Text Available The endothelium plays a key role in the development of atherogenesis and its inflammatory and proliferative status influences the progression of atherosclerosis. The aim of this study is to compare the effects of two beta blockers such as nebivolol and atenolol on gene expression in human umbilical vein endothelial cells (HUVECs following an oxidant stimulus. HUVECs were incubated with nebivolol or atenolol (10 micromol/L for 24 hours and oxidative stress was induced by the addition of oxidized (ox-LDL. Ox-LDL upregulated adhesion molecules (ICAM-1, ICAM-2, ICAM-3, E-selectin, and P-selectin; proteins linked to inflammation (IL-6 and TNFalpha, thrombotic state (tissue factor, PAI-1 and uPA, hypertension such as endothelin-1 (ET-1, and vascular remodeling such as metalloproteinases (MMP-2, MMP-9 and protease inhibitor (TIMP-1. The exposure of HUVECs to nebivolol, but not to atenolol, reduced these genes upregulated by oxidative stress both in terms of protein and RNA expression. The known antioxidant properties of the third generation beta blocker nebivolol seem to account to the observed differences seen when compared to atenolol and support the specific potential protective role of this beta blocker on the expression of a number of genes involved in the initiation and progression of atherosclerosis.

  19. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  20. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    Science.gov (United States)

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  1. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function

    Directory of Open Access Journals (Sweden)

    Sindy Giebe

    2017-08-01

    Full Text Available Tobacco smoking and hemodynamic forces are key stimuli in the development of endothelial dysfunction and atherosclerosis. High laminar flow has an atheroprotective effect on the endothelium and leads to a reduced response of endothelial cells to cardiovascular risk factors compared to regions with disturbed or low laminar flow. We hypothesize that the atheroprotective effect of high laminar flow could delay the development of endothelial dysfunction caused by cigarette smoking. Primary human endothelial cells were stimulated with increasing dosages of aqueous cigarette smoke extract (CSEaq. CSEaq reduced cell viability in a dose-dependent manner. The main mediator of cellular adaption to oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2 and its target genes heme oxygenase (decycling 1 (HMOX1 or NAD(PH quinone dehydrogenase 1 (NQO1 were strongly increased by CSEaq in a dose-dependent manner. High laminar flow induced elongation of endothelial cells in the direction of flow, activated the AKT/eNOS pathway, increased eNOS expression, phosphorylation and NO release. These increases were inhibited by CSEaq. Pro-inflammatory adhesion molecules intercellular adhesion molecule-1 (ICAM1, vascular cell adhesion molecule-1 (VCAM1, selectin E (SELE and chemokine (C-C motif ligand 2 (CCL2/MCP-1 were increased by CSEaq. Low laminar flow induced VCAM1 and SELE compared to high laminar flow. High laminar flow improved endothelial wound healing. This protective effect was inhibited by CSEaq in a dose-dependent manner through the AKT/eNOS pathway. Low as well as high laminar flow decreased adhesion of monocytes to endothelial cells. Whereas, monocyte adhesion was increased by CSEaq under low laminar flow, this was not evident under high laminar flow.This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The

  2. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    Science.gov (United States)

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the

  3. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    Science.gov (United States)

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  4. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    Science.gov (United States)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  5. Successful treatment of severe sinusoidal obstruction syndrome despite multiple organ failure with defibrotide after allogeneic stem cell transplantation: a case report

    Directory of Open Access Journals (Sweden)

    Behre Gerhard

    2009-03-01

    Full Text Available Abstract Introduction We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. Case presentation A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. Conclusion As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure.

  6. Successful treatment of severe sinusoidal obstruction syndrome despite multiple organ failure with defibrotide after allogeneic stem cell transplantation: a case report.

    Science.gov (United States)

    Behre, Gerhard; Theurich, Sebastian; Christopeit, Maximilian; Weber, Thomas

    2009-03-10

    We report a case of sinusoidal obstruction syndrome, a typical and life-threatening complication after allogeneic stem-cell transplantation, successfully treated with defibrotide despite massive multiple organ failure. A 64-year-old Caucasian woman underwent allogeneic peripheral blood stem-cell transplantation from her human leukocyte antigen-identical sister against aggressive lymphoplasmocytoid immunocytoma. Seven days later, the patient developed severe sinusoidal obstruction syndrome according to the modified Seattle criteria. We initiated treatment with defibrotide. Despite early treatment, multiple organ failure with kidney failure requiring dialysis and ventilator-dependent lung failure aggravated the clinical course. Furthermore, central nervous dysfunction occurred as well as transfusion refractory thrombocytopenia. As highlighted in our report, defibrotide is the most promising drug in the treatment of the formerly, almost lethal, severe sinusoidal obstruction syndrome to date. This is demonstrated very clearly in our patient. She improved completely, even after renal, cerebral and respiratory failure.

  7. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    Science.gov (United States)

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm).

  8. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  9. Transport of lipoprotein lipase across endothelial cells

    International Nuclear Information System (INIS)

    Saxena, U.; Klein, M.G.; Goldberg, I.J.

    1991-01-01

    Lipoprotein lipase (LPL), synthesized in muscle and fat, hydrolyzes plasma triglycerides primarily while bound to luminal endothelial cell surfaces. To obtain information about the movement of LPL from the basal to the luminal endothelial cell surface, the authors studied the transport of purified bovine milk LPL across bovine aortic endothelial cell monolayers. 125 I-labeled LPL ( 125 I-LPL) added to the basal surface of the monolayers was detected on the apical side of the cells in two compartments: (1) in the medium of the upper chamber, and (2) bound to the apical cell surface. The amount of 125 I-LPL on the cell surface, but not in the medium, reached saturation with time and LPL dose. Catalytically active LPL was transported to the apical surface but very little LPL activity appeared in the medium. Heparinase treatment of the basal cell surface and addition of dextran sulfate to the lower chamber decreased the amount of 125 I-LPL appearing on the apical surface. Similarly, the presence of increasing molar ratios of oleic acid/bovine serum albumin at the basal surface decreased the transport of active LPL across the monolayer. Thus, a saturable transport system, which requires haparan sulfate proteoglycans and is inhibited by high concentrations of free fatty acids on the basal side of the cells, appears to exist for passage of enzymatically active LPL across endothelial cells. They postulate that regulation of LPL transport to the endothelial luminal surface modulates the physiologically active pool of LPL in vivo

  10. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  11. A two-level voltage source inverter with differentially sinusoidal pulse width modulation used in the interconnection system of a wind turbine generator

    Directory of Open Access Journals (Sweden)

    Alexandros C. Charalampidis

    2014-10-01

    Full Text Available This study analyses an interconnection system based on differentially sinusoidal pulse width modulation, used for the interconnection to the grid of a variable speed wind turbine. The modulation technique used provides specific advantages in comparison with the commonly used sinusoidal pulse width modulation (SPWM technique, such as lower DC bus voltage requirements, smaller switching losses for the same switching frequency as well as less higher harmonic content in the voltage waveforms produced. The respective control system is also described in detail. Thus this study provides a guide enabling the design of any interconnection system based on this modulation technique.

  12. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States); Jin, Zhu-Qiu, E-mail: zhu-qiu.jin@sdstate.edu [Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007 (United States)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Cardiac tight junctions are present between coronary endothelial cells. Black-Right-Pointing-Pointer Ischemic preconditioning preserves the structural and functional integrity of tight junctions. Black-Right-Pointing-Pointer Myocardial edema is prevented in hearts subjected to ischemic preconditioning. Black-Right-Pointing-Pointer Ischemic preconditioning enhances translocation of ZO-2 from cytosol to cytoskeleton. -- Abstract: Ischemic preconditioning (IPC) is one of the most effective procedures known to protect hearts against ischemia/reperfusion (IR) injury. Tight junction (TJ) barriers occur between coronary endothelial cells. TJs provide barrier function to maintain the homeostasis of the inner environment of tissues. However, the effect of IPC on the structure and function of cardiac TJs remains unknown. We tested the hypothesis that myocardial IR injury ruptures the structure of TJs and impairs endothelial permeability whereas IPC preserves the structural and functional integrity of TJs in the blood-heart barrier. Langendorff hearts from C57BL/6J mice were prepared and perfused with Krebs-Henseleit buffer. Cardiac function, creatine kinase release, and myocardial edema were measured. Cardiac TJ function was evaluated by measuring Evans blue-conjugated albumin (EBA) content in the extravascular compartment of hearts. Expression and translocation of zonula occludens (ZO)-2 in IR and IPC hearts were detected with Western blot. A subset of hearts was processed for the observation of ultra-structure of cardiac TJs with transmission electron microscopy. There were clear TJs between coronary endothelial cells of mouse hearts. IR caused the collapse of TJs whereas IPC sustained the structure of TJs. IR increased extravascular EBA content in the heart and myocardial edema but dec