WorldWideScience

Sample records for protective immune activity

  1. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    Science.gov (United States)

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  2. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    Science.gov (United States)

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  3. Stimulation of TLR7 with Gardiquimod Enhances Protection and Activation of Immune Cells from γ-Irradiation Exposure

    International Nuclear Information System (INIS)

    Yang, Young-Mi; Bang, Ji-Young; Lee, Suhl-Hyeong; Moon, Tae-Min; Jung, Yu-Jin

    2007-01-01

    Radiotherapy for cancer patients is based on the radiation-induced cell death, but high dose of radiation is able to cause break of immune system. Thus, protection of immune cells from radiation damage is required to enhance the efficiency and reduce the harmful side effects during cancer radiotherapy. Toll-like receptors (TLRs) are important not only in initiating innate immunity against microbial infection, but also inducing Th1-mediated immunity with producing cytokines and chemokines. Cell stimulation via TLRs leads to downstream activation of NF-kB and other transcription factors. Consequently, several genes encoding mediators and effector molecules of the innate as well as the adaptive immune response are transcribed. There are several previous findings that activated immune cells via TLR9 inducing pathways are resistant to chemical or radiation exposure. But it is not clear that the other TLRs also have the same abilities to protect immune cells against cellular damages including γ-irradiation. This research was performed to evaluate protective effect of immune cells from γ-irradiation through TLR-7 activation pathway

  4. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  5. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  6. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  8. Experimental Salmonella typhimurium infections in rats. II. Active and passive immunization as protection against a lethal bacterial dose

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1990-01-01

    Immunization against a lethal dose of Salmonella typhimurium was studied in athymic and thymus-bearing LEW rats. Active immunization was performed with formalin-killed whole cell vaccine or sublethal infection prior to the lethal infection. After vaccination with killed bacteria the euthymic...... from immunized thymus grafted animals provided only limited protective effect, and treatment with cells from athymic animals had no effect. The study shows that although isogeneic thymus-grafted nude rats become resistent to reinfection with S. typhimurium, only large doses of spleen cells from...

  9. Immunizations: Active vs. Passive

    Science.gov (United States)

    ... Issues Health Issues Health Issues Conditions Injuries & Emergencies Vaccine Preventable Diseases ... Children > Safety & Prevention > Immunizations > Immunizations: Active vs. Passive Safety & ...

  10. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  12. Inflammasome Activation Is Critical to the Protective Immune Response during Chemically Induced Squamous Cell Carcinoma

    Science.gov (United States)

    Gasparoto, Thais Helena; de Oliveira, Carine Ervolino; de Freitas, Luisa Thomazini; Pinheiro, Claudia Ramos; Hori, Juliana Issa; Garlet, Gustavo Pompermaier; Cavassani, Karen Angélica; Schillaci, Roxana; da Silva, João Santana; Zamboni, Dario Simões; Campanelli, Ana Paula

    2014-01-01

    Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4+, CD8+ and CD45RB+ T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4+CD25+Foxp3+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development. PMID:25268644

  13. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Thais Helena Gasparoto

    Full Text Available Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC and caspase (CASP-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK, dendritic (DC, CD4(+, CD8(+ and CD45RB(+ T cells in the tumor lesions as well as in lymph nodes (LN compared with WT mice. Increased percentage of CD4(+CD25(+Foxp3(+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO, but not elastase (ELA, activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF-α and Interferon (IFN-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.

  14. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    Directory of Open Access Journals (Sweden)

    Wayne eCrill

    2012-11-01

    Full Text Available Dengue viruses (DENV are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF. Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1 DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT with this cross-reactivity reduced (CRR vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naïve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine induced immune

  15. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Hatem Tallima

    2017-03-01

    Full Text Available Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1, administered without adjuvant, elicits protection (>60% against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3, alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH, with the two peptidases.While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005 reduction in challenge worm burden (54-65% as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70-76% and were accompanied by highly significant (P < 0.005 decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine.Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine peptidase-based vaccine should now be advanced to experiments in

  16. Measuring polio immunity to plan immunization activities.

    Science.gov (United States)

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    Science.gov (United States)

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  18. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  19. Mast cell activators as novel immune regulators.

    Science.gov (United States)

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Bovine anaplasmosis with emphasis on immune responses and protection

    International Nuclear Information System (INIS)

    Ristic, M.

    1980-01-01

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  1. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Directory of Open Access Journals (Sweden)

    Jintao Xu

    2016-07-01

    Full Text Available Anti-tumor necrosis factor alpha (anti-TNF-α therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance.

  2. Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Victor H Hu

    Full Text Available Trachoma, caused by Chlamydia trachomatis (Ct, is the leading infectious blinding disease worldwide. Chronic conjunctival inflammation develops in childhood and leads to eyelid scarring and blindness in adulthood. The immune response to Ct provides only partial protection against re-infection, which can be frequent. Moreover, the immune response is central to the development of scarring pathology, leading to loss of vision. Here we review the current literature on both protective and pathological immune responses in trachoma. The resolution of Ct infection in animal models is IFNγ-dependent, involving Th1 cells, but whether this is the case in human ocular infection still needs to be confirmed. An increasing number of studies indicate that innate immune responses arising from the epithelium and other innate immune cells, along with changes in matrix metalloproteinase activity, are important in the development of tissue damage and scarring. Current trachoma control measures, which are centred on repeated mass antibiotic treatment of populations, are logistically challenging and have the potential to drive antimicrobial resistance. A trachoma vaccine would offer significant advantages. However, limited understanding of the mechanisms of both protective immunity and immunopathology to Ct remain barriers to vaccine development.

  3. Active and passive immunity, vaccine types, excipients and licensing.

    Science.gov (United States)

    Baxter, David

    2007-12-01

    Abstract Immunity is the state of protection against infectious disease conferred either through an immune response generated by immunization or previous infection or by other non-immunological factors. This article reviews active and passive immunity and the differences between them: it also describes the four different commercially available vaccine types (live attenuated, killed/inactivated, subunit and toxoid): it also looks at how these different vaccines generate an adaptive immune response.

  4. Studies on the transfer of protective immunity with lymphoid cells from mice immune to malaria sporozoites

    International Nuclear Information System (INIS)

    Verhave, J.P.; Strickland, G.T.; Jaffe, H.A.; Ahmed, A.

    1978-01-01

    In an effort to understand the mechanisms involved in the protective immunity to malarial sporozoites, an A/J mouse/Plasmodium berghei model was studied. Protective immunity could consistently be adoptively transferred only by using sublethal irradiation of recipients (500 R); a spleen equivalent (100 x 10 6 ) of donor cells from immune syngeneic mice; and a small booster immunization (1 x 10 4 ) of recipients with irradiation-attenuated sporozoites. Recipient animals treated in this manner were protected from lethal challenge with 1 x 10 4 nonattenuated sporozoites. Immune and nonimmune serum and spleen cells from nonimmune animals did not protect recipient mice. Fewer immune spleen cells (50 x 10 6 ) protected some recipients. In vitro treatment of immune spleen cells with anti-theta sera and complement abolished their ability to transfer protection. This preliminary study suggests that protective sporozoite immunity can be transferred with cells, and that it is T cell dependent

  5. YopP-expressing variant of Y. pestis activates a potent innate immune response affording cross-protection against yersiniosis and tularemia [corrected].

    Directory of Open Access Journals (Sweden)

    Ayelet Zauberman

    Full Text Available Plague, initiated by Yersinia pestis infection, is a rapidly progressing disease with a high mortality rate if not quickly treated. The existence of antibiotic-resistant Y. pestis strains emphasizes the need for the development of novel countermeasures against plague. We previously reported the generation of a recombinant Y. pestis strain (Kim53ΔJ+P that over-expresses Y. enterocolitica YopP. When this strain was administered subcutaneously to mice, it elicited a fast and effective protective immune response in models of bubonic, pneumonic and septicemic plague. In the present study, we further characterized the immune response induced by the Kim53ΔJ+P recombinant strain. Using a panel of mouse strains defective in specific immune functions, we observed the induction of a prompt protective innate immune response that was interferon-γ dependent. Moreover, inoculation of mice with Y. pestis Kim53ΔJ+P elicited a rapid protective response against secondary infection by other bacterial pathogens, including the enteropathogen Y. enterocolitica and the respiratory pathogen Francisella tularensis. Thus, the development of new therapies to enhance the innate immune response may provide an initial critical delay in disease progression following the exposure to highly virulent bacterial pathogens, extending the time window for successful treatment.

  6. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  7. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  8. Smallpox vaccines: targets of protective immunity.

    Science.gov (United States)

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines. Published 2010. This article is a US Government work and is in the public domain in the USA.

  9. Distributed Computations Environment Protection Using Artificial Immune Systems

    Directory of Open Access Journals (Sweden)

    A. V. Moiseev

    2011-12-01

    Full Text Available In this article the authors describe possibility of artificial immune systems applying for distributed computations environment protection from definite types of malicious impacts.

  10. Friends and foes of tuberculosis: modulation of protective immunity.

    Science.gov (United States)

    Brighenti, Susanna; Joosten, Simone A

    2018-05-27

    Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis

    International Nuclear Information System (INIS)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-01-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log 10 PD 50 values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain

  12. Contribution of nonneutralizing vaccine-elicited antibody activities to improved protective efficacy in rhesus macaques immunized with Tat/Env compared with multigenic vaccines.

    Science.gov (United States)

    Florese, Ruth H; Demberg, Thorsten; Xiao, Peng; Kuller, LaRene; Larsen, Kay; Summers, L Ebonita; Venzon, David; Cafaro, Aurelio; Ensoli, Barbara; Robert-Guroff, Marjorie

    2009-03-15

    Previously, chronic-phase protection against SHIV(89.6P) challenge was significantly greater in macaques primed with replicating adenovirus type 5 host range mutant (Ad5hr) recombinants encoding HIVtat and env and boosted with Tat and Env protein compared with macaques primed with multigenic adenovirus recombinants (HIVtat, HIVenv, SIVgag, SIVnef) and boosted with Tat, Env, and Nef proteins. The greater protection was correlated with Tat- and Env-binding Abs. Because the macaques lacked SHIV(89.6P)-neutralizing activity prechallenge, we investigated whether Ab-dependent cellular cytotoxicity (ADCC) and Ab-dependent cell-mediated viral inhibition (ADCVI) might exert a protective effect. We clearly show that Tat can serve as an ADCC target, although the Tat-specific activity elicited did not correlate with better protection. However, Env-specific ADCC activity was consistently higher in the Tat/Env group, with sustained cell killing postchallenge exhibited at higher levels (p vaccine regimens.

  13. Effectiveness analyses may underestimate protection of infants after group C meningococcal immunization.

    Science.gov (United States)

    Vu, David M; Kelly, Dominic; Heath, Paul T; McCarthy, Noel D; Pollard, Andrew J; Granoff, Dan M

    2006-07-15

    Group C meningococcal conjugate-vaccine effectiveness in the United Kingdom declines from ~90% in the first year to 0% between 1 and 4 years after immunization in infants immunized at 2, 3, and 4 months of age and to 61% in toddlers given a single dose. Confidence intervals are wide, and the extent of protection is uncertain. Serum samples were obtained from children 3-5 years of age who were participants in a preschool booster-vaccine trial. Serum bactericidal activity was measured with human complement. Group C anticapsular antibody concentrations were measured by a radioantigen binding assay. Passive protection was analyzed in an infant rat bacteremia model. Serum samples from UK children who had been immunized 2-3 years earlier as infants or toddlers had higher levels of radioantigen binding, bactericidal activity, and passive protection than did historical control serum samples from unimmunized children (P or =1 : 4 (considered to be protective) than those immunized as toddlers (61% vs. 24%; Pprotection (50% and 41%, respectively; P=.4). We found no evidence of lower immunity in children immunized as infants than as toddlers. On the basis of serum bactericidal activity and/or passive protection, 40%-50% of both age groups are protected at 2-3 years after immunization, which was significantly greater than in unimmunized historical controls (<5%).

  14. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  15. Induction of protective immunity against toxoplasmosis in mice by ...

    African Journals Online (AJOL)

    The results showed that mice immunized by pcROP1 with or without alum produced high Th1 immune response compared with control groups. This type of DNA vaccine prolonged slightly the survival time. The current study showed that ROP1 DNA vaccine can induced partial protective response against toxoplasmosis.

  16. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    Science.gov (United States)

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  17. Humoral immunity through immunoglobulin M protects mice from an experimental actinomycetoma infection by Nocardia brasiliensis.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Pérez-Rivera, Isabel

    2004-10-01

    An experimental model of infection with Nocardia brasiliensis, used as an example of a facultative intracellular pathogen, was tested. N. brasiliensis was injected into the rear foot pads of BALB/c mice to establish an infection. Within 30 days, infected animals developed a chronic actinomycetoma infection. Batch cultures of N. brasiliensis were used to purify P61, P38, and P24 antigens; P61 is a catalase, and P38 is a protease with strong caseinolytic activity. Active and passive immunizations of BALB/c mice with these three purified soluble antigens were studied. Protection was demonstrated for actively immunized mice. However, immunity lasted only 30 days. Other groups of immunized mice were bled at different times, and their sera were passively transferred to naive recipients that were then infected with N. brasiliensis. Sera collected 5, 6, and 7 days after donor immunization conferred complete, long-lasting protection. The protective effect of passive immunity decreased when sera were collected 2 weeks after donor immunization. However, neither the early sera (1-, 2-, and 3-day sera) nor the later sera (30- or 45-day sera) prevented the infection. Hyperimmune sera with the highest levels of immunoglobulin G (IgG) to N. brasiliensis antigens did not protect at all. The antigens tested induced two IgM peaks. The first peak was present 3 days after immunization but was not antigen specific and did not transfer protection. The second peak was evident 7 days after immunization, was an IgM response, was antigen specific, and conferred protection. This results clearly demonstrate that IgM antibodies protect the host against a facultative intracellular bacterium.

  18. Insect immunity shows specificity in protection upon secondary pathogen exposure.

    Science.gov (United States)

    Sadd, Ben M; Schmid-Hempel, Paul

    2006-06-20

    Immunological memory in vertebrates, conferring lasting specific protection after an initial pathogen exposure, has implications for a broad spectrum of evolutionary, epidemiological, and medical phenomena . However, the existence of specificity in protection upon secondary pathogen exposure in invertebrates remains controversial . To separate this functional phenomenon from a particular mechanism, we refer to it as specific immune priming. We investigate the presence of specific immune priming in workers of the social insect Bombus terrestris. Using three bacterial pathogens, we test whether a prior homologous pathogen exposure gives a benefit in terms of long-term protection against a later challenge, over and above a heterologous combination. With a reciprocally designed initial and second-exposure protocol (i.e., all combinations of bacteria were tested), we demonstrate, even several weeks after the clearance of a first exposure, increased protection and narrow specificity upon secondary exposure. This demonstrates that the invertebrate immune system is functionally capable of unexpectedly specific and durable induced protection. Ultimately, despite general broad differences between vertebrates and invertebrates, the ability of both immune systems to show specificity in protection suggests that their immune defenses have found comparable solutions to similar selective pressures over evolutionary time.

  19. Cytomegalovirus in the Neonate: Immune Correlates of Infection and Protection

    Science.gov (United States)

    Schleiss, Mark R.

    2013-01-01

    Fetal and neonatal infections caused by human cytomegalovirus (CMV) are important causes of morbidity and occasional mortality. Development of a vaccine against congenital CMV infection is a major public health priority. Vaccine design is currently focused on strategies that aim to elicit neutralizing antibody and T-cell responses, toward the goal of preventing primary or recurrent infection in women of child-bearing age. However, there has been relatively little attention given to understanding the mechanisms of immune protection against acquisition of CMV infection in the fetus and newborn and how this information might be exploited for vaccine design. There has similarly been an insufficient study of what deficits in the immune response to CMV, both for mother and fetus, may increase susceptibility to congenital infection and disease. Protection of the fetus against vertical transmission can likely be achieved by protection of the placenta, which has its own unique immunological milieu, further complicating the analysis of the correlates of protective immunity. In this review, the current state of knowledge about immune effectors of protection against CMV in the maternal, placental, and fetal compartments is reviewed. A better understanding of immune responses that prevent and/or predispose to infection will help in the development of novel vaccine strategies. PMID:24023565

  20. Cytomegalovirus in the Neonate: Immune Correlates of Infection and Protection

    Directory of Open Access Journals (Sweden)

    Mark R. Schleiss

    2013-01-01

    Full Text Available Fetal and neonatal infections caused by human cytomegalovirus (CMV are important causes of morbidity and occasional mortality. Development of a vaccine against congenital CMV infection is a major public health priority. Vaccine design is currently focused on strategies that aim to elicit neutralizing antibody and T-cell responses, toward the goal of preventing primary or recurrent infection in women of child-bearing age. However, there has been relatively little attention given to understanding the mechanisms of immune protection against acquisition of CMV infection in the fetus and newborn and how this information might be exploited for vaccine design. There has similarly been an insufficient study of what deficits in the immune response to CMV, both for mother and fetus, may increase susceptibility to congenital infection and disease. Protection of the fetus against vertical transmission can likely be achieved by protection of the placenta, which has its own unique immunological milieu, further complicating the analysis of the correlates of protective immunity. In this review, the current state of knowledge about immune effectors of protection against CMV in the maternal, placental, and fetal compartments is reviewed. A better understanding of immune responses that prevent and/or predispose to infection will help in the development of novel vaccine strategies.

  1. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  2. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  3. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated DNA vaccines were ...

  4. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  5. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    International Nuclear Information System (INIS)

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations

  6. Immunity to Babesia in mice I. Adoptive transfer of immunity to Babesia rodhaini with immune spleen cells and the effect of irradiation on the protection of immune mice

    NARCIS (Netherlands)

    Kuil, H.; Zivkovic, D.; Seinen, W.; Albers-van Bemmel, C.M.G.; Speksnijder, J.E.

    1984-01-01

    Immunisation of Balb/c mice against Babesia rodhaini by an amicarbalide- controlled infection resulted in a solid immunity which lasted for 216 days. With spleen cells of immune mice protection could be transferred both to naive mice pretreated with cyclophosphamide. Treatment of naive mice with

  7. Eosinophils mediate protective immunity against secondary nematode infection.

    Science.gov (United States)

    Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A

    2015-01-01

    Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.

  8. Experiences from polio supplementary immunization activities in ...

    African Journals Online (AJOL)

    2014-05-31

    May 31, 2014 ... lessons from supplementary immunization activities (SIAs) conducted in the State that will be useful to ... Poliovirus invades the central nervous system and causes ..... The vaccine wastage rate of 6.6% was slightly higher.

  9. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after vac...

  10. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Jang-Gi Choi

    2017-11-01

    Full Text Available Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR, which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2 expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3 in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10% compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular

  11. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    Directory of Open Access Journals (Sweden)

    Jakob Begun

    2007-04-01

    Full Text Available Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  12. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  13. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  14. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-12-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.

  15. Studies on the protection effects of functional foods for skin immune system from radiation damage

    International Nuclear Information System (INIS)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In

    2007-07-01

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. · Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment · Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice · Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells · Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-α, GM-CSF) - Inhibition of c-kit, tryptase, FcεRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  16. Studies on the protection effects of functional foods for skin immune system from radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Shin, Seong Hae; Kim, Do Sun; Heo, Ji Yun; Kang, Hye In [Sunchon National University, Sunchon (Korea, Republic of)

    2007-07-15

    We evaluated the protective effects of pilot products (HemoHIM and HemoTonic) on the UV-induced skin immune damages as the following. centre dot Protective effects of HemoHIM and HemoTonic against UV using contact hypersensitivity model - Protection against depression of contact hypersensitivity by administration and skin application of HemoHIM and HemoTonic - Induction of dendritic cell differentiation and maturation by HemoHIM and HemoTonic treatment - Improvement of antigen-presenting activity of dedritic cells by HemoHIM and HemoTonic treatment centre dot Protective effects of HemoHIM and HemoTonic on skin immune system against UV-irradiation - Protection of antigen-presenting activity of dendritic cells under UV-irradiation - In vivo protection of antigen-presenting activity of Langerhans cells in UV-irradiated mice centre dot Protective effects of HemoHIM on UV-induced apoptosis of dendritic cells - Inhibition of cell membrane change, mitochondrial potential change, SubG1 cell population, nuclear condensation, and DNA fragmentation in UV-irradiated dendritic cells centre dot Anti-allergic effects of HemoHIM and HemoTonic in human adipocyte HMC-1 cells - Inhibition of allergic histamine release from adipocytes - Inhibition of secretion of inflammatory cytokines (IL-6, IL-8, TNF-alpha, GM-CSF) - Inhibition of c-kit, tryptase, FcepsilonRI mRNA expression From these results, the developed functional food products (HemoHIM, HemoTonic) showed the protection and recovery of the immune functions in the UV-irradiated skin. It is suggested that these products may be used as a new functional food or cosmetic material for the protection of skin damage and the promotion of recovery

  17. Immunogenicity is unrelated to protective immunity when induced by soluble and particulate antigens from Nocardia brasiliensis in BALB/c mice.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Ramos, Alma I; Pérez-Rivera, Isabel

    2006-08-01

    Cell-mediated immunity plays a major role in protection against intracellular microbes. Nocardia brasiliensis is a facultative intracellular pathogen that causes chronic actinomycetoma. In this work, we injected BALB/c mice with soluble P24 and particulate antigens from N. brasiliensis. A higher antibody titer and lymphocyte proliferation was induced by the particulate antigen than by the soluble antigen. However, five months after antigen injection, antibody concentration and lymphocyte proliferation were similar. An increase in CD45R and CD4 T cells was unrelated to protective immunity. Active immunization with soluble or particulate antigens induced complete protection during the primary immune response. This protective response was IgM mediated. The higher immunogenicity was not related to protective immunity since the particulate antigen induced protection similar to the soluble antigen. Using particulate antigens for vaccination guarantees a stronger immune response, local and systemic side effects, but not necessarily protection.

  18. Protective Immunity against Hepatitis C: Many Shades of Grey

    Directory of Open Access Journals (Sweden)

    Mohamed S Abdel-Hakeem

    2014-06-01

    Full Text Available The majority of individuals who become acutely infected with hepatitis C virus (HCV develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals (DAAs, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users (IDUs who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon re-exposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.

  19. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  20. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Directory of Open Access Journals (Sweden)

    María Emilia Gaillard

    2017-09-01

    Full Text Available Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001 in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results

  1. Protective effect of yeast β-glucan on immune system of mice irradiated by carbon ions

    International Nuclear Information System (INIS)

    Wang Ying; Lu Dong; Wei Wei; Jing Xigang; Wang Jufang; Li Wenjian

    2012-01-01

    Abstract. To detect Yeast β-glucan's protective effect on mice's immune system after C ion beam radiation, mice were used as the test model. We observed the weight, hair color and behavior of mice everyday within a 7 d period of time after irradiation. Meanwhile, the content of white blood cell, on the 2nd and 7th day after irradiation was detected. We detected the thymus and spleen SOD, GSH-PX activity and MDA content of the mice on the 8th day. The results showed that yeast β-glucan could reduce the rapid weight loss of mice, increase white blood cell content, increase thymus and spleen SOD, GSH-PX activity, decrease MDA content of thymus and spleen. These results indicate that yeast 13-glucan can protect mice's immune system against C ion beam radiation damage. (authors)

  2. Immunization of C57BL/6 Mice with GRA2 Combined with MPL Conferred Partial Immune Protection against Toxoplasma gondii

    Science.gov (United States)

    Babaie, Jalal; Amiri, Samira; Homayoun, Robab; Azimi, Ebrahim; Mohabati, Reyhaneh; Berizi, Mahboobe; Sadaie, M. Reza; Golkar, Majid

    2018-01-01

    We have previously reported that immunization with GRA2 antigen of Toxoplasma gondii induces protective immunity in CBA/J (H2k) and BALB/c mice (H2d). We aimed to examine whether immunization of a distinct strain of rodent with recombinant dense granule antigens (GRA2) combined with monophosphorryl lipid A (MPL) adjuvant elicits protective immune response against T. gondii. C57BL/6 (H2b haplotype) mice were immunized with GRA2, formulated in MPL adjuvant. Strong humoral response, predominantly of IgG1 subclass and cellular response, IFN-γ, was detected at three weeks post immunization. Mice immunized with GRA2 had significantly (p < 0.01) fewer brain cysts than those in the adjuvant group, upon challenge infection. Despite the production of a strong antibody response, IFN-γ production and brain cyst reduction were not significant when the immunized mice were infected four months after the immunization. We can conclude that GRA2 immunization partially protects against T. gondii infection in C57BL/6 mice, though the potency and longevity of this antigen as a standalone vaccine may vary in distinct genetic backgrounds. This observation further emphasizes the utility of GRA2 for incorporation into a multi-antigenic vaccine against T. gondii.

  3. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  4. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  5. No protection in chickens immunized by the oral or intra-muscular immunization route with Ascaridia galli soluble antigen

    DEFF Research Database (Denmark)

    Andersen, Janne Pleidrup; Norup, Liselotte R.; Dalgaard, Tina S.

    2013-01-01

    In chickens, the nematode Ascaridia galli is found with prevalences of up to 100% causing economic losses to farmers. No avian nematode vaccines have yet been developed and detailed knowledge about the chicken immune response towards A. galli is therefore of great importance. The objective...... of this study was to evaluate the induction of protective immune responses to A. galli soluble antigen by different immunization routes. Chickens were immunized with a crude extract of A. galli via an oral or intra-muscular route using cholera toxin B subunit as adjuvant and subsequently challenged with A...... immunization had an effect on both Th1 and Th2 cytokines in caecal tonsils and Meckel's diverticulum. Thus both humoral and cellular immune responses are inducible by soluble A. galli antigen, but in this study no protection against the parasite was achieved....

  6. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Science.gov (United States)

    Gaillard, María Emilia; Bottero, Daniela; Zurita, María Eugenia; Carriquiriborde, Francisco; Martin Aispuro, Pablo; Bartel, Erika; Sabater-Martínez, David; Bravo, María Sol; Castuma, Celina; Hozbor, Daniela Flavia

    2017-01-01

    Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP) vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results—though admittedly not necessarily immediately extrapolatable to humans—nevertheless enabled us to test hypotheses under controlled conditions through detailed sampling and data collection. These

  7. The role of rare innate immune cells in Type 2 immune activation against parasitic helminths.

    Science.gov (United States)

    Webb, Lauren M; Tait Wojno, Elia D

    2017-09-01

    The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

  8. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  9. Active immunization against renin in normotensive marmoset

    International Nuclear Information System (INIS)

    Michel, J.B.; Guettier, C.; Philippe, M.; Galen, F.X.; Corvol, P.; Menard, J.

    1987-01-01

    Primate renins (human and monkey) are very similar. We used pure human renin to immunize marmosets (Callithrix jacchus) and thereby produce a chronic blockade of the renin-angiotensinogen reaction. After a control period of 2 months, five male marmosets, on their usual sodium-poor diet, were immunized against pure human renin by three subcutneous injections of 30 μg each, with complete and then incomplete Freund's adjuvant. Three marmosets were injected with adjuvant only and served as controls. Blood sampling and blood pressure measurements were performed weekly. After the third injection, the five marmosets immunized against renin developed a high titer of renin antibodies (50% binding of 125 I-labeled human renin at a dilution of ≥ 1:10,000). The antibodies inhibited the enzymatic activity of both marmoset and human renins. At the same time, systolic blood pressure decreased significantly. Plasma renin enzyme activity was undetectable in the animals. Plasma aldosterone decreased significantly. After 1-4 months with low blood pressure, a normal urinary output, and a normal plasma creatinine, the five marmosets became sick and died within one month. At autopsy an immunological renal disease, characterize by the presence of immunoglobulin and macrophage infiltration colocalized with renin, was found. No immunoglobulin was detectable in extrarenal vessels or in other organs. These experiments demonstrate that, in this primate, a chronic blockade of the renin-angiotensin system can be achieved by active immunization against homologous renin, but this blockade is associated with the development of an autoimmune disease localized in the kidney

  10. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Xiaolu Xiong

    Full Text Available Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. In the present study, 131 candidate peptides were selected from the major immunodominant proteins (MIPs of C. burnetii due to their high-affinity binding capacity for the MHC class II molecule H2 I-A(b based on bioinformatic analyses. Twenty-two of the candidate peptides with distinct MIP epitopes were well recognized by the IFN-γ recall responses of CD4(+ T cells from mice immunized with parental proteins in an ELISPOT assay. In addition, 7 of the 22 peptides could efficiently induce CD4(+ T cells from mice immunized with C. burnetii to rapidly proliferate and significantly increase IFN-γ production. Significantly higher levels of IL-2, IL-12p70, IFN-γ, and TNF-α were also detected in serum from mice immunized with a pool of the 7 peptides. Immunization with the pool of 7 peptides, but not the individual peptides, conferred a significant protection against C. burnetii infection in mice, suggesting that these Th1 peptides could work together to efficiently activate CD4(+ T cells to produce the Th1-type immune response against C. burnetii infection. These observations could contribute to the rational design of molecular vaccines for Q fever.

  11. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Science.gov (United States)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  12. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  13. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  14. Establishing a small animal model for evaluating protective immunity against mumps virus.

    Directory of Open Access Journals (Sweden)

    Adrian Pickar

    Full Text Available Although mumps vaccines have been used for several decades, protective immune correlates have not been defined. Recently, mumps outbreaks have occurred in vaccinated populations. To better understand the causes of the outbreaks and to develop means to control outbreaks in mumps vaccine immunized populations, defining protective immune correlates will be critical. Unfortunately, no small animal model for assessing mumps immunity exists. In this study, we evaluated use of type I interferon (IFN alpha/beta receptor knockout mice (IFN-α/βR-/- for such a model. We found these mice to be susceptible to mumps virus administered intranasally and intracranially. Passive transfer of purified IgG from immunized mice protected naïve mice from mumps virus infection, confirming the role of antibody in protection and demonstrating the potential for this model to evaluate mumps immunity.

  15. Discovering naturally processed antigenic determinants that confer protective T cell immunity

    DEFF Research Database (Denmark)

    Gilchuk, Pavlo; Spencer, Charles T; Conant, Stephanie B

    2013-01-01

    and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental...

  16. Transfer of maternal immunity to piglets is involved in early protection against Mycoplasma hyosynoviae infection

    DEFF Research Database (Denmark)

    Lauritsen, Klara Tølbøl; Hagedorn-Olsen, Tine; Jungersen, Gregers

    2017-01-01

    Mycoplasma hyosynoviae causes arthritis in pigs older than 12 weeks. The role of colostrum in protection of piglets against M. hyosynoviae infection is not clear. Our objective was therefore to investigate whether transfer of maternal immunity to piglets was involved in early protection against...... immune response that complements the maternally transferred immune factors. Evident from this study is that the general absence of M. hyosynoviae arthritis in piglets can be ascribed mainly to their immunological status....

  17. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  18. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    Science.gov (United States)

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Passive and active immunity against parvovirus infection in piglets ...

    African Journals Online (AJOL)

    On the basis of the given results, we conclude that colostral immunity to parvovirus infection in swine lasts for about one month and that antibodies found in the blood serum of piglets after the first month of life are a result of the activation of the immune system. Keywords: Porcine parvovirus, colostral immunity, reproductive ...

  20. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  1. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  2. Insights into the multifunctional role of natural killer enhancing factor-A (NKEF-A/Prx1) in big-belly seahorse (Hippocampus abdominalis): DNA protection, insulin reduction, H2O2 scavenging, and immune modulation activity.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Lee, Jehee

    2018-02-05

    Natural killer enhancing factor A (NKEF-A), also known as peroxiredoxin 1 (Prx1), is a well-known antioxidant involved in innate immunity. Although NKEF-A/Prx1 has been studied in different fish species, the present study broadens the knowledge of NKEF-A gene in terms of molecular structure, function, and immune responses in fish species. Hippocampus abdominalis NKEF-A (HaNKEF-A) cDNA encoded a putative protein of 198 amino acids containing a thioredoxin_2 domain, VCP motifs, and three conserved cysteine residues including peroxidatic and resolving cysteines. Amino acid sequence comparison and phylogenetic breakdown showed the higher sequence identity and closer evolutionary position of HaNKEF-A to those of other fish counterparts. A recombinant protein of HaNKEF-A was shown to i) protect supercoiled DNA against mixed catalyzed oxidation, ii) reduce insulin disulfide bonds, and iii) scavenge extracellular H 2 O 2 . Results of in vitro assays demonstrated the concentration dependent antioxidant function of recombinant HaNKEF-A. In addition, qPCR assessments revealed that the HaNKEF-A transcripts were constitutively expressed in fourteen tissues with the highest expression in liver. As an innate immune response, HaNKEF-A transcripts were up-regulated in liver post injection of LPS, Edwardsiella tarda, Streptococcus iniae, and polyinosinic-polycytidylic acid. Thus, HaNKEF-A can safeguards big-belly seahorse from oxidative damage and pathogenic infections. This study provides insight into the functions of NKEF-A/Prx1 in fish species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    Science.gov (United States)

    Abraham, David; Hess, Jessica A; Mejia, Rojelio; Nolan, Thomas J; Lok, James B; Lustigman, Sara; Nutman, Thomas B

    2011-10-19

    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    Science.gov (United States)

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  5. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    Science.gov (United States)

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle

    Science.gov (United States)

    Dubuffet, Aurore; Zanchi, Caroline; Boutet, Gwendoline; Moreau, Jérôme; Teixeira, Maria; Moret, Yannick

    2015-01-01

    In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations. PMID:26430786

  7. Trans-generational Immune Priming Protects the Eggs Only against Gram-Positive Bacteria in the Mealworm Beetle.

    Directory of Open Access Journals (Sweden)

    Aurore Dubuffet

    2015-10-01

    Full Text Available In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called "Trans-generational immune priming" (TGIP are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations.

  8. Protection of Broiler Chicks Housed with Immunized Cohorts Against Infection with Eimeria maxima and E. acervulina.

    Science.gov (United States)

    Fetterer, Raymond H; Barfield, Ruth C; Jenkins, Mark C

    2015-03-01

    The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidiosis in broilers. Knowledge of the mechanisms employed when chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chicks not initially immunized may ingest oocysts by contact with litter containing oocysts shed by immunized cohorts. In Experiment 1, day-old broiler chicks were housed in pens containing clean litter. In Trial 1, 100% of chicks in some pens were immunized with 2.5 X 10(3) Eimeria acervulina oocysts while in other pens only 75% of chicks were immunized and remaining cohorts within the pens were not immunized. Other pens contained chicks that served as nonimmunized nonchallenged controls or nonimmunized challenged controls (NIC). On day 21, birds were given a homologous challenge of 6 X 10(5) oocysts. A second identical trial was conducted, except birds were immunized with 500 Eimeria maxima oocysts and were challenged with 3 X 10(3) E. maxima oocysts. In Experiment 2, 100% of chicks in some pens were immunized with 500 E. acervulina oocysts while in other pens either 75% or 50% of the birds were immunized. On day 14, birds were challenged with 1 X 10(6) oocysts. Trial 2 was identical to Trial 1 except that birds were immunized with 100 E. maxima oocysts and challenged with 1 X 10(6) oocysts. For all experiments weight gain, feed conversion ratio (FCR), plasma carotenoids, and litter oocyst counts were measured. In Experiment 1, the level of protection in groups containing 25% nonimmunized cohorts, as measured by weight gain, carotenoid level, FCR, and oocyst litter counts, was identical to groups containing 100% immunized chicks. In Experiment 2, pens where 50% or 75% of birds were immunized with either E. maxima or E. acervulina were not well protected from decreases in weight gain and plasma carotenoids nor from increases in litter oocyst counts following a challenge

  9. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Science.gov (United States)

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  10. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    Science.gov (United States)

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  11. Protective immunity by oral immunization with heat-killed Shigella strains in a guinea pig colitis model.

    Science.gov (United States)

    Barman, Soumik; Koley, Hemanta; Ramamurthy, Thandavarayan; Chakrabarti, Manoj Kumar; Shinoda, Sumio; Nair, Gopinath Balakrish; Takeda, Yoshifumi

    2013-11-01

    The protective efficacy of and immune response to heat-killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 10(7) of each serogroup/serotype of heat-killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 10(9) live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat-killed cells of the six Shigella serogroups/serotypes studied would be a possible broad-spectrum candidate vaccine against shigellosis. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  12. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  13. Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887

    Directory of Open Access Journals (Sweden)

    J.D. Biller-Takahashi

    2013-12-01

    Full Text Available The immune system of teleost fish has mechanisms responsible for the defense against bacteria through protective proteins in several tissues. The protein action can be evaluated by serum bactericidal activity and this is an important tool to analyze the immune system. Pacu, Piaractus mesopotamicus, is one of the most important fish in national aquaculture. However there is a lack of studies on its immune responses. In order to standardize and assess the accuracy of the serum bactericidal activity assay, fish were briefly challenged with Aeromonas hydrophila and sampled one week after the challenge. The bacterial infection increased the concentration of protective proteins, resulting in a decrease of colony-forming unit values expressed as well as an enhanced serum bactericidal activity. The protocol showed a reliable assay, appropriate to determine the serum bactericidal activity of pacu in the present experimental conditions.

  14. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection.

    Science.gov (United States)

    Lopez, Pamela Aranda; Denny, Mark; Hartmann, Ann-Kathrin; Alflen, Astrid; Probst, Hans Christian; von Stebut, Esther; Tenzer, Stefan; Schild, Hansjörg; Stassen, Michael; Langguth, Peter; Radsak, Markus P

    2017-09-01

    Transcutaneous immunization (TCI) is a novel vaccination strategy utilizing the skin associated lymphatic tissue to induce immune responses. TCI using a cytotoxic T lymphocyte (CTL) epitope and the Toll-like receptor 7 (TLR7) agonist imiquimod mounts strong CTL responses by activation and maturation of skin-derived dendritic cells (DCs) and their migration to lymph nodes. However, TCI based on the commercial formulation Aldara only induces transient CTL responses that needs further improvement for the induction of durable therapeutic immune responses. Therefore we aimed to develop a novel imiquimod solid nanoemulsion (IMI-Sol) for TCI with superior vaccination properties suited to induce high quality T cell responses for enhanced protection against infections. TCI was performed by applying a MHC class I or II restricted epitope along with IMI-Sol or Aldara (each containing 5% Imiquimod) on the shaved dorsum of C57BL/6, IL-1R, Myd88, Tlr7 or Ccr7 deficient mice. T cell responses as well as DC migration upon TCI were subsequently analyzed by flow cytometry. To determine in vivo efficacy of TCI induced immune responses, CTL responses and frequency of peptide specific T cells were evaluated on day 8 or 35 post vaccination and protection in a lymphocytic choriomeningitis virus (LCMV) infection model was assessed. TCI with the imiquimod formulation IMI-Sol displayed equal skin penetration of imiquimod compared to Aldara, but elicited superior CD8 + as well as CD4 + T cell responses. The induction of T-cell responses induced by IMI-Sol TCI was dependent on the TLR7/MyD88 pathway and independent of IL-1R. IMI-Sol TCI activated skin-derived DCs in skin-draining lymph nodes more efficiently compared to Aldara leading to enhanced protection in a LCMV infection model. Our data demonstrate that IMI-Sol TCI can overcome current limitations of previous imiquimod based TCI approaches opening new perspectives for transcutaneous vaccination strategies and allowing the use of this

  16. VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, L; Salanti, A

    2007-01-01

    People living in areas with stable transmission of P. falciparum parasites acquire protective immunity to malaria over a number of years and following multiple disease episodes. Immunity acquired this way is mediated by IgG with specificity for parasite-encoded, clonally variant surface antigens...... that the selective placental accumulation of IEs that characterizes pregnancy-associated malaria (PAM) is caused by an immunologically and functionally unique subset of VSA (VSAPAM) that is only expressed by parasites infecting pregnant women, and that protective immunity to PAM is mediated by IgG with specificity...

  17. A protective effect of epidermal powder immunization in a mouse model of equine herpesvirus-1 infection

    International Nuclear Information System (INIS)

    Kondo, Takashi; McGregor, Martha; Chu, Qili; Chen, Dexiang; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2004-01-01

    To evaluate the protective effect of epidermal powder immunization (EPI) against equine herpesvirus-1 (EHV-1) infection, we prepared a powder vaccine in which formalin-inactivated virions were embedded in water-soluble, sugar-based particles. A PowderJect device was used to immunize mice with the powder vaccine via their abdominal skin. We found that twice-immunized mice were protected against challenge with the wild-type virus. This protective effect was equivalent to or better than that observed in mice immunized with other types of vaccines, including a gene gun-mediated DNA vaccine containing the glycoprotein D (gD) gene or conventional inactivated virus vaccines introduced via intramuscular or intranasal injections. These findings indicate that the powder vaccine is a promising approach for the immunological control of EHV-1 infection, either alone or as a part of prime-boost vaccination strategies

  18. Perturbation of cellular immune functions in cigarette smokers and protection by palm oil vitamin E supplementation

    Directory of Open Access Journals (Sweden)

    Jubri Zakiah

    2013-01-01

    Full Text Available Abstract Background Cigarette smoke contains free radicals and an have adverse effect to the immune system. Supplementation of palm oil vitamin E (palmvitee, is known has antioxidant properties is thought to be beneficial for system immune protection against free radicals activity. The objective of the study was to determine the effect of palmvitee supplementation on immune response in smokers. Methods This study involved a group of smokers and nonsmokers who received 200 mg/day palmvitee and placebo for the control group. Blood samples were taken at 0, 12 and 24 weeks of supplementation. Plasma tocopherol and tocotrienol were determined by HPLC, lymphocyte proliferation by lymphocyte transformation test (LTT and enumeration of lymphocytes T and B cells by flow cytometry. Statistical analysis was performed by Mann–Whitney U-test for non-parametric data distribution and correlation among the variables was examined by Spearman. Results Plasma tocopherol and tocotrienol were increased in vitamin E supplemented group as compared to placebo group. Urine cotinine levels and serum α1-antitrypsin were significantly higher in smokers compared to nonsmokers. Lymphocyte proliferation induced by PHA showed an increasing trend with palmvitee supplementation in both smokers and nonsmokers. Natural killer cells were decreased; CD4+ cells and B cells were increased in smokers compared to nonsmokers but were unaffected with vitamin E supplementation except in the percentage of B cells which were increased in nonsmokers supplemented palmvitee compared to placebo. CD4+/CD8+ ratio was increased in smokers compared to nonsmokers. The high TWBC count observed in smokers correlated with the increased CD4+ and B cells. Conclusions Smoking caused alterations in certain immune parameters and palmvitee supplementation tended to cause an increase in lymphocytes transformation test but had no effect on CD3+, CD4+, CD8+, NK cells and B cells except B cells percentage

  19. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis

    Science.gov (United States)

    Navarathna, Dhammika H. M. L. P.; Stein, Erica V.; Lessey-Morillon, Elizabeth C.; Nayak, Debasis; Martin-Manso, Gema; Roberts, David D.

    2015-01-01

    CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47 -/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47 -/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47 -/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47 -/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47 -/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47 -/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47 -/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity. PMID:26010544

  20. 78 FR 15876 - Activation of Ice Protection

    Science.gov (United States)

    2013-03-13

    ...-0675; Amendment No. 121-363] RIN 2120-AJ43 Activation of Ice Protection AGENCY: Federal Aviation... On August 22, 2011, the FAA published a final rule entitled, ``Activation of Ice Protection,'' (76 FR... protection system. The FAA inadvertently wrote the amendatory language incorrectly to say that we were...

  1. Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Christensen, Dennis; Hansen, Lasse Bøllehuus

    2017-01-01

    Streptococcus pyogenes (group A streptococcus, GAS) is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future...... vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally...... primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via...

  2. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    Science.gov (United States)

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  3. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Directory of Open Access Journals (Sweden)

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  4. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, M.; Perez, M.; Dubner, D.; Michelin, S.; Carosella, E.

    2006-01-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  5. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  6. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Meritxell García-Quintanilla

    Full Text Available The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010, one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.

  8. Protective immune mechanisms against pre-erythrocytic forms of Plasmodium berghei depend on the target antigen

    Directory of Open Access Journals (Sweden)

    Elke S. Bergmann-Leitner

    2014-01-01

    Full Text Available Pre-erythrocytic malaria vaccines are believed to either stop the injected sporozoites from reaching the liver or to direct cellular immune responses towards eliminating infected hepatocytes. The present study reveals for the first time the anatomical sites at which these immune mechanisms act against the malaria parasites. To determine the mechanisms leading to protection mediated by two previously characterized vaccines against either the circumsporozoite protein (CSP or the cell traversal protein for ookinetes and sporozoites (CelTOS, mice were immunized and subsequently challenged by subcutaneous injection of salivary gland sporozoites of luciferase-transgenic Plasmodium berghei parasites. The In Vivo Imaging System (IVIS was used to identify the anatomical site where the vaccine-induced immune response eliminates sporozoites after injection. The data demonstrate that CSP-based immunity acts at the site of infection (skin whereas CelTOS-based immunity is only partially efficient in the skin and allows reduced levels of liver infection that can be subsequently cleared. The results of this study challenge assumptions regarding CSP-mediated immune mechanisms and call into question the validity of some commonly used assays to evaluate anti-CSP immune responses. The knowledge of the mechanism and events leading to infection or immune defense will guide supportive treatment with drugs or combination therapies and thus accelerate the development of effective antimalarial strategies.

  9. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity

    Directory of Open Access Journals (Sweden)

    BenMohamed Lbachir

    2011-02-01

    Full Text Available Abstract Immunity against the pre-erythrocytic stages of malaria is the most promising, as it is strong and fully sterilizing. Yet, the underlying immune effectors against the human Plasmodium falciparum pre-erythrocytic stages remain surprisingly poorly known and have been little explored, which in turn prevents any rational vaccine progress. Evidence that has been gathered in vitro and in vivo, in higher primates and in humans, is reviewed here, emphasizing the significant role of IFN-γ, either as a critical immune mediator or at least as a valuable surrogate marker of protection. One may hope that these results will trigger investigations in volunteers immunized either by optimally irradiated or over-irradiated sporozoites, to quickly delineate better surrogates of protection, which are essential for the development of a successful malaria vaccine.

  10. Protective immune responses with trickle infections of third-stage filarial larvae of Wuchereria bancrofti in mice.

    Science.gov (United States)

    Rajasekariah, G R; Monteiro, Y M; Netto, A; Deshpande, L; Subrahmanyam, D

    1989-01-01

    Groups of inbred BALB/c mice were immunized with trickle doses of 20 live third-stage larvae (L3) of Wuchereria bancrofti each subcutaneously or with 150 microg of sonicated microfilarial antigens emulsified in Freund's adjuvant intramuscularly. An antibody response was distinctly seen after seven trickle doses of L3 and following with the sonicated microfilarial immunization. Due to the non-permissive nature of inbred mice to W. bancrofti infections, a novel immunization approach was adopted using appropriate age- and sex-matched controls. The anti-L3 response in terms of antibody-dependent cell-mediated adhesion and killing was assessed in the immunized animals by implanting live L3 in micropore chambers subcutaneously. About 75% L3 W. bancrofti were affected in animals sensitized with seven trickle doses of L3. When sensitizations were continued, as high as 92% of L3 were seen affected with ten trickle doses compared with 27% in age-matched controls. Immunization with sonicated microfilarial antigen affected about 70% of L3 as opposed to only 12% in controls. A positive correlation was observed in the antibody response with protectivity. This method of induction and assessment of the anti-L3 response involving a small set of animals has not only allowed quantification of affected L3 but has also enabled us to visualize larval conditions in immunologically activated animals. The micropore chamber system, would be useful in monitoring the induction of protective immune response against W. bancrofti in inbred mice. Experimentation on large numbers of animals is required to elucidate further the response of mice towards L3 and also to pinpoint the putative protective antigens. PMID:12412764

  11. Immune complex-based vaccine for pig protection against parvovirus.

    Science.gov (United States)

    Roić, B; Cajavec, S; Ergotić, N; Lipej, Z; Madić, J; Lojkić, M; Pokrić, B

    2006-02-01

    The insoluble immune complexes (ICs) were prepared under the conditions of double immunodiffusion in gel, using the suspension of the ultrasound treated PK-15 cell-line infected with porcine parvovirus (PPV) containing both viral particles and viral proteins, as well as pig or rabbit anti-PPV polyclonal immune sera. The immunodiffusion performed in an agarose gel allows only viral subunits with a molecular mass equal to or less than 1000 kDa, rather than the viral particles, to diffuse through the gel and reach the point where the immunoprecipitate is to be formed. The immunoprecipitation under the conditions of the diffusion ensures the optimal, i.e. equimolar ratio of both immunoprecipitating components, antibody/antigen in the IC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the Western blot analyses showed the ICs were composed of two proteins, a protein in which molecular mass corresponded to the VP2 of the PPV and a protein with a molecular mass of the IgG. This suggests that the ICs are mainly composed of the VP2 antigen and IgG class antibodies. The potency of the IC-vaccines prepared in the form of a water-in-oil-in-water emulsion was compared with that of a commercially available, inactivated oil vaccine. The vaccination of gilts, 6 weeks before mating, with the IC containing allogeneic pig antibodies, resulted in the development of high and long-lasting anti-PPV antibody titres, similar to those generated by the licenced vaccine (P > 0.01). The content of the virus material administered by the IC was twice lower than that in the licenced vaccine. Neither systemic nor local reactions were observed in the gilts during the period of the trial with the IC vaccine. The number of viable piglets per litter varied between 9 and 12 and no signs of the PPV infection were detected. Rabbits were used as one of the alternative laboratory animal models accepted for the testing of the vaccine against the PPV. The rabbit humoral immune response

  12. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  13. Local Th17/IgA immunity correlate with protection against intranasal infection with Streptococcus pyogenes.

    Directory of Open Access Journals (Sweden)

    Rasmus Mortensen

    Full Text Available Streptococcus pyogenes (group A streptococcus, GAS is responsible for a wide array of infections. Respiratory transmission via droplets is the most common mode of transmission but it may also infect the host via other routes such as lesions in the skin. To advance the development of a future vaccine against GAS, it is therefore important to investigate how protective immunity is related to the route of vaccine administration. To explore this, we examined whether a parenterally administered anti-GAS vaccine could protect against an intranasal GAS infection or if this would require locally primed immunity. We foundd that a parenteral CAF01 adjuvanted GAS vaccine offered no protection against intranasal infection despite inducing strong systemic Th1/Th17/IgG immunity that efficiently protected against an intraperitoneal GAS infection. However, the same vaccine administered via the intranasal route was able to induce protection against repeated intranasal GAS infections in a murine challenge model. The lack of intranasal protection induced by the parenteral vaccine correlated with a reduced mucosal recall response at the site of infection. Taken together, our results demonstrate that locally primed immunity is important for the defense against intranasal infection with Streptococcus pyogenes.

  14. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    Science.gov (United States)

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses.

    Science.gov (United States)

    Cai, Yicun; Ku, Zhiqiang; Liu, Qingwei; Leng, Qibin; Huang, Zhong

    2014-05-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two major causative agents of hand, foot and mouth disease (HFMD), which is an infectious disease frequently occurring in children. A bivalent vaccine against both EV71 and CA16 is highly desirable. In the present study, we compare monovalent inactivated EV71, monovalent inactivated CA16, and a combination vaccine candidate comprising of both inactivated EV71 and CA16, for their immunogenicity and in vivo protective efficacy. The two monovalent vaccines were found to elicit serum antibodies that potently neutralized the homologous virus but had no or weak neutralization activity against the heterologous one; in contrast, the bivalent vaccine immunized sera efficiently neutralized both EV71 and CA16. More importantly, passive immunization with the bivalent vaccine protected mice against either EV71 or CA16 lethal infections, whereas the monovalent vaccines only prevented the homologous but not the heterologous challenges. Together, our results demonstrate that the experimental bivalent vaccine comprising of inactivated EV71 and CA16 induces a balanced protective immunity against both EV71 and CA16, and thus provide proof-of-concept for further development of multivalent vaccines for broad protection against HFMD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Roles of IFN-γ and γδ T cells in protective immunity against blood-stage malaria

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eInoue

    2013-08-01

    Full Text Available Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.

  17. Different immunization routes induce protection against Aeromonas salmonicida through different immune mechanisms in rainbow trout

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Raida, Martin Kristian

    in fish immunology and vaccinology, resulting in the development of both oral, immersion and injectable vaccine strategies over time. Applying mineral oil adjuvants, injectable vaccines inducing high levels of protection in salmon (Salmo salar) rose to prominence in the 1990’s. In general injectable......, adjuvanted vaccines have been shown to induce long-lasting increases in specific antibody levels. In general the majority of the published work concerning vaccination against A. salmonicida has been conducted on salmon. Using injectable oil-adjuvanted vaccines, we have previously shown that the induced level...... against A. salmonicida. The effect of immersion vaccination against A. salmonicida has been questioned over time. While some have presented excellent protection as a result of immersion vaccines, others have reported limited or absent protective effects. We have performed experiments on the protection...

  18. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  19. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Matthias J. Reddehase

    2016-08-01

    Full Text Available Hematopoietic cell transplantation (HCT is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a ‘window of opportunity’ for latent cytomegalovirus (CMV by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A ‘window of opportunity’ for the virus represents a ‘window of risk’ for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8+ T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP representing the most severe clinical manifestation. Here I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a pre-emptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing ‘proof of concept’ for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8+ T cells bridging the critical interim. CMV, however, is not a ‘passive antigen’ but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected bone marrow stroma and impaired colony growth and lineage differentiation can lead to ‘graft failure’. In consequence

  20. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  1. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  2. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    Science.gov (United States)

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  3. Age and long-term protective immunity in dogs and cats.

    Science.gov (United States)

    Schultz, R D; Thiel, B; Mukhtar, E; Sharp, P; Larson, L J

    2010-01-01

    Vaccination can provide an immune response that is similar in duration to that following a natural infection. In general, adaptive immunity to viruses develops earliest and is highly effective. Such anti-viral immune responses often result in the development of sterile immunity and the duration of immunity (DOI) is often lifelong. In contrast, adaptive immunity to bacteria, fungi or parasites develops more slowly and the DOI is generally short compared with most systemic viral infections. Sterile immunity to these infectious agents is less commonly engendered. Old dogs and cats rarely die from vaccine-preventable infectious disease, especially when they have been vaccinated and immunized as young adults (i.e. between 16 weeks and 1 year of age). However, young animals do die, often because vaccines were either not given or not given at an appropriate age (e.g. too early in life in the presence of maternally derived antibody [MDA]). More animals need to be vaccinated to increase herd (population) immunity. The present study examines the DOI for core viral vaccines in dogs that had not been revaccinated for as long as 9 years. These animals had serum antibody to canine distemper virus (CDV), canine parvovirus type 2 (CPV-2) and canine adenovirus type-1 (CAV-1) at levels considered protective and when challenged with these viruses, the dogs resisted infection and/or disease. Thus, even a single dose of modified live virus (MLV) canine core vaccines (against CDV, cav-2 and cpv-2) or MLV feline core vaccines (against feline parvovirus [FPV], feline calicivirus [FCV] and feline herpesvirus [FHV]), when administered at 16 weeks or older, could provide long-term immunity in a very high percentage of animals, while also increasing herd immunity. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  5. Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant.

    Science.gov (United States)

    Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael

    2009-04-01

    Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.

  6. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Science.gov (United States)

    Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher

    2018-01-01

    Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and

  7. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Stephanie Ascough

    2018-03-01

    Full Text Available Respiratory syncytial virus (RSV and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell

  8. Therapeutic enhancement of protective immunity during experimental leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Senad Divanovic

    2011-09-01

    Full Text Available Leishmaniasis remains a significant cause of morbidity and mortality in the tropics. Available therapies are problematic due to toxicity, treatment duration and emerging drug resistance. Mouse models of leishmaniasis have demonstrated that disease outcome depends critically on the balance between effector and regulatory CD4(+ T cell responses, something mirrored in descriptive studies of human disease. Recombinant IL-2/diphtheria toxin fusion protein (rIL-2/DTx, a drug that is FDA-approved for the treatment of cutaneous T cell lymphoma, has been reported to deplete regulatory CD4(+ T cells.We investigated the potential efficacy of rIL-2/DTx as adjunctive therapy for experimental infection with Leishmania major. Treatment with rIL-2/DTx suppressed lesional regulatory T cell numbers and was associated with significantly increased antigen-specific IFN-γ production, enhanced lesion resolution and decreased parasite burden. Combined administration of rIL-2/DTx and sodium stibogluconate had additive biological and therapeutic effects, allowing for reduced duration or dose of sodium stibogluconate therapy.These data suggest that pharmacological suppression of immune counterregulation using a commercially available drug originally developed for cancer therapy may have practical therapeutic utility in leishmaniasis. Rational reinvestigation of the efficacy of drugs approved for other indications in experimental models of neglected tropical diseases has promise in providing new candidates to the drug discovery pipeline.

  9. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  10. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.

    Science.gov (United States)

    Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N

    2015-08-18

    Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying

  11. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens.

    Science.gov (United States)

    Pors, Susanne E; Pedersen, Ida J; Skjerning, Ragnhild Bager; Thøfner, Ida C N; Persson, Gry; Bojesen, Anders M

    2016-11-15

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis.

    Science.gov (United States)

    Willett, Jonathan W; Herrou, Julien; Czyz, Daniel M; Cheng, Jason X; Crosson, Sean

    2016-09-30

    The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  14. Physical activity influences the immune system of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2017-01-01

    Full Text Available It has been suggested that physical activity in breast cancer patients can not only improve quality of life. Influences on physical and psychological levels have been evaluated, but effects on the immune system of breast cancer patients are hardly known. A PubMed search identified relevant trials and meta-analyses from 1970 to 2013. This review summarizes the results of international studies and the current discussion of effects of physical activity on the immune system of breast cancer patients. Highlighted are effects of physical activity on the immune system. Seven original articles and 14 reviews included in this review. Two original and the review articles includes other tumor entities besides breast cancer.Evaluated methods such as dose-response relationships for exercise in oncology, hardly exist. Increased immunological anti-cancer activity due to physical activity is probably mediated via an increase in number and cytotoxicity of monocytes and natural killer cells and cytokines.

  15. Induction of Protective Immune Responses against Schistosomiasis Haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    Directory of Open Access Journals (Sweden)

    Hatem A M Tallima

    2015-03-01

    Full Text Available One of the major lessons we learned from the radiation-attenuated cercariae (RA vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th1/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune responses-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 microg active papain 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium led to highly significant (P 50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 microg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH and 20 ug 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP together with papain (20 microg/hamster as adjuvant led to considerable (64% protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1 and Fasciola hepatica cathepsin L1 (FhCL1 led to highly significant (P < 0.005 reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/ rSG3PDH mixture and challenged with S. haematobium cercariae three weeks after the second immunization displayed highly significant (P < 0.005 reduction of 72% in challenge worm burden and no eggs in liver of 8-10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1 and type 2-related cytokines and antibody responses.

  16. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    Science.gov (United States)

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  17. Identification of immune correlates of protection in Shigella infection by application of machine learning.

    Science.gov (United States)

    Arevalillo, Jorge M; Sztein, Marcelo B; Kotloff, Karen L; Levine, Myron M; Simon, Jakub K

    2017-10-01

    Immunologic correlates of protection are important in vaccine development because they give insight into mechanisms of protection, assist in the identification of promising vaccine candidates, and serve as endpoints in bridging clinical vaccine studies. Our goal is the development of a methodology to identify immunologic correlates of protection using the Shigella challenge as a model. The proposed methodology utilizes the Random Forests (RF) machine learning algorithm as well as Classification and Regression Trees (CART) to detect immune markers that predict protection, identify interactions between variables, and define optimal cutoffs. Logistic regression modeling is applied to estimate the probability of protection and the confidence interval (CI) for such a probability is computed by bootstrapping the logistic regression models. The results demonstrate that the combination of Classification and Regression Trees and Random Forests complements the standard logistic regression and uncovers subtle immune interactions. Specific levels of immunoglobulin IgG antibody in blood on the day of challenge predicted protection in 75% (95% CI 67-86). Of those subjects that did not have blood IgG at or above a defined threshold, 100% were protected if they had IgA antibody secreting cells above a defined threshold. Comparison with the results obtained by applying only logistic regression modeling with standard Akaike Information Criterion for model selection shows the usefulness of the proposed method. Given the complexity of the immune system, the use of machine learning methods may enhance traditional statistical approaches. When applied together, they offer a novel way to quantify important immune correlates of protection that may help the development of vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  19. Social Immunity: Emergence and Evolution of Colony-Level Disease Protection.

    Science.gov (United States)

    Cremer, Sylvia; Pull, Christopher D; Fürst, Matthias A

    2018-01-07

    Social insect colonies have evolved many collectively performed adaptations that reduce the impact of infectious disease and that are expected to maximize their fitness. This colony-level protection is termed social immunity, and it enhances the health and survival of the colony. In this review, we address how social immunity emerges from its mechanistic components to produce colony-level disease avoidance, resistance, and tolerance. To understand the evolutionary causes and consequences of social immunity, we highlight the need for studies that evaluate the effects of social immunity on colony fitness. We discuss the roles that host life history and ecology have on predicted eco-evolutionary dynamics, which differ among the social insect lineages. Throughout the review, we highlight current gaps in our knowledge and promising avenues for future research, which we hope will bring us closer to an integrated understanding of socio-eco-evo-immunology.

  20. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  1. Canine Distemper Virus (CDV) immune-stimulating complexes (iscoms), but not measles virus iscoms, protect dogs against CDV infection.

    NARCIS (Netherlands)

    P. de Vries (Petra); F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1988-01-01

    textabstractThe potential of immune-stimulating complexes (iscoms), a novel form of antigenic presentation, for the induction of protective immunity against morbillivirus infection was shown by immunizing dogs with canine distemper virus (CDV) iscoms, which contained the fusion (F) protein and a

  2. Long-Term Protective Immune Response Elicited by Vaccination with an Expression Genomic Library of Toxoplasma gondii

    OpenAIRE

    Fachado, Alberto; Rodriguez, Alexandro; Molina, Judith; Silvério, Jaline C.; Marino, Ana P. M. P.; Pinto, Luzia M. O.; Angel, Sergio O.; Infante, Juan F.; Traub-Cseko, Yara; Amendoeira, Regina R.; Lannes-Vieira, Joseli

    2003-01-01

    Immunization of BALB/c mice with an expression genomic library of Toxoplasma gondii induces a Th1-type immune response, with recognition of several T. gondii proteins (21 to 117 kDa) and long-term protective immunity against a lethal challenge. These results support further investigations to achieve a multicomponent anti-T. gondii DNA vaccine.

  3. Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity

    DEFF Research Database (Denmark)

    Hviid, Lars

    2007-01-01

    The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses...

  4. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  5. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  6. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  7. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  8. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  9. Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Lilly

    2018-01-01

    Full Text Available Polymicrobial intra-abdominal infections (IAIs are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis. Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge. Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO] survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of

  10. Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections

    Science.gov (United States)

    Lilly, Elizabeth A.; Ikeh, Melanie; Nash, Evelyn E.; Fidel, Paul L.

    2018-01-01

    ABSTRACT Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of

  11. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  12. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    Science.gov (United States)

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  13. Exercise protects from cancer through regulation of immune function and inflammation

    DEFF Research Database (Denmark)

    Hojman, Pernille

    2017-01-01

    Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection are...... regulation of immune and inflammatory functions, and exercise may be pursued as anticancer treatment through incorporation into standard oncological therapy to the benefit of the cancer patients.......Exercise training has been extensively studied in cancer settings as part of prevention or rehabilitation strategies, yet emerging evidence suggests that exercise training can also directly affect tumor-specific outcomes. The underlying mechanisms for this exercise-dependent cancer protection...... are just starting to be elucidated. To this end, evasion of immune surveillance and tumor-associated inflammation are established as hallmarks of cancer, and exercise may target cancer incidence and progression through regulation of these mechanisms. Here, I review the role of exercise in protection from...

  14. PRENATAL INFECTION, MATERNAL IMMUNE ACTIVATION, AND RISK FOR SCHIZOPHRENIA.

    Science.gov (United States)

    Canetta, Sarah E; Brown, Alan S

    2012-12-01

    A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.

  15. Characterization of innate immune activity in Phrynops geoffroanus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-12-01

    Full Text Available The innate immune activity of the freshwater turtle Phrynops geoffroanus (Schweigger, 1812 was investigated, using a sheep-red-blood cell hemolysis assay. The time- and concentration-dependent hemolytic activity of the turtle plasma was low compared to that reported for other reptiles. However the plasma of P. geoffroanus exhibited higher activity at elevated temperatures, resulting in temperature-dependent hemolysis. The sensitivity of turtle plasma to temperature could be interpreted as a mechanism by which freshwater turtles use basking behavior to elevate body temperature, thus enhancing the innate immune response. However, we cannot discard the possibility that environmental contaminants could be affecting the turtle's immune response, since the animals in this investigation were captured in a polluted watercourse.

  16. Activation of Innate Immunity by Bacterial Ligands of Toll-like Receptors

    Directory of Open Access Journals (Sweden)

    Nelli K. Akhmatova

    2014-03-01

    Full Text Available Tγδ and B1 lymphocytes are essential components of the mucosal immune system, activating different bacterial and viral ligands without costimulatory signals and preprocessing of other immune effectors. This ability enables the immune system to provide rapid protection against pathogens and contributes to the decoding mechanism of the sensitizing activity of mucosal antigens, because the interaction of these cells produces antibodies for immunoglobulin M (IgM and IgA, but not for IgE. We studied 3 routes of introducing antigens for opportunistic microorganisms to activate Tγδ and B1 lymphocytes: subcutaneous, intranasal, and oral. The subcutaneous and intranasal routes produced a significant increase of these cells in lymph nodes associated with the nasal cavity (NALT and in those associated with bronchial tissue (BALT. The oral route significantly increased levels of these cells in the spleen, in NALT, BALT, and in nodes associated with the gut (GALT. We found that mucosal application of the immunomodulator Immunovac-VP-4 (contains antigens of conditionally pathogenic microorganisms, in conjunction with the activation of Tγδ and B1, induces adaptive immune mechanisms not only in the lymphoid formations associated with the respiratory system and with GALT, but also in the spleen (increased expression of cluster of differentiation 3 [CD3], CD4, CD8, CD19, and CD25. This indicates that there is migration of lymphoid cells from the regional lymph nodes and mucosal lymphoid tissues via the lymph and blood to distant organs, lymphoid development, and both local and systemic immunity. Mucosal application of Immunovac-VP-4 in mice potentiates the cytotoxic activity of NK cells in the NALT, BALT and GALT. The highest cytotoxicity was observed in cells, derived from lymphoid tissue of the intestine after oral immunization. Although we found that cytokine production was increased by all 3 immunization routes, it was most intensive after subcutaneous

  17. Immunization of baboons with attenuated schistosomula of Schistosoma haematobium: levels of protection induced by immunization with larvae irradiated with 20 and 60 krad

    International Nuclear Information System (INIS)

    Harrison, R.A.; Bickle, Q.D.; Sturrock, R.F.; Taylor, M.G.; Webbe, G.; Kiare, S.; James, E.R.; Andrews, B.J.

    1990-01-01

    The authors have demonstrated that baboons can be immunized with S. haemotobium schistosomula irradiated with 20 krad in a regimen that induces 90% protection. While this high level of protection has stimulated a discussion on the feasibility of a human volunteer trial (Von Lichtenberg, 1985), results of further studies particularly on (i) the pathogensis of immunization per se (Byram et al., 1989), (ii) the longevity of protection, and (iii) the protective efficacy of cryopreserved irradiated S. haemotobium schistosomula (R. Harrison et al., in preparation), prevent recommending this form of vaccination for human application. (author)

  18. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  19. Protection against avian metapneumovirus subtype C in turkeys immunized via the respiratory tract with inactivated virus.

    Science.gov (United States)

    Cha, Ra Mi; Khatri, Mahesh; Sharma, Jagdev M

    2011-01-10

    Avian metapneumovirus subtype C (aMPV/C) causes a severe upper respiratory tract (URT) infection in turkeys. Turkeys were inoculated oculonasally with inactivated aMPV/C adjuvanted with synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid (Poly IC). Immunized turkeys had elevated numbers of mucosal IgA+ cells in the URT and increased levels of virus-specific IgG and IgA in the lachrymal fluid and IgG in the serum. After 7 or 21 days post immunization, turkeys were challenged oculonasally with pathogenic aMPV/C. Immunized groups were protected against respiratory lesions induced by the challenge virus. Further, the viral copy number of the challenge virus in the URT were significantly lower in the immunized turkeys than in the unimmunized turkeys (P<0.05). These results showed that inactivated aMPV/C administered by the respiratory route induced protective immunity against pathogenic virus challenge. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  1. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  2. Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections.

    Science.gov (United States)

    Lilly, Elizabeth A; Ikeh, Melanie; Nash, Evelyn E; Fidel, Paul L; Noverr, Mairi C

    2018-01-16

    Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non- albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans / S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis / S. aureus -mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis -induced protection. C. dubliniensis / S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1 hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1 + cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans / S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of

  3. Passive and active protection of cotton textiles

    NARCIS (Netherlands)

    Bochove, C. van

    1967-01-01

    In rotproofing of cotton a distinction is made between passive and active protection. In passive protection, the structure of the cotton fibre is modified in such a way that the fibre can longer be attacked. This modification of structure can be effected on different levels: microscopical,

  4. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity

    Directory of Open Access Journals (Sweden)

    Danielle A. Wagner-Muñiz

    2018-03-01

    Full Text Available Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA, a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles. Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.

  5. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  6. Immune correlates of protection for dengue: State of the art and research agenda.

    Science.gov (United States)

    Katzelnick, Leah C; Harris, Eva

    2017-08-24

    Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials. Copyright © 2017.

  7. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  8. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  9. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Science.gov (United States)

    Watson, Alan M; Lam, L K Metthew; Klimstra, William B; Ryman, Kate D

    2016-07-01

    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  10. The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    2016-07-01

    Full Text Available A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines.

  11. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage.

    Science.gov (United States)

    Chang, Yan; Jia, Xiaoyi; Wei, Fang; Wang, Chun; Sun, Xiaojing; Xu, Shu; Yang, Xuezhi; Zhao, Yingjie; Chen, Jingyu; Wu, Huaxun; Zhang, Lingling; Wei, Wei

    2016-05-17

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25), a novel ester derivative of paeoniflorin (Pae), was evaluated in rats with adjuvant-induced arthritis (AA) to study its potential anti-arthritic activity. AA rats were treated with CP-25 (25, 50, or 100 mg/kg) from days 17 to 29 after immunization. CP-25 effectively reduced clinical and histopathological scores compared with the AA groups. CP-25-treated rats exhibited decreases in pro-inflammatory cytokines (IL-1β, IL-6, IL-17 and TNF-α) coupled with an increase in the anti-inflammatory cytokine TGF-β1 in the serum. CP-25 treatment inhibited M1 macrophage activation and enhanced M2 macrophage activation by influencing cytokine production. Decreases in Th17-IL-17 and the Th17-associated transcription factor RAR-related orphan receptor gamma (ROR-γt) dramatically demonstrated the immunomodulatory effects of CP-25 on abnormal immune dysfunction. In addition, CP-25 suppressed the production of receptor activator of nuclear factor kappa B ligand (RANKL) and matrix metalloproteinase (MMP) 9, which supported its anti-osteoclastic effects. The data presented here demonstrated that CP-25 significantly inhibited the progression of rat AA by reducing inflammation, immunity and bone damage. The protective effects of CP-25 in AA highlight its potential as an ideal new anti-arthritic agent for human RA.

  12. Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.

    Science.gov (United States)

    Tomosada, Yohsuke; Chiba, Eriko; Zelaya, Hortensia; Takahashi, Takuya; Tsukida, Kohichiro; Kitazawa, Haruki; Alvarez, Susana; Villena, Julio

    2013-08-15

    Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-β and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible

  13. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  14. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  15. Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis.

    Science.gov (United States)

    Sebastian, Shite; Pinkham, Jessica T; Lynch, Jillian G; Ross, Robin A; Reinap, Barbara; Blalock, Leeann T; Conlan, J Wayne; Kasper, Dennis L

    2009-01-22

    Herein we report studies with a novel combination vaccine that, when administered to mice, conferred protection against highly virulent strains of Francisella tularensis by stimulating both arms of the immune system. Our earlier studies with Ft.LVS::wbtA, an O-polysaccharide (OPS)-negative mutant derived from the available live vaccine strain of F. tularensis (Ft.LVS), elucidated the role of antibodies to the OPS - a key virulence determinant - in protection against virulent type A organisms. However, when expressed on the organism, the OPS enhances virulence. In contrast, in purified form, the OPS is completely benign. We hypothesized that a novel combination vaccine containing both a component that induces humoral immunity and a component that induces cellular immunity to this intracellular microbe would have an enhanced protective capacity over either component alone and would be much safer than the LVS vaccine. Thus we developed a combination vaccine containing both OPS (supplied in an OPS-tetanus toxoid glycoconjugate) to induce a humoral antibody response and strain Ft.LVS::wbtA (which is markedly attenuated by its lack of OPS) to induce a cell-mediated protective response. This vaccine protected mice against otherwise-lethal intranasal and intradermal challenge with wild-type F. tularensis strains Schu S4 (type A) and FSC 108 (type B). These results represent a significant advance in our understanding of immunity to F. tularensis and provide important insight into the development of a safer vaccine effective against infections caused by clinical type A and B strains of F. tularensis.

  16. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  17. Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection

    Science.gov (United States)

    Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing

    2016-11-01

    Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.

  18. Immunization with the Haemophilus ducreyi hemoglobin receptor HgbA protects against infection in the swine model of chancroid.

    Science.gov (United States)

    Afonina, Galyna; Leduc, Isabelle; Nepluev, Igor; Jeter, Chrystina; Routh, Patty; Almond, Glen; Orndorff, Paul E; Hobbs, Marcia; Elkins, Christopher

    2006-04-01

    The etiologic agent of chancroid is Haemophilus ducreyi. To fulfill its obligate requirement for heme, H. ducreyi uses two TonB-dependent receptors: the hemoglobin receptor (HgbA) and a receptor for free heme (TdhA). Expression of HgbA is necessary for H. ducreyi to survive and initiate disease in a human model of chancroid. In this study, we used a swine model of H. ducreyi infection to demonstrate that an experimental HgbA vaccine efficiently prevents chancroid, as determined by several parameters. Histological sections of immunized animals lacked typical microscopic features of chancroid. All inoculated sites from mock-immunized pigs yielded viable H. ducreyi cells, whereas no viable H. ducreyi cells were recovered from inoculated sites of HgbA-immunized pigs. Antibodies from sera of HgbA-immunized animals bound to and initiated antibody-dependent bactericidal activity against homologous H. ducreyi strain 35000HP and heterologous strain CIP542 ATCC; however, an isogenic hgbA mutant of 35000HP was not killed, proving specificity. Anti-HgbA immunoglobulin G blocked hemoglobin binding to the HgbA receptor, suggesting a novel mechanism of protection through the limitation of heme/iron acquisition by H. ducreyi. Such a vaccine strategy might be applied to other bacterial pathogens with strict heme/iron requirements. Taken together, these data suggest continuing the development of an HgbA subunit vaccine to prevent chancroid.

  19. Vaccination with the Secreted Glycoprotein G of Herpes Simplex Virus 2 Induces Protective Immunity after Genital Infection.

    Science.gov (United States)

    Önnheim, Karin; Ekblad, Maria; Görander, Staffan; Bergström, Tomas; Liljeqvist, Jan-Åke

    2016-04-22

    Herpes simplex virus 2 (HSV-2) infects the genital mucosa and establishes a life-long infection in sensory ganglia. After primary infection HSV-2 may reactivate causing recurrent genital ulcerations. HSV-2 infection is prevalent, and globally more than 400 million individuals are infected. As clinical trials have failed to show protection against HSV-2 infection, new vaccine candidates are warranted. The secreted glycoprotein G (sgG-2) of HSV-2 was evaluated as a prophylactic vaccine in mice using two different immunization and adjuvant protocols. The protocol with three intramuscular immunizations combining sgG-2 with cytosine-phosphate-guanine dinucleotide (CpG) motifs and alum induced almost complete protection from genital and systemic disease after intra-vaginal challenge with HSV-2. Robust immunoglobulin G (IgG) antibody titers were detected with no neutralization activity. Purified splenic CD4+ T cells proliferated and produced interferon-γ (IFN-γ) when re-stimulated with the antigen in vitro. sgG-2 + adjuvant intra-muscularly immunized mice showed a significant reduction of infectious HSV-2 and increased IFN-γ levels in vaginal washes. The HSV-2 DNA copy numbers were significantly reduced in dorsal root ganglia, spinal cord, and in serum at day six or day 21 post challenge. We show that a sgG-2 based vaccine is highly effective and can be considered as a novel candidate in the development of a prophylactic vaccine against HSV-2 infection.

  20. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  1. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  2. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    International Nuclear Information System (INIS)

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  3. Immune activation is associated with decreased thymic function in ...

    African Journals Online (AJOL)

    Background: Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIVpositive treatment-naive individuals has thus far not been ...

  4. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  5. PERINATAL MALNUTRITION AND THE PROTECTIVE ROLE OF THE PHYSICAL TRAINING ON THE IMMUNE SYSTEM.

    Science.gov (United States)

    Moreno Senna, Sueli; Ferraz, José Cândido; Leandro, Carol Góis

    2015-09-01

    Developing organisms have the ability to cope with environmental demands through physiologic and morphologic adaptations. Early life malnutrition has been recognized as an environmental stimulus that is related with down-regulation of immune responses. Some of these effects are explained by the epigenetics and the programming of hormones and cytokines impairing the modulation of the immune cells in response to environmental stimuli. Recently, it has been demonstrated that these effects are not deterministic and current environment, such as physical activity, can positively influence the immune system. Here, we discuss the effects of perinatal malnutrition on the immune system and how it can be modulated by physical training. The mechanism includes the normalization of some hormones concentrations related to growth and metabolism such as leptin, IGF-1 and glucocorticoids. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

    Directory of Open Access Journals (Sweden)

    Sine K Kratholm

    Full Text Available Interleukin (IL -21 is produced by Natural Killer T (NKT cells and CD4(+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT and IL-21R knock out (KO mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2 infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i. and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21 had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.

  7. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  8. Phi ({Phi}) and psi ({Psi}) angles involved in malarial peptide bonds determine sterile protective immunity

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@gmail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Moreno-Vranich, Armando; Bermudez, Adriana [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Phi ({Phi}) and psi ({Psi}) angles determine sterile protective immunity. Black-Right-Pointing-Pointer Modified peptide's tendency to assume a regular conformation related to a PPII{sub L}. Black-Right-Pointing-Pointer Structural modifications in mHABPs induce Ab and protective immunity. Black-Right-Pointing-Pointer mHABP backbone atom's interaction with HLA-DR{beta}1{sup Asterisk-Operator} is stabilised by H-bonds. -- Abstract: Modified HABP (mHABP) regions interacting with HLA-DR{beta}1{sup Asterisk-Operator} molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their {Phi} and {Psi} torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by {sup 1}H-NMR and superimposed into HLA-DR{beta}1{sup Asterisk-Operator }-like Aotus monkey molecules; their phi ({Phi}) and psi ({Psi}) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII{sub L}) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them.

  9. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  10. A safe vaccine (DV-STM-07 against Salmonella infection prevents abortion and confers protective immunity to the pregnant and new born mice.

    Directory of Open Access Journals (Sweden)

    Vidya Devi Negi

    Full Text Available Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain DeltapmrG-HM-D (DV-STM-07 in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.

  11. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  12. Scavenging Iron: A Novel Mechanism of Plant Immunity Activation by Microbial Siderophores1[C][W

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W.G.; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-01-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H2O2 staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  13. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Karen L Wozniak

    2009-09-01

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-gamma-producing C. neoformans strain, H99gamma, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99gamma compared to mice immunized with heat-killed C. neoformans (HKC.n.. Mice immunized with C. neoformans strain H99gamma had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL-4 receptor, IL-12p40, IL-12p35, IFN-gamma, T cell and B cell deficient mice with C. neoformans strain H99gamma demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99gamma-mediated protective immune responses against pulmonary C. neoformans infection. CD4(+ T cells, CD11c(+ cells, and Gr-1(+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-gamma or TNF-alpha in lungs of protected mice. In conclusion, immunization with C

  14. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Directory of Open Access Journals (Sweden)

    T. Scott Devera

    2015-06-01

    Full Text Available Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI, and hepatic alanine aminotransferase (ALT, and aspartate aminotransferase (AST, it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  15. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  16. Jungle Honey Enhances Immune Function and Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Miki Fukuda

    2011-01-01

    Full Text Available Jungle honey (JH is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal. After seven injections, peritoneal cells (PC were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2 cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261.

  17. Protective effect of intranasal immunization with Neospora caninum membrane antigens against murine neosporosis established through the gastrointestinal tract

    Science.gov (United States)

    Ferreirinha, Pedro; Dias, Joana; Correia, Alexandra; Pérez-Cabezas, Begoña; Santos, Carlos; Teixeira, Luzia; Ribeiro, Adília; Rocha, António; Vilanova, Manuel

    2014-01-01

    Neospora caninum is an Apicomplexa parasite that in the last two decades was acknowledged as the main pathogenic agent responsible for economic losses in the cattle industry. In the present study, the effectiveness of intranasal immunization with N. caninum membrane antigens plus CpG adjuvant was assessed in a murine model of intragastrically established neosporosis. Immunized mice presented a lower parasitic burden in the brain on infection with 5 × 107 tachyzoites, showing that significant protection was achieved by this immunization strategy. Intestinal IgA antibodies raised by immunization markedly agglutinated live N. caninum tachyzoites whereas previous opsonization with IgG antibodies purified from immunized mice sera reduced parasite survival within macrophage cells. Although an IgG1 : IgG2a ratio < 1 was detected in the immunized mice before and after infection, indicative of a predominant T helper type 1 immune response, no increased production of interferon-γ was detected in the spleen or mesenteric lymph nodes of the immunized mice. Altogether, these results show that mucosal immunization with N. caninum membrane proteins plus CpG adjuvant protect against intragastrically established neosporosis and indicate that parasite-specific mucosal and circulating antibodies have a protective role against this parasitic infection. PMID:24128071

  18. Protective immune response of oral rabies vaccine in stray dogs, corsacs and steppe wolves after a single immunization.

    Science.gov (United States)

    Zhugunissov, K; Bulatov, Ye; Taranov, D; Yershebulov, Z; Koshemetov, Zh; Abduraimov, Ye; Kondibayeva, Zh; Samoltyrova, A; Amanova, Zh; Khairullin, B; Sansyzbay, A

    2017-11-01

    In this study the safety and protective immunity of an oral rabies vaccine, based on the live, modified rabies virus strain VRC-RZ2, was examined in stray dogs (Canis Sp.), corsacs (Vulpes corsac) and steppe wolves (Canis lupus campestris). In the safety group (dogs, n=6; corsacs, n=3; wolves, n=3) which was vaccinated with a 10-times field dose/animal, no animals showed any signs of disease or changes in behavior or appetite during the period of clinical observation, similar to the animals in the negative control group. Saliva samples taken from animals prior and post (5 th and 10 th days) vaccination failed to demonstrate rabies virus antigen. Observations of immunogenicity in vaccinated carnivores (dogs, corsacs and wolves) during a 180 day period showed the titers of virus neutralizing antibodies (VNA) in the blood sera of vaccinated dogs to be within 0.59-1.37 IU/mL. On 14 days post vaccination (dpv), all the wild carnivores had detectable levels of neutralizing antibodies, with mean titers ranging from 0.50 ± 0.07 IU/mL (for wolves) to 0.59 ± 0.10 IU/mL (for corsacs). Weeks after vaccination, all the vaccinated wolves and corsacs had higher levels of neutralizing antibodies: 0.70 ± 0.10 - 0.71 ± 0.08 IU/mL at 30 dpv, 1.06 ± 0.08 - 1.28 ± 0.21 IU/mL at 60 dpv and 0.41 ± 0.09 - 047 ± 0.06 at 180 dpv. The highest level of VNA (˃1.0 IU/ml) was detected at 60 dpv, in all vaccinated animals. After challenge all vaccinated dogs remained healthy for 180 days. Control animals (unvaccinated dogs) developed symptoms of rabies on day 6 post administration of a virulent virus and died of rabies on days 11-13. Of note, the VNA titers in all the wild carnivores (corsacs and wolves) immunized with VRC-RZ2 were higher than 0.5 IU/ml (0.59 ± 0.11 IU/ml), even as early as 14 days post vaccination. These, presumably protective, titers of antibodies to rabies virus were present in the dogs and wild carnivores examined in this study for at

  19. Protective immunity and safety of a genetically modified influenza virus vaccine.

    Directory of Open Access Journals (Sweden)

    Rafael Polidoro Alves Barbosa

    Full Text Available Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO mice with impaired innate (Myd88 -/- or acquired (RAG -/- immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens.

  20. Immunological response and protection of mice immunized with plasmid encoding Toxoplasma gondii glycolytic enzyme malate dehydrogenase.

    Science.gov (United States)

    Hassan, I A; Wang, S; Xu, L; Yan, R; Song, X; XiangRui, L

    2014-12-01

    Toxoplasma gondii Malate dehydrogenase (TgMDH) plays an important role as part of the energy production cycle. In this investigation, immunological changes and protection efficiency of this protein delivered as a DNA vaccine have been evaluated. Mice were intramuscularly immunized with pTgMDH, followed by challenge with virulent T. gondii RH strain, 2 weeks after the booster immunization. Compared to the control groups, the results showed that pTgMDH has stimulated specific humoral response as demonstrated by significant high titers of total IgG and subclasses IgG1 and IgG2a , beside IgA and IgM, but not IgE. Analysis of cytokine profiles revealed significant increases of IFN-γ, IL-4 and IL-17, while no significant changes were detected in TGF-β1. In cell-mediated response, both T lymphocytes subpopulations CD4(+) and CD8(+) were positively recruited as significant percentages were recorded in response to immunization with TgMDH. Significant long survival rate, 17 days, has been observed in the TgMDH vaccinated group, in contrast with control groups which died within 8-9 days after challenge. These results demonstrated that TgMDH could induce significant immunological responses leading to a considerable level of protection against acute toxoplasmosis infection. © 2014 John Wiley & Sons Ltd.

  1. Immune response in bovine neosporosis: Protection or contribution to the pathogenesis of abortion.

    Science.gov (United States)

    Almería, Sonia; Serrano-Pérez, Beatriz; López-Gatius, Fernando

    2017-08-01

    Neospora caninum is a protozoan parasite with a preference for cattle and dogs as hosts. When N. caninum infection occurs in cattle it induces abortion, bovine neosporosis being a main cause of abortion worldwide. In dairy cattle, the economic burden of neosporosis-associated abortion is so great that it might results in closure of a farm. However, not all infected cows abort and it is not yet understood why this occurs. At present there is no effective treatment or vaccine. This review provides insights on how immune response against the parasite determines protection or contribution to abortion. Aspects on markers of risk of abortion are also discussed. Humoral immune responses are not protective against N. caninum but seropositivity and antibody level can be good markers for a diagnosis of bovine neosporosis and its associated abortion risk. In addition, humoral mechanisms against N. caninum infection and abortion differ in pure-breed and cross-breed pregnant dairy and beef cattle. Concentrations of Pregnancy Associated glycoprotein -2 (PAG-2) can also be used to predict abortion. A partially protective immune response encompasses increased IFN-γ expression, which has to be counterbalanced by other cytokines such as IL-12 and IL-10, especially towards the end of pregnancy. Although IFN-γ is required to limit parasite proliferation a critical threshold of the IFN-γ response is also required to limit adverse effects on pregnancy. In clinical terms, it may be stated that IFN-γ production and cross-breed pregnancy can protect Neospora-infected dairy cows against abortion. Published by Elsevier Ltd.

  2. Chlamydial Protease-Like Activity Factor Mediated Protection Against C. trachomatis In Guinea Pigs

    Science.gov (United States)

    Wali, Shradha; Gupta, Rishein; Yu, Jieh-Juen; Koundinya Lanka, Gopala Krishna; Chambers, James P.; Guentzel, M. Neal; Zhong, Guangming; Murthy, Ashlesh K.; Arulanandam, Bernard P.

    2016-01-01

    We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection. PMID:27990018

  3. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  4. Prophylactic immunization against experimental leishmaniasis. III. Protection against fatal Leishmania tropica infection induced by irradiated promastigotes involves Lyt-1+2- T cells that do not mediate cutaneous DTH

    International Nuclear Information System (INIS)

    Liew, F.Y.; Howard, J.G.; Hale, C.

    1984-01-01

    Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1 + 2 - phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does not determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1 + 2 - T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity

  5. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  6. Protective immune responses during prepatency in goat kids experimentally infected with Eimeria ninakohlyakimovae.

    Science.gov (United States)

    Matos, L; Muñoz, M C; Molina, J M; Rodríguez, F; Perez, D; Lopez, A; Ferrer, O; Hermosilla, C; Taubert, A; Ruiz, A

    2017-08-15

    group compared to the challenged control animals. Furthermore, in the challenged E. ninakohlyakimovae-infected animals a significantly higher number of mucosal CD4 + and CD8 + lymphocytes were observed, indicating that these T cell subpopulations might be involved in protective host immune response elicited against early stages of parasite development. The immune response was however very complex, as antigen presenting cells and other effector cell populations of the innate immune system, as well as certain cytokines, were involved. In summary, the results of this study contribute to the better understanding of local cellular and humoral immune responses against caprine E. ninakohlyakimovae, particularly during the prepatency. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gamma irradiated antigen extracts improves the immune response and protection in experimental toxoplasmosis

    International Nuclear Information System (INIS)

    Costa, Andrea da; Galisteo Junior, Andres Jimenez; Andrade Junior, Heitor Franco de

    2015-01-01

    We aimed to use ionizing radiation on soluble extracts of T. gondii tachyzoites (AgTg) and tested the ability of these extracts to induce immunity in BALB/c mice against a challenge. T. gondii RH strain AgTg was irradiated with Co-60 at 0.25 to 4 kGy and were affected after 1 kGy, as evidenced by a progressive high molecular weight protein aggregates and no loss in antigenicity, as detected by immunoblotting, except after 4kGy. BALB/c mice were immunized with biweekly doses of 03 s.c. native or irradiated AgTg without adjuvants; the anti-T.gondii IgG production was detected by ELISA, and higher levels and avidity were detected in mice immunized with 1.5 kGy AgTg compared to controls (p<0.05). Mice immunized with native AgTg exhibited spleen CD19 + B, CD3 + CD4 + or CD3 + CD8 + T cell proliferation levels of 5%, while 1.5 kGy-immunized mice exhibited spleen cell proliferation levels of 12.2%, primarily for CD19 + or CD3 + CD8 + lymphocytes and less evidently for CD3 + CD4 + (8.8%) helper T lymphocytes. All cells from control mice showed little to no proliferation when stimulated with AgTg. These cells secreted more IFN-γ in the 1.5 kGy AgTg-immunized group (p<0.05). BALB/c mice immunized with 1.5 kGy and challenged with different strains of T. gondii were partially protected, as evidenced by survival after RH virulent strain challenge (p<0.0001) but also after ME-49 strain challenge: the brain cyst numbers (p<0.05) and the levels of T. gondii DNA measured by real-time PCR (p<0.05) decreased compared to non-immunized controls. (author)

  8. Gamma irradiated antigen extracts improves the immune response and protection in experimental toxoplasmosis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Andrea da; Galisteo Junior, Andres Jimenez; Andrade Junior, Heitor Franco de, E-mail: andreacosta@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Medicina Tropical; Zorgi, Nahiara Estevez [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Ciencias Biomedicas; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    We aimed to use ionizing radiation on soluble extracts of T. gondii tachyzoites (AgTg) and tested the ability of these extracts to induce immunity in BALB/c mice against a challenge. T. gondii RH strain AgTg was irradiated with Co-60 at 0.25 to 4 kGy and were affected after 1 kGy, as evidenced by a progressive high molecular weight protein aggregates and no loss in antigenicity, as detected by immunoblotting, except after 4kGy. BALB/c mice were immunized with biweekly doses of 03 s.c. native or irradiated AgTg without adjuvants; the anti-T.gondii IgG production was detected by ELISA, and higher levels and avidity were detected in mice immunized with 1.5 kGy AgTg compared to controls (p<0.05). Mice immunized with native AgTg exhibited spleen CD19{sup +} B, CD3{sup +}CD4{sup +} or CD3{sup +}CD8{sup +} T cell proliferation levels of 5%, while 1.5 kGy-immunized mice exhibited spleen cell proliferation levels of 12.2%, primarily for CD19{sup +} or CD3{sup +}CD8{sup +} lymphocytes and less evidently for CD3{sup +}CD4{sup +} (8.8%) helper T lymphocytes. All cells from control mice showed little to no proliferation when stimulated with AgTg. These cells secreted more IFN-γ in the 1.5 kGy AgTg-immunized group (p<0.05). BALB/c mice immunized with 1.5 kGy and challenged with different strains of T. gondii were partially protected, as evidenced by survival after RH virulent strain challenge (p<0.0001) but also after ME-49 strain challenge: the brain cyst numbers (p<0.05) and the levels of T. gondii DNA measured by real-time PCR (p<0.05) decreased compared to non-immunized controls. (author)

  9. Use of a Vaccinia Construct Expressing the Circumsporozoite Protein in the Analysis of Protective Immunity to Plasmodium yoelii

    Science.gov (United States)

    1988-01-01

    William R. Majarian, 2 ,5 Frank A. Robey, 3 Walter Weiss, 1 and Stephen L. Hoffman 1 lInfectious Diseases Department, Naval Medical Research Institute...autoradiography. Recombinant viruses which were positive in this assay were subject to 3 rounds of plaque purification. Finally, plaque purified virus was...mechanisms in the protective immunity elicited by inmunization with irradiated sporozoites (3,7,8,9). In an attempt to induce a protective cellular immune

  10. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    Full Text Available Cholera toxin (CT is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN, IP, and subcutaneously (SC. Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64-100% survival. Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.

  11. Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models.

    Science.gov (United States)

    Visalli, Robert J; Natuk, Robert J; Kowalski, Jacek; Guo, Min; Blakeney, Susan; Gangolli, Seema; Cooper, David

    2014-03-10

    The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Host immunity in the protective response to vaccination with heat-killed Burkholderia mallei

    Directory of Open Access Journals (Sweden)

    Paessler Slobodan

    2008-09-01

    Full Text Available Abstract Background We performed initial cell, cytokine and complement depletion studies to investigate the possible role of these effectors in response to vaccination with heat-killed Burkholderia mallei in a susceptible BALB/c mouse model of infection. Results While protection with heat-killed bacilli did not result in sterilizing immunity, limited protection was afforded against an otherwise lethal infection and provided insight into potential host protective mechanisms. Our results demonstrated that mice depleted of either B cells, TNF-α or IFN-γ exhibited decreased survival rates, indicating a role for these effectors in obtaining partial protection from a lethal challenge by the intraperitoneal route. Additionally, complement depletion had no effect on immunoglobulin production when compared to non-complement depleted controls infected intranasally. Conclusion The data provide a basis for future studies of protection via vaccination using either subunit or whole-organism vaccine preparations from lethal infection in the experimental BALB/c mouse model. The results of this study demonstrate participation of B220+ cells and pro-inflammatory cytokines IFN-γ and TNF-α in protection following HK vaccination.

  13. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    Science.gov (United States)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  14. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. CD8+ T cells provide immune protection against murine disseminated endotheliotropic Orientia tsutsugamushi infection.

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2017-07-01

    Full Text Available Scrub typhus, caused by a Gram-negative obligately intracellular coccobacillus, Orientia tsutsugamushi, is a long neglected but important tropical disease. Orientia tsutsugamushi causes illness in one million people each year, and 1 billion people are at risk. Without appropriate diagnosis and treatment, the disease can cause severe multiorgan failure with a case fatality rate of 7-15%. The current gaps in knowledge of immunity include the unknown mechanisms of host immunity to O. tsutsugamushi. Using an intravenous (i.v. disseminated infection mouse model, we observed that more CD8+ T cells than CD4+ T cells were present in the spleen of infected mice at 12 dpi. We also determined that Treg cells and the proportion of T cells producing IL-10 were significantly increased from 6 dpi, which correlated with the onset of illness, body weight loss, and increased bacterial loads. We further studied CD8-/-, MHC I-/- and wild type control (WT C57BL/6J mice to determine the importance of CD8+ T cells and MHC I molecules. After infection with an ordinarily sub-lethal dose of O. tsutsugamushi, all CD8-/- and MHC I-/- mice were moribund between 12 and 15 dpi, whereas all WT mice survived. Bacterial loads in the lung, kidney, liver and spleen of CD8-/- and MHC I-/- mice were significantly greater than those in WT mice. Interferon-γ (IFN-γ and granzyme B mRNA levels in the liver of CD8-/- and MHC I-/- mice were significantly greater than in WT mice. In addition, more severe histopathologic lesions were observed in CD8-/- mice. Finally, adoptive transfer confirmed a major role of immune CD8+ T cells as well as a less effective contribution by immune CD8 T cell-depleted splenocytes in protection against O. tsutsugamushi infection. These studies demonstrated the critical importance of CD8+ T cells in the host immune response during O. tsutsugamushi infection.

  16. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening.

    Science.gov (United States)

    Yang, XinChao; Li, MengHui; Liu, JianHua; Ji, YiHong; Li, XiangRui; Xu, LiXin; Yan, RuoFeng; Song, XiaoKai

    2017-02-16

    Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 10 6 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 10 7 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Our

  17. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice.

    Science.gov (United States)

    Heine, Shannon J; Franco-Mahecha, Olga L; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C; van Roosmalen, Maarten L; Leenhouts, Kees; Picking, Wendy L; Pasetti, Marcela F

    2015-08-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of nonliving, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis.

  18. Identifying the Role of E2 Domains on Alphavirus Neutralization and Protective Immune Responses.

    Directory of Open Access Journals (Sweden)

    James Weger-Lucarelli

    Full Text Available Chikungunya virus (CHIKV and other alphaviruses are the etiologic agents of numerous diseases in both humans and animals. Despite this, the viral mediators of protective immunity against alphaviruses are poorly understood, highlighted by the lack of a licensed human vaccine for any member of this virus genus. The alphavirus E2, the receptor-binding envelope protein, is considered to be the predominant target of the protective host immune response. Although envelope protein domains have been studied for vaccine and neutralization in flaviviruses, their role in alphaviruses is less characterized. Here, we describe the role of the alphavirus E2 domains in neutralization and protection through the use of chimeric viruses.Four chimeric viruses were constructed in which individual E2 domains of CHIKV were replaced with the corresponding domain from Semliki Forest virus (SFV (ΔDomA/ΔDomB/ΔDomC/ ΔDomA+B. Vaccination studies in mice (both live and inactivated virus revealed that domain B was the primary determinant of neutralization. Neutralization studies with CHIKV immune serum from humans were consistent with mouse studies, as ΔDomB was poorly neutralized.Using chimeric viruses, it was determined that the alphavirus E2 domain B was the critical target of neutralizing antibodies in both mice and humans. Therefore, chimeric viruses may have more relevance for vaccine discovery than peptide-based approaches, which only detect linear epitopes. This study provides new insight into the role of alphavirus E2 domains on neutralization determinants and may be useful for the design of novel therapeutic technologies.

  19. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol Dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis.

  20. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  1. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    Science.gov (United States)

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  2. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  3. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    Science.gov (United States)

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  4. Association of neopterin as a marker of immune system activation and juvenile rheumatoid arthritis activity

    Directory of Open Access Journals (Sweden)

    Mones M. Abu Shady

    2015-07-01

    Conclusion: The elevation of plasma neopterin concentrations in early JIA patients may indicate stimulation of immune response. Serum neopterin can be used as a sensitive marker for assaying background inflammation and disease activity score in JIA patients.

  5. Immunization with a Neural-Derived Peptide Protects the Spinal Cord from Apoptosis after Traumatic Injury

    Directory of Open Access Journals (Sweden)

    Roxana Rodríguez-Barrera

    2013-01-01

    Full Text Available Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC injury. Immunization with neural-derived peptides (INDPs such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury. In order to test this assumption, adult rats were subjected to SC contusion and immunized either with A91 or phosphate buffered saline (PBS; control group. Seven days after injury, animals were euthanized to evaluate the number of apoptotic cells at the injury site. Apoptosis was evaluated using DAPI and TUNEL techniques; caspase-3 activity was also evaluated. To further elucidate the mechanisms through which A91 exerts this antiapoptotic effects we quantified tumor necrosis factor-alpha (TNF-α. To also demonstrate that the decrease in apoptotic cells correlated with a functional improvement, locomotor recovery was evaluated. Immunization with A91 significantly reduced the number of apoptotic cells and decreased caspase-3 activity and TNF-α concentration. Immunization with A91 also improved the functional recovery of injured rats. The present study shows the beneficial effect of INDPs on preventing apoptosis and provides more evidence on the neuroprotective mechanisms exerted by this strategy.

  6. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  7. The endogenous hallucinogen and trace amine N,N-dimethyltryptamine (DMT displays potent protective effects against hypoxia via sigma-1 receptor activation in human primary iPSC-derived cortical neurons and microglia-like immune cells

    Directory of Open Access Journals (Sweden)

    Attila Szabo

    2016-09-01

    Full Text Available N,N-dimethyltryptamine (DMT is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R, an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, and in monocyte-derived macrophages and dendritic cells. Here we report that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2 through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1 suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain.

  8. The Endogenous Hallucinogen and Trace Amine N,N-Dimethyltryptamine (DMT) Displays Potent Protective Effects against Hypoxia via Sigma-1 Receptor Activation in Human Primary iPSC-Derived Cortical Neurons and Microglia-Like Immune Cells.

    Science.gov (United States)

    Szabo, Attila; Kovacs, Attila; Riba, Jordi; Djurovic, Srdjan; Rajnavolgyi, Eva; Frecska, Ede

    2016-01-01

    N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain.

  9. Immunization with plasmid DNA encoding the hemagglutinin and the nucleoprotein confers robust protection against a lethal canine distemper virus challenge.

    Science.gov (United States)

    Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete

    2004-09-09

    We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.

  10. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  11. NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice.

    Directory of Open Access Journals (Sweden)

    Lena Muchnik

    Full Text Available The initial event in disease caused by S. pneumoniae is adhesion of the bacterium to respiratory epithelial cells, mediated by surface expressed molecules including cell-wall proteins. NADH oxidase (NOX, which reduces free oxygen to water in the cytoplasm, was identified in a non-lectin enriched pneumococcal cell-wall fraction. Recombinant NOX (rNOX was screened with sera obtained longitudinally from children and demonstrated age-dependent immunogenicity. NOX ablation in S. pneumoniae significantly reduced bacterial adhesion to A549 epithelial cells in vitro and their virulence in the intranasal or intraperitoneal challenge models in mice, compared to the parental strain. Supplementation of Δnox WU2 with the nox gene restored its virulence. Saturation of A549 target cells with rNOX or neutralization of cell-wall residing NOX using anti-rNOX antiserum decreased adhesion to A549 cells. rNOX-binding phages inhibited bacterial adhesion. Moreover, peptides derived from the human proteins contactin 4, chondroitin 4 sulfotraferase and laminin5, homologous to the insert peptides in the neutralizing phages, inhibited bacterial adhesion to the A549 cells. Furthermore, rNOX immunization of mice elicited a protective immune response to intranasal or intraperitoneal S. pneumoniae challenge, whereas pneumococcal virulence was neutralized by anti-rNOX antiserum prior to intraperitoneal challenge. Our results suggest that in addition to its enzymatic activity, NOX contributes to S. pneumoniae virulence as a putative adhesin and thus peptides derived from its target molecules may be considered for the treatment of pneumococcal infections. Finally, rNOX elicited a protective immune response in both aerobic and anaerobic environments, which renders NOX a candidate for future pneumococcal vaccine.

  12. Testing the ability of viral haemorrhagic septicaemia virus to evade the protective immune response induced in rainbow trout by DNA vaccination

    DEFF Research Database (Denmark)

    Sepulveda, Dagoberto; Lorenzen, Niels

    2013-01-01

    , this work aims to evaluate whether VHSV is able to evade the protective immune response induced by the DNA vaccination. Earlier studies have demonstrated that VHSV can evade the neutralizing effect of monoclonal antibodies by mutations in the glycoprotein gene. One approach of the present study is therefore...... to try to isolate VHSV variants which can escape the neutralizing activity of serum from fish immunized with the DNA vaccine. To do so, a highly pathogenic VHSV isolate (DK3592B) will be repeatedly passaged in fish cell cultures in the presence of neutralizing fish serum. Another approach comprises...

  13. Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva.

    Science.gov (United States)

    Cunha, Jurema M; Abbehusen, Melissa; Suarez, Martha; Valenzuela, Jesus; Teixeira, Clarissa R; Brodskyn, Cláudia I

    2018-01-01

    Leishmania is transmitted in the presence of sand fly saliva. Protective immunity generated by saliva has encouraged identification of a vector salivary-based vaccine. Previous studies have shown that immunization with LJM11, a salivary protein from Lutzomyia longipalpis, is able to induce a Th1 immune response and protect mice against bites of Leishmania major-infected Lutzomyia longipalpis. Here, we further investigate if immunization with LJM11 recombinant protein is able to confer cross-protection against infection with Leishmania braziliensis associated with salivary gland sonicate (SGS) from Lutzomyia intermedia or Lu. longipalpis. Mice immunized with LJM11 protein exhibited an increased production of anti-LJM11 IgG, IgG1 and IgG2a and a DTH response characterized by an inflammatory infiltrate with the presence of CD4 + IFN-γ + T cells. LJM11-immunized mice were intradermally infected in the ear with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia SGS. A significant reduction of parasite numbers in the ear and lymph node in the group challenged with L. braziliensis plus Lu. longipalpis SGS was observed, but not when the challenge was performed with L. braziliensis plus Lu. intermedia SGS. A higher specific production of IFN-γ and absence of IL-10 by lymph node cells were only observed in LJM11 immunized mice after infection. After two weeks, a similar frequency of CD4 + IFN-γ + T cells was detected in LJM11 and BSA groups challenged with L. braziliensis plus Lu. longipalpis SGS, suggesting that early events possibly triggered by immunization are essential for protection against Leishmania infection. Our findings support the specificity of saliva-mediated immune responses and reinforce the importance of identifying cross-protective salivary antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Science.gov (United States)

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  15. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  16. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  17. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal.

    Directory of Open Access Journals (Sweden)

    Patrick M Brock

    Full Text Available Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on

  18. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  19. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  20. Differential Effects of Naja naja atra Venom on Immune Activity

    Directory of Open Access Journals (Sweden)

    Jian-Qun Kou

    2014-01-01

    Full Text Available Previous studies reported that Naja naja atra venom (NNAV inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4 secretion and inhibition of Th17 cytokine (IL-17 production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.

  1. Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration.

    Science.gov (United States)

    Jung, Myung-Hwa; Lee, Jehee; Ortega-Villaizan, M; Perez, Luis; Jung, Sung-Ju

    2017-06-27

    Rock bream iridovirus (RBIV) disease in rock bream (Oplegnathus fasciatus) remains an unsolved problem in Korea aquaculture farms. CpG ODNs are known as immunostimulant, can improve the innate immune system of fish providing resistance to diseases. In this study, we evaluated the potential of CpG ODNs to induce anti-viral status protecting rock bream from different RBIV infection conditions. We found that, when administered into rock bream, CpG ODN 1668 induces better antiviral immune responses compared to other 5 CpG ODNs (2216, 1826, 2133, 2395 and 1720). All CpG ODN 1668 administered fish (1/5µg) at 2days before infection (1.1×10 7 ) held at 26°C died even though mortality was delayed from 8days (1µg) and 4days (5µg). Similarly, CpG ODN 1668 administered (5µg) at 2days before infection (1.2×10 6 ) held at 23/20°C had 100% mortality; the mortality was delayed from 9days (23°C) and 11days (20°C). Moreover, when CpG ODN 1668 administered (1/5/10µg) at 2/4/7days before infection or virus concentration was decreased to 1.1×10 4 and held at 20°C had mortality rates of 20/60/30% (2days), 30/40/60% (4days) and 60/60/20% (7days), respectively, for the respective administration dose, through 100 dpi. To investigate the development of a protective immune response, survivors were re-infected with RBIV (1.1×10 7 ) at 100 and 400 dpi, respectively. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. The high survival rate of fish following re-challenge with RBIV indicates that protective immunity was established in the surviving rock bream. Our results showed the possibility of developing preventive measures against RBIV using CpG ODN 1668 by reducing RBIV replication speed (i.e. water temperature of 20°C and infection dose of 1.1×10 4 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.

    Science.gov (United States)

    Méndez-Samperio, Patricia

    2016-10-01

    Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.

  3. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Marina N Matos

    2017-02-01

    Full Text Available The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52 adjuvanted either with the STING (Stimulator of Interferon Genes agonist cyclic di-AMP (c-di-AMP, a pegylated derivative of α-galactosylceramide (αGC-PEG, or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG. All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has

  4. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key Words: Ultraviolet radiation,Standard Erythema Dose(SED), Minimal Erythema Dose(MED), Sun Burns, Solar Dermatitis, Sun Burned Disease, DNA Damage,Cell Damage, Antiradiation UV Vaccine, Immune-Prophylaxis of Sun Burned Diseases, Immune-Prophylaxis of Sun Burns, Immune-Therapy of Sun-Burned Disease and Sun Burns,Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Toxic Epidermal Necrolysis(TEN). Introduction: High doses of UV generated by solar source and artificial sources create an exposure of mammals and other species which can lead to ultraviolet(UV)radiation- associated disease (including erythema, epilation, keratitis, etc.). UV radiation belongs to the non-ionizing part of the electromagnetic spectrum and ranges between 100 nm and 400 nm with 100 nm having been chosen arbitrarily as the boundary between non-ionizing and ionizing radiation, however EMR is a spectrum and UV can produce molecular ionization. UV radiation is conventionally categorized into 3 areas: UV-A (>315-400 nm),UV-B (>280-315 nm)and UV-C (>100-280 nm) [IARC,Working Group Reports,2005] An important consequence of stratospheric ozone depletion is the increased transmission of solar ultraviolet (UV)radiation to the Earth's lower atmosphere and surface. Stratospheric ozone levels have been falling, in certain areas, for the past several decades, so current surface ultraviolet-B (UV-B) radiation levels are thought to be close to their modern day maximum. [S.Madronich et al.1998] Overexposure of ultraviolet radiation a major cause of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) { collectively referred to as “non-melanoma" skin cancer (NMSC) and melanoma as well, with skin cancers being the most common cancer in North America. [Armstrong et al. 1993, Gallagher et al. 2005] Methods and Experimental Design: Our experiments and testing of a novel UV “Antiradiation Vaccine” have employed a wide variety of laboratory animals which include : Chinchilla

  5. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  6. Phi (Φ) and psi (Ψ) angles involved in malarial peptide bonds determine sterile protective immunity.

    Science.gov (United States)

    Patarroyo, Manuel E; Moreno-Vranich, Armando; Bermúdez, Adriana

    2012-12-07

    Modified HABP (mHABP) regions interacting with HLA-DRβ1(∗) molecules have a more restricted conformation and/or sequence than other mHABPs which do not fit perfectly into their peptide binding regions (PBR) and do not induce an acceptable immune response due to the critical role of their Φ and Ψ torsion angles. These angle's critical role was determined in such highly immunogenic, protection-inducing response against experimental malaria using the conformers (mHABPs) obtained by (1)H-NMR and superimposed into HLA-DRβ1(∗)-like Aotus monkey molecules; their phi (Φ) and psi (Ψ) angles were measured and the H-bond formation between these molecules was evaluated. The aforementioned mHABP propensity to assume a regular conformation similar to a left-handed polyproline type II helix (PPII(L)) led to suggesting that favouring these conformations according to their amino acid sequence would lead to high antibody titre production and sterile protective immunity induction against malaria, thereby adding new principles or rules for vaccine development, malaria being one of them. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Protective effects of HemoHIM on immune and hematopoietic systems against γ-irradiation.

    Science.gov (United States)

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae; Kim, Sung-Ho

    2014-02-01

    We examined the effect of HemoHIM on the protective efficacy of hematopoietic stem cells and on the recovery of immune cells against sublethal doses of ionizing radiation. Two-month-old mice were exposed to γ-rays at a dose of 8, 6.5, or 5 Gy for a30-day survival study, endogenous spleen colony formation, or other experiments, respectively. HemoHIM was injected intraperitoneally before and after irradiation. Our results showed that HemoHIM significantly decreased the mortality of sublethally irradiated mice. The HemoHIM administration decreased the apoptosis of bone marrow cells in irradiated mice. On the other hand, HemoHIM increased the formation of endogenous spleen colony in irradiated mice. In irradiated mice, the recovery of total leukocytes in the peripheral blood and lymphocytes in the spleen were enhanced significantly by HemoHIM. Moreover, the function of B cells, T cells, and NK cells regenerated in irradiated mice were significantly improved by the administration of HemoHIM. HemoHIM showed an ideal radioprotector for protecting hematopoietic stem cells and for accelerating the recovery of immune cells. We propose HemoHIM as a beneficial supplement drug during radiotherapy to alleviate adverse radiation-induced effects for cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    Science.gov (United States)

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  9. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  10. B and T lymphocyte attenuator restricts the protective immune response against experimental malaria.

    Science.gov (United States)

    Adler, Guido; Steeg, Christiane; Pfeffer, Klaus; Murphy, Theresa L; Murphy, Kenneth M; Langhorne, Jean; Jacobs, Thomas

    2011-11-15

    The immune response against the blood stage of malaria has to be tightly regulated to allow for vigorous antiplasmodial activity while restraining potentially lethal immunopathologic damage to the host like cerebral malaria. Coinhibitory cell surface receptors are important modulators of immune activation. B and T lymphocyte attenuator (BTLA) (CD272) is a coinhibitory receptor expressed by most leukocytes, with the highest expression levels on T and B cells, and is involved in the maintenance of peripheral tolerance by dampening the activation of lymphocytes. The function of BTLA is described in several models of inflammatory disorders and autoimmunity, but its function in infectious diseases is less well characterized. Also, little is known about the influence of BTLA on non-T cells. In this study, we analyzed the function of BTLA during blood-stage malaria infection with the nonlethal Plasmodium yoelii strain 17NL. We show that BTLA knockout mice exhibit strongly reduced parasitemia and clear the infection earlier compared with wild-type mice. This increased resistance was seen before the onset of adaptive immune mechanisms and even in the absence of T and B cells but was more pronounced at later time points when activation of T and B cells was observed. We demonstrate that BTLA regulates production of proinflammatory cytokines in a T cell-intrinsic way and B cell intrinsically regulates the production of P. yoelii 17NL-specific Abs. These results indicate that the coinhibitory receptor BTLA plays a critical role during experimental malaria and attenuates the innate as well as the subsequent adaptive immune response.

  11. Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

    OpenAIRE

    Skyberg, Jerod A.; Rollins, MaryClare F.; Holderness, Jeff S.; Marlenee, Nicole L.; Schepetkin, Igor A.; Goodyear, Andrew; Dow, Steven W.; Jutila, Mark A.; Pascual, David W.

    2012-01-01

    Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilitie...

  12. Passive Immune-Protection of Litopenaeus vannamei against Vibrio harveyi and Vibrio parahaemolyticus Infections with Anti-Vibrio Egg Yolk (IgY-Encapsulated Feed

    Directory of Open Access Journals (Sweden)

    Xiaojian Gao

    2016-05-01

    Full Text Available Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY may provide a valuable protection of vibrio infections in white shrimp.

  13. Protective effects of melatonin against irradiation: an in vitro study to assess immune damages in blood and bone marrow lymphocytes of animal cells

    International Nuclear Information System (INIS)

    Rai, Seema

    2013-01-01

    Human health can be adversely affected by exposure to radiation. This can come in the form of simple sunlight, to X-ray exposure. Recently there is a great increase in the number of personnel working with ionizing radiations, together with the development of nuclear weapon. Tissue damage, whether resulting in a sunburn or in thyroid cancer etc. is caused by 'ionizing' radiation. Further, Local acute reaction to radiation exposure during 'radiation therapy' is more frequent than whole body radiation which interferes with the cellular activity (mostly proliferative cells such as skin, blood, cancer, digestive tract cells) and leads to the suppression of immune system function. 1) It penetrates the cells and tissue and can produce severe damage to the required/pathogenic cells. 2) Indirect actions are (free radical generation, destruction of receptor sites etc.) still not known. 3) Severe immune dysfunction after several doses of radiation is a common factor. What does the term mean? It describes the release of free radicals from the molecules struck by the radiation. Raising glutathione levels protects cells from damage by the most dangerous of free radicals (the hydroxyl-radical) released when ionizing radiation hits us. Therefore, in search of a protective measurement to reduce the hazardous effects of radiation on immune system we propose an approach to reduce the damages caused by ion radiation to immune cells by using melatonin which has been established as a strong antioxidant and immune-modulator. (author)

  14. Physical Activities, Exercises, and Their Effects to the Immune System

    OpenAIRE

    Nurmasitoh, Titis

    2015-01-01

    Every systems in human body correlate to maintain homeostasis. One of those systems which contribute to maintain homeostasis is the immune system. The immune system defends physiological functions against foreign substances and cancer cells through a complex and multilayered mechanism. The ability to defend against foreign substances and abnormal cells is done by two types of immune system, which are Innate immune system and adaptive/acquired immune system. There are also certain factors that...

  15. Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans.

    Science.gov (United States)

    Newburg, D S

    2009-04-01

    This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These

  16. Immune activation by histones: plusses and minuses in inflammation.

    Science.gov (United States)

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  18. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity.

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    Full Text Available BACKGROUND: The current vaccine against tuberculosis (TB, BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4, consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb. Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.

  19. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  20. Roles of OspA, OspB, and flagellin in protective immunity to Lyme borreliosis in laboratory mice.

    OpenAIRE

    Fikrig, E; Barthold, S W; Marcantonio, N; Deponte, K; Kantor, F S; Flavell, R A

    1992-01-01

    Vaccination with recombinant outer surface protein A (OspA) has been shown to protect mice from infection with Borrelia burgdorferi, the Lyme disease agent. To determine whether antibodies to B. burgdorferi proteins other than OspA are involved in protective immunity, antibodies to OspA were removed from protective anti-B. burgdorferi serum; the residual serum was still protective. Absorption of OspA and OspB antibodies from anti-B. burgdorferi serum eliminated the protective effect. Therefor...

  1. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  2. Immune activation by nucleic acids: A role in pregnancy complications.

    Science.gov (United States)

    Konečná, B; Lauková, L; Vlková, B

    2018-04-01

    Cell-free self-DNA or RNA may induce an immune response by activating specific sensing receptors. During pregnancy, placental nucleic acids present in the maternal circulation further activate these receptors due to the presence of unmethylated CpG islands. A higher concentration of cell-free foetal DNA is associated with pregnancy complications and a higher risk for foetal rejection. Cell-free foetal DNA originates from placental trophoblasts. It appears in different forms: free, bound to histones in nucleosomes, in neutrophil extracellular traps (NETs) and in extracellular vesicles (EVs). In several pregnancy complications, cell-free foetal DNA triggers the production of proinflammatory cytokines, and this production results in a cellular and humoral immune response. This review discusses preeclampsia, systemic lupus erythematosus, foetal growth restriction, gestational diabetes, rheumatoid arthritis and obesity in pregnancy from an immunological point of view and closely examines the different pathways that result in maternal inflammation. Understanding the role of cell-free nucleic acids, as well as the biogenesis of NETs and EVs, will help us to specify their functions or targets, which seem to be important in pregnancy complications. It is still not clear whether higher concentrations of cell-free nucleic acids in the maternal circulation are the cause or consequence of various complications. Therefore, further clinical studies and, even more importantly, animal experiments that focus on the involved immunological pathways are needed. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  3. Partial Protection of Mice against Trypanosoma cruzi after Immunizing with the TcY 72 Antigenic Preparation

    Directory of Open Access Journals (Sweden)

    Yara M Gomes

    1999-03-01

    Full Text Available A 72 kDa Trypanosoma cruzi glycoprotein recognized by the 164C11 monoclonal antibody (IgM isotype was purified by preparative electrophoresis. The antigenic preparation obtained, named TcY 72, was used to immunize C57Bl/10 mice. The following results were observed after immunization: (1 induction of higher titres of IgG than IgM antibodies, as evaluated by indirect immunofluorescence; (2 significant DTH after injection of epimastigotes in mice footpads; (3 peak parasitemia in immunized mice was significantly reduced and animals were negative by 13 days post-infection, although the mice still succumb to infection; (4 the phenotypic analysis of spleen cell populations showed a decrease in the CD4/CD8 ratio in immunized mice. Taken as a whole, these findings indicate that TcY 72 is immunogenic and potentially important for protective immunity.

  4. Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody

    Science.gov (United States)

    Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.

    2012-01-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074

  5. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.

    Science.gov (United States)

    Palm, Noah W; Rosenstein, Rachel K; Yu, Shuang; Schenten, Dominik D; Florsheim, Esther; Medzhitov, Ruslan

    2013-11-14

    Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  7. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  8. Experimental Ascaris suum infection in the pig: protective memory response after three immunizations and effect of intestinal adult worm population

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Eriksen, Lis; Roepstorff, Allan

    1999-01-01

    The protective immune response to larval migration in pigs, with or without adult intestinal worm populations, 10 weeks after 3 weekly Ascaris suum inoculations, was studied in 45 pigs. Controlled adult worm populations were achieved by oral transfer of 10 adult worms to previously immunized pigs...... after anthelmintic drenching. A significant reduction in larval recovery from lungs on day 7, and small intestine on day 14, was observed in immunized pigs compared with previously uninfected control pigs after challenge inoculation. The strong anamnestic response to larval migration was characterized...

  9. A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein

    Science.gov (United States)

    Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  10. Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection.

    Science.gov (United States)

    Hop, Huynh Tan; Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-01-01

    In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

  11. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  12. Passive immunization with a polyclonal antiserum to the hemoglobin receptor of Haemophilus ducreyi confers protection against a homologous challenge in the experimental swine model of chancroid.

    Science.gov (United States)

    Leduc, Isabelle; Fusco, William G; Choudhary, Neelima; Routh, Patty A; Cholon, Deborah M; Hobbs, Marcia M; Almond, Glen W; Orndorff, Paul E; Elkins, Christopher

    2011-08-01

    Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme.

  13. Passive Immunization with a Polyclonal Antiserum to the Hemoglobin Receptor of Haemophilus ducreyi Confers Protection against a Homologous Challenge in the Experimental Swine Model of Chancroid▿

    Science.gov (United States)

    Leduc, Isabelle; Fusco, William G.; Choudhary, Neelima; Routh, Patty A.; Cholon, Deborah M.; Hobbs, Marcia M.; Almond, Glen W.; Orndorff, Paul E.; Elkins, Christopher

    2011-01-01

    Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme. PMID:21646451

  14. Immune protection of microneme 7 (EmMIC7) against Eimeria maxima challenge in chickens.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    In the present study, the immune protective effects of recombinant microneme protein 7 of Eimeria maxima (rEmMIC7) and a DNA vaccine encoding this antigen (pVAX1-EmMIC7) on experimental challenge were evaluated. Two-week-old chickens were randomly divided into five groups. Experimental groups of chickens were immunized with 100 μg DNA vaccine pVAX1-MIC7 or 200 μg rEmMIC7, while control groups of chickens were injected with pVAX1 plasmid or sterile phosphate buffered saline (PBS). The results showed that the anti-EmMIC7 antibody titres in chickens of both rEmMIC7 and pVAX1-MIC7 groups were significantly higher as compared to PBS and pVAX1 control (P maxima challenge in chickens and it could be an effective antigen candidate for the development of new vaccines against E. maxima.

  15. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection

    Science.gov (United States)

    Fanning, Saranna; Hall, Lindsay J.; Cronin, Michelle; Zomer, Aldert; MacSharry, John; Goulding, David; O'Connell Motherway, Mary; Shanahan, Fergus; Nally, Kenneth; Dougan, Gordon; van Sinderen, Douwe

    2012-01-01

    Bifidobacteria comprise a significant proportion of the human gut microbiota. Several bifidobacterial strains are currently used as therapeutic interventions, claiming various health benefits by acting as probiotics. However, the precise mechanisms by which they maintain habitation within their host and consequently provide these benefits are not fully understood. Here we show that Bifidobacterium breve UCC2003 produces a cell surface-associated exopolysaccharide (EPS), the biosynthesis of which is directed by either half of a bidirectional gene cluster, thus leading to production of one of two possible EPSs. Alternate transcription of the two opposing halves of this cluster appears to be the result of promoter reorientation. Surface EPS provided stress tolerance and promoted in vivo persistence, but not initial colonization. Marked differences were observed in host immune response: strains producing surface EPS (EPS+) failed to elicit a strong immune response compared with EPS-deficient variants. Specifically, EPS production was shown to be linked to the evasion of adaptive B-cell responses. Furthermore, presence of EPS+ B. breve reduced colonization levels of the gut pathogen Citrobacter rodentium. Our data thus assigns a pivotal and beneficial role for EPS in modulating various aspects of bifidobacterial–host interaction, including the ability of commensal bacteria to remain immunologically silent and in turn provide pathogen protection. This finding enforces the probiotic concept and provides mechanistic insights into health-promoting benefits for both animal and human hosts. PMID:22308390

  16. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  17. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Directory of Open Access Journals (Sweden)

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  18. Physical protection system using activated barriers

    International Nuclear Information System (INIS)

    Timm, R.E.; Zinneman, T.E.; Haumann, J.R.; Flaugher, H.A.; Reigle, D.L.

    1984-03-01

    The Argonne National Laboratory has recently installed an activated barrier, the Access Denial System, to upgrade its security. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The Argonne National Laboratory is the first Department of Energy facility to use this device. Recent advancements in electronic components provide the total system support that makes the use of an activated barrier viable and desirable. The premise of an activated barrier is that it is deployed after a positive detection of an adversary is made and before the adversary can penetrate vital area. To accomplish this detection, sophisticated alarms, assessment, and communications must be integrated into a system that permits a security inspector to make a positive evaluation and to activate the barrier. The alarm sensor locations are selected to provide protection in depth. Closed circuit television is used with components that permit multiple video frames to be stored for automated, priority-based playback to the security inspector. Further, algorithms permit look-ahead surveillance of vital areas so that the security inspector can activate the access denial system in a timely manner and not be restricted to following the adversaries' penetration path(s)

  19. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague.

    Science.gov (United States)

    Sun, Wei; Sanapala, Shilpa; Rahav, Hannah; Curtiss, Roy

    2015-11-27

    A Yersinia pseudotuberculosis PB1+ (Yptb PB1+) mutant strain combined with chromosome insertion of the caf1R-caf1A-caf1M-caf1 operon and deletions of yopJ and yopK, χ10068 [pYV-ω2 (ΔyopJ315 ΔyopK108) ΔlacZ044::caf1R-caf1M-caf1A-caf1] was constructed. Results indicated that gene insertion and deletion did not affect the growth rate of χ10068 compared to wild-type Yptb cultured at 26 °C. In addition, the F1 antigen in χ10068 was synthesized and secreted on the surface of bacteria at 37 °C (mammalian body temperature), not at ambient culture temperature (26 °C). Immunization with χ10068 primed antibody responses and specific T-cell responses to F1 and YpL (Y. pestis whole cell lysate). Oral immunization with a single dose of χ10068 provided 70% protection against a subcutaneous (s.c.) challenge with ∼ 2.6 × 10(5) LD50 of Y. pestis KIM6+ (pCD1Ap) (KIM6+Ap) and 90% protection against an intranasal (i.n.) challenge with ∼ 500 LD50 of KIM6+Ap in mice. Our results suggest that χ10068 can be used as an effective precursor to make a safe vaccine to prevent plague in humans and to eliminate plague circulation among humans and animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Lactobacillus priming of the respiratory tract: Heterologous immunity and protection against lethal pneumovirus infection.

    Science.gov (United States)

    Garcia-Crespo, Katia E; Chan, Calvin C; Gabryszewski, Stanislaw J; Percopo, Caroline M; Rigaux, Peter; Dyer, Kimberly D; Domachowske, Joseph B; Rosenberg, Helene F

    2013-03-01

    We showed previously that wild-type mice primed via intranasal inoculation with live or heat-inactivated Lactobacillus species were fully (100%) protected against the lethal sequelae of infection with the virulent pathogen, pneumonia virus of mice (PVM), a response that is associated with diminished expression of proinflammatory cytokines and diminished virus recovery. We show here that 40% of the mice primed with live Lactobacillus survived when PVM challenge was delayed for 5months. This robust and sustained resistance to PVM infection resulting from prior interaction with an otherwise unrelated microbe is a profound example of heterologous immunity. We undertook the present study in order to understand the nature and unique features of this response. We found that intranasal inoculation with L. reuteri elicited rapid, transient neutrophil recruitment in association with proinflammatory mediators (CXCL1, CCL3, CCL2, CXCL10, TNF-alpha and IL-17A) but not Th1 cytokines. IFNγ does not contribute to survival promoted by Lactobacillus-priming. Live L. reuteri detected in lung tissue underwent rapid clearance, and was undetectable at 24h after inoculation. In contrast, L. reuteri peptidoglycan (PGN) and L. reuteri genomic DNA (gDNA) were detected at 24 and 48h after inoculation, respectively. In contrast to live bacteria, intranasal inoculation with isolated L. reuteri gDNA elicited no neutrophil recruitment, had minimal impact on virus recovery and virus-associated production of CCL3, and provided no protection against the negative sequelae of virus infection. Isolated PGN elicited neutrophil recruitment and proinflammatory cytokines but did not promote sustained survival in response to subsequent PVM infection. Overall, further evaluation of the responses leading to Lactobacillus-mediated heterologous immunity may provide insight into novel antiviral preventive modalities. Published by Elsevier B.V.

  2. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (Pheat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    International Nuclear Information System (INIS)

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  4. Breastfeeding Behaviors and the Innate Immune System of Human Milk: Working Together to Protect Infants against Inflammation, HIV-1, and Other Infections.

    Science.gov (United States)

    Henrick, Bethany M; Yao, Xiao-Dan; Nasser, Laila; Roozrogousheh, Ava; Rosenthal, Kenneth L

    2017-01-01

    The majority of infants' breastfeeding from their HIV-infected mothers do not acquire HIV-1 infection despite exposure to cell-free virus and cell-associated virus in HIV-infected breast milk. Paradoxically, exclusive breastfeeding regardless of the HIV status of the mother has led to a significant decrease in mother-to-child transmission (MTCT) compared with non-exclusive breastfeeding. Although it remains unclear how these HIV-exposed infants remain uninfected despite repeated and prolonged exposure to HIV-1, the low rate of transmission is suggestive of a multitude of protective, short-lived bioactive innate immune factors in breast milk. Indeed, recent studies of soluble factors in breast milk shed new light on mechanisms of neonatal HIV-1 protection. This review highlights the role and significance of innate immune factors in HIV-1 susceptibility and infection. Prevention of MTCT of HIV-1 is likely due to multiple factors, including innate immune factors such as lactoferrin and elafin among many others. In pursuing this field, our lab was the first to show that soluble toll-like receptor 2 (sTLR2) directly inhibits HIV infection, integration, and inflammation. More recently, we demonstrated that sTLR2 directly binds to selective HIV-1 proteins, including p17, gp41, and p24, leading to significantly reduced NFκB activation, interleukin-8 production, CCR5 expression, and HIV infection in a dose-dependent manner. Thus, a clearer understanding of soluble milk-derived innate factors with known antiviral functions may provide new therapeutic insights to reduce vertical HIV-1 transmission and will have important implications for protection against HIV-1 infection at other mucosal sites. Furthermore, innate bioactive factors identified in human milk may serve not only in protecting infants against infections and inflammation but also the elderly; thus, opening the door for novel innate immune therapeutics to protect newborns, infants, adults, and the elderly.

  5. Immunizations

    Science.gov (United States)

    ... vaccine leaves a person unprotected and still at risk for getting a disease. Other vaccinations require a booster shot every few years to ... who get diseases like mumps may be at risk for side effects of the illness, such ... children). Vaccinations are about protecting you in the future, not ...

  6. Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice.

    Science.gov (United States)

    Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai

    2014-04-11

    Rickettsia rickettsii is the pathogen of Rocky Mountain spotted fever (RMSF), a life-threatening tick-transmitted infection. Adr2 was a surface-exposed adhesion protein of R. rickettsii and its immunoprotection against RMSF was investigated in mice. Recombinant Adr2 (rAdr2) was used to immunize C3H/HeN mice, and the rickettsial loads in organs of the mice were detected after challenge with R. rickettsii. The levels of specific antibodies of sera from the immunized mice were determined and the sera from immunized mice were applied to neutralize R. rickettsii. Proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were also assayed after rAdr2 stimulation. After R. rickettsii challenge, the rickettsial loads in spleens, livers, and lungs were significantly lower and the impairment degrees of these organs in rAdr2-immunized mice were markedly slighter, compared with those in negative control mice. The ratio of specific IgG2a/IgG1 of rAdr2-immunized mice kept increasing during the immunization. After treatment with rAdr2-immunized sera, the total number of R. rickettsii organisms adhering and invading host cells was significantly lower than that treated with PBS-immunized sera. Interferon-γ secretion by CD4(+) or CD8(+) T cells and tumor necrosis factor-α secretion by CD4(+) T cells from R. rickettsii-infected mice were respectively significantly greater than those from uninfected mice after rAdr2 stimulation. Adr2 is a protective antigen of R. rickettsii. Protection offered by Adr2 is mainly dependent on antigen-specific cell-mediated immune responses, including efficient activity of CD4(+) and CD8(+) T cells to produce great amount of TNF-α and/or IFN-γ as well as rapid increase of specific IgG2a, which synergistically activate and opsonize host cells to killing intracellular rickettsiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  8. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  9. Acanthopanax senticosus extracts have a protective effect on Drosophila gut immunity.

    Science.gov (United States)

    Li, Wenjia; Luo, Qiuxiang; Jin, Li Hua

    2013-03-07

    Aanthopanax senticosus (A. senticosus) Harms is a classical adaptogenic agent used in China. It has been applied as an analeptic aid to improve weakened physical status. However, little is known about the effects of A. senticosus on inflammatory disease processes. Flies fed with standard cornmeal-yeast medium were used as controls, and the treatment groups contained 10% of A. senticosus aqueous extracts (root or fruit) in standard medium. Survival rate was performed by feeding a vial containing five layers of filter paper hydrated with 5% sucrose solution contaminated with pathogenic or toxic compounds. Imaging of the guts was viewed under the microscope. Death cells were detected by 7-AAD staining. The A. senticosus extract improved the survival rate, attenuated the death of intestinal epithelial cells, promoted the expression of antimicrobial peptide genes, and decreased the formation of melanotic masses. Moreover, our results indicated that the protective effect of fruit is much higher than that of root extracts. A. senticosus extracts have a protective effect on Drosophila gut immunity and stress response, and may contribute to the prevention of inflammatory diseases induced by pathogenic and toxic compounds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Evaluation of the protection induced by the immunization with radioiodinated yeast cells of Paracoccidioides brasiliensis in animal model

    International Nuclear Information System (INIS)

    Martins, Estefania Mara do Nascimento

    2007-01-01

    Paracoccidioides brasiliensis is fungus agent of paracoccidioidomycosis (PCM), a chronic systemic disease prevalent in Latin American. To date, there is no effective vaccine. The potential of gamma radiation for pathogens attenuation and vaccine development was explored in this work. In our laboratory were developed yeast cells of P. brasiliensis attenuated by gamma radiation, which lose the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins, the oxidative metabolism and the expression of the antigens present in the native yeast. The aim of the present work was to evaluate the protection elicited by the immunization with this cells in animal model. The virulence attenuated was evaluated in BALB/c and Nude-Nude mice. The protector effect was evaluated in BALB/c mice groups immunized once or twice. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. The mice were sacrificed 30 and 90 days after challenge. The removed organs were used for colony forming units (CFU's) recover, histopathological analysis and cytokine determination. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. To evaluate the type of elicited immune response the cytokines IFN - γ, TNF - α, IL - 10 and IL - 5 were determined by real time PCR. The radio attenuated yeast loses its virulence since fails in producing infection in BALB/c and Nude-Nude mice. No CFU's were recovered neither histological changes observed in the mice infected with the radio attenuated cells. The mice infected with the not irradiated P. brasiliensis showed a high level of antibody production while the infection with the radio attenuated yeast did not significantly change the antibody level. The mice infected with the radio attenuated yeast presented an increase in the IFN - γ and TNF - α production and an inhibition of the IL-10 synthesis, indicating a

  11. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei.

    Science.gov (United States)

    Vintiñi, Elisa O; Medina, Marcela S

    2011-08-11

    At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB) with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei), when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA) for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV) and heat-killed (LcM) was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed. Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I). These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M) induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and LcM were found. Live and heat-killed L

  12. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Vintiñi Elisa O

    2011-08-01

    Full Text Available Abstract Background At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei, when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV and heat-killed (LcM was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed. Results Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I. These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and

  13. Protection of non-immunized broiler chicks housed with immunized cohorts against infection with Eimeria maxima and E. acervulina

    Science.gov (United States)

    The use of live oocyst vaccines is becoming increasingly important in the control of avian coccidosis in broiler chicks. Knowledge of the mechanisms of how chicks uptake oocysts and become immune is important for optimizing delivery of live vaccines. The current study tests the hypothesis that chick...

  14. European activities in radiation protection in medicine

    International Nuclear Information System (INIS)

    Simeonov, Georgi

    2015-01-01

    launching several actions including promotion and dissemination activities, exchange and discussion forums and provision of guidance. These actions will be based on previous experiences and will rely on the results of recent and ongoing EU-funded projects. Important stakeholders including the Euratom Article 31 Group, the association of the Heads of European Radiological protection Competent Authorities (HERCA) and different European professional and specialty organisations will be involved. (authors)

  15. Protective activity of Lentinan in experimental tuberculosis.

    Science.gov (United States)

    Markova, Nadya; Kussovski, Vesselin; Drandarska, Ivanka; Nikolaeva, Sascha; Georgieva, Neli; Radoucheva, Tatyana

    2003-10-01

    Protective effects of Lentinan (Ajinomoto, Japan) against Mycobacterium tuberculosis infection were studied by in vitro and in vivo mouse models. The effectiveness of Lentinan administrated intraperitoneally (i.p.) before infection at a dose of 1 mg/kg three times at 2-day intervals was monitored in vivo by several parameters (body temperature; spleen weight; CFU counts of M. tuberculosis in spleen, liver and lung; and histomorphological observations). Peritoneal macrophages obtained from animals treated with Lentinan were greatly stimulated, as assayed by establishing their number, acid phosphatase activity, H2O2 production and killing ability against M. tuberculosis in vitro. The in vivo model demonstrated that administration of Lentinan before infection can mobilize host defense potential and reduce mycobacterial infection.

  16. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia.

    Science.gov (United States)

    Paerewijck, Oonagh; Maertens, Brecht; Dreesen, Leentje; Van Meulder, Frederik; Peelaers, Iris; Ratman, Dariusz; Li, Robert W; Lubberts, Erik; De Bosscher, Karolien; Geldhof, Peter

    2017-08-17

    The protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the protective effector mechanisms triggered by IL-17A following G. muris infection in mice, by an RNA-sequencing approach. C57BL/6 WT and C57BL/6 IL-17RA KO mice were orally infected with G. muris cysts. Three weeks post infection, intestinal tissue samples were collected for RNA-sequencing, with samples from uninfected C57BL/6 WT and C57BL/6 IL-17RA KO animals serving as negative controls. Differential expression analysis showed that G. muris infection evoked the transcriptional upregulation of a wide array of genes, mainly in animals with competent IL-17RA signaling. IL-17RA signaling induced the production of various antimicrobial peptides, such as angiogenin 4 and α- and β-defensins and regulated complement activation through mannose-binding lectin 2. The expression of the receptor that regulates the secretion of IgA into the intestinal lumen, the polymeric immunoglobulin receptor, was also dependent on IL-17RA signaling. Interestingly, the transcriptome data showed for the first time the involvement of the circadian clock in the host response following Giardia infection.

  17. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    Fasso, A.

    1996-01-01

    In 1995 several operational circumstances required careful watching by the Radiation Protection Group. Most of these were linked with new or recently started CERN activities: for instance the increasing importance assumed by ISOLDE operation and the breakdowns encountered which have given rise to contamination of the target region and to activity releases. In the SPS ring, several difficulties were brought about by a toilsome installation of a new interlock system, while lead ion operation marked the end of the year, as usual, with higher radiation levels in the SPS experimental areas, despite the fact that existing shielding had been improved. Also at the end of the year, the increase of LEP beam energy to 68 GeV caused a rise of dose rate levels from synchrotron radiation. This was expected, but studies are still needed to assess the full implications for different aspects of radiation protection. On the other hand, the ageing of magnet coils and other equipment (insulators, cables, flexible pipes), aggravated by the high proton beam intensities, has resulted in an increasing frequency of failures (mainly water leaks) both at the PS and at the SPS. If the apparent trend is confirmed, difficulties could be expected in the future for two reasons: the shortage of specialized staff, some of them approaching the CERN dose limit of 15 mSv annually, who can be assigned to repair work; and the lack of spare parts to replace the damaged items. Luckily, the long cooling times following high intensity proton runs provided by the operation with heavy-ions and by the winter shutdown mitigate this situation

  18. The Immune Pathogenesis of Immune Reconstitution Inflammatory Syndrome Associated with Highly Active Antiretroviral Therapy in AIDS

    Science.gov (United States)

    Zhou, Huaying; He, Yan; Chen, Zi; He, Bo; He, Mei

    2014-01-01

    Abstract The present study investigated the immunological pathogenesis of immune reconstitution inflammatory syndrome (IRIS) in acquired immunodeficiency syndrome (AIDS) patients undergoing highly active antiretroviral therapy (HAART). A total of 238 patients with AIDS who received initial HAART were included in this prospective cohort study. Blood samples were collected immediately, at baseline, at week 12, and at week 24 after initial HAART and at the onset of IRIS. Lymphocyte subsets, Th1 and Th2 cytokines, and interleukin (IL)-7 levels were measured by flow cytometry or ELISA. Among the 238 patients with AIDS who received HAART, 47 patients developed IRIS. The percentages of CD4+ and CD8+ naive, memory, and activated cells exhibited no significant differences between AIDS patients with and without IRIS 24 weeks after initial HAART. The percentage of CD4+CD25+Foxp3+ regulatory T cells was lower in IRIS patients than in non-IRIS patients before HAART, 12 weeks after HAART, 24 weeks after HAART, and at the onset of IRIS. IL-2 and interferon (IFN)-γ levels were significantly higher at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. In contrast, IL-4 and IL-10 levels were significantly lower at week 4 and at the onset of IRIS in IRIS patients than in non-IRIS patients. Plasma IL-7 decreased gradually with the progression of HAART. The level of IL-7 was higher in IRIS patients than in non-IRIS patients at all follow-up time points. An imbalance of Th1/Th2 cytokines, a consistently low CD+CD25+Fox3+ percentage, and a high IL-7 level may be crucial in the pathogenesis of IRIS in AIDS patients who had received HAART. PMID:25131160

  19. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  20. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    Science.gov (United States)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  1. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  2. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. maxima challenge infection

    Science.gov (United States)

    The purpose of this study was to determine if incorporating a recombinant Eimeria maxima protein, namely rEmaxIMP1, into gold nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherchia coli as a poly-His f...

  3. Interleukin-17 receptor A (IL-17RA) as a central regulator of the protective immune response against Giardia

    NARCIS (Netherlands)

    Paerewijck, O. (Oonagh); Maertens, B. (Brecht); L. Dreesen (Leentje); Van Meulder, F. (Frederik); Peelaers, I. (Iris); Ratman, D. (Dariusz); Li, R.W. (Robert W.); E.W. Lubberts (Erik); K. De Bosscher; P. Geldhof (Peter)

    2017-01-01

    textabstractThe protozoan parasite Giardia is a highly prevalent intestinal pathogen with a wide host range. Data obtained in mice, cattle and humans revealed the importance of IL-17A in the development of a protective immune response against Giardia. The aim of this study was to further unravel the

  4. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  5. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia

    Directory of Open Access Journals (Sweden)

    Céline Pomié

    2016-06-01

    Full Text Available Objective: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. Methods: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Results: Subcutaneous injection (immunization procedure of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Conclusions: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet. Keywords: Gut microbiota and metabolic diseases, Immunity, Insulin resistance

  6. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  7. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    Science.gov (United States)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  8. An initial examination of the potential role of T-cell immunity in protection against feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Aranyos, Alek M; Roff, Shannon R; Pu, Ruiyu; Owen, Jennifer L; Coleman, James K; Yamamoto, Janet K

    2016-03-14

    The importance of vaccine-induced T-cell immunity in conferring protection with prototype and commercial FIV vaccines is still unclear. Current studies performed adoptive transfer of T cells from prototype FIV-vaccinated cats to partial-to-complete feline leukocyte antigen (FLA)-matched cats a day before either homologous FIVPet or heterologous-subtype pathogenic FIVFC1 challenge. Adoptive-transfer (A-T) conferred a protection rate of 87% (13 of 15, p 13 × 10(6) cells were required for A-T protection against FIVFC1 strain, reported to be a highly pathogenic virus resistant to vaccine-induced neutralizing-antibodies. The addition of FLA-matched B cells alone was not protective. The poor quality of the anti-FIV T-cell immunity induced by the vaccine likely contributed to the lack of protection in an FLA-matched recipient against FIVFC1. The quality of the immune response was determined by the presence of high mRNA levels of cytolysin (perforin) and cytotoxins (granzymes A, B, and H) and T helper-1 cytokines (interferon-γ [IFNγ] and IL2). Increased cytokine, cytolysin and cytotoxin production was detected in the donors which conferred protection in A-T studies. In addition, the CD4(+) and CD8(+) T-cell proliferation and/or IFNγ responses to FIV p24 and reverse transcriptase increased with each year in cats receiving 1X-3X vaccine boosts over 4 years. These studies demonstrate that anti-FIV T-cell immunity induced by vaccination with a dual-subtype FIV vaccine is essential for prophylactic protection against AIDS lentiviruses such as FIV and potentially HIV-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  10. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    International Nuclear Information System (INIS)

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-01-01

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies

  12. Expected immunizations and health protection for Hajj and Umrah 2018 -An overview.

    Science.gov (United States)

    Al-Tawfiq, Jaffar A; Gautret, Philippe; Memish, Ziad A

    2017-09-01

    The annual Hajj and Umrah are one of the largest recurring religious mass gatherings across the globe drawing pilgrims from more than 185 countries. The living circumstances and activities of the pilgrims may create an environment for the occurrence and spread of communicable diseases. Each year, the Health authority of the Kingdom of Saudi Arabia, in coordination with international health authorities, updates health requirements for pilgrims. The Hajj for 2017 took place from August 24 to September 5, 2017. Here, we review the expected obligations for immunizations for the 2018 Hajj and Umrah. The Hajj and Umrah vaccine requirements include mandatory vaccinations against yellow fever, quadrivalent meningococcal polysaccharide (every 3 years) or conjugated (every 5 years) vaccines and poliomyelitis vaccine. Influenza vaccine utilizing the 2016 (Southern Hemisphere vaccine to all pilgrims) was recommended but was not obligatory for pilgrims. Ciprofloxacin is required for individuals >12 years excluding pregnant women as chemoprophylaxis to be given at the port of entry for Pilgrims coming from the meningitis belt. With the ongoing outbreaks of measles in Europe, it is recommended that all pilgrims have an updated immunization against vaccine-preventable diseases (diphtheria, tetanus, pertussis, polio, measles and mumps). The mandatory vaccines remain the same with continued vigilance for the development of any new or emerging infectious diseases. Continuing surveillance for Zika virus, cholera and MERS-CoV are ongoing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of ionizing radiation on active thyroid immunity

    International Nuclear Information System (INIS)

    Ibrahim, I.I.; Abdelaal, A.E.; AL-Gachari, A.I.; Hindy, O.W.; Abdalla, M.I.; Said, M.M.; Shoucha, M.A.; and Salama, F.M.

    1988-01-01

    The present study was carried out to explore the effect of exposure to ionizing radiation on the immune system in cocks. A total number of 36 mature Fayoumi cocks were randomly assigned to: control, 300 R and 600 r groups. Whole body irradiation was carried out in co-60 unit 24 hours. Prior to induction of immunity. Thyroglobulin (T G) immunity was induced in all birds and sera were collected before, 1, 2, 4, 6, 8 and 16 weeks. After immunization. T G antibodies were evaluated by using radioisotopic techniques: i- Ammonium sulphate method, ii-polyethylene glycol method and iii-The circulating thyroid hormones. The results obtained indicated the formation of thyroglobulin antibodies in all immunized birds at 6 weeks. After immunization and thereafter, although it was detected in some birds at 4 weeks. after immunization. The antibody titer increased sharply after the sixth Th week reaching its peak value at the sixteenth week interval. The suppressive effect of ionizing radiation on the immune response was evident in the irradiated groups, particularly the 600 r group. Some birds in the 600 r group were not able to respond appropriately to the challenge and did not survive until the end of observation period

  14. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    Science.gov (United States)

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  15. Immune adjuvant activity of the olive, soybean and corn oils

    Directory of Open Access Journals (Sweden)

    Ana Claudia Marinho da Silva

    2016-08-01

    Full Text Available In the last half of the century, a large amount of substances has been used as immune adjuvant. The immune adjuvant effect of olive, soybean and corn oils in Swiss mice immunized with ovalbumin (OVA plus aluminum hydroxide or emulsified in Marcol, soybean, olive or corn oils was evaluated through the OVA-specific antibodies determined by ELISA and Passive Cutaneous Anaphylaxis. In this work the comparison of the intensity of the immune response was established by the Bayesian analysis. The adjuvant effect of the vegetable oils was shown to be more effective than aluminium hydroxide. Regarding to OVA-specific IgE synthesis, olive oil had the slowest adjuvant effect of the three vegetable oils. Accordingly, olive oil was the most convenient among the vegetable oils to be used as immune adjuvant, since it stimulated a higher production of OVA-specific Ig and lower levels of anti-OVA IgE.

  16. Immune algorithm based active PID control for structure systems

    International Nuclear Information System (INIS)

    Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon

    2006-01-01

    An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect

  17. Molecular characterisation and the protective immunity evaluation of Eimeria maxima surface antigen gene.

    Science.gov (United States)

    Liu, Tingqi; Huang, Jingwei; Li, Yanlin; Ehsan, Muhammad; Wang, Shuai; Zhou, Zhouyang; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2018-05-30

    Coccidiosis is recognised as a major parasitic disease in chickens. Eimeria maxima is considered as a highly immunoprotective species within the Eimeria spp. family that infects chickens. In the present research, the surface antigen gene of E. maxima (EmSAG) was cloned, and the ability of EmSAG to stimulate protection against E. maxima was evaluated. Prokaryotic and eukaryotic plasmids expressing EmSAG were constructed. The EmSAG transcription and expression in vivo was performed based on the RT-PCR and immunoblot analysis. The expression of EmSAG in sporozoites and merozoites was detected through immunofluorescence analyses. The immune protection was assessed based on challenge experiments. Flow cytometry assays were used to determine the T cell subpopulations. The serum antibody and cytokine levels were evaluated by ELISA. The open reading frame (ORF) of EmSAG gene contained 645 bp encoding 214 amino acid residues. The immunoblot and RT-PCR analyses indicated that the EmSAG gene were transcribed and expressed in vivo. The EmSAG proteins were expressed in sporozoite and merozoite stages of E. maxima by the immunofluorescence assay. Challenge experiments showed that both pVAX1-SAG and the recombinant EmSAG (rEmSAG) proteins were successful in alleviating jejunal lesions, decreasing loss of body weight and the oocyst ratio. Additionally, these experiments possessed anticoccidial indices (ACI) of more than 170. Higher percentages of CD4 + and CD8 + T cells were detected in both EmSAG-inoculated birds than those of the negative control groups (P maxima.

  18. Protective value of immune responses developed in goats vaccinated with insoluble proteins from Sarcoptes Scabiei

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2005-06-01

    Full Text Available Vaccines developed from certain membrane proteins lining the lumen of arthropod’s gut have been demonstrated effective in the control of some arthropod ectoparasites. A similar approach could also be applied to Sarcoptes scabiei since this parasite also ingests its host immunoglobulins. To evaluate immune protection of the membrane proteins, insoluble mite proteins were fractionated by successive treatment in the solutions of 1.14 M NaCl, 2% SB 3-14 Zwitterion detergent, 6 M urea, 6 M guanidine-HCl and 5% SDS. Five groups of goats (6 or 7 goats per group were immunised respectively with the protein fractions. Vaccination was performed 6 times, each with a dosage of 250 μg proteins, and 3 week intervals between vaccination. Group 6 (7 goats received PBS and adjuvant only, and served as an unvaccinated control. One week after the last vaccination, all goats were challenged with 2000 live mites on the auricles. The development of lesions were examined at 1 day, 2 days, and then every week from week 1 to 8. All animals were bled and weighed every week, and at the end of the experiment, skin scrapings were collected to determine the mite burden. Antibody responses induced by vaccination and challenge were examined by ELISA and Western blotting. This experiment showed that vaccination with the insoluble-protein fractions resulted in the development of high level of specific antibodies but the responses did not have any protective value. The severity of lesions and mite burden in the vaccinated animals were not different from those in the unvaccinated control.

  19. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  20. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  1. Oral Vaccination with Salmonella enterica as a Cruzipain-DNA Delivery System Confers Protective Immunity against Trypanosoma cruzi▿

    Science.gov (United States)

    Cazorla, Silvia I.; Becker, Pablo D.; Frank, Fernanda M.; Ebensen, Thomas; Sartori, María J.; Corral, Ricardo S.; Malchiodi, Emilio L.; Guzmán, Carlos A.

    2008-01-01

    To stimulate both local and systemic immune responses against Trypanosoma cruzi, Salmonella enterica serovar Typhimurium aroA was exploited as a DNA delivery system for cruzipain (SCz). In a murine model we compared SCz alone (GI) or coadministered with Salmonella carrying a plasmid encoding granulocyte-macrophage colony-stimulating factor (GII), as well as protocols in which SCz priming was followed by boosting with recombinant cruzipain (rCz) admixed with either CpG-ODN (GIII) or MALP-2, a synthetic derivative of a macrophage-activating lipopeptide of 2 kDa from Mycoplasma fermentans (GIV). The results showed that protocols that included four oral doses of SCz (GI) elicited mainly a mucosal response characterized by immunoglobulin A (IgA) secretion and proliferation of gut-associated lymphoid tissue cells, with weak systemic responses. In contrast, the protocol that included a boost with rCz plus CpG (GIII) triggered stronger systemic responses in terms of Cz-specific serum IgG titers, splenocyte proliferation, gamma interferon (IFN-γ) secretion, and delayed-type hypersensitivity response. Trypomastigote challenge of vaccinated mice resulted in significantly lower levels of parasitemia compared to controls. Protection was abolished by depletion of either CD4+ or CD8+ T cells. Parasite control was also evident from the reduction of tissue damage, as revealed by histopathologic studies and serum levels of enzymes that are markers of muscle injury in chronic Chagas' disease (i.e., creatine kinase, aspartate aminotransferase, and lactate dehydrogenase). Enhanced release of IFN-γ and interleukin-2 was observed in GI and GII upon restimulation of splenocytes in the nonparasitic phase of infection. Our results indicate that Salmonella-mediated delivery of Cz-DNA by itself promotes the elicitation of an immune response that controls T. cruzi infection, thereby reducing parasite loads and subsequent damage to muscle tissues. PMID:17967857

  2. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    Science.gov (United States)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  3. Resistance and Protective Immunity in Redfish Lake Sockeye Salmon Exposed to M Type Infectious Hematopoietic Necrosis Virus (IHNV)

    Science.gov (United States)

    Kurath, Gael; Garver, Kyle; Purcell, Maureen K.; LaPatra, Scott E.

    2010-01-01

    Differential virulence of infectious hematopoietic necrosis virus (IHNV) isolates from the U and M phylogenetic subgroups is clearly evident in the Redfish Lake (RFL) strain of sockeye salmon Oncorhynchus nerka. In these fish, experimental immersion challenges with U isolates cause extremely high mortality and M isolates cause low or no mortality. When survivors of M virus immersion challenges were exposed to a secondary challenge with virulent U type virus they experienced high mortality, indicating that the primary M challenge did not elicit protective immunity. Delivery of a moderate dose (2 × 104 plaque-forming units [PFU]/fish) of virus by intraperitoneal injection challenge did not overcome RFL sockeye salmon resistance to M type IHNV. Injection challenge with a high dose (5 × 106 PFU/fish) of M type virus caused 10% mortality, and in this case survivors did develop protective immunity against a secondary U type virus challenge. Thus, although it is possible for M type IHNV to elicit cross-protective immunity in this disease model, it does not develop after immersion challenge despite entry, transient replication of M virus to low levels, stimulation of innate immune genes, and development of neutralizing antibodies in some fish.

  4. Swedish Radiation Protection Institute: information activities

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-01-01

    The purpose of SSI's Information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfill other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Stralskyddsnytt and SSI News. Stralskyddsnytt - which is available in Swedish only - has a circulation of 2,000 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,800. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSI also distributes, by e-mail, press releases and other important information on radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialized research library. (author)

  5. Swedish radiation protection institute. Information activities

    International Nuclear Information System (INIS)

    Persson, Lars

    1999-01-01

    The purpose of SSI's information and PR Service is to broaden public awareness of radiation and radiation risks as well as to fulfil other performance goals. SSI achieves this through its advisory, educational and informative activities. SSI publishes two external magazines, Straalskyddsnytt and SSI News. Straalskyddsnytt - which is available in Swedish only - has a circulation of 2,400 and is published four times a year. SSI News - which is in English - is published twice a year and has a circulation of about 1,500. Another important channel of communication is the web site (www.ssi.se). Taking advantage of PUSH technology, SSi also distributes, by e-mail, press releases and other important information of radiation to radiation protection professionals in Sweden. SSI continuously monitors news by subscribing to a press clipping service. SSI Training is a commercial unit within the Information and PR Service. A policy for mass media contacts exists as well as a policy for internal communication. SSI has a graphic profile. SSI has a specialised research library. (au)

  6. Immunological mechanisms involved in the protection against intestinal taeniosis elicited by oral immunization with Taenia solium calreticulin.

    Science.gov (United States)

    Leon-Cabrera, Sonia; Cruz-Rivera, Mayra; Mendlovic, Fela; Romero-Valdovinos, Mirza; Vaughan, Gilberto; Salazar, Ana María; Avila, Guillermina; Flisser, Ana

    2012-11-01

    Oral immunization with functional recombinant Taenia solium calreticulin (rTsCRT) induces 37% reduction in tapeworm burden in the experimental model of intestinal taeniosis in hamsters. Furthermore, tapeworms recovered from vaccinated animals exhibit diminished length, being frequently found in more posterior parts of the small intestine. The aim of this study was to analyze the immunological mechanisms involved in protection in response to rTsCRT oral immunization. Hamsters were orally immunized with rTsCRT using cholera toxin (CT) as adjuvant, weekly for 4 weeks. Fifteen days after the last boost animals were challenged with four T. solium cysticerci. Reduction in the adult worm recovery and increased transcription of mRNA for IL-4 and IFN-γ in the mucosa of rTsCRT+CT immunized animals were observed. Immunization also induced goblet cell hyperplasia in the mucosa surrounding the implantation site of the parasite. Specific IgG and IgA antibodies in serum and fecal supernatants were detected after the second immunization, being more pronounced after challenge. Our data suggest that oral vaccination with rTsCRT+CT regulates a local expression of IL-4 and IFN-γ, stimulating secretion of IgA that, together with the increase of goblet cells and mucin production, could result in an unfavorable environment for T. solium promoting an impaired tapeworm development. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. Maxima challenge infection.

    Science.gov (United States)

    Jenkins, Mark C; Stevens, Laura; O'Brien, Celia; Parker, Carolyn; Miska, Katrzyna; Konjufca, Vjollca

    2018-02-14

    The purpose of this study was to determine if conjugating a recombinant Eimeria maxima protein, namely EmaxIMP1, into 20 nm polystyrene nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherichia coli as a poly-His fusion protein, purified by NiNTA chromatography, and conjugated to 20 nm polystyrene NP (NP-EmaxIMP1). NP-EMaxIMP1 or control non-recombinant (NP-NR) protein were delivered per os to newly-hatched broiler chicks with subsequent booster immunizations at 3 and 21 days of age. In battery cage studies (n = 4), chickens immunized with NP-EMaxIMP1 displayed complete protection as measured by weight gain (WG) against E. maxima challenge compared to chickens immunized with NP-NR. WG in the NP-EMaxIMP1-immunized groups was identical to WG in chickens that were not infected with E. maxima infected chickens. In floor pen studies (n = 2), chickens immunized with NP-EMaxIMP1 displayed partial protection as measured by WG against E. maxima challenge compared to chickens immunized with NP-NR. In order to understand the basis for immune stimulation, newly-hatched chicks were inoculated per os with NP-EMaxIMP1 or NP-NR protein, and the small intestine, bursa, and spleen, were examined for NP localization at 1 h and 6 h post-inoculation. Within 1 h, both NP-EMaxIMP1 and NP-NR were observed in all 3 tissues. An increase was observed in the level of NP-EmaxIMP1 and NP-NR in all tissues at 6 h post-inoculation. These data indicate that 20 nm NP-EmaxIMP1 or NP-NR reached deeper tissues within hours of oral inoculation and elicited complete to partial immunity against E. maxima challenge infection. Published by Elsevier Ltd.

  8. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  9. Functional Bowel Disorders Are Associated with a Central Immune Activation

    Directory of Open Access Journals (Sweden)

    Per G. Farup

    2017-01-01

    Full Text Available Background. Subjects with depression and unexplained neurological symptoms have a high prevalence of gastrointestinal comorbidity probably related to the brain-gut communication. This study explored associations between functional gastrointestinal disorders (FGID and inflammatory markers in subjects with these disorders. Methods. The FGID, including irritable bowel syndrome (IBS, were classified according to the Rome III criteria, and degree of symptoms was assessed with IBS symptom severity score (IBS-SSS. A range of interleukins (IL, chemokines and growth factors, tryptophan, and kynurenine were analysed in serum and the cerebrospinal fluid (CSF, and short-chain fatty acids (SCFA were analysed in the faeces. The results are reported as partial correlation (pc and p values. Results. Sixty-six subjects were included. IBS was associated with high levels of tryptophan (p=0.048 and kynurenine (p=0.019 and low level of IL-10 (p=0.047 in the CSF. IBS-SSS was associated with high tumor necrosis factor and low IL-10 in the CSF; pc=0.341 and p=0.009 and pc=−0.299 and p=0.023, respectively. Propionic minus butyric acid in faeces was negatively associated with IL-10 in the CSF (pc=−0.416, p=0.005. Conclusions. FGID were associated with a proinflammatory immune activation in the central nervous system and a disturbed tryptophan metabolism that could have been mediated by the faecal microbiota.

  10. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  11. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Carrillo-Salinas, Francisco J; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A; Cantarero, Irene; Bellido, María L; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential

  12. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Francisco J Carrillo-Salinas

    Full Text Available Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS. Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the

  13. Childhood Immunization

    Science.gov (United States)

    ... lowest levels in history, thanks to years of immunization. Children must get at least some vaccines before ... child provide protection for many years, adults need immunizations too. Centers for Disease Control and Prevention

  14. Immunizations - diabetes

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000331.htm Immunizations - diabetes To use the sharing features on this page, please enable JavaScript. Immunizations (vaccines or vaccinations) help protect you from some ...

  15. Induction of Protective Immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina Infections Using Dendritic Cell-Derived Exosomes

    Science.gov (United States)

    Gallego, Margarita; Lee, Sung Hyen; Lillehoj, Hyun Soon; Quilez, Joaquin; Lillehoj, Erik P.; Sánchez-Acedo, Caridad

    2012-01-01

    This study describes a novel immunization strategy against avian coccidiosis using exosomes derived from Eimeria parasite antigen (Ag)-loaded dendritic cells (DCs). Chicken intestinal DCs were isolated and pulsed in vitro with a mixture of sporozoite-extracted Ags from Eimeria tenella, E. maxima, and E. acervulina, and the cell-derived exosomes were isolated. Chickens were nonimmunized or immunized intramuscularly with exosomes and subsequently noninfected or coinfected with E. tenella, E. maxima, and E. acervulina oocysts. Immune parameters compared among the nonimmunized/noninfected, nonimmunized/infected, and immunized/infected groups were the numbers of cells secreting Th1 cytokines, Th2 cytokines, interleukin-16 (IL-16), and Ag-reactive antibodies in vitro and in vivo readouts of protective immunity against Eimeria infection. Cecal tonsils, Peyer's patches, and spleens of immunized and infected chickens had increased numbers of cells secreting the IL-16 and the Th1 cytokines IL-2 and gamma interferon, greater Ag-stimulated proliferative responses, and higher numbers of Ag-reactive IgG- and IgA-producing cells following in vitro stimulation with the sporozoite Ags compared with the nonimmunized/noninfected and nonimmunized/infected controls. In contrast, the numbers of cells secreting the Th2 cytokines IL-4 and IL-10 were diminished in immunized and infected chickens compared with the nonimmunized/noninfected and the nonimmunized/infected controls. Chickens immunized with Ag-loaded exosomes and infected in vivo with Eimeria oocysts had increased body weight gains, reduced feed conversion ratios, diminished fecal oocyst shedding, lessened intestinal lesion scores, and reduced mortality compared with the nonimmunized/infected controls. These results suggest that successful field vaccination against avian coccidiosis using exosomes derived from DCs incubated with Ags isolated from Eimeria species may be possible. PMID:22354026

  16. Linalool Exhibits Cytotoxic Effects by Activating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2014-05-01

    Full Text Available According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  17. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  18. Development of Protective Immunity in New Zealand White Rabbits Challenged with Bacillus anthracis Spores and Treated with Antibiotics and Obiltoxaximab, a Monoclonal Antibody against Protective Antigen.

    Science.gov (United States)

    Henning, Lisa N; Carpenter, Sarah; Stark, Gregory V; Serbina, Natalya V

    2018-02-01

    The recommended management of inhalational anthrax, a high-priority bioterrorist threat, includes antibiotics and antitoxins. Obiltoxaximab, a chimeric monoclonal antibody against anthrax protective antigen (PA), is licensed under the U.S. Food and Drug Administration's (FDA's) Animal Rule for the treatment of inhalational anthrax. Because of spore latency, disease reemergence after treatment cessation is a concern, and there is a need to understand the development of endogenous protective immune responses following antitoxin-containing anthrax treatment regimens. Here, acquired protective immunity was examined in New Zealand White (NZW) rabbits challenged with a targeted lethal dose of Bacillus anthracis spores and treated with antibiotics, obiltoxaximab, or a combination of both. Survivors of the primary challenge were rechallenged 9 months later and monitored for survival. Survival rates after primary and rechallenge for controls and animals treated with obiltoxaximab, levofloxacin, or a combination of both were 0, 65, 100, and 95%, and 0, 100, 95, and 89%, respectively. All surviving immune animals had circulating antibodies to PA and serum toxin-neutralizing titers prior to rechallenge. Following rechallenge, systemic bacteremia and toxemia were not detected in most animals, and the levels of circulating anti-PA IgG titers increased starting at 5 days postrechallenge. We conclude that treatment with obiltoxaximab, alone or combined with antibiotics, significantly improves the survival of rabbits that received a lethal inhalation B. anthracis spore challenge dose and does not interfere with the development of immunity. Survivors of primary challenge are protected against reexposure, have rare incidents of systemic bacteremia and toxemia, and have evidence of an anamnestic response. Copyright © 2018 Henning et al.

  19. Nutrition, Physical Activity, and Obesity - National Immunization Survey (Breastfeeding)

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes breastfeeding data from the National Immunization Survey (NIS). This data is used for DNPAO's Data, Trends, and Maps database, which provides...

  20. Immune activation by casein dietary antigens in bipolar disorder

    NARCIS (Netherlands)

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized

  1. Growth, immune responses and protection of Nile tilapia Oreochromis niloticus immunized with formalin-killed Streptococcus agalactiae serotype Ia and III vaccines

    Directory of Open Access Journals (Sweden)

    Atchariya Suwannasang

    2017-08-01

    Full Text Available The protective efficacy of formalin-killed Streptococcus agalactiae (Group B Streptococcus, GBS serotype Ia (GBS-Ia and III (GBS-III vaccines were assessed in Nile tilapia (Oreochromis niloticus. The fish with an average weight of 34.45± 0.08 g were immunized by intraperitoneal (i.p. injection with 4 different formalin-killed vaccines prepared from GBS-Ia (1x1010 CFU/mL, GBS-III (1x1010 CFU/mL, and combined GBS-Ia and GBS-III in an equal volume at final concentrations 1x1010 CFU/mL and 2x1010 CFU/mL in comparison with the non-immunized control group. At 2 and 4 weeks post vaccination, no significant differences were observed (p>0.05 among treatments in growth performance or haemato-immunological parameters, except the increased red blood cell at 2 weeks. Significantly increased antibody titers (p<0.05 against GBS-Ia and GBS-III antigens were noted in the groups immunized with homologous GBS vaccines, whereas the group reacted with heterologous GBS antigen showed less antibody titer as compared with the control group. The vaccination experiment indicated that i.p. injection of Nile tilapia with formalin-killed cells prepared from GBS-Ia or GBS-III provides significant protection, with relative percent survival (RPS value of 52.17 to 71.42%, against a challenge with the homologous serotype isolate, whereas the RPS in fish challenged with a heterologous serotype isolate varied from 20.00 to 53.57%. These results suggested that vaccines from either GBS-Ia or GBS-III have insufficient cross-protective efficacy against the other serotypes. However, a mixed vaccine produced from both GBS serotypes Ia and III provided significant protection with 65.00 to 95.66% RPS which could be an excellent vaccine to protect fish against streptococcosis caused by both GBS serotypes Ia and III.

  2. The role of MPL and imiquimod adjuvants in enhancement of immune response and protection in BALB/c mice immunized with soluble Leishmania antigen (SLA) encapsulated in nanoliposome.

    Science.gov (United States)

    Emami, Tara; Rezayat, Seyed Mahdi; Khamesipour, Ali; Madani, Rasool; Habibi, Gholamreza; Hojatizade, Mansure; Jaafari, Mahmoud Reza

    2018-04-01

    Adjuvants play an essential role in the induction of immunity against leishmaniasis. In this study, monophosphoryl lipid A (MPL) and imiquimod (IMQ) were used as TLR ligands adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Nanoliposomes containing soluble Leishmania antigens (SLA) and adjuvants were consisted of DSPC, DSPG and Chol prepared by using lipid film method followed by bath sonication. The size of nanoliposomes was around 95 nm and their zeta potential was negative. BALB/c mice were immunized by liposomal formulations of lip/SLA, lip/MPL/SLA, lip/IMQ/SLA, lip/MPL/IMQ/SLA, lip/SLA + lip/IMQ, lip/SLA + lip/MPL, lip/SLA + lip/MPL/IMQ and five controls of SLA, lip/MPL, lip/IMQ, lip/MPL/IMQ and buffer by subcutaneously (SC) injections, three times in 2 weeks intervals. The synergic effect of two adjuvants when they are used in one formulation showed significantly (p MPL and IMQ adjuvants and antigen in nanoliposome carrier could be an appropriate delivery system to induce cellular immunity pathway against leishmaniasis.

  3. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  4. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    Science.gov (United States)

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  5. Estimated protective effectiveness of intramuscular immune serum globulin post-exposure prophylaxis during a measles outbreak in British Columbia, Canada, 2014.

    Science.gov (United States)

    Bigham, Mark; Murti, Michelle; Fung, Christina; Hemming, Felicity; Loadman, Susan; Stam, Robert; Van Buynder, Paul; Lem, Marcus

    2017-05-09

    Intramuscular Immune Serum Globulin (IM ISG) is recommended as post-measles exposure prophylaxis (PEP) when administered within 6days of initial exposure, with variable effectiveness in preventing measles disease. Effectiveness of IM ISG PEP in preventing clinical measles was assessed during a 2014 measles outbreak among a religious-affiliated community in British Columbia, Canada. Fifty-five self-reporting measles susceptible contacts were offered exclusively IM ISG PEP within an eligibility period best surmised to be within 6days of initial measles case exposure. Clinical outcome of IM ISG PEP recipients was determined by selective active surveillance and case self-reporting. IM ISG PEP failure was defined as onset of a measles-like rash 8-21days post-IM ISG PEP. Post-IM ISG PEP measles IgG antibody level was tested in 8 recipients. Factors associated with measles disease were analyzed. Seventeen of 55 IM ISG PEP recipients developed clinically consistent measles in the following 8-21days, corresponding to an estimated crude protective effectiveness of 69%. In school aged children 5-18years, among whom potential exposure intensity and immune status confounders were considered less likely, estimated IM ISG PEP protective effectiveness was 50%. Age effectiveness against measles disease within 8-21days post-ISG administration was 69%. Accuracy of this estimated protective effectiveness is vulnerable to assumptions and uncertainties in ascertaining exposure details and pre-exposure immune status. Increasing the Canadian recommended measles IM ISG PEP dose from 0.25 to 0.5ml/kg (up to 15ml maximum volume) may increase protective effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    Science.gov (United States)

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  8. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    Science.gov (United States)

    Blaney, Joseph E; Marzi, Andrea; Willet, Mallory; Papaneri, Amy B; Wirblich, Christoph; Feldmann, Friederike; Holbrook, Michael; Jahrling, Peter; Feldmann, Heinz; Schnell, Matthias J

    2013-01-01

    We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  9. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine.

    Directory of Open Access Journals (Sweden)

    Joseph E Blaney

    Full Text Available We have previously described the generation of a novel Ebola virus (EBOV vaccine platform based on (a replication-competent rabies virus (RABV, (b replication-deficient RABV, or (c chemically inactivated RABV expressing EBOV glycoprotein (GP. Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.

  10. Recombinant proteins of Zaire ebolavirus induce potent humoral and cellular immune responses and protect against live virus infection in mice.

    Science.gov (United States)

    Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M

    2018-05-24

    Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PROBLEMS IN TESTING DIGITAL PROTECTIVE RELAY FOR IMMUNITY TO INTENTIONAL DESTRUCTIVE ELECTROMAGNETIC IMPACTS. CONTINUATION OF THE THEME

    Directory of Open Access Journals (Sweden)

    Vladimir I. Gurevich

    2015-12-01

    Full Text Available The article is the continuation of the theme highlighted in the previous article with same title. The new article evaluates the results of digital protective relays (DPR testing for immunity to the E1 component of High-altitude Electromagnetic Pulse (HEMP and to Intentional Electromagnetic Interferences (IEMI impacts, conducted by some independent American organizations; discusses the features of relay protection devices as well as clarifies and supplements the procedure for testing these devices. Due to methodology errors during the DPR tests conducted by mentioned organizations earlier, they cannot be considered as satisfactory and their results as meaningful. At the moment there are no reliable data on the level of DPR immunity to IDEI, which suggests that the test should be conducted further.

  12. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine

    Science.gov (United States)

    Pérez, Oliver; Lastre, Miriam; Lapinet, José; Bracho, Gustavo; Díaz, Miriam; Zayas, Caridad; Taboada, Carlos; Sierra, Gustavo

    2001-01-01

    This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-γ and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response. PMID:11401992

  13. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  14. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3 to next stage (L4 with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC to microfilariae (mf and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges

  15. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  16. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Science.gov (United States)

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  17. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs.

    Directory of Open Access Journals (Sweden)

    Nancy J Sullivan

    2006-06-01

    Full Text Available Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd encoding the Ebola glycoprotein (GP and nucleoprotein (NP has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine.To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10 particles, two logs lower than that used previously.Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.

  18. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Science.gov (United States)

    Dandoy, Philippe; Meunier, Christophe F; Michiels, Carine; Su, Bao-Lian

    2011-01-01

    With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient.

  19. Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of "artificial organs".

    Directory of Open Access Journals (Sweden)

    Philippe Dandoy

    Full Text Available BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8 to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes. The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin, substituting the declining organ functions of the patient.

  20. An immune stimulating complex (iscom) subunit rabies vaccine protects dogs and mice against street rabies challenge.

    NARCIS (Netherlands)

    M. Fekadu; J.H. Schaddock; J. Ekströ m; A.D.M.E. Osterhaus (Albert); D.W. Sanderlin; B. Sundquist; B. Morein (Bror)

    1992-01-01

    textabstractDogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine (HDCV) prepared from a Pitman Moore (PM) rabies vaccine strain. Pre-exposure vaccination of mice with two

  1. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    Science.gov (United States)

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch.

    Science.gov (United States)

    Quan, Fu-Shi; Kim, Yeu-Chun; Song, Jae-Min; Hwang, Hye Suk; Compans, Richard W; Prausnitz, Mark R; Kang, Sang-Moo

    2013-09-01

    Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.

  3. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour

    International Nuclear Information System (INIS)

    Herd, Karen A.; Harvey, Tracey; Khromykh, Alexander A.; Tindle, Robert W.

    2004-01-01

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses

  4. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  5. Comparison of the immune profile of nonhealing cutaneous Leishmaniasis patients with those with active lesions and those who have recovered from infection

    DEFF Research Database (Denmark)

    Ajdary, S; Alimohammadian, M H; Eslami, M B

    2000-01-01

    Th1-type cellular immune responses play a critical role in protection against infection with Leishmania parasites, whereas activation of Th2-type cells results in progressive disease. Cutaneous leishmaniasis caused by Leishmania major is often a self-healing disease; however, persistent nonhealing...

  6. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  7. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  8. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition.

    Science.gov (United States)

    Reitz, M U; Gifford, M L; Schäfer, P

    2015-04-01

    Biotic stress and diseases caused by pathogen attack pose threats in crop production and significantly reduce crop yields. Enhancing immunity against pathogens is therefore of outstanding importance in crop breeding. However, this must be balanced, as immune activation inhibits plant growth. This immunity-coupled growth trade-off does not support resistance but is postulated to reflect the reallocation of resources to drive immunity. There is, however, increasing evidence that growth-immunity trade-offs are based on the reconfiguration of hormone pathways, shared by growth and immunity signalling. Studies in roots revealed the role of hormones in orchestrating growth across different cell types, with some hormones showing a defined cell type-specific activity. This is apparently highly relevant for the regulation of the cell cycle machinery and might be part of the growth-immunity cross-talk. Since plants are constantly exposed to Immuno-activating microbes under agricultural conditions, the transition from a growth to an immunity operating mode can significantly reduce crop yield and can conflict our efforts to generate next-generation crops with improved yield under climate change conditions. By focusing on roots, we outline the current knowledge of hormone signalling on the cell cycle machinery to explain growth trade-offs induced by immunity. By referring to abiotic stress studies, we further introduce how root cell type-specific hormone activities might contribute to growth under immunity and discuss the feasibility of uncoupling the growth-immunity cross-talk. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes

    Science.gov (United States)

    Glennie, Nelson D.; Volk, Susan W.

    2017-01-01

    Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151

  10. Spleen-dependent immune protection elicited by CpG adjuvanted reticulocyte-derived exosomes from malaria infection is associated with T cells population changes.

    Directory of Open Access Journals (Sweden)

    Lorena Martin-Jaular

    2016-11-01

    Full Text Available Reticulocyte-derived exosomes (rex are 30-100 nm membrane vesicles of endocytic origin released during the maturation of reticulocytes to erythrocytes upon fusion of multivesicular bodies with the plasma membrane. Combination of CpG-ODN with rex obtained from BALB/c mice infected with the reticulocyte-prone non-lethal P. yoelii 17X malaria strain (rexPy, had been shown to induce survival and long lasting protection. Here, we show that splenectomized mice are not protected upon rexPy+CpG inmunizations and that protection is restored upon passive transfer of splenocytes obtained from animals immunized with rexPy+CpG. Notably, rexPy immunization of mice induced PD1- memory T cell expansion with effector phenotype. Proteomics analysis of rexPy confirmed their reticulocyte origin and demonstrated the presence of parasite antigens. Our studies thus prove, for what we believe is the first time, that rex from reticulocyte-prone malarial infections are able to induce splenic long-lasting memory responses. To try extrapolating these data to human infections, in vitro experiments with spleen cells of human transplantation donors were performed. Plasma-derived exosomes from vivax malaria patients (exPv were actively uptaken by human splenocytes and stimulated spleen cells leading to expansion of T-cells.

  11. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  12. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications.

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen(-/-) in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  13. Biomarkers of Safety and Immune Protection for Genetically Modified Live Attenuated Leishmania Vaccines Against Visceral Leishmaniasis – Discovery and Implications

    Science.gov (United States)

    Gannavaram, Sreenivas; Dey, Ranadhir; Avishek, Kumar; Selvapandiyan, Angamuthu; Salotra, Poonam; Nakhasi, Hira L.

    2014-01-01

    Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood-borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, subunit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in Leishmania donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters, and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines, e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen−/− in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated in normal

  14. Tissue factor expression by myeloid cells contributes to protective immune response against Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna

    2016-02-01

    Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of immune response and protective effect of four vaccines against the tick-borne encephalitis virus.

    Science.gov (United States)

    Morozova, O V; Bakhvalova, V N; Potapova, O F; Grishechkin, A E; Isaeva, E I; Aldarov, K V; Klinov, D V; Vorovich, M F

    2014-05-23

    Among three main subtypes of the tick-borne encephalitis virus (TBEV), the Siberian subtype is currently dominant in a majority of the endemic regions of Russia. However, inactivated vaccines are based on TBEV strains of the heterologous Far Eastern or the European subtypes isolated 40-77 years ago. To analyze the efficacy of the available vaccines against currently prevailing TBEV isolates of the Siberian subtype, mice were immunized subcutaneously three times (one group per each vaccine). The expression of seven cytokine genes was determined using RT-PCR. Sera were studied using homologous and heterologous ELISA, hemagglutination inhibition (HI) and neutralization tests with TBEV strains of the Far Eastern, Siberian and European subtypes. Cross-protective efficacy of the vaccines was evaluated with the TBEV strain 2689 of Siberian subtype isolated from an ixodid tick from the Novosibirsk, South-Western Siberia, Russia in 2010. The cytokine gene expression profile indicates a predominantly Th2 response due to exogenous antigen presentation. Titers for homologous combinations of vaccine strain and strain in ELISA, HI and neutralization tests exceeded those for heterologous antigen-antibody pairs. Despite antibody detection by means of ELISA, HI and neutralization tests, the mouse protection afforded by the vaccines differed significantly. Complete protection of mice challenged with 100 LD50 virus of the Siberian subtype was induced by the vaccine "Encevir" ("Microgen", Tomsk, Russia). The minimal immunization doze (MID50) of "Encevir" protecting 50% of the mice was less than 0.0016 ml. Partial protective effect of vaccines produced in Moscow, Russia and Austria revealed MID50 within recommended intervals (0.001-0.017 ml). However, the MID50 for the vaccine "Encepur" (Novartis, Germany) 0.04 ml exceeded acceptable limits with total loss of mice immunized with vaccine diluted 32, 100 and 320 fold. These results suggest regular evaluation of TBEV vaccines in regions

  16. The activities and prospect of planetary protection research in China

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Planetary protection is an important activities and responsibilities for space exploration. In Chinese manned missions, micro-organism research and protection has been developed in Shenzhou-9, Shenzhou-10 and Tiangong-2 missions. In the experiment facility of Lunar Palace-1, the micro-organism pollution and protection/control technology has been studied. In the lunar sample recovery mission and China Mars mission, the planetary protection has become an important issue. This paper introduced the research about planetary protection in China. The planetary protection activities, strategy and procedures have been suggested for future space exploration program to meet the requirement for planetary protection, such as cabin pollution isolation, pollutant detection, and so on.

  17. Active or passive immunization in unexplained recurrent miscarriage

    DEFF Research Database (Denmark)

    Christiansen, Ole B; Nielsen, Henriette Svarre; Pedersen, Bjorn

    2004-01-01

    placebo-controlled trials since 1986 in which greater doses than used in other trials have been administered, and both treatments are now used for routine therapy. Our results have convinced us that using the correct immunization protocols on the right subsets of RM patients is effective, but we admit...

  18. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection

    International Nuclear Information System (INIS)

    Mahanty, Siddhartha; Gupta, Manisha; Paragas, Jason; Bray, Mike; Ahmed, Rafi; Rollin, Pierre E.

    2003-01-01

    A mouse-adapted strain of Ebola Zaire virus produces a fatal infection when BALB/cj mice are infected intraperitoneally (ip) but subcutaneous (sc) infection with the same virus fails to produce illness and confers long-term protection from lethal ip rechallenge. To identify immune correlates of protection in this model, we compared viral replication and cytokine/chemokine responses to Ebola virus in mice infected ip (10 PFU/mouse), or sc (100 PFU/mouse) and sc 'immune' mice rechallenged ip (10 6 PFU/mouse) at several time points postinfection (pi). Ebola viral antigens were detected in the serum, liver, spleen, and kidneys of ip-infected mice by day 2 pi, increasing up to day 6. Sc-infected mice and immune mice rechallenged ip had no detectable viral antigens until day 6 pi, when low levels of viral antigens were detected in the livers of sc-infected mice only. TNF-α and MCP-1 were detected earlier and at significantly higher levels in the serum and tissues of ip-infected mice than in sc-infected or immune mice challenged ip. In contrast, high levels of IFN-α and IFN-γ were found in tissues within 2 days after challenge in sc-infected and immune mice but not in ip-infected mice. Mice became resistant to ip challenge within 48 h of sc infection, coinciding with the rise in tissue IFN-α levels. In this model of Ebola virus infection, the nonlethal sc route of infection is associated with an attenuated inflammatory response and early production of antiviral cytokines, particularly IFN-α, as compared with lethal ip infection

  19. A Functional Food Mixture “Protector” Reinforces the Protective Immune Parameters against Viral Flu Infection in Mice

    Directory of Open Access Journals (Sweden)

    Kenza A. Mansoor

    2018-06-01

    Full Text Available Background: Viral influenza infection causes serious health issues especially when an outbreak occurs. Although influenza virus vaccines are available and each year manufactures modify the vaccine depending on the expected mutated strain, it is still far from satisfactory, mainly in young children and older adults. Therefore, a product that can support and shape the immune system to protect against viral flu infections is highly essential. Methods: A functional food water-soluble mixture of pomegranate, red grape, dates, olive fruit, figs, and ginger extracts, termed herein “Protector”, was prepared and tested in stimulating/modulating the production of specific cytokines, and hemagglutinin inhibition (HAI antibodies following viral flu vaccination in mice. Results: A single intraperitoneal or multiple oral administration for 1–7 days of “Protector” significantly increased the production of interferon (IFN-γ and interleukin (IL-12 in blood, spleen, and lungs of mice. When “Protector” was orally administered for one week following a single vaccine injection (primary immunization or for two weeks (one week apart following double vaccine injections (secondary immunization, mice significantly produced higher titers of HAI antibodies. This increase in HAI antibodies was associated with Pillow-inducing significant and different changes in vaccine-induced IFN-γ, IL-12, IL-6 and IL-22 following primary and secondary immunizations. Conclusions: “Protector” administration reinforces the protective immune parameters against viral flu infection. Therefore, after performing preclinical toxicology studies and ensuring its safety, “Protector” should be considered a potential product to be tested in clinical trials to conclude its efficacy in reducing the devastating effects of flu infection in humans and its outbreaks.

  20. Vaccination with a DNA vaccine encoding Toxoplasma gondii ROP54 induces protective immunity against toxoplasmosis in mice.

    Science.gov (United States)

    Yang, Wen-Bin; Zhou, Dong-Hui; Zou, Yang; Chen, Kai; Liu, Qing; Wang, Jin-Lei; Zhu, Xing-Quan; Zhao, Guang-Hui

    2017-12-01

    Toxoplasma gondii is an obligatory intracellular protozoan, which infects most of the warm-blooded animals, causing serious public health problems and enormous economic losses worldwide. The rhoptry effector protein 54 (ROP54) has been indicated as a virulence factor that promotes Toxoplasma infection by modulating GBP2 loading onto parasite-containing vacuoles, which can modulate some aspects of the host immune response. In order to evaluate the immuno-protective value of ROP54, we constructed a eukaryotic recombinant plasmid expressing T. gondii ROP54 and intramuscularly immunized Kunming mice with this recombinant plasmid against acute and chronic toxoplasmosis. All mice immunized with pVAX-ROP54 elicited a high level of specific antibody responses, a significant increase of lymphocyte proliferation, and a significant level of Th1-type cytokines (IFN-γ, IL-2 and IL-12p70), in addition to an increased production of Th2-type cytokines (IL-4 and IL-10). These results demonstrated that pVAX-ROP54 induced significant cellular and humoral (Th1/Th2) immune responses, which extended the survival time (13.0±1.15days for pVAX-ROP54 vs 6.7±0.48days for pVAX I, 6.8±0.42days for PBS and 6.5±0.53 for blank control) and significantly reduced cyst burden (35.9% for pVAX-ROP54, 1% for pVAX I and 2% for PBS, compared with blank control) of immunized mice. These results indicate that the recombinant ROP54 plasmid can provide partial protection and might be a potential vaccine candidate against acute and chronic toxoplasmosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection.

    Directory of Open Access Journals (Sweden)

    Susheela Kushwaha

    Full Text Available Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodies, especially from endemic normal subjects. We have recently reported on the cloning, expression, purification and biochemical characterization of this vital enzyme of B. malayi. In the present study, immunoprophylactic evaluation of Bm-TPP was carried out against B. malayi larval challenge in a susceptible host Mastomys coucha and the protective ability of the recombinant protein was evaluated by observing the adverse effects on microfilarial density and adult worm establishment. Immunization caused 78.4% decrease in microfilaremia and 71.04% reduction in the adult worm establishment along with sterilization of 70.06% of the recovered live females. The recombinant protein elicited a mixed Th1/Th2 type of protective immune response as evidenced by the generation of both pro- and anti-inflammatory cytokines IL-2, IFN-γ, TNF-α, IL-4 and an increased production of antibody isotypes IgG1, IgG2a, IgG2b and IgA. Thus immunization with Bm-TPP conferred considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges as a potential vaccine candidate against lymphatic filariasis (LF.

  2. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice.

    Directory of Open Access Journals (Sweden)

    Hai-Long Wang

    Full Text Available Toxoplasma gondii (T. gondii is an obligate intracellular protozoan parasite that infects a variety of mammals, including humans. An effective vaccine for this parasite is therefore needed. In this study, RH strain T. gondii rhoptry protein 17 was expressed in bacteria as a fusion with glutathione S-transferase (GST and the recombinant proteins (rTgROP17 were purified via GST-affinity chromatography. BALB/c mice were nasally immunised with rTgROP17, and induction of immune responses and protection against chronic and lethal T. gondii infections were investigated. The results revealed that mice immunised with rTgROP17 produced high levels of specific anti-rTgROP17 IgGs and a mixed IgG1/IgG2a response of IgG2a predominance. The systemic immune response was associated with increased production of Th1 (IFN-γand IL-2 and Th2 (IL-4 cytokines, and enhanced lymphoproliferation (stimulation index, SI in the mice immunised with rTgROP17. Strong mucosal immune responses with increased secretion of TgROP17-specific secretory IgA (SIgA in nasal, vaginal and intestinal washes were also observed in these mice. The vaccinated mice displayed apparent protection against chronic RH strain infection as evidenced by their lower liver and brain parasite burdens (59.17% and 49.08%, respectively than those of the controls. The vaccinated mice also exhibited significant protection against lethal infection of the virulent RH strain (survival increased by 50% compared to the controls. Our data demonstrate that rTgROP17 can trigger strong systemic and mucosal immune responses against T. gondii and that ROP17 is a promising candidate vaccine for toxoplasmosis.

  3. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennise

    2001-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  4. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oligonucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    2003-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory "CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  5. Rapid Induction of Protective Immunity Against Biothreat Agens Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    1999-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG' motifs to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  6. Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Susana Martiñón

    Full Text Available Protective autoimmunity (PA is a physiological response to central nervous system trauma that has demonstrated to promote neuroprotection after spinal cord injury (SCI. To reach its beneficial effect, PA should be boosted by immunizing with neural constituents or neural-derived peptides such as A91. Immunizing with A91 has shown to promote neuroprotection after SCI and its use has proven to be feasible in a clinical setting. The broad applications of neural-derived peptides make it important to determine the main features of this anti-A91 response. For this purpose, adult Sprague-Dawley rats were subjected to a spinal cord contusion (SCC; moderate or severe or a spinal cord transection (SCT; complete or incomplete. Immediately after injury, animals were immunized with PBS or A91. Motor recovery, T cell-specific response against A91 and the levels of IL-4, IFN-γ and brain-derived neurotrophic factor (BDNF released by A91-specific T (T(A91 cells were evaluated. Rats with moderate SCC, presented a better motor recovery after A91 immunization. Animals with moderate SCC or incomplete SCT showed significant T cell proliferation against A91 that was characterized chiefly by the predominant production of IL-4 and the release of BDNF. In contrast, immunization with A91 did not promote a better motor recovery in animals with severe SCC or complete SCT. In fact, T cell proliferation against A91 was diminished in these animals. The present results suggest that the effective development of PA and, consequently, the beneficial effects of immunizing with A91 significantly depend on the severity of SCI. This could mainly be attributed to the lack of T(A91 cells which predominantly showed to have a Th2 phenotype capable of producing BDNF, further promoting neuroprotection.

  7. Kinetics of rabies antibodies as a strategy for canine active immunization

    Science.gov (United States)

    2014-01-01

    Background Rabies, a zoonosis found throughout the globe, is caused by a virus of the Lyssavirus genus. The disease is transmitted to humans through the inoculation of the virus present in the saliva of infected mammals. Since its prognosis is usually fatal for humans, nationwide public campaigns to vaccinate dogs and cats against rabies aim to break the epidemiological link between the virus and its reservoirs in Brazil. Findings During 12 months we evaluated the active immunity of dogs first vaccinated (booster shot at 30 days after first vaccination) against rabies using the Fuenzalida-Palácios modified vaccine in the urban area of Botucatu city, São Pauto state, Brazil. Of the analyzed dogs, 54.7% maintained protective titers (≥0.5 IU/mL) for 360 days after the first vaccination whereas 51.5% during all the study period. Conclusions The present results suggest a new vaccination schedule for dogs that have never been vaccinated. In addition to the first dose of vaccine, two others are recommended: the second at 30 days after the first and the third dose at 180 days after the first for the maintenance of protective titers during 12 months. PMID:26413082

  8. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice

    Science.gov (United States)

    Gelderblom, Mathias; Leypoldt, Frank; Lewerenz, Jan; Birkenmayer, Gabriel; Orozco, Denise; Ludewig, Peter; Thundyil, John; Arumugam, Thiruma V; Gerloff, Christian; Tolosa, Eva; Maher, Pamela; Magnus, Tim

    2012-01-01

    The development of the brain tissue damage in ischemic stroke is composed of an immediate component followed by an inflammatory response with secondary tissue damage after reperfusion. Fisetin, a flavonoid, has multiple biological effects, including neuroprotective and antiinflammatory properties. We analyzed the effects of fisetin on infarct size and the inflammatory response in a mouse model of stroke, temporary middle cerebral artery occlusion, and on the activation of immune cells, murine primary and N9 microglial and Raw264.7 macrophage cells and human macrophages, in an in vitro model of inflammatory immune cell activation by lipopolysaccharide (LPS). Fisetin not only protected brain tissue against ischemic reperfusion injury when given before ischemia but also when applied 3 hours after ischemia. Fisetin also prominently inhibited the infiltration of macrophages and dendritic cells into the ischemic hemisphere and suppressed the intracerebral immune cell activation as measured by intracellular tumor necrosis factor α (TNFα) production. Fisetin also inhibited LPS-induced TNFα production and neurotoxicity of macrophages and microglia in vitro by suppressing nuclear factor κB activation and JNK/Jun phosphorylation. Our findings strongly suggest that the fisetin-mediated inhibition of the inflammatory response after stroke is part of the mechanism through which fisetin is neuroprotective in cerebral ischemia. PMID:22234339

  9. Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes

    NARCIS (Netherlands)

    van der Wal, A. C.; Piek, J. J.; de Boer, O. J.; Koch, K. T.; Teeling, P.; van der Loos, C. M.; Becker, A. E.

    1998-01-01

    OBJECTIVE: To discriminate between chronic inflammation and acute activation of the plaque immune response in culprit lesions of patients with acute coronary syndromes. DESIGN: Retrospective study. SETTING: Tertiary referral centre. SUBJECTS: 71 patients having coronary atherectomy were classified

  10. Evaluation of an In Vitro of Human Immune Activation Induced by Freeze-Thaw Tissue Damage

    National Research Council Canada - National Science Library

    DuBose, D

    2002-01-01

    In training and in combat, soldiers are under the constant threat of injury. Injury that results in tissue necrosis can activate the immune system and ultimately enhance disturbances in organ function...

  11. Analysis of protective and cytotoxic immune responses in vivo against metabolically inactivated and untreated cells of a mutagenized tumor line (requirements for tumor immunogenicity)

    International Nuclear Information System (INIS)

    Wehrmaker, A.; Lehmann, V.; Droege, W.

    1986-01-01

    The immunogenicity of a mutagenized subline (ESb-D) of the weakly immunogenic T-cell lymphoma L 5178 Y ESb has been characterized. The injection of 10(6) ESb-D cells ip did not establish lethal tumors in untreated DBA/2 mice but established tumors in sublethally irradiated mice. Injection of ESb-D cells into otherwise untreated DBA/2 mice established also a state of protective immunity against the subsequent injection of otherwise lethal doses of ESb tumor cells. Protection was only obtained after injection of intact but not UV-irradiated or mitomycin-C-treated ESb-D cells. A direct T-cell-mediated cytotoxic activity was also demonstrable in the spleen cells of DBA/2 mice after injection of ESb-D cells but not ESb cells. The cytotoxic activity was variant specific for ESb-D target cells, and it was induced only with intact but not UV-irradiated or mitomycin C-treated ESb-D cells. This suggested that the induction of protective and cytotoxic immunity may require the persistence of the antigen or unusually high antigen doses. The in vivo priming for a secondary in vitro cytotoxic response, in contrast, was achieved with intact and also with mitomycin C-treated ESb-D cells but again not with UV-irradiated ESb-D cells. This indicated that the metabolic activity was a minimal requirement for the in vivo immunogenicity of the ESb-D tumor line. The secondary cytotoxic activity was demonstrable on ESb-D and ESb target cells and could be restimulated in vitro about equally well with ESb-D and ESb cells. But the in vivo priming was again only obtained with ESb-D cells and not with ESb cells. These experiments thus demonstrated that the requirements for immunogenicity are more stringent in vivo than in vitro, and more stringent for the induction of direct cytotoxic and protective immunity in vivo than for the in vivo priming for secondary in vitro responses

  12. Proteção do recém-nascido contra o tétano pela imunização ativa da gestante com antitoxina tetânica: estudo original de 1953 Protection of newborn infants against tetanus by active immunization of the pregnant women with tetanus antitoxin: the 1953 original study

    Directory of Open Access Journals (Sweden)

    Augusto Gomes Mattos

    2008-12-01

    and after 15 days of life. One group of guinea pigs received a booster dose of tetanus toxoid 30 days before delivery and the immunization status of dam and offspring was also studied. In a clinical trial, pregnant women were vaccinated in any period of gestation with three doses of tetanus toxoid with a 30-day interval; the antibody levels were measured in the mother and in the newborn infant at birth and at the 15th day of life. RESULTS: The antibody levels of guinea pigs offspring immunized with tetanus toxoid during gestation were elevated at birth and at the 15th day of life. These levels were elevated by the booster dose 30 days prior to delivery. In pregnant women, the immunization with three doses of tetanus toxoid was followed by immunity in 95% of the studied infants studied. The newborn infants of vaccinated women presented elevated levels of antibodies at birth and at 15th day of life. CONCLUSIONS: Vaccination during gestation was followed by protective levels of antibodies in guinea pigs and in newborn infants.

  13. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells.

    NARCIS (Netherlands)

    Nganou Makamdop, C.K.; Gemert, G.J.A. van; Arens, T.; Hermsen, C.C.; Sauerwein, R.W.

    2012-01-01

    Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite

  14. Protecting the next generation: what is the role of the duration of human papillomavirus vaccine-related immunity?

    Science.gov (United States)

    Günther, Oliver P; Ogilvie, Gina; Naus, Monika; Young, Eric; Patrick, David M; Dobson, Simon; Duval, Bernard; Noël, Pierre-André; Marra, Fawziah; Miller, Dianne; Brunham, Robert C; Pourbohloul, Babak

    2008-06-15

    There is strong evidence that human papillomavirus (HPV) is necessary for the development of cervical cancer. A prophylactic HPV vaccine with high reported efficacy was approved in North America in 2006. A mathematical model of HPV transmission dynamics was used to simulate different scenarios of natural disease outcomes and intervention strategies. A sensitivity analysis was performed to compensate for uncertainties surrounding key epidemiological parameters. The expected impact that HPV vaccines have on cervical cancer incidence and HPV prevalence in the province of British Columbia in Canada revealed that, for lifelong vaccine-related protection, an immunization routine targeting younger females (grade 6), combined with a 3-year program for adolescent females (grade 9), is the most effective strategy. If vaccine-related protection continues for HPV depends substantially on the duration of vaccine-induced immunity. Given the uncertainty in estimating this duration, it may be prudent to assume a value close to the lower limit reported and adjust the program when more-accurate information for the length of vaccine-induced immunity becomes available.

  15. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    International Nuclear Information System (INIS)

    Oh, Sang Kon; Stegman, Brian; Pendleton, C. David; Ota, Martin O.; Pan, C.-H.; Griffin, Diane E.; Burke, Donald S.; Berzofsky, Jay A.

    2006-01-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8 + T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8 + T cell responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K b and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection

  16. Protective immunity induced by 67 K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs

    International Nuclear Information System (INIS)

    Zhang, Y.X.; Zhi, N.; Yu, S.R.; Li, Q.J.; Yu, G.Q.; Zhang, X.

    1994-01-01

    A 67 K outer membrane protein (OMP) isolated from phase I Coxiella burnetii QiYi strain was purified with monoclonal antibodies (MoAb) coupled to CNBr-Sepharose 4B. Chemical analyses of the 67 K protein showed that it contained seventeen kids of amino acids and no lipopolysaccharides. The immunogenicity and protectivity of the 67 K protein against C. burnetii was evaluated in mice and guinea pigs bi in vitro lymphocyte proliferation assay, delayed-type skin test, antibody conversion rate, and immunization and challenge tests. Intraperitoneal injection of the 67 K protein resulted in antibody production against phase I and II whole cell antigens. The anti-67 K antibody conversion rate was found to be 100% in mice and guinea pigs as well. Lymphocytes were responses in vitro to specific antigen. In addition, delayed-type hypersensitivity appeared two weeks after immunization with the 67 K protein. Moreover, 199% of mice and guinea pigs inoculated with the 67 K protein were protected against a challenge with 10 3 ID 50 virulent C. burnetii. In conclusion, these results demonstrate that the 67 K OMP elicits in vivo and in vitro both B cell-mediated and T cell-mediated immunity in mice and guinea pigs. Thus the 67 K protein is a candidate for an effective subunit vaccine against Q fever. (author)

  17. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    Science.gov (United States)

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  18. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  19. On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition

    Directory of Open Access Journals (Sweden)

    I. Brazzoli

    2006-01-01

    Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.

  20. Immune and hormonal activity in adults suffering from depression

    Directory of Open Access Journals (Sweden)

    S.O.V. Nunes

    2002-05-01

    Full Text Available An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5% were females and 11 (27.5% were males (2.6:1 ratio. The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and ß-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05. The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05. These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

  1. Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms.

    Science.gov (United States)

    David, S; Ordway, D; Arroz, M J; Costa, J; Delgado, R

    2001-01-01

    The novel tetraaza-macrocyclic compound 3,7,11-tris(carboxymethyl)-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17),13,15-triene, abbreviated as ac3py14, was investigated for its activity against Mycobacterium tuberculosis and for induction of protective cellular immune responses. Perspective results show that ac3py14 and its Fe3+ 1:1 complex, [Fe(ac3py14)], inhibited radiometric growth of several strains of M. tuberculosis. Inhibition with 25 microg/mL varied from 99% for H37Rv to 80% and above for multiple drug-resistant clinical isolates. The capacity of ac3py14 to elicit a beneficial immune response without cellular apoptosis was assessed and compared to the effects of virulent M. tuberculosis. The present study produces evidence that after stimulation with ac3py14 there was significant production of interferon gamma (IFN-gamma), whereas the production of interleukin-5 (IL-5) remained low, and there was development of a memory population (CD45RO). The level of binding of Annexin V, a marker of apoptosis, was not sufficient to result in toxic effects toward alphabeta and gammadelta T cells and CD14+ macrophages. This preliminary study is the first report of a compound that simultaneously exerts an inhibitory effect against M. tuberculosis and induces factors associated with protective immune responses.

  2. An adenovirus vectored mucosal adjuvant augments protection of mice immunized intranasally with an adenovirus-vectored foot-and-mouth disease virus subunit vaccine.

    Science.gov (United States)

    Alejo, Diana M; Moraes, Mauro P; Liao, Xiaofen; Dias, Camila C; Tulman, Edan R; Diaz-San Segundo, Fayna; Rood, Debra; Grubman, Marvin J; Silbart, Lawrence K

    2013-04-26

    Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E. coli heat-labile enterotoxin (LT) has been described as one of the few molecules that have adjuvant activity at mucosal surfaces. The objective of this study was to evaluate the efficacy of replication-defective adenovirus 5 (Ad5) vectors encoding either of two LT-based mucosal adjuvants, LTB or LTR72. These vectored adjuvants were delivered intranasally to mice concurrent with an Ad5-FMDV vaccine (Ad5-A24) to assess their ability to augment mucosal and systemic humoral immune responses to Ad5-A24 and protection against FMDV. Mice receiving Ad5-A24 plus Ad5-LTR72 had higher levels of mucosal and systemic neutralizing antibodies than those receiving Ad5-A24 alone or Ad5-A24 plus Ad5-LTB. The vaccine plus Ad5-LTR72 group also demonstrated 100% survival after intradermal challenge with a lethal dose of homologous FMDV serotype A24. These results suggest that Ad5-LTR72 could be used as an important tool to enhance mucosal and systemic immunity against FMDV and potentially other pathogens with a common route of entry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  4. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Downmodulation of Vaccine-Induced Immunity and Protection against the Intracellular Bacterium Francisella tularensis by the Inhibitory Receptor FcγRIIB

    Directory of Open Access Journals (Sweden)

    Brian J. Franz

    2015-01-01

    Full Text Available Fc gamma receptor IIB (FcγRIIB is the only Fc gamma receptor (FcγR which negatively regulates the immune response, when engaged by antigen- (Ag- antibody (Ab complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft, a Category A biothreat agent. We utilized inactivated Ft (iFt as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO or wildtype (WT mice were challenged with Ft-live vaccine strain (LVS. While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.

  6. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  7. The radiation protection programme activities of the World Health Organization

    International Nuclear Information System (INIS)

    Komarov, E.; Suess, M.J.

    1980-01-01

    The radiation protection activities of the World Health Organization are reviewed. They include studies of radiation protection standards and guidelines, and public health aspects of nuclear power. WHO also provides member states with world data on radioactivity in air, water and food, and assessments of population exposure and health effects. (H.K.)

  8. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    Science.gov (United States)

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  9. Induction of long-term protective immune responses by influenza H5N1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Sang-Moo Kang

    Full Text Available Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic.Influenza virus-like particles (VLPs produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1 hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro.These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza.

  10. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Anitra L Farrow

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.The "antigen capsid-incorporation" strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5 vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83. This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes

  11. Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse.

    Directory of Open Access Journals (Sweden)

    Egídio Torrado

    Full Text Available Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-µS(-/-mice. AID(-/-µS(-/- mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6 mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID(-/-µS(-/- mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID(-/-µS(-/- mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID(-/-µS(-/-mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID(-/-µS(-/- mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation.

  12. Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa

    Directory of Open Access Journals (Sweden)

    Briolant Sébastien

    2011-08-01

    Full Text Available Abstract Background The effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs in this population that is particularly at risk because of their lack of immunity. Methods Compliance with wearing long clothing, sleeping under insecticide-impregnated bed nets (IIBNs and using insect repellent was estimated and analysed by questionnaires administered to 2,205 French military travellers from 20 groups before and after short-term missions (approximately four months in six tropical African countries (Senegal, Ivory Coast, Chad, Central African Republic, Gabon and Djibouti. For each AVPM, the association of "correct compliance" with individual and collective variables was investigated using random-effect mixed logistic regression models to take into account the clustered design of the study. Results The correct compliance rates were 48.6%, 50.6% and 18.5% for wearing long clothing, sleeping under bed nets and using repellents, respectively. Depending on the AVPM, correct compliance was significantly associated with the following factors: country, older than 24 years of age, management responsibilities, the perception of a personal malaria risk greater than that of other travellers, the occurrence of life events, early bedtime (i.e., before midnight, the type of stay (field operation compared to training, the absence of medical history of malaria, the absence of previous travel in malaria-endemic areas and the absence of tobacco consumption. There was no competition between compliance with the different AVPMs or between compliance with any AVPM and malaria chemoprophylaxis. Conclusion Interventions aimed at improving compliance with AVPMs should target young people without management responsibilities who are scheduled for non-operational activities in

  13. Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa.

    Science.gov (United States)

    Sagui, Emmanuel; Resseguier, Noémie; Machault, Vanessa; Ollivier, Lénaïck; Orlandi-Pradines, Eve; Texier, Gaetan; Pages, Frédéric; Michel, Remy; Pradines, Bruno; Briolant, Sébastien; Buguet, Alain; Tourette-Turgis, Catherine; Rogier, Christophe

    2011-08-10

    The effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs) in this population that is particularly at risk because of their lack of immunity. Compliance with wearing long clothing, sleeping under insecticide-impregnated bed nets (IIBNs) and using insect repellent was estimated and analysed by questionnaires administered to 2,205 French military travellers from 20 groups before and after short-term missions (approximately four months) in six tropical African countries (Senegal, Ivory Coast, Chad, Central African Republic, Gabon and Djibouti). For each AVPM, the association of "correct compliance" with individual and collective variables was investigated using random-effect mixed logistic regression models to take into account the clustered design of the study. The correct compliance rates were 48.6%, 50.6% and 18.5% for wearing long clothing, sleeping under bed nets and using repellents, respectively. Depending on the AVPM, correct compliance was significantly associated with the following factors: country, older than 24 years of age, management responsibilities, the perception of a personal malaria risk greater than that of other travellers, the occurrence of life events, early bedtime (i.e., before midnight), the type of stay (field operation compared to training), the absence of medical history of malaria, the absence of previous travel in malaria-endemic areas and the absence of tobacco consumption.There was no competition between compliance with the different AVPMs or between compliance with any AVPM and malaria chemoprophylaxis. Interventions aimed at improving compliance with AVPMs should target young people without management responsibilities who are scheduled for non-operational activities in countries with high risk of clinical malaria. Weak associations

  14. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  15. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  16. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype

    Science.gov (United States)

    Prochetto, Estefanía; Roldán, Carolina; Bontempi, Iván A.; Bertona, Daiana; Peverengo, Luz; Vicco, Miguel H.; Rodeles, Luz M.; Pérez, Ana R.; Marcipar, Iván S.; Cabrera, Gabriel

    2017-01-01

    Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested. PMID:28938533

  17. A recombinant bivalent fusion protein rVE confers active and passive protection against Yersinia enterocolitica infection in mice.

    Science.gov (United States)

    Singh, Amit Kumar; Kingston, Joseph Jeyabalaji; Murali, Harishchandra Sripathy; Batra, Harsh Vardhan

    2014-03-05

    In the present study, a bivalent chimeric protein rVE comprising immunologically active domains of Yersinia pestis LcrV and YopE was assessed for its prophylactic abilities against Yersinia enterocolitica O:8 infection in murine model. Mice immunized with rVE elicited significantly higher antibody titers with substantial contribution from the rV component (3:1 ratio). Robust and significant resistance to Y. enterocolitica infection with 100% survival (Penterocolitica O:8 against the 75%, 60% and 75% survival seen in mice immunized with rV, rE, rV+rE, respectively. Macrophage monolayer supplemented with anti-rVE polysera illustrated efficient protection (89.41% survival) against challenge of Y. enterocolitica O:8. In contrast to sera from sham-immunized mice, immunization with anti-rVE polysera provided complete protection to BALB/c mice against I.P. challenge with 10(8)CFU of Y. enterocolitica O:8 and developed no conspicuous signs of infection in necropsy. The histopathological analysis of microtome sections confirmed significantly reduced lesion size or no lesion in liver and intestine upon infection in anti-rVE immunized mice. The findings from this study demonstrated the fusion protein rVE as a potential candidate subunit vaccine and showed the functional role of antibodies in protection against Y. enterocolitica infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mission and activities of the International Commission on Radiological Protection

    International Nuclear Information System (INIS)

    Clements, C.H.

    2018-01-01

    The International Commission on Radiological Protection (ICRP), formed in 1928, develops the System of Radiological Protection for the public benefit. The objective of the recommendations is to contribute to an appropriate level of protection for people and the environment against the harmful effects of radiation exposure without unduly limiting the individual or societal benefits of activities involving radiation. In developing its recommendations, ICRP considers advances in scientific knowledge, evolving social values, and practical experience. These recommendations are the basis of radiological protection standards and practice worldwide

  19. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Beatriz Beltrán-Beck

    Full Text Available Tuberculosis (TB remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV. Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

  20. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  1. SEVERAL MUCOSAL VACCINATION ROUTES CONFER IMMUNITY AGAINST ENTERIC REDMOUTH DISEASE IN RAINBOW TROUT, BUT THE PROTECTIVE MECHANISMS ARE DIFFERENT

    DEFF Research Database (Denmark)

    Neumann, Lukas; Villumsen, Kasper Rømer; Kragelund Strøm, Helene

    Vaccination is a keystone in prophylactic strategies preventing outbreaks of fish pathogenic bacterial diseases in aquaculture. The first commercial fish vaccine consisted of a bacterin of Yersinia ruckeri serotype O1 biotype 1. The vaccine has been very successful and has been used for more than...... cells and M-like cells have been found in fish, is it suggested that gut-associated lymphoid tissue (GALT) associated with the gastrointestinal tract are involved in antigen uptake and generation of a local protective immune response against Y. ruckeri....

  2. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance.

    Science.gov (United States)

    Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George

    2017-05-01

    The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4 + and CD8 + T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.

  3. Dectin-1 Activation on Macrophages by Galectin-9 Promotes Pancreatic Carcinoma and Peritumoral Immune-Tolerance

    Science.gov (United States)

    Daley, Donnele; Mani, Vishnu R.; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W.; Lee, Ki Buom; Zambirinis, Constantinos P.; Pandian, Gautam S.D. Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M.; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K.; Ueberheide, Beatrix; Miller, George

    2017-01-01

    The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intra-tumoral immune tolerance are uncertain. Dectin-1 is an innate immune receptor critical in anti-fungal immunity, but its role in sterile inflammation and oncogenesis is not well-defined. Further, non-pathogen-derived ligands for Dectin-1 have not been characterized. We found that Dectin-1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin-1 ligation accelerated PDA, whereas Dectin-1 deletion or blockade of its downstream signaling was protective. We found that Dectin-1 ligates the lectin Galectin-9 in the PDA tumor microenvironment resulting in tolerogenic macrophage programming and adaptive immune suppression. Upon interruption of the Dectin-1–Galectin-9 axis, CD4+ and CD8+ T cells – which are dispensable to PDA progression in hosts with an intact signaling axis – become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting Dectin-1 signaling is an attractive strategy for the immunotherapy of PDA. PMID:28394331

  4. Oxidized lipoproteins are associated with markers of inflammation and immune activation in HIV-1 infection

    Science.gov (United States)

    Kelesidis, T; Jackson, N; McComsey, GA; Wang, X; Elashoff, D; Dube, MP; Brown, TT; Yang, OO; Stein, JH; Currier, JS

    2016-01-01

    Objective The pathogenesis of immune dysfunction in chronic HIV-1 infection is unclear, and a potential role for oxidized lipids has been suggested. We hypothesize that both oxidized low- and high-density lipoproteins (HDLox, LDLox) contribute to HIV-1 related immune dysfunction. Study In the AIDS Clinical Trials Group (ACTG) A5260, 234 HIV-infected antiretroviral therapy (ART)-naïve participants were randomized to receive tenofovir-emtricitabine plus protease inhibitors or raltegravir and had HIV-1 RNA lipoproteins may contribute to persistent immune activation on ART. PMID:27603288

  5. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    Science.gov (United States)

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  6. Immune Response and Partial Protection against Heterologous Foot-and-Mouth Disease Virus Induced by Dendrimer Peptides in Cattle

    Directory of Open Access Journals (Sweden)

    I. Soria

    2018-01-01

    Full Text Available Synthetic peptides mimicking protective B- and T-cell epitopes are good candidates for safer, more effective FMD vaccines. Nevertheless, previous studies of immunization with linear peptides showed that they failed to induce solid protection in cattle. Dendrimeric peptides displaying two or four copies of a peptide corresponding to the B-cell epitope VP1 [136–154] of type O FMDV (O/UKG/11/2001 linked through thioether bonds to a single copy of the T-cell epitope 3A [21–35] (termed B2T and B4T, resp. afforded protection in vaccinated pigs. In this work, we show that dendrimeric peptides B2T and B4T can elicit specific humoral responses in cattle and confer partial protection against the challenge with a heterologous type O virus (O1/Campos/Bra/58. This protective response correlated with the induction of specific T-cells as well as with an anamnestic antibody response upon virus challenge, as shown by the detection of virus-specific antibody-secreting cells (ASC in lymphoid tissues distal from the inoculation point.

  7. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  8. Protective specific immunity induced by cyclophosphamide plus tumor necrosis factor alpha combination treatment of EL4-lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Krawczyk, C M; Verstovsek, S; Ujházy, P; Maccubbin, D; Ehrke, M J

    1995-06-01

    A combination treatment protocol initiated 12 days after tumor injection, when the tumor was large, by administering cyclophosphamide (CY, 150 or 250 mg/kg) intraperitoneally followed by intravenous tumor necrosis factor alpha (TNF alpha, 1000 units injection) on days 13, 16, 18, 21, and 23, resulted in about 60% long-term survival (i.e., survival for at least 60 days) in the syngeneic C57BL/6 mouse/EL4 lymphoma model system. The establishment of a specific antitumor immune memory and its possible therapeutic relevance was verified by reinjecting 60-day survivors with EL4 cells; all 60-day survivors that had received the combination treatments rejected the implants and survived for a further 60 days. Thymic cellularity was reduced during treatment and its recovery appeared to correlate with long-term survival and immunity. Thymocytes from mice treated with the combination were found to express significant levels of specific anti-EL4 cytolytic activity following a 4-day stimulation culture with X-irradiated EL4 cells and low concentrations of interleukin-2. This response could not be generated with thymocytes from naive animals. In each case the effect seen with the combination of a moderate CY dose (150 mg/kg) with TNF alpha was better than that seen with either dose of CY alone and equal to or better than that seen with the higher dose of CY combined with TNF alpha. These results indicate that treatment with a single moderate dose of CY in combination with TNF alpha is effective against a large, established tumor in this murine model. Furthermore, all the long-term survivors induced by this treatment developed protective immunity against reimplanted tumor and demonstrated a long-term specific immune memory in the thymus.

  9. Radiation protection activities around the CERN accelerators

    International Nuclear Information System (INIS)

    Silari, M.

    1997-01-01

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  10. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  11. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    International Nuclear Information System (INIS)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-01-01

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  12. Association of neopterin as a marker of immune system activation and juvenile rheumatoid arthritis activity

    Directory of Open Access Journals (Sweden)

    Mones M. Abu Shady

    2015-08-01

    Full Text Available OBJECTIVE: To evaluate neopterin plasma concentrations in patients with active juvenile idiopathic arthritis (JIA and correlate them with disease activity.METHODS: Sixty patients diagnosed as active JIA, as well as another 60 apparently healthy age- and gender-matched children as controls, were recruited from the Pediatrics Allergy and Immunology Clinic, Ain Shams University. Disease activity was assessed by the Juvenile Arthritis Disease Activity Score 27 (JADAS-27. Laboratory investigations were performed for all patients, including determination of hemoglobin concentration (Hgb, erythrocyte sedimentation rate (ESR, and C-reactive protein. Serum concentrations of tumor necrosis factor-alpha (TNF-a, interleukin-6 (IL-6, monocyte chemoattractant protein-1 (MCP-1, and neopterin were measured.RESULTS: Significant differences were found between JIA patients and controls with regard to the mean levels of Hgb, ESR, TNF-a, IL-6, and MCP-1 (p 0.05. Multiple linear regression analysis showed that JADAS- 27 and ESR were the main variables associated with serum neopterin in JIA patients (p < 0.05.CONCLUSION: The elevation of plasma neopterin concentrations in early JIA patients may indicate stimulation of immune response. Serum neopterin can be used as a sensitive marker for assaying background inflammation and disease activity score in JIA patients.

  13. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  14. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression

    Directory of Open Access Journals (Sweden)

    Chong-Sheng Chen

    2014-01-01

    Full Text Available Metronomic chemotherapy using cyclophosphamide (CPA is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25% reduction in CPA dose. Moreover, an ~20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.

  15. Long-term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines.

    Science.gov (United States)

    Xiao, Yuhong; Daniell, Henry

    2017-09-25

    Oral polio vaccine (OPV) and Inactivated Polio Vaccine (IPV) have distinct advantages and limitations. IPV does not provide mucosal immunity and introduction of IPV to mitigate consequences of circulating vaccine-derived polio virus from OPV has very limited effect on transmission and OPV campaigns are essential for interrupting wild polio virus transmission, even in developed countries with a high coverage of IPV and protected sewer systems. The problem is magnified in many countries with limited resources. Requirement of refrigeration for storage and transportation for both IPV and OPV is also a major challenge in developing countries. Therefore, we present here long-term studies on comparison of a plant-based booster vaccine, which is free of virus and cold chain with IPV boosters and provide data on mucosal and systemic immunity and protection conferred by neutralizing antibodies. Mice were primed subcutaneously with IPV and boosted orally with lyophilized plant cells containing 1μg or 25μg polio viral protein 1 (VP1), once a month for three months or a single booster one year after the first prime. Our results show that VP1-IgG1 titers in single or double dose IPV dropped to background levels after one year of immunization. This decrease correlated with >50% reduction in seropositivity in double dose and <10% seropositivity