WorldWideScience

Sample records for protective devices radiation

  1. Radiation leaking protection device

    International Nuclear Information System (INIS)

    Sunami, Yoshio; Mitsumori, Kojiro

    1980-01-01

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  2. Adjustable radiation protection device of the fluoroscope DG 10

    International Nuclear Information System (INIS)

    Hoermann, D.

    1980-01-01

    In cooperation with the 'VEB Transformatoren- und Roentgenwerk Hermann Matern', Dresden, an adjustable radiation protection device has been developed. This supplementary equipment for fluoroscopes ensures a sufficient protection of the gonads against undesirable X radiation, can be handled easily and does not annoy patients, esp. children

  3. Radiation protection measuring device SSM-1

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  4. The radiation protective devices for interventional procedures using computed tomography

    International Nuclear Information System (INIS)

    Iida, Hiroji; Chabatake, Mitsuhiro; Shimizu, Mitsuru; Tamura, Sakio

    2002-01-01

    A scattered dose and a surface dose from phantom measurements during interventional procedures with computed tomography (IVR-CT) were evaluated. To reduce the personnel exposure in IVR-CT, the new protective devices were developed and its effect evaluated. Two radiation protection devices were experimentally made using a lead vinyl sheet with lead equivalent 0.125 mmPb. The first device is a lead curtain which shields the space of CT-gantry and phantom for the CT examination. The second device is a lead drape which shields on the phantom surface adjacent to the scanning plane for the CT-fluoroscopy. Scattered dose and phantom surface dose were measured with an abdominal phantom during Cine-CT (130 kV, 150 mA, 5 seconds, 10 mm section thickness). They were measured by using ionization chamber dosimeter. They were measured with and without a lead curtain and a lead drape. Scattered dose rate was measured at distance of 50-150 cm from the scanning plane. And, surface dose was measured at distance of 4-21 cm from the scanning plane on the phantom. On operator's standing position, scattered dose rates were from 8.4 to 11.6 μGy/sec at CT examination. The lead curtain and the lead drape reduced scattered dose rate at distance of 50 cm from the scanning plane by 66% and 58.3% respectively. Surface dose rate were 118 μGy/sec at distance of 5 cm from the scanning plane at CT-fluoroscopy. The lead drape reduced the surface dose by 60.5%. High scattered exposure to personnel may occur during interventional procedures using CT. They were considerably reduced during CT-arteriography by attaching the lead curtain in CT equipment. And they were substantially reduced during CT-fluoroscopy by placing the lead drape adjacent to the scanning plane, in addition, operator's hand would be protected from unnecessary radiation scattered by phantom. It was suggested that the scattered exposure to personnel could be sufficiently reduced by using radiation protection devices in IVR-CT. The

  5. Problematic radiation protective devices for X-ray diagnostics

    International Nuclear Information System (INIS)

    Beck, A.; Nanko, N.; Bruggmoser, G.; Eble, M.

    1988-01-01

    The authors report experimental test results of radiation safety glasses with a lead equivalence of 0.5 mm Pb. The glasses were tested on a phantom, with various radiation projections, for their shielding effect with regard to the eye lens. The protective effect at AP projection was 90%, which corresponds to the data given by the manufacturer. But in most cases of interventional radiology, the examiner's eyes are exposed to lateral radiation, due to the positioning of the monitor. In these cases, reflected radiation at the side of the glasses facing the eye may induce a dose to the lens that can be fourfold the dose received without wearing the glasses, so that wearing these glasses may enhance the hazard. Another protective device tested was lead-coated gloves. The manufacturer promises a protective effect of 50% at 100 kV. The experimental test data, obtained by taking into account technical characteristics of angiographic components, confirm a radiation shielding of about 20%. (orig./HP) [de

  6. Protective device for organs exposed to medical X-radiation

    International Nuclear Information System (INIS)

    Zimmer, K.

    1978-01-01

    The protective device for male or female gonads consists of a protective screen made of hard lead coated with silicon caoutchouc, a flexible supporting arm, and a base plate on which the supporting arm for the protective screen is monted. The protective screen has got the shape of a dish resp. a pear-shaped contour for male resp. female persons. The base may be arranged on a Bucky table between the legs of the person to be examined by means of suction cups. (DG) [de

  7. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  8. Intercomparison of radiation protection protection devices in a high-energy stray neutron field. Part III: Instrument response

    Czech Academy of Sciences Publication Activity Database

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernández, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; García, M. J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, T.; Latocha, M.; Mares, V.; Mayer, S.; Radon, T.; Reithmeier, H.; Rollet, S.; Roos, H.; Rühm, W.; Sandri, S.; Schardt, D.; Simmer, G.; Spurný, František; Trompier, F.; Villa-Grasa, C.; Weitzenegger, E.; Wiegel, B.; Wielunski, M.; Wissmann, F.; Zechner, A.; Zielczyński, M.

    2009-01-01

    Roč. 44, 7-8 (2009), s. 673-691 ISSN 1350-4487 R&D Projects: GA AV ČR IAA100480902 Institutional research plan: CEZ:AV0Z10480505 Keywords : radiation protection devices * radiation field * detectors * dosemeters Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.973, year: 2009

  9. New device for the radiation protection of the eye lens

    International Nuclear Information System (INIS)

    Csobaly, S.; Zarand, P.

    1980-01-01

    Lenses of 50 mm diameter and 2 mm width were ground from lead glass, equivalent to 2 mm of lead. In the case of X-radiations of different intensity and different filtering the finished glasses are equivalent to 0.73-0.78 mm of lead and they decrease the radiation exposition of the eye lens 15-fold. (L.E.)

  10. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  11. Reference neutron radiations. Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field

    International Nuclear Information System (INIS)

    2000-01-01

    ISO 8529 consists of the following parts, under the general title Reference neutron radiations: Part 1: Characteristics and methods of production; Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field; Part 3: Calibration of area and personal dosimeters and determination of response as a function of energy and angle of incidence. This Part 2. of ISO 8529 takes as its starting point the neutron sources described in ISO 8529-1. It specifies the procedures to be used for realizing the calibration conditions of radiation protection devices in neutron fields produced by these calibration sources, with particular emphasis on the corrections for extraneous effects (e.g., the neutrons scattered from the walls of the calibration room). In this part of ISO 8529, particular emphasis is placed on calibrations using radionuclide sources (clauses 4 to 6) due to their widespread application, with less details given on the use of accelerator and reactor sources (8.2 and 8.3). This part of ISO 8529 then leads to ISO 8529-3 which gives conversion coefficients and the general rules and procedures for calibration

  12. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  13. Web software for the control and management of radiation protection devices in the Cadarache site

    International Nuclear Information System (INIS)

    Beltritti, F.

    2010-01-01

    This series of slides presents how to use a new software dedicated to the management of the periodical controls that have to be performed on the equipment involved in radiation protection. This software is ready to be dispatched on the CEA site of Cadarache. This software gives information on: the device to be controlled, the controls that have to be performed, the procedures to follow to make the test, the equipment necessary for the test particularly the need for radioactive sources, the maintenance of the device, the previous measurements and in the end the device's conformity. An evaluation of the conformity of all the devices present in a building or an area or of a particular type can be easily obtained. (A.C.)

  14. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  15. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  16. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  17. New challenge for the radiation protection: devices for the radioactivity dispersion

    International Nuclear Information System (INIS)

    Mora, J. C.; Robles, B.; Cancio, C.

    2006-01-01

    In recent years the terrorist attacks produced in several countries have changed the mind of the security experts. This has also included the Radiation Protection aspects. Newly considered features have required the update of emergency response and preparedness, ad well as a greater emphasis on security. Within the Radiation Protection field has been introduced the radiological and nuclear terrorism definition. almost every organism and research centre involved in Radiation Protection is nowadays working on. The possible terrorist attack scenarios have already been defined and the use of an explosive to disperse radioactive material, known as a Radiation Dispersion Devices (RDD), has been specified as the most probable one. Studies to mitigate against the chance of attack and to mitigate the consequences of any attack with a RDD are complex, due to the innovation that introduce. This leads to a need to take some immediate preventative actions and to carry out additional R and D efforts. This document presents some considerations on the possible RDD design and behaviour in order to prevent and prepare against a possible attack. (Author) 17 refs

  18. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1976-01-01

    The lecture is divided into five sections. The introduction deals with the physical and radiological terms, quantities and units. Then the basic principles of radiological protection are discussed. In the third section attention is paid to the biological effects of ionizing radiation. The fourth section deals with the objectives of practical radiological protection. Finally the emergency measures are discussed to be taken in radiation accidents. (HP) [de

  19. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  20. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device

    International Nuclear Information System (INIS)

    Duque, Hildanielle Ramos

    2015-01-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  1. Radiation protection

    International Nuclear Information System (INIS)

    Kamalaksh Shenoy, K.

    2013-01-01

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  2. Ionizing secondary radiation generated by analog radiological and digital coronary cine angiographic equipment. Influence of external protection devices

    International Nuclear Information System (INIS)

    Ramirez N, Alfredo; Farias Ch, Eric; Silva J, Ana Maria; Leyton L, Fernando; Oyarzun C, Carlos; Ugalde P, Hector; Dussaillant, Gaston; Cumsille G, Angel

    2000-01-01

    Exposure to ionizing radiation is a know hazard of radiological procedures. Aim: to compare the emission of secondary ionizing radiation from two coronary angiographic equipments, one with digital and the other with analog image generation. To evaluate the effectiveness of external radiological protection devices. Material and methods: environmental and fluoroscopy generated radiation in the cephalic region of the patient was measured during diagnostic coronary angiographies. Ionizing radiation generated in anterior left oblique protection (ALO) and anterior right oblique protection (ARO) were measured with and without leaded protections. In 19 patients (group 1), a digital equipment was used and in 21 (group 2), an analog equipment. Results: header radiation for group 1 and 2 was 1194±337 and 364±222 μGray/h respectively (p≤0.001). During fluoroscopy and with leaded protection generated radiation for groups 1 and 2 was 612±947 and 70±61μGray/h respectively (p≤0.001). For ALO projection, generated for groups 1 and 2 was 105±47 and 71±192 μGray/h respectively (p≤0.001). During filming the radiation for ALO projection for groups 1 and 2 was 7252±9569 and 1671±2038 μGray/h respectively (p=0.03). Out of the protection zone, registered radiation during fluoroscopy for groups 1 and 2 was 2800±1741 and 1318±954 μGray/h respectively (p≤0.001); during filming, the figures were 15500±5840 and 18961±10599 μGray/h respectively (NS). Conclusions: digital radiological equipment has a lower level of ionizing radiation emission than the analog equipment

  3. Operating devices for radiation protection: acceptable deviations from legal metrology point of view

    International Nuclear Information System (INIS)

    Soukup, T.

    2008-01-01

    The objective of this paper is to draw attention to possible discrepancies in the measuring the quantities of ionizing radiation mainly in natural environment, that cannot be explained by faulty gauges. In addition I would like to draw the attention to these issue radiation protection researchers, document that uncertainties in estimating the impact of exposure and transfer them into the language of used meters tolerances. (authors)

  4. Evaluation of novel disposable, light-weight radiation protection devices in an interventional radiology setting: a randomized controlled trial.

    Science.gov (United States)

    Uthoff, Heiko; Peña, Constantino; West, James; Contreras, Francisco; Benenati, James F; Katzen, Barry T

    2013-04-01

    Radiation exposure to interventionalists is increasing. The currently available standard radiation protection devices are heavy and do not protect the head of the operator. The aim of this study was to evaluate the effectiveness and comfort of caps and thyroid collars made of a disposable, light-weight, lead-free material (XPF) for occupational radiation protection in a clinical setting. Up to two interventional operators were randomized to wear a XPF or standard 0.5-mm lead-equivalent thyroid collars in 60 consecutive endovascular procedures requiring fluoroscopy. Simultaneously a XPF cap was worn by all operators. Radiation doses were measured using dosimeters placed outside and underneath the caps and thyroid collars. Wearing comfort was assessed at the end of each procedure on a visual analog scale (0-100 [100 = optimal]). Patient and procedure data did not differ between the XPF and standard protection groups. The cumulative radiation dose measured outside the cap was 15,700 μSv and outside the thyroid collars 21,240 μSv. Measured radiation attenuation provided by the XPF caps (n = 70), XPF thyroid collars (n = 40), and standard thyroid collars (n = 38) was 85.4% ± 25.6%, 79.7% ± 25.8% and 71.9% ± 34.2%, respectively (mean difference XPF vs standard thyroid collars, 7.8% [95% CI, -5.9% to 21.6%]; p = 0.258). The median XPF cap weight was 144 g (interquartile range, 128-170 g), and the XPF thyroid collars were 27% lighter than the standard thyroid collars (p disposable caps and thyroid collars made of XPF were assessed as being comfortable to wear, and they provide radiation protection similar to that of standard 0.5-mm lead-equivalent thyroid collars.

  5. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  6. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  7. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  8. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    Hajek, Michael; Maringer, Franz Josef; Steurer, Andreas; Schwaiger, Martina; Timal, Guenter

    2015-01-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  9. Radiation emitting devices act

    International Nuclear Information System (INIS)

    1970-01-01

    This Act, entitled the Radiation Emitting Devices Act, is concerned with the sale and importation of radiation emitting devices. Laws relating to the sale, lease or import, labelling, advertising, packaging, safety standards and inspection of these devices are listed as well as penalties for any person who is convicted of breaking these laws

  10. Operational radiation protection and radiation protection training

    International Nuclear Information System (INIS)

    Kraus, W.

    1989-01-01

    The radiation protection system in the German Democratic Republic (GDR) is reviewed. The competent authority (the SAAS) and its systems of licensing and supervision are described. Discussion covers the role of the Radiation Protection Officer, the types of radiation monitoring, medical surveillance programs and the classification of workers and work areas. Unusual occurrences in the GDR, 1963-1976, are presented and the occupational radiation protection problems at some specific types of workplaces are discussed. The GDR's system of training in radiation protection and nuclear safety is described. 5 figs., 18 tabs

  11. Quality control devices for intraoperative gamma probes: physical, technical and radiation protection aspects

    International Nuclear Information System (INIS)

    Varela, C.; Diaz, M.; Salvador, F.J.; Hernandez, M.; Jimenez, P.

    2008-01-01

    Now a day, radio guided surgery -a novelty in Nuclear Medicine- is increasingly used. The clinical efficiency of these procedures requires the existence of well-trained professionals and implementation of quality assurance programs. It is essential for achieving the main objective, which is an effective and safe surgical procedure, a reliable performance of the detection device. Probes' parameters must remain within the acceptance limits, so they should be checked periodically. NEMA Standards Publication NU 3-2004 'Performance Measurement and Quality Control Guidelines for Non-Imaging Intraoperative Gamma Probes' recommends 13 tests; although only 3 of them -sensibility in air, visual inspection and power source check- are considered as steadiness tests. Space resolution in a scatter medium is also a test that needs to be carried out. These tests are considerably complex since open radioactive sources are used into a liquid medium in most of the procedures. The immersion of the probe and of the radioactive sources in each case represents both risks of radioactive contamination, and of damages to the equipment. On the other hand, tests in air demand a good reproducibility. Since they are recommended be carried out before any surgery procedure, they also should be easy and quick. This paper presents 3 devices with its accessories for acceptance and quality control tests of intraoperative gamma probes. They were designed and built taking into consideration important aspects of radiological protection to handle the calibration sources and probes, both in air and into a scatter medium. These devices are designed to fit any kind of probe. Regulatory bodies as part of their instrument audits can also use them. (author)

  12. Radiation emitting devices regulations

    International Nuclear Information System (INIS)

    1970-01-01

    The Radiation Emitting Devices Regulations are the regulations referred to in the Radiation Emitting Devices Act and relate to the operation of devices. They include standards of design and construction, standards of functioning, warning symbol specifications in addition to information relating to the seizure and detention of machines failing to comply with the regulations. The radiation emitting devices consist of the following: television receivers, extra-oral dental x-ray equipment, microwave ovens, baggage inspection x-ray devices, demonstration--type gas discharge devices, photofluorographic x-ray equipment, laser scanners, demonstration lasers, low energy electron microscopes, high intensity mercury vapour discharge lamps, sunlamps, diagnostic x-ray equipment, ultrasound therapy devices, x-ray diffraction equipment, cabinet x-ray equipment and therapeutic x-ray equipment

  13. Focus radiation protection

    International Nuclear Information System (INIS)

    Ebermann, Lutz

    2016-01-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  14. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  15. Counterbalanced radiation detection device

    International Nuclear Information System (INIS)

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  16. Radiation and radiation protection

    International Nuclear Information System (INIS)

    Landfermann, H.H.; Solbach, C.

    1992-11-01

    The brochure explains the major types of radiation, the radiation sources, effects, uses, and risks, as well as the regulatory system adopted by the government in order to keep the risks as low as possible. (orig./DG) [de

  17. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  18. Radiation beans characterization and implantation for study of lead equivalent individual protection device used in radiodiagnostic practices

    International Nuclear Information System (INIS)

    Pereira, Leslie Silva

    2004-01-01

    The protective shielding (IPC) must be used by occupationally exposed professionals, patients and volunteers, in order to optimize the doses who receive due to radiological practices. International and national norms establish the methodology to be adopted for determination of the IPC attenuation. In this work, the IPC had been submitted to X-rays beams with known characteristics, standardized for determination of their attenuation equivalent thickness by comparison to an experimental lead attenuation slope. This comparison technique allowed insurance estimative of the IPC attenuation equivalent thickness in mm of lead. Thus, it was possible to verify the conformity of the attenuation equivalent thickness determined experimentally and the value of the thickness indicated by the manufacturer. To carry out this work, it was necessary the implementation of experimental setups stated in the specifics norms, the study of the X-rays beams original features and the determination of combined additional filters, in order to allow the X-ray equipment used operates in compliance with Norm IEC 61331-1 IEC. The radiation quality selected is characterized by a 100 kV voltage and a 0.25 mm of copper overall filtration. The implementation of this radiation quality it was carried through of its first and second HVL (Half Value Layer). Thus, a methodology according to the international Norms has been implemented in the laboratory. The results of the present work provide suitable and useful information about radiation beams features related to the determination techniques of the attenuation properties. Once implemented the procedures for conformity evaluation of the protection devices, it will be possible to carry out specific quality control tests, which will be helpful to manufacturers, customers, as well as authorities in the radiological protection and health areas. (author)

  19. Radiation protection standards

    International Nuclear Information System (INIS)

    Koelzer, W.

    1980-01-01

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  20. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  1. Radiation protection; Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ures Pantazi, M [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection.

  2. Radiation protection in hospitals

    International Nuclear Information System (INIS)

    MOuld, R.F.

    1985-01-01

    A book on radiation protection in hospitals has been written to cater for readers with different backgrounds, training and needs by providing an elementary radiation physics text in Part I and an advanced, comprehensive Part II relating to specific medical applications of X-rays and of radioactivity. Part I includes information on basic radiation physics, radiation risk, radiation absorption and attenuation, radiation measurement, radiation shielding and classification of radiation workers. Part II includes information on radiation protection in external beam radiotherapy, interstitial source radiotherapy, intracavitary radiotherapy, radioactive iodine-131 radiotherapy, nuclear medicine diagnostics and diagnostic radiology. (U.K.)

  3. Radiation protection in Bolivia

    International Nuclear Information System (INIS)

    Miranda Cuadros, A.A.

    2001-01-01

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  4. Radiation protection in Sudan

    International Nuclear Information System (INIS)

    Elamin, O.I.; Hajmusa, E.A.; Shaddad, I.A.

    2001-01-01

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  5. Protection device for a thermonuclear device

    International Nuclear Information System (INIS)

    Kawashima, Shuichi.

    1986-01-01

    Purpose: To exactly detect the void coefficients of coolants even under high magnetic fields thereby detect the overheat of a thermonuclear device at an early stage. Constitution: The protecting device of this invention comprises a laser beam generation device, a laser beam detection device and an accident detection device. The laser generation device always generates laser beams, which are permeated through coolants and detected by the laser beam detection device, the optical amount of which is transmitted to the accident detection device. The accident detection device judges the excess or insufficiency of the detected optical amount with respect to the optical amount of the laser beams under the stationary state as a reference and issues an accident signal. Since only the optical cables that do not undergo the effect of the magnetic fields are exposed to high magnetic fields in the protection device of this invention, a high reliability can be maintained. (Kamimura, M.)

  6. Definition and production of calibration standard neutron sources for radiation protection device calibration

    International Nuclear Information System (INIS)

    De Matos, E.

    1987-01-01

    To improve the characterization of radioprotection devices performances, it would be advisable to calibrate these devices in neutron spectra which are nearly like those met in practice (nuclear reactors, plutonium technology laboratories...). The purpose of this work is, in a first time, to choose the nature and the dimensions of the different shields used to achieve broad typical neutron spectra extending to lower energies from a 14.8 MeV neutron beam. The second step is the evaluation of spectral distribution and calculation of associated dosimetric quantities. For that, several spectrometric techniques are employed: on one hand, activation detectors and Bonner spheres method named rough spectrometry; on the other hand, an accurate spectrometry which uses recoil proton counters. The dosimetric quantities, especially the value of kerma deduced from these spectra must be in good agreement with those measured with a tissue equivalent ionization chamber [fr

  7. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  8. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  9. IAEA calls for enhanced radiation protection of patients. Safety specialists warn against overuse of new imaging devices

    International Nuclear Information System (INIS)

    2009-01-01

    Advances in medical imaging techniques are allowing doctors to detect hidden diseases and make ever more accurate diagnoses. But radiation safety experts at the International Atomic Energy Agency (IAEA) say that overuse of high-tech scanning procedures may unnecessarily expose patients to increased radiation levels. The IAEA, in collaboration with other international organizations, is developing a series of measures aimed at strengthening patient protection. The focus of recent efforts is a Smart Card project, to log how much radiation a person receives in the course of a lifetime. Concern surrounds procedures such as computed tomography (CT) scans because they deliver higher doses of radiation to patients in comparison to conventional X-rays (radiographs). It's been estimated that the average radiation dose of one CT scan is equal to roughly 500 chest X-rays. And that can increase a patient's lifetime risk of cancer, particularly if CT scans are repeated. The IAEA is one of the key international players in the field of patient radiation protection. A unit dedicated to the Radiological Protection of Patients (RPoP) was established in 2001. The IAEA's activities in radiation protection of patients include training, knowledge sharing and capacity building in the medical use of radiation. Extensive, up-to-date training material for health professionals is freely available on the RPoP website. An International Action Plan on the Radiological Protection of Patients that has been established together with leading international organizations such as the World Health Organization (WHO), UNSCEAR, the International Commission on Radiological Protection (ICRP) and others to identify strategies for strengthening radiation protection of patients. Coordinating and managing technical cooperation projects with Member States on patient dose assessment. The aim is to identify the factors that contribute to unnecessary radiation dose to patients, provide guidance on dealing with

  10. Training in radiation protection

    International Nuclear Information System (INIS)

    Schreiber, F.

    1998-01-01

    Persons who are exposed to ionizing radiation at their workplace have to be trained in radiation protection. According to the Radiation Protection Ordinance the person with responsibility in radiation protection has to guarantee that the training is performed twice a year. Our training material was created especially for the persons defined in the Radiation Protection Ordinance and the X-ray Ordinance. It enables persons who teach (generally the radiation protection officer) to perform the training without tedious study and preparation of the documents. Our material is not just another textbook for radiation protection but rather a folder with colour transparencies and explanatory texts which make a difference in volume and price in comparison to other existing materials. (orig.) [de

  11. The Radiation Protection Act

    International Nuclear Information System (INIS)

    Persson, L.

    1989-01-01

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  12. Radiation protection to firemen

    International Nuclear Information System (INIS)

    Almeida, E.S. de.

    1985-01-01

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  13. Radiation protection standards

    International Nuclear Information System (INIS)

    Fitch, J.

    1983-11-01

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  14. Manual of Radiation Protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.; Boisserie, G.

    1992-01-01

    This manual explains the principles and practice of radiation protection for those whose work in research, in the field of medicine or in the industry requires the use of radiation sources. It provides the information radiation users need to protect themselves and others and to understand and comply with international recommendations, regulations and legislation regarding the use of radionuclides and radiation machines. It is designed to teach a wide audience of doctors, biologists, research scientists, technicians, engineers, students and others

  15. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  16. Radiation protection at urological fluoroscopy working stations

    International Nuclear Information System (INIS)

    Forster, D.; Mohr, H.

    1979-01-01

    Two newly developed radiation protection devices for urological working stations are presented. The local dose to which doctor and assisting personnel are exposed during fluoroscopy and radiography was measured and the radiation burden with and without radiation protection determined. The studies show that without these devices organs such as the eyes are exposed, at a normal working distance from the table, to such an amount of scattered radiation as to reduce the permitted number of examinations per week. (Auth.)

  17. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  18. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  19. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  20. Radiation protection and environmental protection

    International Nuclear Information System (INIS)

    Xie Zi; Dong Liucan; Zhang Yongxing

    1994-01-01

    A collection of short papers is presented which review aspects of research in radiation and environmental protection carried out by the Chinese Institute of Atomic Energy in 1991. The topics covered are: the analysis of Po 210 in the gaseous effluent of coal-fired boilers; the determination of natural radionuclide levels in various industrial waste slags and management countermeasures; assessment of the collective radiation dose from natural sources for the Chinese population travelling by water; the preliminary environmental impact report for the multipurpose heavy water research reactor constructed by China for the Islamic Republic of Algeria. (UK)

  1. Radiation protection law

    International Nuclear Information System (INIS)

    Hebert, J.

    1981-01-01

    This article first reviews the general radiation protection law at international and national level, with particular reference to the recommendations of the International Commission on Radiological Protection (ICRP) which, although not mandatory, are nevertheless taken into consideration by international organisations establishing basic radiation protection standards such as the UN, IAEA, NEA and Euratom, at Community level, and by national legislation. These standards are therefore remarkably harmonized. Radiation protection rule applied in France for the different activities and uses of radioactive substances are then described, and finally, a description is given of the regulations governing artificial radioisotopes and radioactive effluents. (NEA) [fr

  2. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  3. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  4. Radiation protection housing

    Energy Technology Data Exchange (ETDEWEB)

    Maier, A

    1975-04-10

    The radiation protection housing consists of a foot rim with castor swivel wheels, a tubular frame tapering off at the top, and a crown. In the upper part of the tubular frame a lead glass window is permanently installed. The sides are covered with radiation attenuating curtains of leaded rubber. The housing has the shape of a truncated pyramid which can be dismantled into its constituent parts. It is used for protection from radiation encountered in X-ray facilities in dental radiology.

  5. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  6. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  7. Radiation protective clothing

    International Nuclear Information System (INIS)

    Watanabe, Choshin; Takaura, Katsutoshi

    1998-01-01

    An external clothing as a main portion of the radiation protective clothing of the present invention is adapted to cover substantially the entire body of a wearer, comprises a moisture permeable material partially or entirely, and has an air supply device equipped with a filter for feeding air to a head portion of the wearer in the external clothing. Cleaned air filtered by the filter is supplied to the head portion of a wearer in the external clothing. The air passes through remarkably perspiratory head, face, shoulder, chest and back portions to remove heat and sweat at sensitively important upper portions of a body, so that humidity is released to remove fatigues and improve workability. In addition, since some extent of internal pressure is exerted to the inside of the external clothing by the air supply, contaminated air does not intrude from the outside to the external clothing. Since the air supply device is attached and carried to the external clothing, there is no air line hose which disturbs operation. (I.S.)

  8. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  9. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Hansson, Sven Ove

    2007-01-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  10. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  11. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  12. Radiation monitoring device

    International Nuclear Information System (INIS)

    Sato, Toshifumi.

    1993-01-01

    The device of the present invention concerns a reactor start-up region monitor of a nuclear power plant. In an existent start-up region monitor, bias voltage is limited, if the reactor moves to a power region, in order to prevent degradation of radiation detectors. Accordingly, since the power is lower than an actual reactor power, the reactor power can not be monitored. The device of the present invention comprises a memory means for previously storing a Plateau's characteristic of the radiation detectors and a correction processing means for obtaining a correction coefficient in accordance with the Plateau's characteristic to correct and calculate the reactor power when the bias voltage is limited. With such a constitution, when the reactor power exceeds a predetermined value and the bias voltage is limited, the correction coefficient can be obtained by the memory means and the correction processing means. Corrected reactor power can also be obtained from the start-up region monitor by the correction coefficient. As a result, monitoring of the reactor power can be continued while preventing degradation of the radiation detector even if the bias voltage is limited. (I.S.)

  13. Radiation protection textbook

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.

    2007-01-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  14. Radiation detection device

    International Nuclear Information System (INIS)

    Peschmann, Kristian.

    1982-01-01

    A radiation detector suitable for use in computer tomography device has an ionization chamber which comprises a high voltage electrode, a collector electrode, a high voltage source having two terminals, one connected to the high voltage electrode, current measuring means having two terminals, one connected to the high voltage source and the other to the collector electrode, and an auxilliary electrode near and parallel to the entrance window of the device, having one adjacent to the high voltage electrode and the other adjacent but not connected to the collector electrode. The auxilliary electrode is connected to the high voltage source. In this way the electric field between the high voltage and collector electrodes is made homogeneous in the vicinity of the auxilliary electrode, improving the measuring speed of the detector

  15. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  16. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  17. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2005-01-01

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  18. Radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-01-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  19. Radiation protection in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  20. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thomas, P.

    1982-01-01

    The present paper deals with the following topics: - Radiological quantities and units - Principles of radiological protection - Limits of doses and activity uptake - Activity discharges and monitoring - Radiation exposure and its calculation - Environmental monitoring - Personnel dosimetry. (orig./RW)

  1. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  2. Software for radiation protection

    International Nuclear Information System (INIS)

    Graffunder, H.

    2002-01-01

    The software products presented are universally usable programs for radiation protection. The systems were designed in order to establish a comprehensive database specific to radiation protection and, on this basis, model in programs subjects of radiation protection. Development initially focused on the creation of the database. Each software product was to access the same nuclide-specific data; input errors and differences in spelling were to be excluded from the outset. This makes the products more compatible with each other and able to exchange data among each other. The software products are modular in design. Functions recurring in radiation protection are always treated the same way in different programs, and also represented the same way on the program surface. The recognition effect makes it easy for users to familiarize with the products quickly. All software products are written in German and are tailored to the administrative needs and codes and regulations in Germany and in Switzerland. (orig.) [de

  3. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  4. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  5. Radiation Protection. Chapter 24

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D. [Ninewells Hospital, Dundee (United Kingdom); Collins, L. T. [Westmead Hospital, Sydney (Australia); Le Heron, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility.

  6. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  7. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Carazo, N.

    1979-01-01

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  8. Military radiation protection

    International Nuclear Information System (INIS)

    Harrison, J.

    1993-01-01

    The Ministry of Defence and the military in particular have a very strong commitment to radiation protection of personnel in war and peace. MOD endeavours to do better all the time because it is essential that the armed forces have the confidence to fulfil their role and this is best achieved by providing them with the best possible protection irrespective of the hazard. (author)

  9. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  10. Radiation protection in education

    International Nuclear Information System (INIS)

    Viragh, Elemer

    1985-01-01

    The education of secondary school students in the fields of nuclear sciences was strictly limited according to the 9th recommendations of the ICRP issued in 1966 saying that people under age 18 are not allowed to deal with ionizing radiations. Due to the changes concerning the concept of radiation protection, new opportunities for teaching nuclear technology even in the secondary schools were opened. The 36th recommendations of the ICRP published in 1983 dealing with the maximum permissible doses and the measures taken for radiation protection should be kept in mind while organizing the education of the pupils between age 16 and 18. (V.N.)

  11. Radiation protection glossary

    International Nuclear Information System (INIS)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  12. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2001-01-01

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  13. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  14. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  15. Radiation protection - Revision of French radiation protection regulations (1988)

    International Nuclear Information System (INIS)

    Mayoux, J.C.

    1989-01-01

    This article analyses the recent amendments to the 1966 and 1975 Decrees on general radiation protection principles and radiation protection of workers in large nuclear installations respectively and also describes national radiation protection law. In particular, the amendments incorporate the revised EURATOM basic radiation protection standards and the new international units (sievert and becquerel replace rem and curie) in the Decrees. (NEA) [fr

  16. Concepts in radiation protection

    International Nuclear Information System (INIS)

    Oncescu, M.

    1996-01-01

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  17. Epidemiology and Radiation Protection

    International Nuclear Information System (INIS)

    1987-01-01

    Epidemiology aims at providing direct evidence of the long term health effects in humans due to potentially dangerous exposures to various nuisance agents, including ionising radiation. Inappropriate interpretation and use of the results of epidemiological studies may result in inaccurate assessments of the risks associated with radiation exposure. This report presents the proceedings of a Workshop organised by the NEA to create an opportunity for epidemiologists and radiation protection specialists to exchange their experiences and views on the problems of methodology in epidemiological research and on the application of its results to the assessment of radiation risks

  18. Principles of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Karamourtzounis, J. N. [World Health Organization, Geneva (Switzerland)

    1969-05-15

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  19. Principles of Radiation Protection Concepts

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  20. National congress of radiation protection

    International Nuclear Information System (INIS)

    2001-01-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  1. New radiation protection law

    International Nuclear Information System (INIS)

    1985-01-01

    The structure of the existing legislation and its contents and aims are reconsidered. New rules which correspond to the present situation are to be established. Also the fundamental principles of the task and methods of radiation protection are to be changed. The main effort will be to create conditions so that all human beings will be protected against the harmful effects of radiation. The effects on plants, animals and on the environment should be considered as well. The legislation should include both ionizing and non-ionizing radiation. The main responsibility of protection should stay with the central authority. Licensing of apparatus, liability for medical applications and radioactive waste is discussed. Granting of permissions and control should be accomplished by the authority. Cooperation with other national and international authorities is dealt with. (G.B.)

  2. Reactor protecting device

    International Nuclear Information System (INIS)

    Ono, Hiroshi; Kasuga, Hajime; Kasuga, Hiroshi.

    1984-01-01

    Purpose: To reduce the recycling flowrate thereby decrease the neutron flux level before the reactor shutdown upon generation of abnormality such as increase in the neutron flux, by setting the safety level lower than the value for generating the reaction scram signal. Constitution: A netron flux safety level setter and an instruction signal generator are disposed between a neutron flux detector and a recycling flowrate control device. A neutron flux safety level lower than the level for generating a reactor scram signal and higher that the level for the ordinary operation is set and, if the detection level for the neutron flux in the reactor core arrives at the safety level, a neutron flux decreasing instruction signal is outputted from the instruction signal generator to the recycling flowrate control device to thereby decrease the recycling flowrate and decrease the neutron flux without reaching the reactor shutdown, whereby the thermal safety of the fuel rod can be maintained and the reactor operation performance can be improved. (Moriyama, K.)

  3. Radiation protection for nurses

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R F

    1978-01-01

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose.

  4. Radiation protection in radionuclide investigations

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1985-01-01

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  5. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Brunner, H.

    1990-01-01

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  6. Foundations for radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  7. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1989-01-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  8. Radiation protection - thirty years after

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  9. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  10. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    Lochard, J.

    1994-11-01

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  11. Laser radiation protection

    International Nuclear Information System (INIS)

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  12. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Al Maadheed, Khalid; Al Khatibeh, Ahmad

    2008-01-01

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  13. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  14. Reactor protection device

    Energy Technology Data Exchange (ETDEWEB)

    Shida, T; Hirose, M

    1977-01-19

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by the r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded.

  15. Reactor protection device

    International Nuclear Information System (INIS)

    Shida, Toichi; Hirose, Masao.

    1977-01-01

    Purpose: To prevent abrupt increase or decrease in the recycling flow rate by comparing output signals from controllers in each of the loops in the recycling flow rate control system to thereby lock the positions of fluid coupling scooping pipes or flow control valves corresponding to the groups generating abnormal signals. Constitution: The recycling flow rate is controlled by r.p.m. of a motor directly coupled with a recycling pump and the value of r.p.m. is in proportion to the generator frequency varied with the sliding operation of the fluid coupling in MG set. The sliding operation of the fluid coupling is adjusted by a scooping pipe driver. When the device is set to automatic operation, the output signal of the main controller is delivered to the recycling flow rate control system, the output signal of which is input to respective scooping pipe drivers. The loop output signals are supplied to an adder where the deviation signal between both of them are detected and the scooping pipe is locked if the set value is exceeded. (Yoshino, M.)

  16. Radiation protective clothing

    International Nuclear Information System (INIS)

    Fujinuma, Tadashi; Tamura, Shoji; Ijiri, Yasuo.

    1988-01-01

    Purpose: To obtain radiation protective clothings of excellent workability and durability. Constitution: Protective clothings of the present invention comprise shielding materials for the upper-half of the body having lead foils laminated on one surface and shielding materials for the lower-half of the body a resin sheet containing inorganic powders of high specific gravity. Such protective clothings have a frexibility capable of followings after the movement of the upper-half body and easily follow after the movement such as acute bending of the body near the waste in the lower-half body. (Kamimura, M.)

  17. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  18. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  19. Radiation protection glossary

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Abdul-Rahim, Maha

    1989-12-01

    This glossary contains the arabic equivalent of all the terms included in the IAEA Safety Series No.76 (which is a selected basic terms used in IAEA publications), thus this glossary contains English, French, Spanish, Russian, and Arabic. It is intended to facilitate the work of arabic speaking scientists involved in the field of radiation protection

  20. Environmental radiation protection standards

    International Nuclear Information System (INIS)

    Richings, L.D.G.; Morley, F.; Kelley, G.N.

    1978-04-01

    The principles involved in the setting of radiological protection standards are reviewed, and the differences in procedures used by various countries in implementing them are outlined. Standards are taken here to mean the specific numerical limits relating to radiation doses to people or to amounts of radioactive material released into the environment. (author)

  1. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  2. Lectures on radiation protection

    International Nuclear Information System (INIS)

    Wachsmann, F.; Consentius, K.

    1981-01-01

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.) [de

  3. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  4. Preventive Radiation Protection Act

    International Nuclear Information System (INIS)

    Roewer, H.

    1988-01-01

    The commentary is intended to contribute to protection of the population by a practice-oriented discussion and explanation of questions arising in connection with the Preventive Radiation Protection Act. Leaving aside discussions about abandonment of nuclear power, or criticism from any legal point of view, the commentary adopts the practical approach that accepts, and tries to help implementing, the act as it is. It is a guide for readers who are not experts in the law and gives a line of orientation by means of explanations and sometimes by citations from other acts (in footnotes). The commentary also presents the EURATOM Directive No. 3954/87 dated 22 December 1987, the EC Directive No. 3955/87 dated 22 December 1987, and the EC Directive No. 1983/88 dated 5 July 1988. A tabular survey shows the system of duties and competences defined by the Preventive Radiation Protection Act. (RST) [de

  5. Underwater radiation measuring device

    International Nuclear Information System (INIS)

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  6. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  7. Radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Kaluska, I.; Stuglik, Z.

    1996-01-01

    Overview of sterilization methods of medical devices has been given, with the special stress put on radiation sterilization. A typical validation program for radiation sterilization has been shown and also a comparison of European and ISO standards concerning radiation sterilization has been discussed. (author). 13 refs, 1 fig., 2 tabs

  8. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  9. Radiation biology and radiation protection

    International Nuclear Information System (INIS)

    Hendry, J.H.

    2012-01-01

    For protection purposes, the biological effects of radiation are separated into stochastic effects (cancer, hereditary effects) presumed to be unicellular in origin, and tissue reactions due to injury in populations of cells. The latter are deterministic effects, renamed ‘tissue reactions’ in the 2007 Recommendations of the International Commission on Radiological Protection because of the increasing evidence of the ability to modify responses after irradiation. Tissue reactions become manifest either early or late after doses above a threshold dose, which is the basis for recommended dose limits for avoiding such effects. Latency time before manifestation is related to cell turnover rates, and tissue proliferative and structural organisation. Threshold doses have been defined for practical purposes at 1% incidence of an effect. In general, threshold doses are lower for longer follow-up times because of the slow progression of injury before manifestation. Radiosensitive individuals in the population may contribute to low threshold doses, and in the future, threshold doses may be increased by the use of various biological response modifiers post irradiation for reducing injury. Threshold doses would be expected to be higher for fractionated or protracted doses, unless doses below the threshold dose only cause single-hit-type events that are not modified by repair/recovery phenomena, or if different mechanisms of injury are involved at low and high doses.

  10. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  11. Report by the work-group on 'safety of medical devices emitting ionizing radiations'. Articulation of radiation protection requirements of the 97/43/Euratom directive and IAEA recommendations with the essential requirements of the 93/42/CEE directive related to medical devices used in external radiotherapy

    International Nuclear Information System (INIS)

    2010-01-01

    As some dysfunctions and events had been reported in 2007 and 2008 in field of radiotherapy, this report aims at clarifying the articulation between the different European regulations concerning medical devices emitting ionizing radiations and radiation protection. The authors report a survey with device manufacturers, and analyze the content of the different regulations and recommendations. Then, the authors recommend and propose a set of actions related to the IAEA requirements and recommendations, to CE marking requirements, and to new radiation protection and safety requirements present in the Euratom directive

  12. Radiation protection - the employer

    International Nuclear Information System (INIS)

    Goldfinch, E.

    1983-01-01

    A brief report is given of a paper presented at the symposium on 'Radiation and the Worker - where do we go from here' in London 1983. The paper concerned the employers' viewpoint on the draft of the proposed Ionising Radiations Regulations in the Health and Safety Commission Consultative Document. It was concluded that there was already a very good standard of radiological protection in the UK and that any improvements could therefore only be fringe improvements, although the cost to the employer of introducing and implementing the new proposed Regulations was bound to be high. (U.K.)

  13. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  14. Radiation protection manual

    International Nuclear Information System (INIS)

    Spang, A.

    1983-01-01

    According to the Radiation Protection Ordinance, radiation protection experts directing or supervising the handling of radioactive materials must have expert knowledge. The concept of expert knowledge has been clearly defined by the Fachverband e.V. in a catalogue of instruction goals. The manual follows the principles of this catalogue; it presents the expert knowledge required in a total of 15 subject groups. There is an index which helps the reader to find his specific subject group and the knowledge required of him in this subject group. However, the manual gives only an outline of the subject matter in many instances and should therefore not be regarded as a textbook in the proper sense. (orig./HP) [de

  15. Emerging radiation protection

    International Nuclear Information System (INIS)

    Allard, D.J.

    1993-01-01

    In recent years, a number of radiation protection issues have emerged into the public forum. The perceived high risks associated with radiation exposure, and disproportionate media attention to such issues, have contributed to heightened concerns by the public and the individual occupationally exposed worker. This paper examines the new and controversial radiation risk estimates of the National Research Council's BEIR V committee, which are based on the most current atomic-bomb survivor data and a revised dosimetry model. These risk estimates are somewhat higher than past values, and may eventually impact the legal framework in the United States through the regulations of the EPA, NRC, DOE, OSHA, and other agencies that set radiation exposure standards. Additionally, present regulations and standards are often based upon differing levels of acceptable risk, which have led to conflicting exposure and effluent release criteria. Further, due to inherent boundaries in legal authority, many potentially significant sources of radiation exposure to the public remain unregulated Radiation exposure scenarios such as medical x-ray, radon, and other technology enhanced sources have no legal limits. These issues and others are examined and analyzed with respect to regulatory policy

  16. Radiation protection: A correction

    International Nuclear Information System (INIS)

    1972-01-01

    An error in translation inadvertently distorted the sense of a paragraph in the article entitled 'Ecological Aspects of Radiation Protection', by Dr. P. Recht, which appeared in the Bulletin, Volume 14, No. 2 earlier this year. In the English text the error appears on Page 28, second paragraph, which reads, as published: 'An instance familiar to radiation protection specialists, which has since come to be regarded as a classic illustration of this approach, is the accidental release at the Windscale nuclear centre in the north of England.' In the French original of this text no reference was made, or intended, to the accidental release which took place in 1957; the reference was to the study of the critical population group exposed to routine releases from the centre, as the footnote made clear. A more correct translation of the relevant sentence reads: 'A classic example of this approach, well-known to radiation protection specialists, is that of releases from the Windscale nuclear centre, in the north of England.' A second error appeared in the footnote already referred to. In all languages, the critical population group studied in respect of the Windscale releases is named as that of Cornwall; the reference should be, of course, to that part of the population of Wales who eat laver bread. (author)

  17. New instruments for radiation protection

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Plostinaru, V.D.; Rusu, Al.; Lupu, A.C.; Lupu, F.

    2003-01-01

    Though a century old, the radiation protection is actual by its purpose: a dose as low as reasonable achievable is to be received either by involved professionals or population. This threshold is dependent on the technical progress. Some major developments like surface mounted device technology, consumer almost ideal operational amplifiers, microcontrollers and the news signal digital processing techniques, offer the opportunity to design improved instruments for radioprotection. To put in a light portable instrument both the whole measuring system and the 'intelligence' - a microcontroller and the associated software - are the main ideas applied by the authors. The result is presented: a family of eight members, at least, based on two parents. (authors)

  18. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  19. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  20. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  1. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1979-01-01

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85 Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  2. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Mastauskas, A.

    1999-01-01

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  3. Radiation protection Ordinance

    International Nuclear Information System (INIS)

    1976-06-01

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA) [fr

  4. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1997-01-01

    The safety, the quality and efficiency of the radiological monitoring systems for block one and two of the NPP Mochovce, designed and delivered by the general designer, should be increased by EUCOM Siemens. Modern, accident resistant and/or more powerful monitoring systems have been designed by Siemens will be added to the existing systems. To achieve this radiation measuring units will be installed inside the hermetic zone, in the reactor hall, at the stack, at the release water system and in the environment in the vicinity of the NPP. The presentation, the storage distribution and the processing of all measuring results also will be optimised by installing a modern high-performance computer system, the so-called Central Radiological Computer System 'CRCS', featuring a high availability. The components will be installed in the relevant control rooms all over the plant. With this computer system it is easy to control the radiation level inside and outside the NPP during normal operation and during and after an accident. Special programs, developed by Siemens support the staff by interpreting the consequences of radioactive releases into the environment and by initiating protection procedures during and after an accident. All functions of the system are available for emergency protection drills and training the staff interruption of the normal control procedure. For the personal protection a digital personal dosimetry system completely considering with the requirements of ICRP 60 and several contamination monitors will be installed. (authors)

  5. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.

    1999-01-01

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.) [de

  6. Radiation shielding device

    International Nuclear Information System (INIS)

    Nakagawa, Takahiro; Yamagami, Makoto.

    1996-01-01

    A fixed shielding member made of a radiation shielding material is constituted in perpendicular to an opening formed on radiation shielding walls. The fixed shielding member has one side opened and has other side, the upper portion and the lower portion disposed in close contact with the radiation shielding walls. Movable shielding members made of a radiation shielding material are each disposed openably on both side of the fixed shielding member. The movable shielding member has a shaft as a fulcrum on one side thereof for connecting it to the radiation shielding walls. The other side has a handle attached for opening/closing the movable shielding member. Upon access of an operator, when each one of the movable shielding members is opened/closed on every time, leakage of linear or scattered radiation can be prevented. Even when both of the movable shielding members are opened simultaneously, the fixed shielding member and the movable shielding members form labyrinth to prevent leakage of linear radioactivity. (I.N.)

  7. Radiation protection research

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  8. Radiation protection research

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    2002-01-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised

  9. Radiation protection considerations

    CERN Document Server

    Adorisio, C; Urscheler, C; Vincke, H

    2015-01-01

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  10. Radiation Protection Considerations

    Science.gov (United States)

    Adorisio, C.; Roesler, S.; Urscheler, C.; Vincke, H.

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  11. Australia's radiation protection standards

    International Nuclear Information System (INIS)

    1989-01-01

    In Australia, public exposure to ionizing radiation above background is considered to be negligible. Average occupational exposures are about 0.5 millisievert per year, although there are some specialized industries and professions where they are much higher. The National Health and Medical Research Council has therefore adopted a position similar to that of the International Commission on Radiological Protection. For the moment, no revision of exposure limits is recommended, but users are remined of their responsibility to ensure that exposures are kept low, particularly in those workplaces where significant exposures take place

  12. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  13. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  14. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  15. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  16. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  17. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  18. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  19. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    CERN Document Server

    Silari, M; Beck, P; Bedogni, R; Cale, E; Caresana, M; Domingo, C; Donadille, L; Dubourg, N; Esposito, A; Fehrenbacher, G; Fernández, F; Ferrarini, M; Fiechtner, A; Fuchs, A; García, M J; Golnik, N; Gutermuth, F; Khurana, S; Klages, Th; Latocha, M; Mares, V; Mayer, S; Radon, T; Reithmeier, H; Rollet, S; Roos, H; Rühm, W; Sandri, S; Schardt, D; Simmer, G; Spurný, F; Trompier, F; Villa-Grasa, C; Weitzenegger, E; Wiegel, B; Wielunski, M; Wissmann, F; Zechner, A; Zielczyński, M

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005–2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with “complex mixed radiation fields at workplaces” and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. Th...

  20. What is good radiation protection?

    International Nuclear Information System (INIS)

    Lorenz, B.

    2016-01-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  1. Pregnancy and Radiation Protection

    International Nuclear Information System (INIS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  2. Radiation protection and society

    International Nuclear Information System (INIS)

    Skryabin, A.M.

    1997-01-01

    The radiological protection of population, living on the contaminated territories, is actual 10 years after the Chernobyl accident. Eventually, the whole system of countermeasures application is aimed to protect society as a complex community of individuals . The variety of levels of society, i.e. family, settlement on the whole, can be considered as certain harmonic systems differing in their public consciousness levels and lifestyles, this explain the difference in their 'behaviour' in terms of radiation protection and attitude to the information obtained. Each level of society possesses a certain degree of liberty of choice, that finally influence the magnitude and the character of dose distribution within certain population groups. In general, the dose distribution in the settlement can be explained only on the bases of 'family' analysis. This concerns the rural settlement as a society too. All rural settlement can be divided into two or three classes: with low, high and intermediate social features. Small settlements (< 100 persons), where the advanced in age persons with low material income and high degree of natural economy are applied to the first class. This results in higher doses (2-3 fold), than in the settlements with higher social level. The analysis shows that in socially 'waning' settlements the countermeasures are less efficient and the term of their action is shorter. (this class is the largest, About 50% among all the rural settlements). Due to the deterioration of the economic situation in the Republic of Belarus after 1991-1992 resulted in the increase of doses mainly in the habitants first of all of this class of settlements. It seems problematic to increase countermeasures efficiency in this class of settlements without the refuse of the accustomed lifestyle and radical improvement of social-demographic and economic conditions. The present material shows the necessity of the differential approach based on 'society-analysis' in the

  3. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  4. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.

    1990-01-01

    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  5. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  6. Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: Instrument response

    International Nuclear Information System (INIS)

    Silari, M.; Agosteo, S.; Beck, P.; Bedogni, R.; Cale, E.; Caresana, M.; Domingo, C.; Donadille, L.; Dubourg, N.; Esposito, A.; Fehrenbacher, G.; Fernandez, F.; Ferrarini, M.; Fiechtner, A.; Fuchs, A.; Garcia, M.J.; Golnik, N.; Gutermuth, F.; Khurana, S.; Klages, Th.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. The organizational framework for this project was provided by the European radiation Dosimetry Group EURADOS. Work Package 6 of CONRAD dealt with 'complex mixed radiation fields at workplaces' and in this context it organised a benchmark exercise, which included both measurements and calculations, in a stray radiation field at a high-energy particle accelerator at GSI, Germany. The aim was to intercompare the response of several types of active detectors and passive dosemeters in a well-characterised workplace field. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers are discussed in Rollet et al. (2008) and in Wiegel et al. (2008). This paper focuses on the intercomparison of the response of the dosemeters in terms of ambient dose equivalent. The paper describes in detail the detectors employed in the experiment, followed by a discussion of the results. A comparison is also made with the H*(10) values predicted by the Monte Carlo simulations and those measured by the BSS systems.

  7. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    Sociedad Argentina de Radioproteccion

    2012-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  8. Plowshare radiation protection guidance

    International Nuclear Information System (INIS)

    Parker, H.M.

    1969-01-01

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  9. Plowshare radiation protection guidance

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M [Environmental and Life Sciences Division, Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA (United States)

    1969-07-01

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  10. Radiation protection primer

    International Nuclear Information System (INIS)

    Aigner, R.; Melzer, E.; Seissler, H.

    1986-01-01

    This 'radiation protection primer' does not pretend to give absolute, final answers to the many questions that have been arising after the Chernobyl accident. What it is intended to supply, as a schematic overview of problems resulting from nuclear accidents, and a likewise systematic outline of possible solutions and sensible reactions to such an event. The book takes up questions such as: What has happened to the soil. Will future harvests be 'clean' again. What does radioactivity to our drinking water and other waters. What are the effects of a radioactive fallout on food. What may we eat or drink. What happens to the human body after intake of radioactive air, or - even only slightly - contaminated food or water. What can we do to protect our health, and the health of our children. Is there anything else we can do in order to avoid such a disaster in future, except from shutting-off all reactors. The book itself presents some answers and advice, along with a list of terms and explanations, and addresses to apply to for further advice and information. (orig./HP) [de

  11. Radiation protective clothing

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Aso, Tsutomu.

    1991-01-01

    The present invention concerns radiation protective clothings suitable for medical protective clothings, aprons, etc. A primary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a contamination-resistant layer on the other side. A secondary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a comfortable skin-feeling layer on the other side. The less frictional layers of the primary and the secondary layer are laminated so as to be in contact with each other. Then, they are formed so that the comfortable skin-feeling layer of the secondary sheet is on the inner side, in other words, on the side of a wearer, and the contamination-resistant layer of the primary sheet is on the outer side. With such a constitution, although it involves the lead-incorporated organic polymer sheets of a large weight, it is comfortable to wear because of excellent flexibility and causes less feeling of fatigue even during wearing for a long period of time. (I.N.)

  12. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  13. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  14. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  15. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  16. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  17. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  18. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  19. Radiation protection and radiation fear

    International Nuclear Information System (INIS)

    Czeizel, E.

    1982-01-01

    Some data are cited from Japanese statistics analyzing the genetic injuries stemming from the nuclear explosion in Hiroshima. It is shown that neither the number of the unsuccesful pregnancies nor the mortality of the born offsprings increased in those cases there the mother or the father had been exposed to 1-100 rad radiation. There was no significant difference in the chromosomal aberrations amoung the children of irradiated and control parents. (L.E.)

  20. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Zafimanjato, J.L.R.; Randriantseheno, H.F.; Ramanandraibe, M.J.; Randriantsizafy, D.R.

    2008-01-01

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  1. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  2. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  3. Radiation area monitor device and method

    Science.gov (United States)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni; Morrell, Jonathan S.; Kosicek, Andrej

    2018-01-30

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.

  4. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  5. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-03-01

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  6. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  7. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  8. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  9. Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry

    International Nuclear Information System (INIS)

    Wiegel, B.; Agosteo, S.; Bedogni, R.; Caresana, M.; Esposito, A.; Fehrenbacher, G.; Ferrarini, M.; Hohmann, E.; Hranitzky, C.; Kasper, A.; Khurana, S.; Mares, V.; Reginatto, M.; Rollet, S.; Ruehm, W.; Schardt, D.; Silari, M.; Simmer, G.; Weitzenegger, E.

    2009-01-01

    The European Commission has funded within its 6th Framework Programme a three-year project (2005-2007) called CONRAD, COordinated Network for RAdiation Dosimetry. A major task of the CONRAD Work Package 'complex mixed radiation fields at workplaces' was to organise a benchmark exercise in a workplace field at a high-energy particle accelerator where neutrons are the dominant radiation component. The CONRAD benchmark exercise took place at the Gesellschaft fuer Schwerionenforschung mbH (GSI) in Darmstadt, Germany in July 2006. In this paper, the results of the spectrometry using four extended -range Bonner sphere spectrometers of four different institutes are reported. Outside Cave A the neutron spectra were measured with three spectrometers at six selected positions and ambient dose equivalent values were derived for use in the intercomparison with other area monitors and dosemeters. At a common position all three spectrometers were used to allow a direct comparison of their results which acts as an internal quality assurance. The comparison of the neutron spectra measured by the different groups shows very good agreement. A detailed analysis presents some differences between the shapes of the spectra and possible sources of these differences are discussed. However, the ability of Bonner sphere spectrometers to provide reliable integral quantities like fluence and ambient dose equivalent is well demonstrated in this exercise. The fluence and dose results derived by the three groups agree very well within the given uncertainties, not only with respect to the total energy region present in this environment but also for selected energy regions which contribute in certain strength to the total values. In addition to the positions outside Cave A one spectrometer was used to measure the neutron spectrum at one position in the entry maze of Cave A. In this case a comparison was possible to earlier measurements.

  10. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  11. Optimization and radiation protection culture

    International Nuclear Information System (INIS)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi

    2013-01-01

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  12. Optimization and radiation protection culture

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-04-15

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  13. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  14. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  15. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  16. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  17. Ethics in radiation protection

    International Nuclear Information System (INIS)

    Corbett, R.H.

    2002-01-01

    Ethics is a branch of philosophy. Its object is the study of both moral and immoral behaviour in order to make well founded judgements and to arrive at adequate recommendations. The Collins English Dictionary provides the following definitions of the word ethic: Ethic: a moral principle or set of moral values held by an individual or group; Ethics(singular): the philosophical study of the moral value of human conduct and of the rules and principles that ought to govern it; Ethics(pleural): a social, religious or civil code of behaviour considered correct, especially that of a particular group, profession or individual; Ethics(pleural): the moral fitness of a decision, course of action, etc. Ethics has a two-fold objective: Firstly it evaluates human practices by calling upon moral standards; it may give prescriptive advice on how to act morally in a specific kind of situation. This implies analysis and evaluation. Sometimes this is known as Normative ethics. The second is to provide therapeutic advice, suggesting solutions and policies. It must be based on well-informed opinions and requires a clear understanding of the vital issues. In the medical world, we are governed by the Hippocratic Oath. Essentially this requires medical practitioners (doctors) to do good, not harm. There is great interest and even furore regarding ethics in radiation protection

  18. Obligatory Radiation Protection Course

    CERN Multimedia

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  19. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  20. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  1. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. The Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Guillen, J.A.

    1992-04-01

    A brief account of the activities on radiation safety carried out by the General Directorate of Nuclear Energy of Guatemala in the period 1991-1992 is presented. The activities are reported under organization, activities on occupational radiation protection in medicine, industry and research, personnel monitoring, radiation metrology, regulations and international cooperation are described

  3. Ordinance of 12 January 1972 on Radiation Protection

    International Nuclear Information System (INIS)

    1972-01-01

    This Ordinance made under the 1969 Act on Radiation Protection aims to supplement the Act with many detailed provisions on protection against ionizing radiation. It is divided into 4 parts: the first covers definitions on radiation protection, which are generally the same as those of the 1969 Act; the second relates to radiation-emitting equipment, in particular X-ray devices and particle accelerators; the third concerns radioactive materials and the fourth nuclear installations. (NEA) [fr

  4. Main radiation protection actions for medical personnel as primary responders front of an event with radiological dispersive device; Principais acoes de protecao radiologica para equipe medica como primeiros respondedores frente a um evento com dispositivo de dispersao radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Hildanielle Ramos

    2015-07-01

    After the terrorist attack in New York, USA, in 2001, there was a worldwide concern about possible attacks using radioactive material in conventional detonators, called as Radiological Dispersal Device (RDD) or 'dirty bomb'. Several studies have been and are being made to form a global knowledge about this type of event. As until now, fortunately, there has not been an event with RDD, the Goiania Radiological Accident in Brazil, 1987, is used as a reference for decision-making. Several teams with technical experts should act in an event with RDD, but the medical staffs who respond quickly to the event must be properly protected from the harmful effects of radiation. Based on the radiological protection experts performance during the Goiania accident and the knowledge from lessons learned of many radiological accidents worldwide, this work presents an adaptation of the radiation protection actions for an event with RDD that helps a medical team as primary responders. The following aspects are presented: the problem of radioactive contamination from the explosion of the device in underground environment, the actions of the first responders and evaluation of health radiation effects. This work was based on specialized articles and papers about radiological accidents and RDD; as well as personal communication and academic information of the Institute of Radiation Protection and Dosimetry. The radiation protection actions, adapted to a terrorist attack event with RDD, have as a scenario a subway station in the capital. The main results are: the use of the basic radiation protection principle of time because there is no condition to take care of a patient keeping distance or using a shielding; the use of full appropriate protection cloths for contaminating materials ensuring the physical safety of professionals, and the medical team monitoring at the end of a medical procedure, checking for surface contamination. The main conclusion is that all medical actions

  5. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  6. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  7. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, L.

    1997-01-01

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  8. The development of radiation protection

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1981-01-01

    The harm that might be caused by radiation exposure was recognised within months of Rontgen's discovery of X-rays, and recommendations for protection of patients and workers with radiation were formulated first in 1928. In the light of increasing radiobiological, genetic and human epidemiological evidence, it became clear that there might be no threshold, below which harmful effects did not occur. Recommendation and practice in radiation protection reflected this opinion from the early 1950's, and emphasised the consequent need for minimising exposures, quantifying risks and revising the dose limits appropriate for internal radiation of body organs. (author)

  9. Electron microscopy - principles of radiation protection

    International Nuclear Information System (INIS)

    1990-01-01

    This 8 minute programme explains the nature of the possible radiation hazard in Electron Microscopy and outlines the ways in which modern equipment is designed and made so that in normal use the worker is not exposed to radiation. The interlock principle is explained and illustrated by an example from the field of X-ray crystallography. By filming machines while they were dismantled for servicing, details of several internal safety devices have been included. In this way workers who normally use the equipment as a 'black box' get some insight into the principles and practice of radiation protection in the field. (author)

  10. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  11. Radiation protection in civil defence

    International Nuclear Information System (INIS)

    Ahlborn, K.

    The brochure contains the information given to the participants of an advanced training course in civil defence, on the subject of radiation protection. The course was held by teachers of Bundesverband fuer den Selbstschutz (BVS). (orig.) [de

  12. Radiation protection. Terms and definitions

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    An alphabetical list in German is given of all terms and definitions important to radiation protection under consideration of all Austrian laws concerning this subject scope as also pertinent standards of ISO, DIN and OENORM.

  13. Regulations for ionizing radiation protection

    International Nuclear Information System (INIS)

    1999-01-01

    General regulations and principles of radiation protection and safety are presented. In addition, the regulations for licensing and occupational and medical exposure as well as for safe transport of radioactive materials and wastes are given

  14. Centralized radiation protection in the chemical industry

    International Nuclear Information System (INIS)

    Kistner, A.C.

    2006-01-01

    At Novartis the so-called ''ZSS'' department (''Zentraler Strahlenschutz'') respectively (''central radiation protection'') administrates all in-house data concerning radiation. When the time for a contemporary and thus more flexible software solution had come, the heterogenous company had many demands to be met - for example reorganizational ability, multi-client capability, device-specific scalability as well as customizability and individual data entries concerning all employees exposed to ionized radiation. A customized software-solution was then developed and build by Sirius Technologies AG from Basel. The application is composed modularly and therefore adapts well to miscellaneous data sets of various working areas, devices, radiation sources, factories, partners, approvals, isotopes etc. The conception even contains future enhancement and supplementation. (orig.)

  15. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    Malcolm, C.

    2010-01-01

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  16. Healing Arts Radiation Protection Act

    International Nuclear Information System (INIS)

    1984-07-01

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  17. Quality management in radiation protection

    International Nuclear Information System (INIS)

    Baehrle, H.G.

    1997-01-01

    Quality Management in Radiation Protection Quality management (QM) in the field of Radiation Protection was discussed in a previous issue (2/97) using the example of QMS at the Paul Scherrer Institut (PSI). The present article describes the major features involved in the establishment of a functional QMS. Establishment of the QMS lead to a deeper understanding of administrative and operational aspects of the working methods involved. (orig.) [de

  18. Radiation protection for veterinary practices

    International Nuclear Information System (INIS)

    Wheelton, R.; McCaffery, A.

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.)

  19. Radiation protection information

    International Nuclear Information System (INIS)

    From the measurements and discussion presented in this report, the following conclusions may be drawn: The population doses from naturally occuring radiation is on average lower in Denmark and much lower in Iceland than in the other Nordic countries. In Sweden, Finland and Norway the largest contributors to the population doses from naturally occuring radiation are radon daughters in indoor air. For Denmark and Iceland, radon daughters contribute about the same to the total effective dose equivalent as the external gamma radiation. Some groups of people in the Nordic countries are highly exposed to radon daughters. In some cases, the received doses are very high (higher than the dose limit for radiation workers). From the conclusions above, the radon daughter problem should be given priority, at least in Sweden, Finland and Norway, especially regarding the search for population groups receiving the highest doses

  20. Perspectives for environmental radiation protection in EU radiation protection legislation

    International Nuclear Information System (INIS)

    Janssens, A.

    2000-01-01

    The basis of EU radiation protection legislation is the EURATOM Trealy. It is discussed whether the Treaty offers a legal basis for the protection of the natural environment. The incorporation of provisions pertaining to the nuclear fuel cycle or to radioactive substances in general environmental legislation is explained, as well as the possible implications of international conventions subscribed by the European Union. The European Commission is in the process of developing an overall approach to risk analysis for the protection of health, consumer interests, and the environment. It is examined to what extent the consideration of the impact of radiation on the natural environment fits in the overall framework and whether the principles underlying classical radiation protection are applicable to biota. Specific attention is given to situations where high levels of environmental radioactivity would require intervention. (Author)

  1. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  2. Protective prostheses during radiation therapy

    International Nuclear Information System (INIS)

    Poole, T.S.; Flaxman, N.A.

    1986-01-01

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens

  3. Policy support on radiation protection

    International Nuclear Information System (INIS)

    Hardeman, F.

    1998-01-01

    The objectives of activities related to policy support on radiation protection is: (1) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionizing radiation in normal and accidental situations,;(2) to improve and support nuclear emergency-response decisions in industrial areas from an economical point of view. The main achievements for 1997 are described

  4. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    Moraes, A.

    1977-01-01

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  5. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    1993-01-01

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  6. Radiation Protection. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, S. T. [Department of Diagnostic Radiology, Uddevalla Hospital, Uddevalla (Sweden); Le Heron, J. C. [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, Vienna (Austria)

    2014-12-15

    Medical exposure is the largest human-made source of radiation exposure, accounting for more than 95% of radiation exposure. Furthermore, the use of radiation in medicine continues to increase worldwide — more machines are accessible to more people, the continual development of new technologies and new techniques adds to the range of procedures available in the practice of medicine, and the role of imaging is becoming increasingly important in day to day clinical practice. The introduction of hybrid imaging technologies, such as positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography (SPECT)/CT, means that the boundaries between traditional nuclear medicine procedures and X ray technologies are becoming blurred. Worldwide, the total number of nuclear medicine examinations is estimated to be about 35 million per year.

  7. Radiation Protection Research: Radiobiology

    International Nuclear Information System (INIS)

    Desaintes, C.

    2000-01-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  8. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  9. Radiation protection and occupational health

    International Nuclear Information System (INIS)

    Cassels, B.M.; Carter, M.W.

    1992-01-01

    This paper examines trends in occupational and public health standard setting including those which apply to radiation protection practices. It is the authors' contention that while regulators, unions and employees demand higher standards of radiation protection and industry attempts to comply with tight controls of radiation exposure in the workplace, these standards are out of step with standards applied to health away from the workplace, recreational activity and other areas of industrial hygiene. The ultimate goal of an improvement in the health of the nation's workforce may no longer be visible because it has been submerged beneath the predominating concern for one aspect of health in the workplace. 35 refs., 5 tabs

  10. Radiation protection and ecology

    International Nuclear Information System (INIS)

    Mendonca, A.H.

    1987-01-01

    The activities developed at Instituto de Radioprotecao e Dosimetria from the Comissao Nacional de Energia Nuclear in the field of developing and using radiation monitoring techniques and/or radioactive materials in health, industry, research and teaching, are presented. (E.G.) [pt

  11. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  12. New trends in radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-10-01

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  13. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  14. Days of Radiation Protection 2001. Conference Proceedings of the 24th Days of Radiation Protection

    International Nuclear Information System (INIS)

    Bohunice NPP

    2001-11-01

    Already the 24 th annual international conference 'Days of Protection from Radiation' was taking place in Jan Sverma Hotel in Demaenova dolina on 26-29 November 2001. More than 180 participants from the Slovak Republic and the Czech Republic participated in the meetings of experts on protection from radiation. Representative of IAEA Division for Protection from Radiation and the representatives of several European companies securing the project, advisory and supplier's activities in dosimetry of ionising radiation also participated in the conference. The participants discussed in 7 expert panels the issue of protection from radiation in the legislative field, in the nuclear facilities operation and in medicine. The expert part of the other panels concerned the issues of ionising radiation impact on the environment and working environment, natural radio-nuclides, including radon and biologic impacts of radiation. One separate panel was dedicated to device techniques and methods of dosimetry of ionising radiation. More than 45 expert lectures and more than 40 poster presentations were presented at the conference during 3 days. The exhibition and presentation of measuring technique products and devices and of materials used in the area of radiation protection and nuclear medicine was prepared during the course of the conference. Participation in the conference showed that a great interest in problems of protection from radiation persists. This was proved by rich lecturing activity and wide discussions on the floor and during the poster presentations. Participants were satisfied since the organisers of the event prepared a worthy event with the rich expert themes at a good organisational and social level in a beautiful environment of Low Tatras

  15. Problems of radiation protection

    International Nuclear Information System (INIS)

    Minkova, M.

    1991-01-01

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B 2 , B 6 , P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs

  16. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  17. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    Silva, Natanael O.; Cunha, Paulo C.N.; Junior, Jose N.S.; Silva, Jessyca B.

    2013-01-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  18. Indium 111. Radiation protection

    International Nuclear Information System (INIS)

    Grafstroem, G.; Joensson, B.A.; Strand, S.E.

    1989-01-01

    The radiopharmaceutucal 111 In-oxine is used in labelling of different blood cells and proteins. Due to its liquid state, there is always a risk for contamination during handling procedures. The aim of the project was to evaluate the contamination risks, when using this radiopharmaceutical. The investigation includes calculations of the absorved dose to the skin after a contamination of 111 In-oxine, including the radionuclide impurity 114 In m / 114 In. Investigations of 288 protection gloves shows that there is always a risk for contamination, when working with 111 In-oxine. On the protection gloves, we found activities normally ranging from a 100 Bq up to a few kBq. Noticeable is the contamination on the vials, already before their use. Besides 111 In we found most of the radionuclides used in nuclear medicine, with activities up to tens of kBq. The radionuclide impurity was cleary detectable but below the recommended value. The penetration of 111 In-oxine protection gloves of latex was negligible. Measurements of penetration in skin was evaluated with two independent methods; in vivo using a surface barrier detector, and by autoradiography. The measured penetration was less than a few micrometers. Calculation from the experimental contamination values show that the absorbed dose to the basal cell layer could be in order of several Gy. (authors)

  19. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  20. Problems of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1991-01-01

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B{sub 2}, B{sub 6}, P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs.

  1. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  2. Who is protecting us against the radiation protectors?

    International Nuclear Information System (INIS)

    Lorenz, Bernd

    2018-01-01

    The ICRU proposal of new radiation dose units is discusses with respect to the consequences for radiation protection in practice. For the range of 70 keV to 10 MeV gamma radiation practically no differences are obvious. The disadvantages include an increase of administrative procedures, retrofitting of measuring devices including personal dosimeters and software.

  3. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  4. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  5. Designing radiation protection signs

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; Richey, C.L.

    1995-01-01

    Entry into hazardous areas without the proper protective equipment is extremely dangerous and must be prevented whenever possible. Current postings of radiological hazards at the Rocky Flats Environmental Technology Site (RFETS) do not incorporate recent findings concerning effective warning presentation. Warning information should be highly visible, quickly, and easily understood. While continuing to comply with industry standards (e.g., Department of Energy (DOE) guidelines), these findings can be incorporated into existing radiological sign design, making them more effective in terms of usability and compliance. Suggestions are provided for designing more effective postings within stated guidelines

  6. Radiation protection for human population

    International Nuclear Information System (INIS)

    Kenigsberg, Ya.Eh.; Bogdevich, I.M.; Rolevich, I.V.; Sharovarov, G.A.; Skurat, V.V.

    1997-01-01

    Are given the results of researches carried out in Belarus in 1996 on the following directions: study of features of formation of the population irradiation doze; definition of collective irradiation dozes of the population of Belarus for 10 years after the Chernobyl accident and forecast of risk of radiation induced diseases; study of influence of the radioactive contamination on agricultural ecosystems; development of technologies of manufacture on the contaminated soils of plant and cattle-breeding production and food products with the permissible contents of radionuclides in according to the requirements of radiation protection; development and perfection of complex technologies, ways and means of decontamination, processing and burial of radioactive wastes; development and substantiation of actions for increase of radiation security of the population of Belarus; development of combined system of an estimation on problems of radiation protection of the population living on contaminated territories

  7. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    Science.gov (United States)

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  8. Nordic society for radiation protection

    International Nuclear Information System (INIS)

    Soegaard-Hansen, J.; Damkjaer, A.

    1999-11-01

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes. In all 38 oral presentations and 28 posters are included in the present Proceedings, which furthermore contains a resume of discussions from the special session on 'Controllable Dose'. (EHS)

  9. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Mason, E.A.; Cunningham, R.E.; Hard, J.E.; Mattson, R.J.; Smith, R.D.; Peterson, H.T. Jr.

    1977-01-01

    Regulatory requirements for radiation protection have evolved and matured over several decades. Due to the wide adoption of recommendations of the International Commission on Radiation Protection (ICRP), there exists international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important due to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960's and 1970's, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts for addressing these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in the field of radiation protection are also called for in developing waste management practices and radioactive effluent control technology, in site selection for fuel reprocessing plants and waste dispersal facilities, and for ensuring safe transport of high-level wastes in various forms. Since the regulation of very low dose rates and doses will be involved, it will be useful to reexamine dose-effect relationships and societal goals for health protection. Improved criteria and methodologies for ''as low as readily

  10. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  11. Preventive radiation protection in Hamburg

    International Nuclear Information System (INIS)

    Boikat, U.; Lauer, R.; Plath, S.; Sachde, Z.G.

    2001-01-01

    Monitoring of environmental radioactivity as well as complex investigations for precautionary radiation protection are carried out in Hamburg by two radiation monitoring labs. The spectrum of their tasks is specified by the media to be investigated. The tasks are originating from the Federal Precautionary Radiation Protection Act and from local needs. Mostly since a lot of years all interesting materials are analysed for their radioactivity content, as a safe and precautionary radiation protection demands. Until today samples show the influence of global nuclear weapon fallout of the period until 1964. Partly they show the radioactivity of Caesium originating from the Chernobyl accident. Since ten years the radioactivity contents in the material investigated are decreasing. Mostly the activity reached levels as at the end of 1985. The basic food stuff investigated in Hamburg can be considered as to be uncontaminated by radioactivity. With the introduction of the Federal Precautionary Radiation Protection Act, a series of new investigation programs and investigation methods were developed. This allows a better preparedness for extraordinary situations of increased radioactivity in the environment as 12 years ago. Thus a precise assessment of situations of increased radioactivity levels can be given together with coordinated and solid information to the public concerning provisions and actions. (orig.) [de

  12. 1993 Radiation Protection Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  13. 1993 Radiation Protection Workshop: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database

  14. Traceability of radiation protection instruments

    Science.gov (United States)

    Hino, Y.; Kurosawa, T.

    2007-08-01

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities.

  15. PET scan and radiation protection

    International Nuclear Information System (INIS)

    Montoya, F.; Lahmi, A.; Rousseau, A.

    2006-01-01

    The purpose was the optimization of the radiation protection during examinations with 18 F-FDG, The immediate validation by the D.G.S.N.R., the results of dosimetry (h.p.10 = 12 μ sievert (average value/ technician / day for 6 patients) demonstrate the efficiency of the implemented means. From the very beginning, the installation of a PET-scanner requires a multidisciplinary conception. This essential thought contributes to an optimal radiation protection of the entire personnel of the service. (N.C.)

  16. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  17. Flexibility in radiation protection legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.; Gill, J.R.

    1980-01-01

    The UK approach to radiation protection legislation is described in detail. The advantages are outlined of a flexible approach whereby the objectives of the legislation are clearly identified but the means of achieving these are left open or qualified by terms such as 'where reasonably practicable'. The roles and viewpoints of management and unions in such an approach are discussed especially with respect to legislation such as the Health and Safety at Work Act. Specific topics include requirements for notification of use, criteria for controlled areas and the tasks of the radiation protection adviser. (UK)

  18. Nuclear reactor safety protection device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Noguchi, Atomi; Matsumiya, Shoichi; Furusato, Ken-ichiro; Arita, Setsuo.

    1994-01-01

    The device of the present invention extremely reduces a probability of causing unnecessary scram of a nuclear reactor. That is, four control devices receive signals from each of four sensors and output four trip signals respectively in a quardruplicated control device. Each of the trip signals and each of trip signals via a delay circuit are inputted to a logical sum element. The output of the logical sum circuit is inputted to a decision of majority circuit. The decision of majority circuit controls a scram pilot valve which conducts scram of the reactor by way of a solenoid coils. With such procedures, even if surge noises of a short pulse width are mixed to the sensor signals and short trip signals are outputted, there is no worry that the scram pilot valve is actuated. Accordingly, factors of lowering nuclear plant operation efficiency due to erroneous reactor scram can be reduced. (I.S.)

  19. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  20. Advances in radiation protection monitoring

    International Nuclear Information System (INIS)

    1978-01-01

    The requirement to keep radiation exposure as low as reasonably achievable, linked with the growing number of workers whose exposure to radiation must be strictly controlled, requires intensified efforts directed towards the provision of adequate radiation monitoring programmes. This symposium was intended to review the advances that have been made in methods, techniques and instrumentation for radiation protection monitoring. Thus the symposium complemented the detailed consideration that had already been given to two closely related topics, that of environmental monitoring and of monitoring radioactive airborne and liquid discharges from nuclear facilities. The first topic had been dealt with in detail in an Agency symposium held in November 1973 in Warsaw and the second was treated in an Agency symposium held in September 1977 in Portoroz. The present symposium covered a broad range of topics under the following main headings: Monitoring of external exposure (three sessions),Contamination monitoring (three sessions), Radiation monitoring programmes (one session), Calibration, and use of computers (two sessions). An introductory paper described the purpose of radiation protection monitoring and its historical development. It drew attention to the gradual change from the threshold dose hypothesis to the hypothesis of direct proportionality between dose and effect and discussed practical implications of the recommendations recently issued by the International Commission on Radiological Protection (ICRP). It became apparent that guidance on the application of these recommendations is urgently needed. This guidance is presently being prepared by ICRP

  1. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  2. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    1999-01-01

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  3. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  4. Radium organisation and radiation protection

    International Nuclear Information System (INIS)

    Goyal, D.R.; Negi, P.S.; Dutta, T.K.; Gupta, B.D.

    1977-01-01

    In India, the brachytherapy sources used are mostly 226 Ra, 137 Cs and 60 CO. Radiotherapy of patients with these sources may also result in some degree of radiation exposure of radiologists, technologists, radiation source porters and even other workers in rooms around radiotherapy unit. Proper organization of radiotherapy unit leads to accuracy in treatment and protection to patients as well as medical and paramedical personnel. With this objective in view, a set of instructions to be followed while working with radiation sources, particularly radium; guidelines for the physical layout of the unit and staffing and a list of essential monitoring instruments are given. (M.G.B.)

  5. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives.

  6. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  7. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  8. Nuclear Reactor RA Safety Report, Vol. 9, Radiation protection

    International Nuclear Information System (INIS)

    1986-11-01

    Instrumentation for Radiation protection existing at the RA reactor is dating mostly from the period 1957-1959 when the reactor has been built. With some minor exception it was produced in USSR. Radiation protection system was constructed based on specific design project, somewhat modified original USSR project which has been indispensable because of some modification of the building design. During the past 27 years no renewal of the instrumentation was done, only maintenance was performed. Instrumentation consists of old electronic devices which caused difficulties and even prevented regular maintenance because of lack of spare parts. Instrumentation for radiation protection at the RA reactor is classified as follows: centralized dosimetry system; stationary dosimetry instrumentation, movable and personal dosimetry systems. Apart from the scheme of dosimetry instrumentation this volume includes description of radiation protection procedures; protection devices; radiation doses and dose limit data; program for environmental radioactivity control; medical control procedures [sr

  9. Neutron protection material and neutron protection devices made of such material

    International Nuclear Information System (INIS)

    Ries, W.

    1984-01-01

    This is concerned with a neutron protection material made of thermoplastic or thermosetting plastic from high molecule hydrocarbon compounds with particularly high hydrogen and carbon contents as braking or shielding material (moderator) for fast neutrons. The plastic can contain boron for absorbing low energy neutrons. The material is used to manufacture foil, plates, pipes, shielding walls, components, bodies for radiation protection equipment, devices and plant and for neutron protection clothes. (orig./HP) [de

  10. Radiation protection in technical radiography

    International Nuclear Information System (INIS)

    Thiele, H.

    1980-01-01

    In on-site inspections, e.g. double-plate radiography of circumferential pipe welds Ir-192 is most frequently used. Methods, controlled area, possible personnel doses, and radiation protection measures for the inspection and construction personnel are briefly discussed. (HP) [de

  11. Radiation protection in veterinary radiology

    International Nuclear Information System (INIS)

    Hone, C.P.

    1989-06-01

    This Code of Practice is designed to give guidance to veterinary surgeons in ensuring that workers and members of the public are adequately protected from the hazards of ionising radiation arising from the use of x-ray equipment in veterinary practice. (author)

  12. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  13. The German radiation protection standards

    International Nuclear Information System (INIS)

    Becker, Klaus; Neider, Rudolf

    1977-01-01

    The German Standards Institute (DIN Deutsches Institut fuer Normung, Berlin) is engaged in health physics standards development in the following committees. The Nuclear Standards Committee (NKe), which deals mainly with nuclear science and technology, the fuel cycle, and radiation protection techniques. The Radiology Standards Committee (FNR), whose responsibilities are traditionally the principles of radiation protection and dosimetry, applied medical dosimetry, and medical health physics. The German Electrotechnical Commission (DKE), which is concerned mostly with instrumentation standards. The Material Testing Committee (FNM), which is responsible for radiation protection in nonmedical radiography. The current body of over one hundred standards and draft standards was established to supplement the Federal German radiation protection legislation, because voluntary standards can deal in more detail with the specific practical problems. The number of standards is steadily expanding due to the vigorous efforts of about thirty working groups, consisting of essentially all leading German experts of this field. Work is supported by the industry and the Federal Government. A review of the present status and future plans, and of the international aspects with regard to European and world (ISO, etc.) standards will be presented

  14. Radiation protection for human population

    International Nuclear Information System (INIS)

    Bogdevich, I.M.; Kenigsberg, Ya.Eh.; Minenko, V.F.; Mrochek, A.G.; Rolevich, I.V.; Skurat, V.V.; Sharovarov, G.A.

    1998-01-01

    The purpose of researches is development of methods and means of reduction of radiation risk caused by the Chernobyl accident consequences by means of decrease of both individual and collective dozes by realization of special protective measures. The reconstruction of average collective accumulated irradiation dozes of the inhabitants of the contaminated populated localities of Belarus is carried out; the forecast of development of radiation induced oncologic diseases is given. The laws of formation of annual irradiation dozes are investigated; the prevailing role of internal irradiation dozes in formation of total dose loadings is detected. On this basis a number of practical projects directed on creation of effective land tenure and decrease of radioactive contamination of agricultural production, as well as decontamination technologies and radioactive waste management are executed. Are given the results of researches carried out in Belarus in 1997 on the following directions: dose monitoring of the population, estimation and forecast of both collective irradiation dozes and risks of radiation induced diseases; development and optimization of a complex of measures for effective land use and decrease of radioactive contamination of agricultural production in order to reduce irradiation dozes of the population; development of complex technologies and means of decontamination, treatment and burial of radioactive wastes; development and ground of the measures for increase of radiation protection of the population of Belarus during of the reducing period after the Chernobyl accident; development of complex system of an estimation and decision-making on problems of radiation protection of the population living on contaminated territories

  15. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  16. Radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    1991-01-01

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  17. Gate protective device for SOS array

    Science.gov (United States)

    Meyer, J. E., Jr.; Scott, J. H.

    1972-01-01

    Protective gate device consisting of alternating heavily doped n(+) and p(+) diffusions eliminates breakdown voltages in silicon oxide on sapphire arrays caused by electrostatic discharge from person or equipment. Diffusions are easily produced during normal double epitaxial processing. Devices with nine layers had 27-volt breakdown.

  18. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  19. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    1996-01-01

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  20. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear..., ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES: The effective date of this Standard Review Plan update is...

  1. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  2. Protection for a thermonuclear device

    International Nuclear Information System (INIS)

    Shimada, Ryuichi; Sasatani, Shin-ichi.

    1983-01-01

    Purpose: To suppress an abnormal voltage due to potential changes by a characteristic impedance composed of a discharge gap, a resistance and a capacitor, as well as absorb the energy of the abnormal voltage by properly selecting the current capacity of the resistor. Constitution: An abnormal voltage generated in a current transformer coils is detected by an abnormal voltage detector and an output signal therefrom causes a high voltage generating device to generate a high voltage, whereby electric discharge is taken place across a discharge gap to absorb the energy of the abnormal voltage in a resistor and a capacitor. For the abnormal voltage from the plasmas, the voltage across the transformer coils can be suppressed to some extent by selecting the impedance for the current transformer coils and the impedance for the parallel circuit of the resistor and the capacitor to an appropriate ratio. While on the other hand, after throwing a switcher by the actuation of a switcher control device, the energy for the abnormal voltage can sufficiently be absorbed through the internal resistance of the transformer coils and the resistance for the entire current. (Yoshino, Y.)

  3. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.J.

    1990-01-01

    Written by two eminent expects in the field with many years of teaching experience between them, this book presents a concise coverage of the physical and biological basics of radiation biology and protection. The book begins with a description of the methods of particle detection and dosimetric evaluation. The effects of ionizing radiation on man are treated from the initial physico-chemical phase of interaction to their conceivable pathological consequences. Regulations, limits and safeguards on nuclear power plants, radioisotope installations and medical centers which make use of ionizing radiation are given and the risks of exposure to natural, industrial and scientific radiation sources evaluated. The final chapter takes a look at some of the more important nuclear accidents, including Windscale, Three Mile Island, and Chernobyl, and describes basic procedures to be carried out in the eventuality of a nuclear emergency. Twelve chapters have been processed separately for inclusion in the appropriate data bases

  4. High energy overcurrent protective device

    Science.gov (United States)

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  5. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  6. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  7. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  8. Radiation protection at new reactors

    International Nuclear Information System (INIS)

    Brissaud, A.

    2000-01-01

    The theoretical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  9. Epistemological basis of radiation protection

    International Nuclear Information System (INIS)

    Nouailhetas, Yannick; Acar, Maria E.

    2008-01-01

    Full text: Regarding natural phenomena understood or not, the absolute truth must be somewhere. In fact, there is no evidence that neither nature nor the phenomena that it includes were 'created' to be understood. Except for the fact that Man appeared through the same process, with his curiosity, capacity to perceive and manipulate, his greed for power and fears. In general, the attitude towards questions for which the absolute truth has not been reached varies from ignorance/indifference to the search of knowledge through scientific methodology, and may even be based on beliefs. The fact that the interaction between ionizing radiations and living beings results in biological effect is true. That the biological effect of high doses of radiation, absorbed outside the context of medicine, is hazardous for the irradiated individuals also seems to be true. That any dose is dangerous, or not, is debatable: the available information and knowledge are not consistent enough to end the question; and so, the absolute truth remains hidden. Radiological Protection is founded on the principle that any increase of dose results in an increase in the risk of cancer, and that this risk must be kept as low as possible. It is therefore based on this 'belief' that the international organisms of radiological protection emit recommendations aiming the protection of people and the environment. What is interesting about this question is that because of restrictions imposed by regulating agencies, populations, members of the public and the environment are properly protected against harmful effects of ionizing radiations, which makes the truth no longer interesting. Radiological Protection is a requirement associated to all activities involving nuclear energy. It satisfies several interests and opposes others. The greater the opposed interests and the perception that the absolute truth can represent dialectic advantage to one of the parts, the greater the perception of the importance of its

  10. Radiation protection in hospital radiopharmacy

    International Nuclear Information System (INIS)

    Kini, K.S.; Gaur, P.K.

    1997-01-01

    Short-lived radiopharmaceuticals, such as 99m Tc labelled compounds, are prepared in the in-house pharmacy of the hospital. In addition, preparation of smaller doses for administration from the bulk material of the finished product received from the manufacturers, also involves considerable work for the radiopharmacist in the hospital. Hence they should be well informed about the radiation hazards and should be aware of the protective measures to be taken while handling radioactive materials for keeping the radiation levels in the laboratory and their personnel doses well within the specified limits. 3 refs., 5 tabs

  11. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  12. Protective device for battery to protect against heavy discharge

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-08

    The protective device according to the invention switches the equipment being supplied from the battery at a pre-determined discharge voltage by means of a switching device controlled by monitoring equipment. A semi-conductor element is used as the switching device. The current taken from the battery flows through the semi-conductor element to the equipment and to the monitoring device. When the discharge voltage is reached the semi-conductor element blocks. The semi-conductor switch can consist of transistors. The invention is explained by means of drawings and examples.

  13. Training courses on radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection, and this report has been prepared to provide the guidance that may be required in this development. The original version of the report on this subject was published in 1964 as Technical Reports Series No. 31 entitled ''Training in Radiological Protection: Curricula and Programming''. In 1975 a second version was published entitled ''Training in Radiological Protection for Nuclear Programmes'' as Technical Reports Series No. 166. This publication is intended mainly for use by persons who are responsible for organizing training programmes in radiation protection. It also reflects the policy of the Agency to have continuing standardized training in radiation protection. In addition to a small change in the title of the report, some concepts and ideas which are no longer applicable have been omitted and new information included. An important part of this report is the list of courses now offered in many Member States

  14. Ordinance on the Implementation of Atomic Safety and Radiation Protection

    International Nuclear Information System (INIS)

    1984-01-01

    In execution of the new Atomic Energy Act the Ordinance on the Implementation of Atomic Safety and Radiation Protection was put into force on 1 February 1985. It takes into account all forms of peaceful nuclear energy and ionizing radiation uses in nuclear installations, irradiation facilities and devices in research, industries, and health services, and in radioactive isotope production and laboratories. It covers all aspects of safety and protection and defines atomic safety as nuclear safety and nuclear safeguards and physical protection of nuclear materials and facilities, whereas radiation protection includes the total of requirements, measures, means and methods necessary to protect man and the environment from the detrimental effects of ionizing radiation. It has been based on ICRP Recommendation No. 26 and the IAEA's Basic Safety Standards and supersedes the Radiation Protection Ordinance of 1969

  15. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  16. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  17. International standards for radiation protection

    International Nuclear Information System (INIS)

    Ambrosi, P.

    2011-01-01

    International standards for radiation protection are issued by many bodies. These bodies differ to a large extent in their organisation, in the way the members are designated and in the way the international standards are authorised by the issuing body. Large differences also exist in the relevance of the international standards. One extreme is that the international standards are mandatory in the sense that no conflicting national standard may exist, the other extreme is that national and international standards conflict and there is no need to resolve that conflict. Between these extremes there are some standards or documents of relevance, which are not binding by any formal law or contract but are de facto binding due to the scientific reputation of the issuing body. This paper gives, for radiation protection, an overview of the main standards issuing bodies, the international standards or documents of relevance issued by them and the relevance of these documents. (authors)

  18. Ionizing radiation protection regulation in Canada: the role of the Federal Provincial Territorial Radiation Protection Committee

    International Nuclear Information System (INIS)

    Clement, Christopher H.

    2008-01-01

    Canada has one of the broadest and most mature nuclear industries in the world, and is a world leader in uranium mining, and in the production of medical radioisotopes. The Canadian nuclear industry also includes: uranium milling, refining, and fuel fabrication facilities; nuclear generating stations; research reactors and related facilities; waste management facilities; and the use of radioactive materials in medicine and industry. Regulation of this broad and dynamic industry is a complex and challenging task. Canada has a cooperative system for the regulation of ionizing radiation protection covering federal, provincial, territorial, and military jurisdictions. A Federal/Provincial/Territorial Radiation Protection Committee (FPTRPC) exists to aid in cooperation between the various agencies. Their mandate encompasses regulation and guidance on all aspects of radiation protection: federal and provincial; NORM and anthropogenic; ionizing and non-ionizing. The Canadian Nuclear Safety Commission (CNSC) is the federal nuclear regulator whose mandate includes radiation protection regulation of most occupational and public exposures. The CNSC does not regulate medical (patient) exposures, some aspects of NORM, or military applications. Provincial authorities are the primary regulators with respect to doses to patients and occupational doses arising from X-rays. Health Canada plays a role in X-ray device certification, development of national guidance (e.g. on radon) and direct regulation of certain federal facilities. NORM is regulated provincially, with varying regulatory mechanisms across the provinces and territories. Radiation protection regulation for National Defence and the Canadian Armed Forces is performed by the Director General Nuclear Safety. This paper gives an overview of the structure of the regulation of ionizing radiation protection in Canada, and shares lessons learned, particularly with respect to the usefulness of the FPTRPC in helping coordinate and

  19. Workstations studies and radiation protection

    International Nuclear Information System (INIS)

    Lahaye, T.; Donadille, L.; Rehel, J.L.; Paquet, F.; Beneli, C.; Cordoliani, Y.S.; Vrigneaud, J.M.; Gauron, C.; Petrequin, A.; Frison, D.; Jeannin, B.; Charles, D.; Carballeda, G.; Crouail, P.; Valot, C.

    2006-01-01

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  20. Excellence through radiation protection practices

    International Nuclear Information System (INIS)

    Lee, D.A.; Armitage, G.; Popple, R.T.; Carrigan, J.T.

    1987-01-01

    The nuclear generation program at Ontario Hydro was initiated in the early 1960s. Over the last two decades the program has expanded to a planned capacity of ∼ 14,000 MW(electric) by 1992. Each of the nuclear stations consists of four identical reactor units and they range in size from 520 to 880 MW(electric). The overall objectives of Ontario Hydro's radiation protection program are stated as follows: (1) to prevent detrimental nonstochastic health effects to employees and the public; (2) to limit detrimental stochastic health effects occurring in employees or the public to levels as low as reasonably achievable (ALARA), social and economic factors being taken into account; and (3) to provide a level of health and safety that is as good as, or better than, comparable safe industries. Although many elements of the radiation protection program are similar to those adopted by other electrical utilities around the world, there are some unique features that have played an important part in the improvements achieved. These include: management commitment, design responsibility, radiation protection training, operations control, and work planning. The issues that need to be addressed in striving for overall excellence in radiological safety over the next decade are summarized

  1. Units for radiation protection work

    International Nuclear Information System (INIS)

    Lindborg, L.

    1997-06-01

    ICRU has defined special measurable (operational) quantities for radiation protection. A consequence of using the operational quantities is that hand-held and personal dosemeters can give different measuring results in the same radiation situation. The differences vary and are caused by the geometry of the radiation field. The units have well documented relations to e.g. the ICRP effective dose and equivalent dose to an organ or tissue. Therefore, it is possible to estimate these doses from a measured value of e.g. the ambient dose equivalent. ICRU and ICRP have recently reviewed these relations in two important commonly issued reports (Report 57 and Publication 74). This report tries to show the value of understanding these units and their relations and is primarily meant to be used for educational purposes. 11 refs

  2. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Hajek, M.

    2009-01-01

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  3. Radiation Protection Legislation in the Nordic Countries

    International Nuclear Information System (INIS)

    Person, Lars.

    1990-01-01

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  4. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  5. Radiation protection in screening children's hips

    International Nuclear Information System (INIS)

    Heribanova, A.; Skokanova, K.; Sevc, J.; Paskova, Z.; Mundilova, M.

    1987-01-01

    Repeat hygienic investigation of the conditions of radiation protection in preventive screening of children's hips (at a time interval of 10 years) in the Central Bohemian Region revealed certain improvement in covering children's gonads (in the frequency of using protective devices), in the protection of the accompanying person and the equipment of the workplaces with modern X-ray apparatus and automatic developers. Large differences between individual workplaces were seen in the selection of technical parameters (voltage, power, focus, size of irradiated field); that is why up to nine-fold differences existed in irradiation of children. (The mean gonadal dose was 22.6 μGy and the mean weighted whole-body dose was 71.2 μGy.) A conservative estimate of the effective dose equivalent was used in comparing the social cost and benefit in preventive screening of children's hips which had shown that at least one preventive X-ray picture in all children in the 3rd to 4th month after birth was quite reasonable. The analysis of the problems outlined revealed that particular attention must be paid to the protection of the children's gonads by using suitable protective devices and to minimize irradiation of children by a suitable adjustment of technical parameters of the examination and also by exclusive use of quality film material. (author). 4 tabs., 18 refs

  6. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  7. Radiation protection in equine radiography

    International Nuclear Information System (INIS)

    Wood, A.K.W.; Reynolds, K.M.; Leith, I.S.; Burns, P.A.

    1974-01-01

    During radiography of the carpus of horses calcium fluoride thermoluminescent dosemeters were used to measure the radiation exposure to the hand of an assistant positioning the x-ray film. Three portable x-ray machines and a mobile machine were used during the recordings. The effects of x-ray machine, radiographic technique, and lead rubber gloves upon radiation exposure to the hand were investigated. The size of the primary beam of the x-ray machine was found to be the major factor in determining the dose of radiation received by the hand. The highest radiation exposures were recorded when using two portable machines which were fitted with beam limiting devices that permitted only one primary beam size. The lowest exposures were measured when radiographs were taken with the mobile machine that was fitted with a light beam diaphragm. The control of primary beam size with a light beam diaphragm was found to be the most effective method of reducing radiation dosage to the hand. It is strongly recommended that for equine radiography a light beam diaphragm be fitted to and used on all x-ray machines, and a cassette holder be used to keep the hands out of the primary beam. (author)

  8. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  9. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  10. Basic standards for radiation protection

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1982-01-01

    The basic standards for radiation protection have been based, for many years, on the recommendations of the International Commission of Radiological Protection. The three basic standards recommended by the Commission may be summarized as ''justification, optimization of protection and adherence to dose limitations. The applications of these basic principles to different aspects of protection are briefly summarized and the particular ways in which they have been applied to waste described in more detail. The application of dose limits, both in the control of occupational exposure and in regulating routine discharges of radioactive effluents is straight forward in principle although the measurement and calculational requirements may be substantial. Secondary standards such as derived limits may be extremely useful and the principles underlying their derivation will be described. Optimization of protection is inherently a more difficult concept to apply in protection and the various techniques used will be outlined by with particular emphasis on the use of cost benefit analysis are recommended by the ICRP. A review will be given of the problems involved in extending these basic concepts of the ICRP to probabilistic analyses such as those required for assessing the consequences of accidents or disruptive events in long term repositories. The particular difficulties posed by the very long timescales involved in the assessment of waste management practices will be discussed in some detail. (orig./RW)

  11. Efficiency of radiation protection means in pediatric roentgenology

    International Nuclear Information System (INIS)

    Burdina, L.M.; Stavitskij, R.V.; Lapina, T.V.; Yudaev, V.I.; Pavlova, M.K.

    1989-01-01

    Set of radiation protection means made by MAVIG Company and used in pediatric roentgenology is considered. The set includes protective shields, aprous for medical staff, gloves aprous to protect patient gonades, caps for testicules, protectors, for gonades, irregular devices to shield children during examination of hip joints. Schielding coefficients, which indicate high efficiency of individual protection means produced by MAVIG Company and which may be recommended for widespread application in roentgenology, are given

  12. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  13. Radiation protection legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    A close collaboration exists in the Nordic countries in the field of radiation protection. The radiation protection authorities attach major importance to a uniform interpretation of the international recommendations. The legal situation of the Nordic countries in the radiation protection field will be reviewed with the main emphasis on the new Swedish and Finnish laws. (author)

  14. State Radiation Protection Supervision and Control

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  15. Radiation protection. The past and the future

    International Nuclear Information System (INIS)

    Michel, Rolf

    2016-01-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  16. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  17. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  18. Judgement in achieving protection against radiation

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    This article includes the following topics: Ionizing radiation as a toxic agent; value judgement in establishing protection standards; origin of radiation protection standards; numerical radiation protection standards; exposure of populations; the proportional dose-effect relationship; assumptions involved in the proportional dose-effect relationship and a continued need for value judgement

  19. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    Skinner, R.W.; Kalos, F.; Bond, J.A.

    1985-05-01

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  20. SSDL for radiation protection of Thailand

    International Nuclear Information System (INIS)

    Wanitsuksombut, W.

    1995-01-01

    In Thailand, the Atomic Energy for Peace Act was enacted by the King in 1961, and Office of Atomic Energy for Peace was established to serve as the secretariat of the Atomic Energy for Peace Commission of Thailand. The import and export of radioactive materials, and the owners and users of radioactive materials must be licensed by the OAEP. The program for establishing the SSDL to calibrate radiation protection instruments started in 1981, and was completed in 1990. The calibration of survey meters and direct reading personnel dosimeters has been provided since 1986. The average number of the devices calibrated by the SSDL per month is shown. The categories of radiation utilization in Thailand are nucleonic gauging and control, nondestructive testing, oil and coal logging, radiation technology and research. The capability of the SSDL and the calibrated radiation measuring instruments for respective categories of utilization are reported. The number of the instruments used for radiography was 217, followed by 171 for nucleonic gauging and control. With the increasing use of radioactive materials, the work of radiation safety must be improved. Together with the license authority, the SSDL must expand its activity to assure the safe handling of radiation sources. (K.I.)

  1. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  3. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  4. The radiation protection and the radioactive wastes management

    International Nuclear Information System (INIS)

    Servais, F.; Woiche, Ch.; Hunin, Ch.

    2003-01-01

    This chapter concerns the radiation protection in relation with the radioactive waste management. Three articles make the matter of this file, the management of radioactive medical waste into hospitals, a new concept of waste storage on site, the protection devices on the long term with some lessons for the radioactive waste management. (N.C.)

  5. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  6. CERN radiation protection (RP) calibration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Fabio

    2016-04-14

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelerators and at the CERN borders. A new state-of-the-art radiation protection calibration facility was designed, constructed and commissioned following the related ISO recommendations to replace the previous ageing (more than 30 years old) laboratory. In fact, the new laboratory aims also at the official accreditation according to the ISO standards in order to be able to release certified calibrations. Four radiation fields are provided: neutrons, photons and beta sources and an X-ray generator. Its construction did not only involve a pure civil engineering work; many radiation protection studies were performed to provide a facility that could answer the CERN calibration needs and fulfill all related safety requirements. Monte Carlo simulations have been confirmed to be a valuable tool for the optimization of the building design, the radiation protection aspects, e.g. shielding, and, as consequence, the overall cost. After the source and irradiator installation

  7. Patient Radiation Protection in Radiotherapy

    International Nuclear Information System (INIS)

    Hegazy, M.

    2010-01-01

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  8. Distributed radiation protection console system

    International Nuclear Information System (INIS)

    Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket

    2004-01-01

    Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the

  9. The development of radiation protection in Hungary

    International Nuclear Information System (INIS)

    Bisztray-Balku, S.; Bozoky, L.; Koblinger, L.

    1982-01-01

    This book contains the short history, development and present status of radiation protection and health physics in Hungary. The first chapter discusses the radiation protection standards and practices used in scientific, technical and medical radiology in this country, with their development history. The next chapter is devoted to the radiation protection techniques applied for medical uses of radioisotopes and accelerators including the organizational and management problems. The last chapter presents a review on radiation protection and health physics aspects of the Hungarian industry and agriculture, on radiation protection research and management, on instruments and dosimeters. A national bibliography on the subject up to 1979 is included. (Sz.J.)

  10. Radiation protection technologist training and certification program

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this program is to establish training requirements and methods for certifying the technical competence of Radiation Protection Technologists. This manual delineates general requirements as well as academic training, on-the-job training, area of facility training, and examination or evaluation requirements for Radiation Protection Trainees (Trainees), Junior Radiation Protection Technologists (JRPT), Radiation Protection Technologists (RPT), and Senior Radiation Protection Technologists (SRPT). This document also includes recertification requirements for SRPTs. The appendices include training course outlines, on-the-job training outlines, and training certification record forms

  11. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  12. Computing in radiation protection and health physics - 10 years further

    International Nuclear Information System (INIS)

    Behrens, R.; Greif, N.; Struwe, H.; Wissmann, F.

    2008-01-01

    Computing influences radiation protection and health physics more extensively as ever before. The good old data processing and main frame computing has changed towards information technology in a wider sense. Technologies and operating systems out of workplace computing have amended microprocessor technology in measuring devices. The boundaries between them are constantly in a state of flux. The use of the world wide web has become indispensable. No radiation protection expert could still manage without a workplace computer. Measuring networks, radiation protection information systems, data bases, computer simulation and other challenging applications form the image of today. (orig.)

  13. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    Jozani, F.; Parnianpour, H.

    1976-08-01

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  14. SI units in radiation protection

    International Nuclear Information System (INIS)

    Herrmann, D.

    1976-10-01

    In the field of radiation protection all hitherto used units for activity, activity concentrations, exposure, absorbed dose, and dose rates have to be replaced by SI units during the next years. For this purpose graphs and conversion tables are given as well as recommendations on unit combinations preferentially to be used. As to the dose equivalent, it is suggested to introduce a new special unit being 100 times greater than the rem, instead of maintaining the rem or using the gray for both absorbed dose and dose equivalent. Measures and time schedule relating to the gradual transition to SI units in measuring techniques, training, and publishing et cetera are explained. (author)

  15. Device Data Protection in Mobile Healthcare Applications

    Science.gov (United States)

    Weerasinghe, Dasun; Rajarajan, Muttukrishnan; Rakocevic, Veselin

    The rapid growth in mobile technology makes the delivery of healthcare data and services on mobile phones a reality. However, the healthcare data is very sensitive and has to be protected against unauthorized access. While most of the development work on security of mobile healthcare today focuses on the data encryption and secure authentication in remote servers, protection of data on the mobile device itself has gained very little attention. This paper analyses the requirements and the architecture for a secure mobile capsule, specially designed to protect the data that is already on the device. The capsule is a downloadable software agent with additional functionalities to enable secure external communication with healthcare service providers, network operators and other relevant communication parties.

  16. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  17. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  18. Method and device for controlling radiation

    International Nuclear Information System (INIS)

    Wilhelm, G.M.

    1979-01-01

    A device which will control radiation emanating from colour television sets is described. It consists of two transparent plates the same size as a television screen, with a thin layer of transparent mineral oil sealed between them. The device may be installed by the manufacturer or bought separately and installed by the user. (LL)

  19. Assessment of radiation protection practices among radiographers in Lagos, Nigeria.

    Science.gov (United States)

    Eze, Cletus Uche; Abonyi, Livinus Chibuzo; Njoku, Jerome; Irurhe, Nicholas Kayode; Olowu, Oluwabola

    2013-11-01

    Use of ionising radiation in diagnostic radiography could lead to hazards such as somatic and genetic damages. Compliance to safe work and radiation protection practices could mitigate such risks. The aim of the study was to assess the knowledge and radiation protection practices among radiographers in Lagos, Nigeria. The study was a prospective cross sectional survey. Convenience sampling technique was used to select four x-ray diagnostic centres in four tertiary hospitals in Lagos metropolis. Data were analysed with Epi- info software, version 3.5.1. Average score on assessment of knowledge was 73%. Most modern radiation protection instruments were lacking in all the centres studied. Application of shielding devices such as gonad shield for protection was neglected mostly in government hospitals. Most x-ray machines were quite old and evidence of quality assurance tests performed on such machines were lacking. Radiographers within Lagos metropolis showed an excellent knowledge of radiation protection within the study period. Adherence to radiation protection practices among radiographers in Lagos metropolis during the period studied was, however, poor. Radiographers in Lagos, Nigeria should embrace current trends in radiation protection and make more concerted efforts to apply their knowledge in protecting themselves and patients from harmful effects of ionising radiation.

  20. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  1. Radiation-Tolerance Assessment of a Redundant Wireless Device

    Science.gov (United States)

    Huang, Q.; Jiang, J.

    2018-01-01

    This paper presents a method to evaluate radiation-tolerance without physical tests for a commercial off-the-shelf (COTS)-based monitoring device for high level radiation fields, such as those found in post-accident conditions in a nuclear power plant (NPP). This paper specifically describes the analysis of radiation environment in a severe accident, radiation damages in electronics, and the redundant solution used to prolong the life of the system, as well as the evaluation method for radiation protection and the analysis method of system reliability. As a case study, a wireless monitoring device with redundant and diversified channels is evaluated by using the developed method. The study results and system assessment data show that, under the given radiation condition, performance of the redundant device is more reliable and more robust than those non-redundant devices. The developed redundant wireless monitoring device is therefore able to apply in those conditions (up to 10 M Rad (Si)) during a severe accident in a NPP.

  2. Using a Commercial Ethernet PHY Device in a Radiation Environment

    Science.gov (United States)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  3. Radiation protection planning and management during revision

    International Nuclear Information System (INIS)

    Gewehr, K.

    1984-01-01

    During the operation of nuclear power plants it is normally possible for the in-house personnel to take care of arising radiation protection problems. However, in the comparatively short revision phases, the duties of radiation protection become much more varied. Additional trained radiation protection crews are needed at short notice. This is also the time in which the largest contributions are made to the annual cumulated doses of the personnel. Recent guidelines and rules trying to reduce the radiation exposure of personnel concentrate on this very point. The article outlines the radiation protection activities performed by the service personnel in the course of a steam generator check. (orig.) [de

  4. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  5. Agencies revise standards for radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article deals with a guideline, compiled by the IAEA, for radiation protection. The guidelines aim at the control of individual risk through specified limits, optimisation of protection and the justification of all practices involving exposure to radiation. The guideline is a revision of the 1967 publication of the IAEA, Basic safety standards for radiation protection. According to the document the main resposibility for radiation protection lies with the employer. The workers should be responsible for observing protection procedures and regulations for their own as well as others' safety

  6. XXVII. Days of Radiation Protection. Conference Proceedings

    International Nuclear Information System (INIS)

    2005-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  7. Radiation detection device and a radiation detection method

    International Nuclear Information System (INIS)

    Blum, A.

    1975-01-01

    A radiation detection device is described including at least one scintillator in the path of radiation emissions from a distributed radiation source; a plurality of photodetectors for viewing each scintillator; a signal processing means, a storage means, and a data processing means that are interconnected with one another and connected to said photodetectors; and display means connected to the data processing means to locate a plurality of radiation sources in said distributed radiation source and to provide an image of the distributed radiation sources. The storage means includes radiation emission response data and location data from a plurality of known locations for use by the data processing means to derive a more accurate image by comparison of radiation responses from known locations with radiation responses from unknown locations. (auth)

  8. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  9. Device for detecting ionizing radiation

    International Nuclear Information System (INIS)

    Anatychuk, L.I.; Kharitonov, J.P.; Kusniruk, V.F.; Meir, V.A.; Melnik, A.P.; Ponomarev, V.S.; Skakodub, V.A.; Sokolov, A.D.; Subbotin, V.G.; Zhukovsky, A.N.

    1980-01-01

    The present invention relates to ionizing radiation sensors, and , more particularly, to semiconductor spectrometers with thermoelectric cooling, and can most advantageously be used in mineral raw material exploration and evaluation under field conditions. The spectrometer comprises a vacuum chamber with an entrance window for passing the radiation therethrough. The vacuum chamber accommodates a thermoelectric cooler formed by a set of peltier elements. A heat conducting plate is mounted on the cold side of the thermoelectric cooler, and its hot side is provided with a radiator. Mounted on the heat conducting plate are sets of peltier elements, integral with the thermoelectric cooler and independent of one another. The peltier elements of these sets are stacked so as to develop the minimum temperature conditions on one set carrying a semiconductor detector and to provide the maximum refrigeration capacity conditions on the other set provided with the field-effect transistor mounted thereon

  10. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  11. Abacus for the Radiation Protection Officer

    International Nuclear Information System (INIS)

    Clech, Albert; Prevot, Rene; Matevet, Claude

    1968-12-01

    Controllers of atmospheric contamination and irradiation provide the operator with results (shocks / second, counts / minute, etc.) that must then be converted depending on the device considered. Until now, this transformation was done with the help of graphics and tables, each corresponding to a specific device, and often to a specific particular calibration. A single abacus system capable of doing all the desired transformations has been developed, to standardize the methods of operation of the apparatus, and to simplify the work of the radiation protection officers. The principle of a circular table, made of a superposition of disks which allows by the play of these disks to obtain all the desired transformations on a rather small format (170 mm x 190 mm), was adopted. This very simple abacus allows to standardize the interpretations of results of room control devices. Its design makes it a real universal abacus, and it is possible to extend its application to other types of devices such as fixed filter detectors

  12. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients

  13. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  14. New radiation protection legislation in Sweden

    International Nuclear Information System (INIS)

    Jender, M.; Persson, Lars

    1984-01-01

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  15. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  16. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    2011-11-01

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  17. Thematic course: patient radiation protection

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.

    2009-01-01

    The ratio benefit/risk of radiological examinations, especially with the multislice scanner cannot be ensured only if the principles of justification and optimization are rigorously respected. The justification relies on the reference to the guide of the appropriate use of imaging examinations and compliance with the Public Health Code which requires a written information exchange between the applicant and who will realizes the examination. The optimization relies on the dosimetry evaluation of our practice and the comparison with the diagnosis reference levels, to realize the examinations at the radiation lowest cost. the stakes are the insurance does not harm our patients, the rehabilitation of the radiologist in his role of consultant rather than performer and the protection against eventual legal consequences. (N.C.)

  18. Computer applications in radiation protection

    International Nuclear Information System (INIS)

    Cole, P.R.; Moores, B.M.

    1995-01-01

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  19. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  20. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  1. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  2. Radiation protection in a university TRIGA reactor

    International Nuclear Information System (INIS)

    Tschurlovits, M. . Author

    2004-01-01

    Radiation protection in a university institute operating a research reactor and other installations has different constraints as a larger facility. This is because the legal requirements apply in full, but the potential of exposure is low, and accesses has to be made available for students, but also for temporary workers. Some of the problems in practical radiation protection are addressed and solutions are discussed. In addition, experience with national radiation protection legislation recently to be issued is addressed and discussed. (author)

  3. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  4. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  5. Biological research for radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  6. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  7. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  8. Health and radiation protection management

    International Nuclear Information System (INIS)

    Huhn, A.; Vargas, M.; Lorenzetti, J.; Lança, L.

    2017-01-01

    Quality management and continuous improvement systems are becoming part of daily health services, including radiodiagnostic services, which are designed to meet the needs of users, operating in an environment where the differential is due to the competence and quality of the services provided. The objective of this study is to show the scope of the management of health services, especially radiodiagnosis and radiological protection. Method: Exploratory and descriptive study, based on a review of the literature on the subject. Results: Radiodiagnosis has demonstrated the need for efficient management, especially because ionizing radiation is present in this environment and it is imperative that the professionals working in this area are aware of the need to perform adequate radiological protection for themselves and for users. Conclusion: Universal access to information has changed the attitude of the user and the user has become more demanding in his choices, wanting to understand, express, interact and choose the best quality service in view of the various options available in the market

  9. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  10. New infrastructures for training in radiation protection

    International Nuclear Information System (INIS)

    Marco, M.; Rodriguez, M.; Van der Steen, J.

    2007-01-01

    In this work, an analysis of the new infrastructure used in the radiation protection training and professional education, which is developed nowadays, is carried out. CIEMAT has been making many efforts in the education and training of professionals at all levels, for years. At present CIEMAT is developing educational activities in radiation protection general courses and professionals updating courses. The newest strategies for the radiation protection learning are developing in collaboration with professional societies. These try to encourage the technology transference, the collaboration between the actors involved with the radiation protection and the new information technology implementation. (Author) 11 refs

  11. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  12. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  13. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    Caballero, K.C.S.; Borges, J.C.

    1994-01-01

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  14. The Radiation Protection Service in Asuncion

    International Nuclear Information System (INIS)

    Zaldivar de Basualdo, I.

    1979-01-01

    This report details the activities of radiation protection services concerning radioisotopes, personal monitoring and film dosimetry service. Historical, organizational and regulatory aspects are also covered. (author)

  15. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    1990-03-01

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  16. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  17. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1998-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  18. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1997-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  19. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1999-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  20. Radiation Protection Group annual report (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1997-03-25

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  1. Radiation Protection Group annual report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1999-04-15

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  2. Radiation Protection Group annual report (1997)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1998-04-10

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  3. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  4. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1996-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  5. Radiation protection programme for LEU miniature source reactor

    International Nuclear Information System (INIS)

    Beinpuo, Ernest Sanyare Warmann

    2015-02-01

    A radiation protection program has been developed to promote radiation dose reduction. It emphasize radiological protection fundamentals geared at reducing radiation from the application of the research reactor at the reactor center of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission. The objectives of the radiation safety program are both to ensure that nuclear scientists and technicians are exposed to a minimum of ionizing radiation and to protect employees and facility users and surrounding community from any potentially harmful effects of nuclear research reactor at GAEC. The primary purpose of the radiation control program is to assure radiological safety of all personnel and the public to guarantee that ionizing radiation arising out of the operations of the Research Reactor at the Reactor Center does not adversely affect personnel, the general public or the environment. This program sets forth polices, regulations, and procedures approved by the Centers Radiation Control Committee. The regulations and procedures outlined in this program are intended to protect all individuals with a minimum of interference in their activities and are consistent with regulations of the Radiation Protection Board (RPB) applicable to ionizing radioactive producing devices. (au)

  6. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  7. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  8. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  9. First Asian regional congress on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-12-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection.

  10. First Asian regional congress on radiation protection

    International Nuclear Information System (INIS)

    Kumar, S.K.

    1975-01-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  11. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Reitan, J.B.

    1989-01-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  12. An image scanning device using radiating energy

    International Nuclear Information System (INIS)

    Jacob, Daniel.

    1976-01-01

    Said invention relates to an image scanning device using radiating energy. More particularly, it relates to a device for generating a scanning beam of rectangular cross section from a γ or X-ray source. Said invention can be applied to radiographic units of the 'microdose' type used by airline staffs and others for the fast efficient inspection of luggage and parcels in view of detecting hidden things [fr

  13. Radiation beans characterization and implantation for study of lead equivalent individual protection device used in radiodiagnostic practices; Caracterizacao e implantacao de feixes de radiacao para estudo de dispositivos de protecao individual com equivalencia em chumbo utilizados em praticas de radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leslie Silva

    2004-07-01

    The protective shielding (IPC) must be used by occupationally exposed professionals, patients and volunteers, in order to optimize the doses who receive due to radiological practices. International and national norms establish the methodology to be adopted for determination of the IPC attenuation. In this work, the IPC had been submitted to X-rays beams with known characteristics, standardized for determination of their attenuation equivalent thickness by comparison to an experimental lead attenuation slope. This comparison technique allowed insurance estimative of the IPC attenuation equivalent thickness in mm of lead. Thus, it was possible to verify the conformity of the attenuation equivalent thickness determined experimentally and the value of the thickness indicated by the manufacturer. To carry out this work, it was necessary the implementation of experimental setups stated in the specifics norms, the study of the X-rays beams original features and the determination of combined additional filters, in order to allow the X-ray equipment used operates in compliance with Norm IEC 61331-1 IEC. The radiation quality selected is characterized by a 100 kV voltage and a 0.25 mm of copper overall filtration. The implementation of this radiation quality it was carried through of its first and second HVL (Half Value Layer). Thus, a methodology according to the international Norms has been implemented in the laboratory. The results of the present work provide suitable and useful information about radiation beams features related to the determination techniques of the attenuation properties. Once implemented the procedures for conformity evaluation of the protection devices, it will be possible to carry out specific quality control tests, which will be helpful to manufacturers, customers, as well as authorities in the radiological protection and health areas. (author)

  14. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  15. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  16. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  17. Radiation Protection, Safety and Security Issues in Ghana

    International Nuclear Information System (INIS)

    Boadu, M. B.; Emi-Reynolds, G.; Amoako, J. K.; Hasford, F.; Akrobortu, E.

    2015-01-01

    The Radiation Protection Board was established in 1993 by PNDC Law 308 as the National Competent Authority for the regulation of radiation sources and radioactive materials in Ghana. The mandate and responsibilities of RPB are prescribed in the legislative instrument, LI 1559 issued in 1993. The operational functions of the Board are carried out by the Radiation Protection Institute, which was established to provide technical support for the enforcement of the legislative instrument. The regulatory activities include among others: – Issuance permits for the import/export of any radiation producing device and radioactive materials into/out of the country. It therefore certifies the radioactivity levels in food and the environmental samples. – Authorization and Inspection of practices using radiation sources and radioactive materials in Ghana. – Undertakes safety assessment services and enforcement actions on practices using radiation sources and radioactive materials in line with regulations. – Provides guidance and technical support in fulfilling regulatory requirement to users of radiation producing devices and radioactive materials nationwide by monitoring of monthly radiation absorbed doses for personnel working at radiation facilities. – Provides support to the management of practices in respect of nuclear and radioactive waste programme. – Calibrates radiation emitting equipment and nuclear instrumentation to ensure the safety of patients, workers and the general public. – Establish guidelines for the mounting (non-ionizing) communication masts. – Environmental monitoring (non-ionizing) programmes for communication masts. With the establishment of the national competent authority, facilities using radioactive sources and radiation emitting devices have been brought under regulatory control. Effective regulatory control of radiation emitting devices are achieved through established legal framework, independent Regulatory Authority supported by

  18. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    White, J.M.

    1983-01-01

    The fundamentals of radiation hazards and their control are outlined. This report is for use by all radiation workers at CRNL and copies are available for all who want one. The purposes of the document are to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to acquaint employees with the CRNL radiation and industrial safety organization

  19. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1992-01-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  20. Radiation protection in the operating room

    International Nuclear Information System (INIS)

    Kunz, B.; Stargardt, A.

    1978-01-01

    On the basis of legally provided area dose measurements and time records of fluoroscopic examinations during the operation, radiation doses to medical personnel and patients are evaluated. Adequate radiation protection measures and a careful behaviour in the operating room keep the radiation exposure to the personnel below the maximum permissible exposure. Taking into account the continuous personnel radiation monitoring and medical supervision, radiation hazards in the operating room can be considered low

  1. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  2. Radiation protection and safety guide no. GRPB-G-1: qualification and certification of radiation protection personnel

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1995-01-01

    A number of accidents with radiation sources are invariably due to human factors. The achievement and maintenance of proficiency in protection and safety in working with radiation devices is a necessary prerequisite. This guide specifies the national scheme and minimum requirements for qualification and certification of radiation protection personnel. The objective is to ensure adequate level of skilled personnel by continuous upgrading of knowledge and skill of personnel. The following sectors are covered by this guide: medicine, industry, research and training, nuclear facility operations, miscellaneous activities

  3. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  4. Midinfrared radiation energy harvesting device

    Science.gov (United States)

    Lin, Hong-Ren; Wang, Wei-Chih

    2017-07-01

    The International Energy Agency reports a 17.6% annual growth rate in sustainable energy production. However, sustainable power generation based on environmental conditions (wind and solar) requires an infrastructure that can handle intermittent power generation. An electromagnetic thermoelectric (EMTE) device to overcome the intermittency problems of current sustainable energy technologies, providing the continuous supply unachievable by photovoltaic cells with portability impossible for traditional thermoelectric (TE) generators, is proposed. The EMTE converts environmental electromagnetic waves to a voltage output without requiring additional input. A single cell of this TE-inspired broadband EMTE can generate a 19.50 nV output within a 7.2-μm2 area, with a verified linear scalability of the output voltage through cell addition. This idea leads to a challenge: the electrical polarity of each row of cells is the same but may require additional routing to combine output from each row. An innovative layout is proposed to overcome this issue through switching the electrical polarity every other row. In this scheme, the EM wave absorption spectrum is not altered, and a simple series connection can be implemented to boost the total voltage output by 1 order within a limited area.

  5. EMERGENCY RADIATION SURVEY DEVICE ONBOARD THE UAV

    Directory of Open Access Journals (Sweden)

    S. Bogatov

    2013-08-01

    Full Text Available Radiation survey device (RSD on the base of unmanned aerial vehicle (UAV was developed as an equipment of rescue forces for radiation situation reconnaissance in case of emergency. RSD is multi range radiometer with spectrometer functions capable to work within gamma ray fields of dose rate 10–7 – 10–1 Sievert per hour. UAV md4-1000 (Microdrones GmbH, Germany was selected as the RSD carrier as a reliable vehicle with appropriate properties. Short description of RSD, UAV and developed software features as well as sensitivity assessments for different radiation sources are presented.

  6. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  7. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    Garcier, Yves; Guers, Rene; Bidard, Francoise; Colson, Philippe; Gonin, Michele; Delabre, Herve; Hemidy, Pierre-Yves; Corgnet, Bruno; Perrin, Marie-Claire; Phan Hoang, Long; Abela, Gonzague; Crepieux, Virginie; Guyot, Pierre; Haranger, Didier; Warembourg, Philippe

    2004-01-01

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  8. Radiation Protection Officer certification scheme. Malaysian experience

    International Nuclear Information System (INIS)

    Pungut, Noraishah; Razali, Noraini; Mod Ali, Noriah

    2011-01-01

    In Malaysia, the need for maintaining competency in radiation protection is emerging, focusing on the qualification of Radiation Protection Officers (RPO). Regulation 23 of Malaysian Radiation Protection (Basic Safety Standards) Regulations 1988, requires the applicant to employ an RPO, with the necessary knowledge, skill and training, enabling effective protection of individuals and minimizing danger to life, property and the environment for all activities sought to be licensed. An RPO must demonstrate the knowledge required, by attending RPO courses organised by an accredited agency and pass the RPO certification examination. Maintaining a high level of competency is crucial for future development of safe applications of ionising radiation. The major goal of training is to provide essential knowledge and skills and to foster correct attitudes on radiation protection and safe use of radiation sources. Assessment of the competency is through theoretical and practical examination. A standard criterion on the performance of the individuals evaluated has been established and only those who meet this criterion can be accepted as certified RPO. The National Committee for the Certification of Radiation Protection Officer (NCCRPO), comprising experts in various fields, is responsible to review and update requirements on competency of a certified RPO. With increasing number of candidates (i.e. 701 in 2008) and the international requirement for radioactive source security, it is incumbent upon the NCCRPO to improve the syllabus of the certification scheme. The introduction of a Radiation Protection Advisor (RPA) to provide service and advice to the radiation industry in Malaysia is also seriously considered. (author)

  9. Radiation Protection Institute - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission was established to provide the scientific and technical support for executing the operational functions of the Radiation Protection Board. The operational activities of the Institute are listed. Also included in the report are the various research projects, training programmes and publications for the year 2015.

  10. The radiation protection infrastructure in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Randriantseheno, H.F.; Ramanandraibe, M.J.

    2001-01-01

    Madagascar is participating in the Model Project RAF/9/024 on 'Upgrading Radiation Protection Infrastructure'. Its radiation protection legislation is based on the BSS. The efforts being made to upgrade the country's regulatory infrastructure and the problems encountered are described below, as is the national information and training programme for the authorities, the public, workers and students. (author)

  11. Radiation protection laws in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, Lars

    1991-01-01

    Sweden has since 1988 a totally revised radiation protection law and Finland has recently enacted a new law. The legal situation of the Nordic countries in the radiation protection field is reviewed with the main emphasis on the Swedish law. (author)

  12. General organisation of radiation protection in Senegal

    International Nuclear Information System (INIS)

    Casanova, P.; Ndiaye, M.; Sow, M.L.; Ndao, A.S.

    2015-01-01

    Organization of radiation protection in Senegal is governed by three main texts that define the general principles and implement legal means for their actions. Efficient control of nuclear activities to ensure protection of workers, the environment and patients against ionizing radiation is subject to criminal penalties in case of breach of this legislation. (authors)

  13. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  14. Implantation of inspection and radiation protection plan

    International Nuclear Information System (INIS)

    Cunha, J.L.R. da

    1988-01-01

    Methods, means and procedures adopted by Petrobras engineering service to survey safety radiation protection of the companies that carry out radiographic services of PETROBRAS are showed. The systematic used in certification of personel, procedures, audits and field survey concerning radiation protection, are described. (C.M.) [pt

  15. Radiation protection calculations for diagnostic medical equipment

    International Nuclear Information System (INIS)

    Klueter, R.

    1992-01-01

    The standards DIN 6812 and DIN 6844 define the radiation protection requirements to be met by biomedical radiography equipment or systems for nuclear medicine. The paper explains the use of a specific computer program for radiation protection calculations. The program offers menu-controlled calculation, with free choice of the relevant nuclides. (DG) [de

  16. Standards of radiation protection in Colombia

    International Nuclear Information System (INIS)

    Zamora, H.; Quintero, R.; Barreto, G.

    1988-01-01

    The theoretical information about radiation protection was reviewed; special attention to those principles considered of mayor importance by the international organizations experienced in the subject. Particular consideration is made in today's view on legal aspects, and finally, recommendations are made on the standard that should be taken into account in our country for a more rational application of the radiation protection system

  17. Radiation-chemical disinfection of dissolved impurities and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  18. Medical device for applying therapeutic radiation

    International Nuclear Information System (INIS)

    Tokita, K.M.; Haller, B.L.

    1986-01-01

    A device is described for applying therapeutic radiation from a preselected radiation source to a predetermined portion of a body comprising, in combination: a body member having: an external peripheral surface; a first end surface; and a second end surface spaced from the first end surface; the body member further comprising: at least first internal walls defining a first radiation source receiving channel means spaced a preselected distance from the peripheral surface, and having: a first portion extending from the second end surface to regions adjacent the first end surface; and a second portion extending from the first portion at the first end surface to the second end surface; and, the channel means communicating with regions external the body member at the second surface whereby the radiation source of a preselected intensity inserted at least along a preselected portion of the channel means is applied to the predetermined area of the body requiring therapeutic radiation treatment

  19. Regional radiation protection initiatives by Australia

    International Nuclear Information System (INIS)

    Grey, J.

    1993-01-01

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  20. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  1. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  2. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  3. Ecological aspects of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Recht, P [Health Protection Services, Commission of the European Communities, Brussels (Belgium); Free University, Brussels (Belgium)

    1972-07-01

    For the ecologists of the 1960s, the presence in the biosphere of fission products originating from nuclear explosions provided a wealth of opportunity for observation and experiment, for they were able to trace the paths of numerous radioactive substances in the atmosphere, immediate environment and eco-systems, and to determine the way in which these substances were metabolized in living organisms. Moreover, nuclear techniques such as the use of radioactive tracers, autoradiography and neutron activation afforded a means of determining the mechanisms by which the biologically significant radionuclides take effect and the processes by which they are transferred. Because of the comprehensive information that it can provide for analysis, radioecology has risen above its status as a pure science and has become an integral part in the planning of monitoring programmes for nuclear sites- Radioecology is thereby able to make an essential contribution to the attainment of one of the basic objectives of radiation protection, namely the elimination or control of the hazards that human beings and their environment are likely to be face through the peaceful applications of nuclear energy. The headway made in radioecological studies and research has been great; knowledge is being amassed by leaps and bounds despite the difficulties faced and the intricacy of the problems involved. As a consequence, radioactive contamination of the environment is certainly one of the best understood types of pollution, and probably one that it has so far been possible to anticipate and control under optimum conditions and with the most gratifying results.

  4. Ecological aspects of radiation protection

    International Nuclear Information System (INIS)

    Recht, P.

    1972-01-01

    For the ecologists of the 1960s, the presence in the biosphere of fission products originating from nuclear explosions provided a wealth of opportunity for observation and experiment, for they were able to trace the paths of numerous radioactive substances in the atmosphere, immediate environment and eco-systems, and to determine the way in which these substances were metabolized in living organisms. Moreover, nuclear techniques such as the use of radioactive tracers, autoradiography and neutron activation afforded a means of determining the mechanisms by which the biologically significant radionuclides take effect and the processes by which they are transferred. Because of the comprehensive information that it can provide for analysis, radioecology has risen above its status as a pure science and has become an integral part in the planning of monitoring programmes for nuclear sites- Radioecology is thereby able to make an essential contribution to the attainment of one of the basic objectives of radiation protection, namely the elimination or control of the hazards that human beings and their environment are likely to be face through the peaceful applications of nuclear energy. The headway made in radioecological studies and research has been great; knowledge is being amassed by leaps and bounds despite the difficulties faced and the intricacy of the problems involved. As a consequence, radioactive contamination of the environment is certainly one of the best understood types of pollution, and probably one that it has so far been possible to anticipate and control under optimum conditions and with the most gratifying results

  5. Radiation protection for particle accelerators

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, J.; Campayo, J.M.

    1992-01-01

    It a a great number of medical installations in spain using particle accelerators for radiotherapy. It is obvious the importance of an accurate estimation of the doses produced in these installations that may be received by health workers, patients or public. The lower values of dose limits established in the new ICRP recommendations imply a recalculation of items concerning such installations. In our country, specific guidelines for radiation protection in particle accelerators facilities have not been yet developed, however two possible guides can be used, NCRP report number 51 and DIN Standard 6847. Both have been analyzed comparatively in the paper, and major remarks have been summarized. Interest has been focused on thickness estimation of shielding barriers in order to verify whether must be modified to comply with the new dose limits. Primary and secondary barriers for a Mevatron used in a Medical Center, have been calculated and the results have been compared with actual data obtained from the installation, to test the adequacy of shielding barriers and radioprotection policies. The results obtained are presented and analyzed in order to state the implications of the new ICRP recommendations. (author)

  6. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  7. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  8. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  9. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  10. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  11. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  12. Rules and regulations of radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    The finality of this legislative text is to guarantee the radiation protection of the exposed personnel, of the people in general and the environment against the ionizing radiations risks. Its scope includes all the natural and juridical persons that work with ionizing radiation sources into the peruvian territory

  13. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Martincic, R.; Strohal, P.

    1996-01-01

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  14. Current Trends in Radiation Protection Recommendations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The third generation of the ICRP recommendations was adopted in April 2007. The recommendations rely on situations (planned, emergency and existing), individual (occupational, public and patient) and radiation protection system (justification, optimization and dose limits). In the present work attention is paid to discuss the new recommendations and role of IAEA in updating its Basic Safety Standards for protection against ionizing radiation and safety of radiation sources and its impact for the national regulations

  15. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Beninson, D.

    1980-01-01

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  16. Radiation protection in occupational health

    International Nuclear Information System (INIS)

    1987-01-01

    The document is a training manual for physicians entering the field of occupational medicine for radiation workers. Part 1 contains the general principles for the practice of occupational health, namely health surveillance and the role of the occupational physician in the workplace, and Part 2 provides the essential facts necessary to understand the basic principles of radiation physics, radiobiology, dosimetry and radiation effects which form the basis for occupational radiation health

  17. Chapter 1: A little of Radiation Physics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 1 presents the subjects: 1) quantities and units of radiation physics which includes: the electron volt (eV); Exposure (X); Absorbed dose (D); Dose equivalent (H); Activity (A); Half-life; Radioactive decay; 2) Radiation protection which includes: irradiation and radioactive contamination; irradiation; contamination; background radiation; dose limits for individual occupationally exposed (IOE) and for the general public.

  18. The necessity of radiation protection

    International Nuclear Information System (INIS)

    Van der Merwe, E.J.

    1979-01-01

    The use of ionizing radiation as an aid in dentistry, medicine and industry is still on the increase. Although much research has already been done on the effect of ionizing radiation on living matter much can still be done. The author discusses a few guidelines to be followed in dentistry to keep the radiation dose the patient is exposed to as low as possible

  19. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  20. Environmental radiation protection - a brief history

    International Nuclear Information System (INIS)

    Zapantis, A.P.

    2003-01-01

    The effects of ionising radiation on man has been studied intensely for decades, and the system of radiation protection for man has been continually refined in the light of those studies. That system assumes that if man is protected, non-human biota at the species level will also be adequately protected. However, an increasing recognition of the need to protect the environment, and international agreements signed in 1992, have resulted in that paradigm being questioned, with the onus shifting slowly towards demonstrating that the environment is protected. Further, radiation protection agencies and environmental protection agencies around the world have now started considering the issue of developing a system of radiation protection for the environment. The International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) are also active in this area. The purpose of this paper is to briefly outline some of the issues confronting environmental and radiation protection specialists, and to mention some of the initiatives being taken by the international community to resolve those issues

  1. Radiation protection guidelines for the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1990-01-01

    This paper reviews the history of radiation protection standards for the skin with particular reference to past recommendations of the ICRP concerning dose limits to the skin and the work of the ICRP Task Group appointed in 1987. Data are also presented on the effect of radiation on Langerhans cells in the skin, and the effect of interaction of ultraviolet radiation and x-rays and of protraction of radiation on skin cancer induction in mice. (UK)

  2. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  3. The state of radiation protection in Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1988-01-01

    Historically, radiation protection in Iran can be related to when the first x-ray machine was applied for medical diagnosis. However, organized activities were started with the establishment of the Tehran University Nuclear Center (TUNC) in 1959, and within a broader scope when AEOI research reactor went into operation in 1967. In 1974, the Atomic Energy Organization Law of Iran was ascribed the responsibility for radiological safety and protection to the AEOI. Then this responsibility was assigned by AEOI to the Radiation Protection Department (RPD), as the national authority. The RPD's organization and functions have been divided into three main RPD divisions: Radiation Protection Control; Radiation Dosimetry Research and Development and Services; and Radiological Protection of the Environment

  4. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  5. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1996-01-01

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  6. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    A committee of experts appointed by the Minister of Labour and Social Affairs has proposed a comprehensive draft regulation, concerning the legal aspects of occupational radiation protection in Israel. The first section of the proposed regulation sets forth guidelines for control in facilities where workers handle radioactive materials or radiation equipment. This includes the duties of the managers of such places to ensure adequate radiation protection and also the maximum recommended doses (whole body and individual organs) for radiation workers. The second section deals with the monitoring regulations for radiation workers who may be exposed to doses in excess of 500 mRem/y. The third section outlines the nature of the mechanical supervision required, i.e. routine and special examinations. Finally the committee also proposed six miscellaneous recommendations for radiation protection. (UK)

  7. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Gupta, M.S.

    2001-01-01

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  8. Operation control device under radiation exposure

    International Nuclear Information System (INIS)

    Kimura, Kiichi; Murakami, Toichi.

    1994-01-01

    The device of the present invention performs smooth progress of operation by remote control for a plurality of operations in periodical inspections in controlled areas of a nuclear power plant, thereby reducing the operator's exposure dose. Namely, the device monitors the progressing state of the operation by displaying the progress of operation on a CRT of a centralized control device present in a low dose area remote from an operation field through an ITV camera disposed in the vicinity of the operation field. Further, operation sequence and operation instruction procedures previously inputted in the device are indicated to the operation field through an operation instruction outputting device (field CRT) in accordance with the progress of the operation steps. On the other hand, the operation progress can be aided by inputting information from the operation field such as start or completion of the operation steps. Further, the device of the present invention can monitor the change of operation circumstances and exposure dose of operators based on the information from a radiation dose measuring device disposed in the operation circumstance and to individual operators. (I.S.)

  9. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  10. Study of radiation effects on semiconductor devices

    International Nuclear Information System (INIS)

    Kuboyama, Satoshi; Shindou, Hiroyuki; Ikeda, Naomi; Iwata, Yoshiyuki; Murakami, Takeshi

    2004-01-01

    Fine structure of the recent semiconductor devices has made them more sensitive to the space radiation environment with trapped high-energy protons and heavy ions. A new failure mode caused by bulk damage had been reported on such devices with small structure, and its effect on commercial synchronous dynamic random access memory (SDRAMs) was analyzed from the irradiation test results performed at Heavy ion Medical Accelerator in Chiba (HIMAC). Single event upset (SEU) data of static random access memory (SRAMs) were also collected to establish the method of estimating the proton-induced SEU rate from the results of heavy ion irradiation tests. (authors)

  11. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  12. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    Mayo, P.; Campayo, J. M.; Verdu, G.

    2011-01-01

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  13. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    Lizot, M.T.; Perrin, M.L.; Sert, G.; Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R.; Shaw, K.B.; Hughes, J.S.; Gelder, R.

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  14. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  15. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  16. Radiation protection and the female worker

    International Nuclear Information System (INIS)

    Folsom, S.C.

    1983-01-01

    An influx of young women into industrial occupations has resulted in a reexamination of policy regarding fetal protection. Each of the Environmental Protection Agency's four alternatives, as listed in Federal Radiation Protection Guidance for Occupational Exposures, is examined and given a critique: voluntary limitation of radiation exposure to the unborn, voluntary sterilization by women, exclusion of child-bearing-age women from occupational tasks resulting in possible fetal exposure, and limiting the mandatory exposure limit for all workers. The author lists employers and women employees responsibilities in considering occupations with radiation risks. 1 reference

  17. Activities of Institute of Radiation Protection and Dosimety/Brazil as Technical and Scientific Support Organization on Occupational Radiation Protection

    International Nuclear Information System (INIS)

    Da Silva, F.C.A.; Ferreira, P.R.; Matta, L.E.C.; Peres, M.A.L.; Godoy, J.M.; Alencar, M.A.V.; Carlos, M.T.; Souza-Santos, D.; Leocadio, J.C.; Oliveira, M.S.

    2010-01-01

    There are, in Brazil, about 126,000 workers registered on National Dose Registry System (SRD/IRD) as occupationally exposed. They work on 4,000 radioactive installations, 20 nuclear fuel cycle installations and with 90,000 x-ray diagnostic devices. There are two main Regulatory Authorities to license and control these installations on nuclear and radioactive areas, and another Regulatory Authority that is responsible for safety and health protection of workers on their labour activities. Belonging to structure of the National Commission of Nuclear Energy (CNEN-Brazil) there is an Institute dedicated to radiation protection, dosimetry and metrology of ionizing radiation, that is the Institute of Radiation Protection and Dosimetry (IRD). This paper presents two main IRD activities related to occupational radiation protection that can be seen as example of technical and scientific support to Regulatory Authorities: the Radiation Overexposure Analysis that is performed by the Radiation Overexposure Analysis Group (GADE) and the Approval of Individual Monitoring Services and Calibration Laboratory of Equipment used in Radiation Protection that is performed by the Committee for the Evaluation of Essay and Calibration Services (CASEC). (author)

  18. SABS helps with radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The General Physics Division of the SABS is mainly concerned with two branches of Physics, i.e. ionized radiation and temperature. The branch concerned with ionizing radiation is largely responsible for the provision of a radiation monitoring service for people working with X-ray machines and radioactive material. Dosemeters are regularly sent out to X-ray workers and people working with radioactive materials. The radiation dose to which these workers have been exposed over a period of time can then be determined

  19. RADIATION PROTECTION FOR HUMAN SPACEFLIGHT

    OpenAIRE

    Hellweg, C.E.; Baumstark-Khan, C.; Berger, T.

    2017-01-01

    Space is a special workplace not only because of microgravity and the dependency on life support systems, but also owing to a constant considerable exposure to a natural radiation source, the cosmic radiation. Galactic cosmic rays (GCR) and solar cosmic radiation (SCR) are the primary sources of the radiation field in space. Whereas the GCR component comprises all particles from protons to heavy ions with energies up to 10¹¹ GeV, the SCR component ejected in Solar Energetic Particle events (S...

  20. Environmental radiation protection. The new ICRP concept

    International Nuclear Information System (INIS)

    Kaps, C.; Lorenz, B.

    2013-01-01

    Protection of the environment regarding radiation protection was so far reduced to the concept: if man is protected the environment is protected well enough. This was derived from the radiosensitivity curve, according to which highly developed organisms are more sensible to radiation than less highly developed. ICRP publication 103 put this simple concept in question. Even before, ICRP set up a committee to discuss this theme. End of 2012 ICRP released a new concept of environmental protection regarding different exposure situations and brought it up for discussion in the internet. This concept is based on Reference Animals and Plants (RAPs) and analogous to the concept of the protection for man. The exposure for representative organisms regarding ionizing radiation shall be estimated and compared with Derived Consideration Reference Levels (DCRLs). If the DCRLs are reached or exceeded there is a need to react. This concept raises several questions. (orig.)

  1. The risk philosophy of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1996-01-01

    The processes of risk assessment and risk evaluation are described. The assumptions behind current radiation risk assessments, which are focused on the probability of attributable death from radiation-induced cancer, are reviewed. These assessments involve projection models to take account of future cancer death in irradiated populations, the transfer of risk estimates between populations and the assumptions necessary to derive risk assessments for low radiation doses from actual observations at high doses. The paper ends with a presentation of the basic radiation protection recommendations of the International Commission on Radiological Protection (ICRP) in the context of a risk philosophy. (author)

  2. Radiation protection at reactors RA and RB

    International Nuclear Information System (INIS)

    Ninkovic, M.

    2003-02-01

    Radiation protection activities at the RA and RB reactors are imposed by the existing legal regulations and international recommendations in this field. This annual report contains five parts which cover the following topics: Radiation safety, dosimetry control and technical radiation protection at reactors RA and RB; Handling of radioactive waste, actions and decontamination; Control of the environment (surroundings of RA and RB reactors) and meteorological measurements; Control of internal contamination and internal exposure; Health control od personnel exposed to radiation. Personnel as well as financial data are part of this report

  3. Radiation risk and radiation protection concepts

    International Nuclear Information System (INIS)

    Doerschel, B.

    1989-01-01

    The revised dosimetry for the survivors of Hiroshima and Nagasaki implies an increased risk from low LET radiation compared with that currently used. During its meeting in 1987 the ICRP stated that the new data at present do not require any change in the dose limits. However, two other factors can cause larger changes in the present risk estimates. Firstly, for some types of cancer the relative risk model seems to describe the observed data better than the absolute risk model currently used by the ICRP. Secondly, the shape of the dose-response relationship considerably influences the derived risks. In the present paper the factor causing a substantial increase in radiation risk are analyzed. Conclusions are drawn in how far a change in the currently recommended dose limits seems to be necessary. (author)

  4. Establishment of a national radiation protection infrastructure. The Philippine experience

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E.M. [Philippine Nuclear Research Institute, Department of Science and Technology (Philippines)

    2000-05-01

    Radiation and radioactive materials have been used widely in the Philippines for the last four decades and have made substantial contributions to the improvement of the life and welfare of the Filipino people. In spite of the unsuccessful attempt to operate a nuclear power, plant, the country, through the Philippine Nuclear Research Institute has consistently pursued an active small nuclear applications program to promote the peaceful applications of nuclear energy while also mandated to ensure radiation safety through nuclear regulations and radioactive materials licensing. Another government agency, the Radiation Health Services (RHS) of the Department of Health was created much later to address the growing concern on radiation hazards from electrically generated radiation devices and machines. The RHS has been strengthened later to include non-ionizing radiation health hazards and has expanded to include a biomedical engineering and non-radiation related medical equipment. The paper will describe the historical perspective highlighting the basis of the national regulatory framework to ensure that only qualified individuals are authorized to use radioactive materials and radiation emitting machines/devices. The development of national training programs in radiation protection and experiences in implementing these programs will be presented. National efforts to strengthen the radiation protection infrastructure through the establishment, improvement and upgrading of a number of facilities and capabilities in radiation protection related work activities will be discussed including participation in national, regional and international intercomparison programs to ensure accuracy, reliability, reproducibility and comparability of dose measurements. Lastly, data on the status of small nuclear applications and related activities in the country will be presented including a number of current issues related to the adoption of the new international basic safety standards

  5. Establishment of a national radiation protection infrastructure. The Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.

    2000-01-01

    Radiation and radioactive materials have been used widely in the Philippines for the last four decades and have made substantial contributions to the improvement of the life and welfare of the Filipino people. In spite of the unsuccessful attempt to operate a nuclear power, plant, the country, through the Philippine Nuclear Research Institute has consistently pursued an active small nuclear applications program to promote the peaceful applications of nuclear energy while also mandated to ensure radiation safety through nuclear regulations and radioactive materials licensing. Another government agency, the Radiation Health Services (RHS) of the Department of Health was created much later to address the growing concern on radiation hazards from electrically generated radiation devices and machines. The RHS has been strengthened later to include non-ionizing radiation health hazards and has expanded to include a biomedical engineering and non-radiation related medical equipment. The paper will describe the historical perspective highlighting the basis of the national regulatory framework to ensure that only qualified individuals are authorized to use radioactive materials and radiation emitting machines/devices. The development of national training programs in radiation protection and experiences in implementing these programs will be presented. National efforts to strengthen the radiation protection infrastructure through the establishment, improvement and upgrading of a number of facilities and capabilities in radiation protection related work activities will be discussed including participation in national, regional and international intercomparison programs to ensure accuracy, reliability, reproducibility and comparability of dose measurements. Lastly, data on the status of small nuclear applications and related activities in the country will be presented including a number of current issues related to the adoption of the new international basic safety standards

  6. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    2000-06-01

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service

  7. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  8. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    preparing 90Y-Zevalin were measured. CONCLUSIONS. Good laboratory practice is important to keep radiation doses low. To reduce bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead...

  9. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  10. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  11. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  12. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  13. Radiation protection during hybrid procedures: innovation creates new challenges.

    Science.gov (United States)

    Sawdy, Jaclynn M; Gocha, Mark D; Olshove, Vincent; Chisolm, Joanne L; Hill, Sharon L; Phillips, Alistair; Galantowicz, Mark; Cheatham, John P; Holzer, Ralf J

    2009-09-01

    The cooperation between interventional cardiologists and cardiothoracic surgeons has expanded the spectrum of treatment modalities for patients with congenital heart disease. These hybrid techniques have created new challenges, one of which being the provision of adequate but practical radiation protection. This study evaluates the use of a lightweight radiation protection drape (RADPAD) that may be suitable for shielding during hybrid procedures. To simulate a pediatric patient, an 8.7 liter water-filled tub was placed on an X-ray table and exposed to 10-second cine acquisition runs. Radiation exposure was measured at twelve specified locations around the table using a model with three different levels of radiation protection: no shielding, shielding using a traditional 0.35 mm lead-equivalent apron, and shielding using the 0.25 mm lead-equivalent RADPAD. The traditional lead apron and the RADPAD significantly reduced the amount of radiation dose when compared with no shielding. The standard lead apron provided slightly greater radiation protection than the RADPAD (0.000064 radiation absorbed dose [rad] vs. 0.000091 rad; p = 0.012). The measured rad was significantly higher on the right side of the table, and the measured radiation dose decreased significantly with increasing distance from the table. The RADPAD has been shown to function as an efficient shielding device, even though it does not quite match the protection that can be expected from a standard lead apron. It complies with regulatory radiation protection requirements and its lightweight and sterile use make it particularly useful during hybrid procedures in the operating room.

  14. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  15. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  16. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  17. Current situation of radiation protection in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc

    2008-01-01

    Vietnam was one of the earliest countries, who applied ionizing radiation in medicine, since 1923, Dr. Marie Curie had supplied radium sources to Hanoi cancer hospital for radiotherapy. However, we did not give sufficient attention to radiation protection involving, e.g. technology, legislation, until 1980s. Recently with the strong support from International Atomic Energy Agency (IAEA) and Vietnam government nuclear technology has been strongly and widely developed in different branches and radiation protection situation in Vietnam has been improved step by step. Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the prime minister on January 3th, 2006 confirms that nuclear power plant will be put in operation by 2020. To ensure the implementation of the strategy, the first priority should be given to radiation protection and nuclear safety. This paper presents shortly some activities of radiation safety in Vietnam. The requirements for developing this field in Vietnam are also discussed. (author)

  18. Federal radiation protection regulations: An industry viewpoint

    International Nuclear Information System (INIS)

    Harward, E.D.

    1987-01-01

    Regulations and standards to protect the public and workers from ionizing radiation have been in transition for a number of years, although most of the basic limits in use have remained essentially unchanged over the past 25 years or so. Legislation, political changes, new scientific data, advances in scientific concepts, and finally, public perception and resulting pressures have all been factors in the modifications that have been implemented or considered for radiation protection regulations in recent years. During this period, radiation exposures to both the public and the work force have been reduced through program management and improved technology. Based on activities of the AIF Subcommittee on Radiation Protection, this paper reviews pertinent NRC and EPA regulations, standards and guidance as well as NCRP recommendations and provide some analyses of these in terms of their potential effect on nuclear industry operations. Comments include suggestions where minor changes in Federal agency approaches to radiation regulation might be made for the public benefit

  19. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  20. Radiation protection and the laws and regulations

    International Nuclear Information System (INIS)

    Takada, Takuo

    1980-01-01

    In hospitals and clinics, when cobalt remote irradiation apparatuses, betatrons and linear accelerators are installed, the provisions of medical and radiation injury prevention laws and other related laws and regulations must be observed. The following matters are described: the laws and regulations concerning the prevention of radiation injuries, the definitions of the therapeutical equipments, the radiation protection standards for such facilities, radiation exposure dose and permissible dose, the procedures concerning the application before usage, the responsibilities of hospitals and clinics for radiation measurement and management, and shielding and shield calculations. (J.P.N.)

  1. Knowledge plus Attitude in Radiation Protection

    International Nuclear Information System (INIS)

    Velez, G. R.; Sanchez, G. D.

    2003-01-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  2. Radiation protection in the dental profession

    International Nuclear Information System (INIS)

    Holyoak, B.; Overend, J.K.; Gill, J.R.

    1980-01-01

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  3. ALARA in the radiation protection training

    International Nuclear Information System (INIS)

    Nolibe, D.; Lefaure, Ch.

    1998-01-01

    This part treats especially the question of the training in radiation protection. The electro nuclear sector has given an ALARA principle culture and succeeded to sensitize each level of hierarchy, but for small industry, the research and the medical world the same method appears more difficult to use. It seems better to reinforce the importance of the competent person and to include a training in radiation protection on the initial formation in numerous professional categories. (N.C.)

  4. Protection against Ionizing Radiation, No. 1420

    International Nuclear Information System (INIS)

    1978-01-01

    This publication is a compilation of national legislative and regulatory provisions on radiation protection in force on 15 November 1978. In addition to the in extenso texts on the subject, only the relevant provisions in laws and regulations with a more general scope have been reproduced. This comprehensive compilation expands and updates a previous collection by the Official Gazette of the French Republic which covered only decrees and orders on the protection of workers against the hazards of ionizing radiation. (NEA) [fr

  5. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Garcier, Y.

    2006-01-01

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  6. Genetic topics in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Traut, H [Muenster Univ. (F.R. Germany). Inst. fuer Strahlenbiologie

    1976-01-01

    The effects of mutations induced by ionizing radiation on human health can be subdivided into decrease of general viability, malformations and embryonic death. Reasons are given for the recommendation why a man whose gonads had been exposed to radiation should refrain from procreation for a couple of months. An analysis of the frequency of chromosome aberrations induced in lymphocytes can provide an estimate of the dose received during an accidental exposure. Radiation induced chronic myeloid leukaemia is probably based on the induction of an aberration involving chromosome 22 in a bone marrow cell (deletion, translocation). The relationship between the frequency of radiation induced point mutations and the DNA content of the genome of the species studied so far is discussed.

  7. Radiation protection in dental practice

    International Nuclear Information System (INIS)

    This guide provides the dentist and dental support personnel with basic information on the safe use of x-rays in dental radiography. Included in this CODE are specific recommendations for eliminating unnecessary radiation exposure of both patients and staff

  8. Radiation protection program of Petrobras

    International Nuclear Information System (INIS)

    Signorini, M.

    1988-01-01

    Risks present in oil industry require specific control programs, specialy when using radioactive sources. Main uses of ionizing radiation in oil industry are in process control systems, industrial radiography and oilwell logging. A comprehensive and sistemic program is presented in order to assure the safe use of ionizing radiation in these activities. Principal subjects of this program are the control of radioactive sources, personel training in order to difuse knowledge at operations level and procedures standardization. (author) [pt

  9. Radiation protection topsy-turvy

    International Nuclear Information System (INIS)

    Sumner, D.

    1991-01-01

    Considerable attention, and money, is directed at reducing public exposure to radiation from nuclear installations, much less attention is paid to the levels of exposure from medical sources. The approximate doses from medical sources are given and ways that the doses can be reduce (eg carbon fibre grids, rare earth screens, better working procedures) are discussed. The case for spending money to reduce levels of radiation exposure in medicine is argued. (author)

  10. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  11. Greetings from Austrian Radiation Protection Association

    International Nuclear Information System (INIS)

    Hajek, M.; Brandl, A.

    2015-01-01

    Austrian Radiation Protection Association (OVS) share with others a long-standing tradition of common endeavours and close collaboration. We have been and are able to influence the European radiation protection environment and IRPA initiatives and policies. We are intrigued by the breadth and comprehensive nature of the symposium programme, covering the most important sub-fields in our profession, and spanning topics from radiation dosimetry to radiobiology, from instrumentation and measurement to radioecology, and from radiation protection for workers and in medicine to our professional responsibilities towards the general public. These topics are timeless and current, providing testimony to the fact that the science of radiation protection is not exhausted. Novel applications of ionizing and non-ionizing radiation, including new modalities in the fields of medical therapy and diagnosis, a resurgence of nuclear energy generation in some parts of the globe, combined with increased efforts for decontamination and decommissioning of existing sites and facilities, they are all attest to the continued need for further research and our professional input and discussion. The national radiation protection associations will have a role to play in both, the advocacy of increased efforts to educate and train our future professionals and the retention of those professionals in our field.

  12. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  13. Radiation protection code of practice in academic and research institutes

    International Nuclear Information System (INIS)

    Abdalla, A. A. M.

    2010-05-01

    The main aim of this study was to establish a code of practice on radiation protection for safe control of radiation sources used in academic and research institutes, another aim of this study was to assess the current situation of radiation protection in some of the academic and research institutes.To achieve the aims of this study, a draft of a code of practice has been developed which is based on international and local relevant recommendation. The developed code includes the following main issues: regulatory responsibilities, radiation protection program and design of radiation installations. The second aim had been accomplished by conducting inspection visits to five (A, B, C, D and E) academic and to four (F, G, H and I ) research institutes. Eight of such institutes are located in Khartoum State and the ninth one is in Madani city (Aljazeera State). The inspection activities have been carried out using a standard inspection check list developed by the regulatory authority of the Sudan. The inspection missions to the above mentioned institutes involved also evaluation of radiation levels around the premises and storage areas of radiation sources. The dose rate measurement around radiation sources locations were found to be quite low. This mainly is due to the fact that the activities of most radionuclides that are used in these institutes are quite low ( in the range of micro curies). Also ,most the x-ray machines that were found in use for scientific academic and research purposes work at low k Vp of maximum 60 k Vp. None of the radiation workers in the inspected institutes has a personal radiation monitoring device, therefor staff dose levels have not been assessed. However it was noted that in most of the academic/ research studies radiation workers are only exposed to very low levels of radiation and for a very short time that dose not exceed 1 minute, therefore the expected occupational exposure of the staff is very low. Radiation measurement in public

  14. Radiation protection philosophy: time for changes?

    International Nuclear Information System (INIS)

    Jovanovich, J.V.

    1994-01-01

    Radiation protection philosophy, or paradigm, has evolved over a number of decades and it is still evolving. Traditionally, it has dealt only with man-made, planned, in principle avoidable, radiation exposures of workers and general public. This philosophy, as presently accepted around the world, has some deficiencies. The object of this paper is to discuss these deficiencies and propose some changes. (author)

  15. Domestic hygienic legislation concerning population radiation protection

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Problems and principles of domestic sanitary legislation, concerning population radiation protection, are considered. The legislation envisages preventive measures, directed to contamination preventation of the main environmental objects, it regulates their content in the objects, their human intake and ionizing radiation doses, which might affect population. Existing domestic hygienic guides and safety standards for personnel and population are enumerated and characterized

  16. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1992-01-01

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/10 6 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/10 6 ). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/10 6 /0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  17. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  18. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  19. Protection contre les radiations recommandations

    CERN Document Server

    Claude, A; Kipfer, P; Bacq, Z

    Considérations générales ; mesures de sécurité vis-à-vis des sources de rayonnement externes ; mesures de sécurité vis-à-vis des radioisotopes ; étude spéciale de la protection dans quelques cas particuliers ; mesures de sécurité vis-à-vis des neutrons ; mesures de protection pour les appareils de supervoltage ; appareils physiques de mesure et de contrôle pour la protection.

  20. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...