WorldWideScience

Sample records for protection mouse models

  1. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  2. Evaluation of genetically inactivated alpha toxin for protection in multiple mouse models of Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Rebecca A Brady

    Full Text Available Staphylococcus aureus is a major human pathogen and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. While S. aureus protective antigens have been identified in the literature, the majority have only been tested in a single animal model of disease. We wished to evaluate the ability of one S. aureus vaccine antigen to protect in multiple mouse models, thus assessing whether protection in one model translates to protection in other models encompassing the full breadth of infections the pathogen can cause. We chose to focus on genetically inactivated alpha toxin mutant HlaH35L. We evaluated the protection afforded by this antigen in three models of infection using the same vaccine dose, regimen, route of immunization, adjuvant, and challenge strain. When mice were immunized with HlaH35L and challenged via a skin and soft tissue infection model, HlaH35L immunization led to a less severe infection and decreased S. aureus levels at the challenge site when compared to controls. Challenge of HlaH35L-immunized mice using a systemic infection model resulted in a limited, but statistically significant decrease in bacterial colonization as compared to that observed with control mice. In contrast, in a prosthetic implant model of chronic biofilm infection, there was no significant difference in bacterial levels when compared to controls. These results demonstrate that vaccines may confer protection against one form of S. aureus disease without conferring protection against other disease presentations and thus underscore a significant challenge in S. aureus vaccine development.

  3. Protective Effect of Carvacrol against Gut Dysbiosis and Clostridium difficile Associated Disease in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Kumar Venkitanarayanan

    2017-04-01

    Full Text Available This study investigated the effect of carvacrol (CR, a phytophenolic compound on antibiotic-associated gut dysbiosis and C. difficile infection in a mouse model. Five to six-week-old C57BL/6 mice were randomly divided into seven treatment groups (challenge and control of eight mice each. Mice were fed with irradiated feed supplemented with CR (0, 0.05, and 0.1%; the challenge groups were made susceptible to C. difficile by orally administering an antibiotic cocktail in water and an intra-peritoneal injection of clindamycin. Both challenge and control groups were infected with 105CFU/ml of hypervirulent C. difficile (ATCC 1870 spores or PBS, and observed for clinical signs for 10 days. Respective control groups for CR, antibiotics, and their combination were included for investigating their effect on mouse enteric microflora. Mouse body weight and clinical and diarrhea scores were recorded daily post infection. Fecal samples were collected for microbiome analysis using rRNA sequencing in MiSeq platform. Carvacrol supplementation significantly reduced the incidence of diarrhea and improved the clinical and diarrhea scores in mice (p < 0.05. Microbiome analysis revealed a significant increase in Proteobacteria and reduction in the abundance of protective bacterial flora in antibiotic-treated and C. difficile-infected mice compared to controls (p < 0.05. However, CR supplementation positively altered the microbiome composition, as revealed by an increased abundance of beneficial bacteria, including Firmicutes, and significantly reduced the proportion of detrimental flora such as Proteobacteria, without significantly affecting the gut microbiome diversity compared to control. Results suggest that CR could potentially be used to control gut dysbiosis and reduce C. difficile infection.

  4. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    Science.gov (United States)

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  5. Lipoproteins from Clostridium perfringens and their protective efficacy in mouse model.

    Science.gov (United States)

    Dwivedi, Pratistha; Alam, Syed Imteyaz; Kumar, Om; Kumar, Ravi Bhushan

    2015-08-01

    Clostridium perfringens is an obligately anaerobic rod-shaped bacterium and etiological agent for several diseases in humans and animals. The pathogen has been listed as Validated Biological Agent and warrants development of medical countermeasures. The homologs of some of the lipoproteins identified from various fractions of C. perfringens in our previous studies were observed to be virulence determinants in other pathogenic bacteria. Three putative virulence associated lipoproteins; polysaccharide deacetylase family protein, probable ion-uptake ABC transporter, and a putative lipoprotein of no known function are reported here with respect to their immuno-protective potentials. The three proteins were over expressed and purified to near homogeneity. The lipoproteins were shown to be exposed on the C. perfringens surface and, hence, accessible to antibodies and potentially visible to the host immune system. Immunization of mice with purified recombinant proteins elicited protective immunity against challenge with C. perfringens in mouse gas gangrene model. Distribution and relationship of orthologous proteins across other bacterial select agents especially among the members of Firmicutes, was carried out to look for conserved antigenic determinants. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Protective effects of long-term lithium administration in a slowly progressive SMA mouse model.

    Science.gov (United States)

    Biagioni, Francesca; Ferrucci, Michela; Ryskalin, Larisa; Fulceri, Federica; Lazzeri, Gloria; Calierno, Maria Teresa; Busceti, Carla L; Ruffoli, Riccardo; Fornai, Francesco

    2017-12-01

    In the present study we evaluated the long-term effects of lithium administration to a knock-out double transgenic mouse model (Smn-/-; SMN1A2G+/-; SMN2+/+) of Spinal Muscle Atrophy type III (SMA-III). This model is characterized by very low levels of the survival motor neuron protein, slow disease progression and motor neuron loss, which enables to detect disease-modifying effects at delayed time intervals. Lithium administration attenuates the decrease in motor activity and provides full protection from motor neuron loss occurring in SMA-III mice, throughout the disease course. In addition, lithium prevents motor neuron enlargement and motor neuron heterotopy and suppresses the occurrence of radial-like glial fibrillary acidic protein immunostaining in the ventral white matter of SMA-III mice. In SMA-III mice long-term lithium administration determines a dramatic increase of survival motor neuron protein levels in the spinal cord. These data demonstrate that long-term lithium administration during a long-lasting motor neuron disorder attenuates behavioural deficit and neuropathology. Since low level of survival motor neuron protein is bound to disease severity in SMA, the robust increase in protein level produced by lithium provides solid evidence which calls for further investigations considering lithium in the long-term treatment of spinal muscle atrophy.

  7. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model.

    Science.gov (United States)

    Benrick, Anna; Chanclón, Belén; Micallef, Peter; Wu, Yanling; Hadi, Laila; Shelton, John M; Stener-Victorin, Elisabet; Wernstedt Asterholm, Ingrid

    2017-08-22

    Adiponectin, together with adipocyte size, is the strongest factor associated with insulin resistance in women with polycystic ovary syndrome (PCOS). This study investigates the causal relationship between adiponectin levels and metabolic and reproductive functions in PCOS. Prepubertal mice overexpressing adiponectin from adipose tissue (APNtg), adiponectin knockouts (APNko), and their wild-type (WT) littermate mice were continuously exposed to placebo or dihydrotestosterone (DHT) to induce PCOS-like traits. As expected, DHT exposure led to reproductive dysfunction, as judged by continuous anestrus, smaller ovaries with a decreased number of corpus luteum, and an increased number of cystic/atretic follicles. A two-way between-groups analysis showed that there was a significant main effect for DHT exposure, but not for genotype, indicating adiponectin does not influence follicle development. Adiponectin had, however, some protective effects on ovarian function. Similar to in many women with PCOS, DHT exposure led to reduced adiponectin levels, larger adipocyte size, and reduced insulin sensitivity in WTs. APNtg mice remained metabolically healthy despite DHT exposure, while APNko-DHT mice were even more insulin resistant than their DHT-exposed littermate WTs. DHT exposure also reduced the mRNA expression of genes involved in metabolic pathways in gonadal adipose tissue of WT and APNko, but this effect of DHT was not observed in APNtg mice. Moreover, APNtg-DHT mice displayed increased pancreatic mRNA levels of insulin receptors, Pdx1 and Igf1R , suggesting adiponectin stimulates beta cell viability/hyperplasia in the context of PCOS. In conclusion, adiponectin improves metabolic health but has only minor effects on reproductive functions in this PCOS-like mouse model.

  8. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    Full Text Available Cholera toxin (CT is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN, IP, and subcutaneously (SC. Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64-100% survival. Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.

  9. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    International Nuclear Information System (INIS)

    Ti Dongdong; Deng Zihui; Xue Hui; Wang Luhuan; Lin Ji; Yan Guangtao

    2008-01-01

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  10. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model.

    Science.gov (United States)

    Suabjakyong, Papawee; Saiki, Ryotaro; Van Griensven, Leo J L D; Higashi, Kyohei; Nishimura, Kazuhiro; Igarashi, Kazuei; Toida, Toshihiko

    2015-01-01

    The basidiomycetous mushroom Phellinus igniarius (L.) Quel. has been used as traditional medicine in various Asian countries for many years. Although many reports exist on its anti-oxidative and anti-inflammatory activities and therapeutic effects against various diseases, our current knowledge of its effect on stroke is very limited. Stroke is a neurodegenerative disorder in which oxidative stress is a key hallmark. Following the 2005 discovery by Igarashi's group that acrolein produced from polyamines in vivo is a major cause of cell damage by oxidative stress, we now describe the effects of anti-oxidative extracts from P. igniarius on symptoms of experimentally induced stroke in mice. The toxicity of acrolein was compared with that of hydrogen peroxide in a mouse mammary carcinoma cell line (FM3A). We found that the complete inhibition of FM3A cell growth by 5 μM acrolein could be prevented by crude ethanol extract of P. igniarius at 0.5 μg/ml. Seven polyphenol compounds named 3,4-dihydroxybenzaldehyde, 4-(3,4-dihydroxyphenyl-3-buten-2one, inonoblin C, phelligridin D, inoscavin C, phelligridin C and interfungin B were identified from this ethanolic extract by LCMS and 1H NMR. Polyphenol-containing extracts of P. igniarius were then used to prevent acrolein toxicity in a mouse neuroblastoma (Neuro-2a) cell line. The results suggested that Neuro-2a cells were protected from acrolein toxicity at 2 and 5 μM by this polyphenol extract at 0.5 and 2 μg/ml, respectively. Furthermore, in mice with experimentally induced stroke, intraperitoneal treatment with P. igniarius polyphenol extract at 20 μg/kg caused a reduction of the infarction volume by 62.2% compared to untreated mice. These observations suggest that the polyphenol extract of P. igniarius could serve to prevent ischemic stroke.

  11. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection

    International Nuclear Information System (INIS)

    Mahanty, Siddhartha; Gupta, Manisha; Paragas, Jason; Bray, Mike; Ahmed, Rafi; Rollin, Pierre E.

    2003-01-01

    A mouse-adapted strain of Ebola Zaire virus produces a fatal infection when BALB/cj mice are infected intraperitoneally (ip) but subcutaneous (sc) infection with the same virus fails to produce illness and confers long-term protection from lethal ip rechallenge. To identify immune correlates of protection in this model, we compared viral replication and cytokine/chemokine responses to Ebola virus in mice infected ip (10 PFU/mouse), or sc (100 PFU/mouse) and sc 'immune' mice rechallenged ip (10 6 PFU/mouse) at several time points postinfection (pi). Ebola viral antigens were detected in the serum, liver, spleen, and kidneys of ip-infected mice by day 2 pi, increasing up to day 6. Sc-infected mice and immune mice rechallenged ip had no detectable viral antigens until day 6 pi, when low levels of viral antigens were detected in the livers of sc-infected mice only. TNF-α and MCP-1 were detected earlier and at significantly higher levels in the serum and tissues of ip-infected mice than in sc-infected or immune mice challenged ip. In contrast, high levels of IFN-α and IFN-γ were found in tissues within 2 days after challenge in sc-infected and immune mice but not in ip-infected mice. Mice became resistant to ip challenge within 48 h of sc infection, coinciding with the rise in tissue IFN-α levels. In this model of Ebola virus infection, the nonlethal sc route of infection is associated with an attenuated inflammatory response and early production of antiviral cytokines, particularly IFN-α, as compared with lethal ip infection

  12. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    Science.gov (United States)

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  13. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models.

    Science.gov (United States)

    Butler, David; Hwang, Jeannie; Estick, Candice; Nishiyama, Akiko; Kumar, Saranya Santhosh; Baveghems, Clive; Young-Oxendine, Hollie B; Wisniewski, Meagan L; Charalambides, Ana; Bahr, Ben A

    2011-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ(1-42). Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APP(SwInd) and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβ(x-42) sandwich ELISA measures in APP(SwInd) mice of 10-11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ(1-38) occurs as Aβ(1-42) levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ(1-42) accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof

  14. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease.

    Science.gov (United States)

    Roy, Avik; Ghosh, Anamitra; Jana, Arundhati; Liu, Xiaojuan; Brahmachari, Saurav; Gendelman, Howard E; Pahan, Kalipada

    2012-01-01

    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac), but not p21(ras), attenuated the production of ROS from activated microglia. Inhibition of both p21(ras) and p21(rac) activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras) and p21(rac)in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras) and p21(rac), protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.

  15. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Avik Roy

    Full Text Available Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB, an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI and farnesyl transferase (FTI inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac, but not p21(ras, attenuated the production of ROS from activated microglia. Inhibition of both p21(ras and p21(rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras and p21(racin vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras and p21(rac, protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.

  16. Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease

    Science.gov (United States)

    Jana, Arundhati; Liu, Xiaojuan; Brahmachari, Saurav; Gendelman, Howard E.; Pahan, Kalipada

    2012-01-01

    Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21rac, but not p21ras, attenuated the production of ROS from activated microglia. Inhibition of both p21ras and p21rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21ras and p21rac in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Oral administration of NaPB reduced nigral activation of p21ras and p21rac, protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders. PMID:22723850

  17. Protective effects of cultured and fermented ginseng extracts against scopolamine-induced memory loss in a mouse model.

    Science.gov (United States)

    Han, Song-Hee; Kim, Sung-June; Yun, Young Won; Nam, Sang Yoon; Lee, Hu-Jang; Lee, Beom-Jun

    2018-03-01

    This study was performed to investigate the effect of a concentrate of fermented wild ginseng root culture (HLJG0701) on memory improvement in the scopolamine (SPL)-induced memory-deficient mouse model. Eight-week-old male ICR mice were used to evaluate the protective effect of HLJG0701 against the SPL-induced memory loss animal model. The Morris water maze test, which measures hippocampus-dependent learning ability, and the Y-maze test, a short-term memory assessment test, were performed and related markers were analyzed. HLJG0701-treated groups displayed significantly reduced acetylcholinesterase activity and increased acetylcholine level compared with the SPL-administered group (SPL-G) ( P memory loss by inhibiting acetylcholinesterase activity and preventing acetylcholine deficiency.

  18. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus.

    Science.gov (United States)

    Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan

    2014-08-01

    Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.

  19. Protective Effects of Butyrate-based Compounds on a Mouse Model for Spinal Muscular Atrophy

    Science.gov (United States)

    Butchbach, Matthew E. R.; Lumpkin, Casey J.; Harris, Ashlee W.; Saieva, Luciano; Edwards, Jonathan D.; Workman, Eileen; Simard, Louise R.; Pellizzoni, Livio; Burghes, Arthur H. M.

    2016-01-01

    Proximal spinal muscular atrophy (SMA) is a childhood-onset degenerative disease resulting from the selective loss of motor neurons in the spinal cord. SMA is caused by the loss of SMN1 (survival motor neuron 1) but retention of SMN2. The number of copies of SMN2 modifies disease severity in SMA patients as well as in mouse models, making SMN2 a target for therapeutics development. Sodium butyrate (BA) and its analogue (4PBA) have been shown to increase SMN2 expression in SMA cultured cells. In this study, we examined the effects of BA, 4PBA as well as two BA prodrugs—glyceryl tributyrate (BA3G) and VX563—on the phenotype of SMNΔ7 SMA mice. Treatment with 4PBA, BA3G and VX563 but not BA beginning at PND04 significantly improved the lifespan and delayed disease end stage, with administration of VX563 also improving the growth rate of these mice. 4PBA and VX563 improved the motor phenotype of SMNΔ7 SMA mice and prevented spinal motor neuron loss. Interestingly, neither 4PBA nor VX563 had an effect on SMN expression in the spinal cords of treated SMNΔ7 SMA mice; however, they inhibited histone deacetylase (HDAC) activity and restored the normal phosphorylation states of Akt and glycogen synthase kinase 3β, both of which are altered by SMN deficiency in vivo. These observations show that BA-based compounds with favourable pharmacokinetics ameliorate SMA pathology possibly by modulating HDAC and Akt signaling. PMID:26892876

  20. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jackalina M Van Kampen

    Full Text Available Parkinson's disease (PD is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD.

  1. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways.

    Science.gov (United States)

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-07-12

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and reduce of capase-3, p53, IL-6 and IFN-γ.

  2. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  3. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  4. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model.

    Directory of Open Access Journals (Sweden)

    Chunqing Ai

    Full Text Available Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model.Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro.Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes.Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.

  5. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model.

    Science.gov (United States)

    Xue, Miaoge; Yu, Linqi; Jia, Lianzhi; Li, Yijian; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2016-11-01

    In attempts to develop recombinant subunit vaccines against rotavirus disease, it was previously shown that the N-terminal truncated VP8* protein, VP8-1 (aa26-231), is a good vaccine candidate when used for immunization in combination with Freund's adjuvant. However, this protein stimulated only weak immune response when aluminum hydroxide was used as an adjuvant. In this study, the nontoxic B subunit of cholera toxin (CTB) was employed as intra-molecular adjuvant to improve the immunogenicity of VP8-1. Both, the N-terminal and C-terminal fusion proteins, were purified to homogeneity, at which stage they formed pentamers, and showed significantly higher immunogenicity and protective efficacy than a VP8-1/aluminum hydroxide mixture in a mouse model. Compared to VP8-1-CTB, CTB-VP8-1 showed higher binding activity to both, GM1 and the conformation sensitive neutralizing monoclonal antibodies specific to VP8. More importantly, CTB-VP8-1 elicited higher titers of neutralizing antibodies and conferred higher protective efficacy than VP8-1-CTB. Therefore, the protein CTB-VP8-1, with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development of an alternative, replication-incompetent, parenterally administered vaccine against rotavirus disease.

  6. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?

    Science.gov (United States)

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert

    2008-06-26

    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  7. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model

    OpenAIRE

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-01-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30–35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose,...

  8. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model.

    Science.gov (United States)

    Ermler, Megan E; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-06-15

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection. IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed. Copyright © 2017 American Society for Microbiology.

  9. A protective effect of epidermal powder immunization in a mouse model of equine herpesvirus-1 infection

    International Nuclear Information System (INIS)

    Kondo, Takashi; McGregor, Martha; Chu, Qili; Chen, Dexiang; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2004-01-01

    To evaluate the protective effect of epidermal powder immunization (EPI) against equine herpesvirus-1 (EHV-1) infection, we prepared a powder vaccine in which formalin-inactivated virions were embedded in water-soluble, sugar-based particles. A PowderJect device was used to immunize mice with the powder vaccine via their abdominal skin. We found that twice-immunized mice were protected against challenge with the wild-type virus. This protective effect was equivalent to or better than that observed in mice immunized with other types of vaccines, including a gene gun-mediated DNA vaccine containing the glycoprotein D (gD) gene or conventional inactivated virus vaccines introduced via intramuscular or intranasal injections. These findings indicate that the powder vaccine is a promising approach for the immunological control of EHV-1 infection, either alone or as a part of prime-boost vaccination strategies

  10. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety.

    Science.gov (United States)

    Schramm, N L; McDonald, M P; Limbird, L E

    2001-07-01

    The noradrenergic system is involved in the regulation of many physiological and psychological processes, including the modulation of mood. The alpha(2)-adrenergic receptors (alpha(2)-ARs) modulate norepinephrine release, as well as the release of serotonin and other neurotransmitters, and are therefore potential targets for antidepressant and anxiolytic drug development. The current studies were undertaken to examine the role of the alpha(2A) subtype of alpha(2)-AR in mouse behavioral models of depression and anxiety. We have observed that the genetic knock-out of the alpha(2A)-AR makes mice less active in a modified version of Porsolt's forced swim test and insensitive to the antidepressant effects of the tricyclic drug imipramine in this paradigm. Furthermore, alpha(2A)-AR knock-out mice appear more anxious than wild-type C57 Bl/6 mice in the rearing and light-dark models of anxiety after injection stress. These findings suggest that the alpha(2A)-AR may play a protective role in some forms of depression and anxiety and that the antidepressant effects of imipramine may be mediated by the alpha(2A)-AR.

  11. Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model

    OpenAIRE

    Ermler, Megan E.; Kirkpatrick, Ericka; Sun, Weina; Hai, Rong; Amanat, Fatima; Chromikova, Veronika; Palese, Peter; Krammer, Florian

    2017-01-01

    Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeri...

  12. Protection from diclofenac-induced liver injury by Yulangsan polysaccharide in a mouse model.

    Science.gov (United States)

    Huang, Jianchun; Nguyen, Vanphuc; Tang, Xiaojun; Wei, Jinbin; Lin, Xing; Lai, Zefeng; Doan, Vanminh; Xie, Qiuqiao; Huang, Renbin

    2016-12-04

    Millettia pulchra Kurz var-laxior (Dunn) Z. Wei, a wild-growing plant of the family Fabaceae is known to possess multifarious medicinal properties. Yulangsan polysaccharide (YLSPS) is a chief ingredient of its root, which has been used in Chinese traditional medicine with a long history for remedy of acute or chronic hepatitis and jaundice. To investigate the ability of the YLSPS to protect against diclofenac-induced hepatotoxicity in mice. Mice were orally treated with YLSPS daily 1h after the injection of diclofenac for 2 weeks. Dimethyl diphenyl bicarboxylate was used as a reference drug. YLSPS effectively reduced the elevated levels of serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and enhanced the reduction of superoxide dismutase, catalase, and glutathione peroxidase activities in the liver. Moreover, the content of malondialdehyde was reduced by treatment with YLSPS, and histological findings also confirmed the anti-hepatotoxic activity. In addition, YLSPS significantly inhibited proinflammatory mediators, such as tumor necrosis factor-alpha and interleukin 1 beta. YLSPS also enhanced mitochondrial antioxidants and inhibited cell death by preventing the down-regulation of Bcl-2 and the up-regulation and release of Bax along with caspase 9 and 3 activity; thus, these findings confirm the involvement of mitochondria in diclofenac-induced apoptosis. The results indicate that protective effects of YLSPS against diclofenac-induced acute hepatic injury may rely on its effect on reducing oxidative stress, suppressing inflammatory responses, and improving drug-metabolizing enzyme activity in the liver. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis.

    Science.gov (United States)

    Willett, Jonathan W; Herrou, Julien; Czyz, Daniel M; Cheng, Jason X; Crosson, Sean

    2016-09-30

    The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Immunization with lipopolysaccharide-deficient whole cells provides protective immunity in an experimental mouse model of Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Meritxell García-Quintanilla

    Full Text Available The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010, one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii.

  15. The anti-diabetic drug metformin protects against chemotherapy-induced peripheral neuropathy in a mouse model.

    Directory of Open Access Journals (Sweden)

    Qi-Liang Mao-Ying

    Full Text Available Chemotherapy-induced peripheral neuropathy (CIPN characterized by loss of sensory sensitivity and pain in hands and feet is the major dose-limiting toxicity of many chemotherapeutics. At present, there are no FDA-approved treatments for CIPN. The anti-diabetic drug metformin is the most widely used prescription drug in the world and improves glycemic control in diabetes patients. There is some evidence that metformin enhances the efficacy of cancer treatment. The aim of this study was to test the hypothesis that metformin protects against chemotherapy-induced neuropathic pain and sensory deficits. Mice were treated with cisplatin together with metformin or saline. Cisplatin induced increased sensitivity to mechanical stimulation (mechanical allodynia as measured using the von Frey test. Co-administration of metformin almost completely prevented the cisplatin-induced mechanical allodynia. Co-administration of metformin also prevented paclitaxel-induced mechanical allodynia. The capacity of the mice to detect an adhesive patch on their hind paw was used as a novel indicator of chemotherapy-induced sensory deficits. Co-administration of metformin prevented the cisplatin-induced increase in latency to detect the adhesive patch indicating that metformin prevents sensory deficits as well. Moreover, metformin prevented the reduction in density of intra-epidermal nerve fibers (IENFs in the paw that develops as a result of cisplatin treatment. We conclude that metformin protects against pain and loss of tactile function in a mouse model of CIPN. The finding that metformin reduces loss of peripheral nerve endings indicates that mechanism underlying the beneficial effects of metformin includes a neuroprotective activity. Because metformin is widely used for treatment of type II diabetes, has a broad safety profile, and is currently being tested as an adjuvant drug in cancer treatment, clinical translation of these findings could be rapidly achieved.

  16. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  17. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  18. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis

    Science.gov (United States)

    Navarathna, Dhammika H. M. L. P.; Stein, Erica V.; Lessey-Morillon, Elizabeth C.; Nayak, Debasis; Martin-Manso, Gema; Roberts, David D.

    2015-01-01

    CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47 -/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47 -/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47 -/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47 -/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47 -/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47 -/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47 -/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity. PMID:26010544

  19. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  20. D-β-hydroxybutyrate is protective in mouse models of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Soyeon Lim

    Full Text Available Abnormalities in mitochondrial function and epigenetic regulation are thought to be instrumental in Huntington's disease (HD, a fatal genetic disorder caused by an expanded polyglutamine track in the protein huntingtin. Given the lack of effective therapies for HD, we sought to assess the neuroprotective properties of the mitochondrial energizing ketone body, D-β-hydroxybutyrate (DβHB, in the 3-nitropropionic acid (3-NP toxic and the R6/2 genetic model of HD. In mice treated with 3-NP, a complex II inhibitor, infusion of DβHB attenuates motor deficits, striatal lesions, and microgliosis in this model of toxin induced-striatal neurodegeneration. In transgenic R6/2 mice, infusion of DβHB extends life span, attenuates motor deficits, and prevents striatal histone deacetylation. In PC12 cells with inducible expression of mutant huntingtin protein, we further demonstrate that DβHB prevents histone deacetylation via a mechanism independent of its mitochondrial effects and independent of histone deacetylase inhibition. These pre-clinical findings suggest that by simultaneously targeting the mitochondrial and the epigenetic abnormalities associated with mutant huntingtin, DβHB may be a valuable therapeutic agent for HD.

  1. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity.

    Science.gov (United States)

    Bouslama, Myriam; Adla-Biassette, Homa; Ramanantsoa, Nelina; Bourgeois, Thomas; Bollen, Bieke; Brissaud, Olivier; Matrot, Boris; Gressens, Pierre; Gallego, Jorge

    2015-01-01

    Apnea of prematurity (AOP) is considered a risk factor for neurodevelopmental disorders in children based on epidemiological studies. This idea is supported by studies in newborn rodents in which exposure to intermittent hypoxia (IH) as a model of AOP significantly impairs development. However, the severe IH used in these studies may not fully reflect the broad spectrum of AOP severity. Considering that hypoxia appears neuroprotective under various conditions, we hypothesized that moderate IH would protect the neonatal mouse brain against behavioral stressors and brain damage. On P6, each pup in each litter was randomly assigned to one of three groups: a group exposed to IH while separated from the mother (IH group), a control group exposed to normoxia while separated from the mother (AIR group), and a group of untreated unmanipulated pups left continuously with their mother until weaning (UNT group). Exposure to moderate IH (8% O2) consisted of 20 hypoxic events/hour, 6 h per day from postnatal day 6 (P6) to P10. The stress generated by maternal separation in newborn rodents is known to impair brain development, and we expected this effect to be smaller in the IH group compared to the AIR group. In a separate experiment, we combined maternal separation with excitotoxic brain lesions mimicking those seen in preterm infants. We analyzed memory, angiogenesis, neurogenesis and brain lesion size. In non-lesioned mice, IH stimulated hippocampal angiogenesis and neurogenesis and improved short-term memory indices. In brain-lesioned mice, IH decreased lesion size and prevented memory impairments. Contrary to common perception, IH mimicking moderate apnea may offer neuroprotection, at least in part, against brain lesions and cognitive dysfunctions related to prematurity. AOP may therefore have beneficial effects in some preterm infants. These results support the need for stratification based on AOP severity in clinical trials of treatments for AOP, to determine whether in

  2. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity

    Directory of Open Access Journals (Sweden)

    Myriam eBouslama

    2015-11-01

    Full Text Available Apnea of prematurity (AOP is considered a risk factor for neurodevelopmental disorders in children based on epidemiological studies. This idea is supported by studies in newborn rodents in which exposure to intermittent hypoxia (IH as a model of AOP significantly impairs development. However, the severe IH used in these studies may not fully reflect the broad spectrum of AOP severity. Considering that hypoxia appears neuroprotective under various conditions, we hypothesized that moderate IH would protect the neonatal mouse brain against behavioral stressors and brain damage. On P6, each pup in each litter was randomly assigned to one of three groups: a group exposed to IH while separated from the mother (IH group, a control group exposed to normoxia while separated from the mother (AIR group, and a group of untreated unmanipulated pups left continuously with their mother until weaning (UNT group. Exposure to moderate IH consisted of 20 hypoxic events/hour, 6 hours per day from postnatal day 6 (P6 to P10. The stress generated by maternal separation in newborn rodents is known to impair brain development, and we expected this effect to be smaller in the IH group compared to the AIR group. In a separate experiment, we combined maternal separation with excitotoxic brain lesions mimicking those seen in preterm infants. We analyzed memory, angiogenesis, neurogenesis and brain lesion size. In non-lesioned mice, IH stimulated hippocampal angiogenesis and neurogenesis and improved short-term memory indices. In brain-lesioned mice, IH decreased lesion size and prevented memory impairments. Contrary to common perception, IH mimicking moderate apnea may offer neuroprotection, at least in part, against brain lesions and cognitive dysfunctions related to prematurity. AOP may therefore have beneficial effects in some preterm infants. These results support the need for stratification based on AOP severity in clinical trials of treatments for AOP, to determine

  3. Pan-Influenza A Protection by Prime-Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model.

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime-boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro , CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo . Heterologous combination of prime (H1)-boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a "truly" universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising results

  4. Pan-Influenza A Protection by Prime–Boost Vaccination with Cold-Adapted Live-Attenuated Influenza Vaccine in a Mouse Model

    Science.gov (United States)

    Jang, Yo Han; Kim, Joo Young; Byun, Young Ho; Son, Ahyun; Lee, Jeong-Yoon; Lee, Yoon Jae; Chang, Jun; Seong, Baik Lin

    2018-01-01

    Influenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses. Using a mouse model, we tested different prime–boost combinations of CAIVs for their ability to induce humoral and T-cell responses, and protective efficacy against H1 and H5 (HA group 1) as well as H3 and H7 (HA group 2) influenza viruses. Notably, even in the absence of antibody-mediated neutralizing activity or HA inhibitory activity in vitro, CAIVs provided a potent protection against heterologous and heterosubtypic lethal challenges in vivo. Heterologous combination of prime (H1)–boost (H5) vaccine strains showed the most potent cross-protection efficacy. In vivo depletion experiments demonstrated not only that T cells and natural killer cells contributed to the cross-protection, but also the involvement of antibody-dependent mechanisms for the cross-protection. Vaccination-induced antibodies did not enhance the infectivity of heterologous viruses, and prime vaccination did not interfere with neutralizing antibody generation by the boost vaccination, allaying vaccine safety concerns associated with heterogeneity between the vaccines and challenge strains. Our data show that CAIV-based strategy can serve as a simple but powerful option for developing a “truly” universal influenza vaccine providing pan-influenza A protection, which has not been achieved yet by other vaccine strategies. The promising

  5. Evaluation of cross-protection by immunization with an experimental trivalent companion animal periodontitis vaccine in the mouse periodontitis model.

    Science.gov (United States)

    Hardham, John; Sfintescu, Cornelia; Evans, Richard T

    2008-03-01

    Companion animal periodontal disease is one of the most prevalent diseases seen by veterinarians. The goal of this study was to evaluate the vaccine performance of a trivalent canine periodontitis vaccine in the mouse oral challenge model of periodontitis. Mice vaccinated subcutaneously with an inactivated, whole-cell vaccine preparation of Porphyromonas denticanis, Porphyromonas gulae, and Porphyromonas salivosa displayed significantly reduced alveolar bone loss in response to heterologous and cross-species challenges as compared to sham vaccinated animals. Based on the results of these studies, a periodontitis vaccine may be a useful tool in preventing the initiation and progression of periodontitis caused by the most commonly isolated pigmenting anaerobic bacteria in animals.

  6. Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Yi-Wen Liu

    2017-07-01

    Full Text Available Clostridium difficile is considered to be one of the major cause of infectious diarrhea in healthcare systems worldwide. Symptoms of C. difficile infection are caused largely by the production of two cytotoxins: toxin A (TcdA and toxin B (TcdB. Vaccine development is considered desirable as it would decrease the mounting medical costs and mortality associated with C. difficile infections. Biodegradable nanoparticles composed of poly-γ-glutamic acid (γ-PGA and chitosan have proven to be a safe and effective antigen delivery system for many viral vaccines. However, few studies have used this efficient antigen carrier for bacterial vaccine development. In this study, we eliminated the toxin activity domain of toxin B by constructing a recombinant protein rTcdB consists of residues 1852-2363 of TcdB receptor binding domain. The rTcdB was encapsulated in nanoparticles composed of γ-PGA and chitosan. Three rounds of intraperitoneal vaccination led to high anti-TcdB antibody responses and afforded mice full protection mice from lethal dose of C. difficile spore challenge. Protection was associated with high levels of toxin-neutralizing antibodies, and the rTcdB-encapsulated NPs elicited a longer-lasting antibody titers than antigen with the conventional adjuvant, aluminum hydroxide. Significant reductions in the level of proinflammatory cytokines and chemokines were observed in vaccinated mouse. These results suggested that polymeric nanocomplex-based vaccine design can be useful in developing vaccine against C. difficile infections.

  7. Protective effect of enterovirus‑71 (EV71) virus‑like particle vaccine against lethal EV71 infection in a neonatal mouse model.

    Science.gov (United States)

    Cao, Lei; Mao, Fengfeng; Pang, Zheng; Yi, Yao; Qiu, Feng; Tian, Ruiguang; Meng, Qingling; Jia, Zhiyuan; Bi, Shengli

    2015-08-01

    Enterovirus-71 (EV71) is a viral pathogen that causes severe cases of hand, foot and mouth disease (HFMD) among young children, with significant mortality. Effective vaccines against HFMD are urgently required. Several EV71 virus-like particle (VLP) vaccine candidates were found to be protective in the neonatal mouse EV71 challenge model. However, to what extent the VLP vaccine protects susceptible organs against EV71 infection in vivo has remained elusive. In the present study, the comprehensive immunogenicity of a potential EV71 vaccine candidate based on VLPs was evaluated in a neonatal mouse model. Despite lower levels of neutralizing antibodies to EV71 in the sera of VLP-immunized mice compared with those in mice vaccinated with inactivated EV71, the VLP-based vaccine was shown to be able to induce immunoglobulin (Ig)G and IgA memory-associated cellular immune responses to EV71. Of note, the EV71 VLP vaccine candidate was capable of inhibiting viral proliferation in cardiac muscle, skeletal muscle, lung and intestine of immunized mice and provided effective protection against the pathological damage caused by viral attack. In particular, the VLP vaccine was able to inhibit the transportation of EV71 from the central nervous system to the muscle tissue and greatly protected muscle tissue from infection, along with recovery from the viral infection. This led to nearly 100% immunoprotective efficacy, enabling neonatal mice delivered by VLP-immunized female adult mice to survive and grow with good health. The present study provided valuable additional knowledge of the specific protective efficacy of the EV71 VLP vaccine in vivo, which also indicated that it is a promising potential candidate for being developed into an EV71 vaccine.

  8. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  9. Utility of a mouse model of osteoarthritis to demonstrate cartilage protection by IFNγ-primed equine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Marie Maumus

    2016-09-01

    Full Text Available Objective. Mesenchymal stem cells isolated from adipose tissue (ASC have been shown to influence the course of osteoarthritis (OA in different animal models and are promising in veterinary medicine for horses involved in competitive sport. The aim of this study was to characterize equine ASCs (eASC and investigate the role of interferon-gamma (IFNγ-priming on their therapeutic effect in a murine model of OA, which could be relevant to equine OA.Methods. ASC were isolated from subcutaneous fat. Expression of specific markers was tested by cytometry and RT-qPCR. Differentiation potential was evaluated by histology and RT-qPCR. For functional assays, naïve or IFNγ-primed eASCs were cocultured with PBMC or articular cartilage explants. Finally, the therapeutic effect of eASCs was tested in the model of collagenase-induced OA in mice (CIOA.Results. The immunosuppressive function of eASCs on equine T cell proliferation and their chondroprotective effect on equine cartilage explants were demonstrated in vitro. Both cartilage degradation and T cell activation were reduced by naïve and IFNγ-primed eASCs but IFNγ-priming enhanced these functions. In CIOA, intra-articular injection of eASCs prevented articular cartilage from degradation and IFNγ-primed eASCs were more potent than naïve cells. This effect was related to the modulation of eASC secretome by IFNγ-priming.Conclusion. IFNγ-priming of eASCs potentiated their antiproliferative and chondroprotective functions. We demonstrated that the immunocompetent mouse model of CIOA was relevant to test the therapeutic efficacy of xenogeneic eASCs for OA and confirmed that IFNγ-primed eASCs may have a therapeutic value for musculoskeletal diseases in veterinary medicine.

  10. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model.

    Directory of Open Access Journals (Sweden)

    C Preston Neff

    Full Text Available Sexual HIV-1 transmission by vaginal route is the most predominant mode of viral transmission, resulting in millions of new infections every year. In the absence of an effective vaccine, there is an urgent need to develop other alternative methods of pre-exposure prophylaxis (PrEP. Many novel drugs that are currently approved for clinical use also show great potential to prevent viral sexual transmission when administered systemically. A small animal model that permits rapid preclinical evaluation of potential candidates for their systemic PrEP efficacy will greatly enhance progress in this area of investigation. We have previously shown that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and displays CD4 T cell loss typical to that seen in the human. Thus far systemic PrEP studies have been primarily limited to RT inhibitors exemplified by tenofovir and emtricitabine. In these proof-of-concept studies we evaluated two new classes of clinically approved drugs with different modes of action namely, an integrase inhibitor raltegravir and a CCR5 inhibitor maraviroc as potential systemically administered chemo-prophylactics. Our results showed that oral administration of either of these drugs fully protects against vaginal HIV-1 challenge in the RAG-hu mouse model. Based on these results both these drugs show great promise for further development as orally administered PrEPs.

  11. Biofilm Formation Protects Salmonella from the Antibiotic Ciprofloxacin In Vitro and In Vivo in the Mouse Model of chronic Carriage.

    Science.gov (United States)

    González, Juan F; Alberts, Halley; Lee, Joel; Doolittle, Lauren; Gunn, John S

    2018-01-09

    Typhoid fever is caused by the human-restricted pathogen Salmonella enterica sv. Typhi. Approximately 5% of people that resolve the disease become chronic carriers, with the gallbladder as the main reservoir of the bacteria. Of these, about 90% present with gallstones, on which Salmonella form biofilms. Because S. Typhi is a human-restricted pathogen, these carriers are the main source of dissemination of the disease; unfortunately, antibiotic treatment has shown to be an ineffective therapy. This is believed to be caused by the inherent antibiotic resistance conferred by Salmonella biofilms growing on gallstones. The gallstone mouse model with S. Typhimurium has proven to be an excellent surrogate for S. Typhi chronic infection. In this study, we test the hypothesis that the biofilm state confers Salmonella with the increased resistance to antibiotics observed in cases of chronic carriage. We found that, in the biofilm state, Salmonella is significantly more resistant to ciprofloxacin, a common antibiotic used for the treatment of Salmonella, both in vitro (p < 0.001 for both S. Typhi and S. Typhimurium with respect to planktonic cells) and in vivo (p = 0.0035 with respect to control mice).

  12. Protective Effects of Dietary Supplementation with a Combination of Nutrients in a Transgenic Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Shengyuan Wang

    Full Text Available This study investigated the effects of intervention with a combination of nutrients in the amyloid precursor protein-presenilin (APP-PSN C57BL/6J double transgenic mouse model of Alzheimer's disease (AD.A total of 72 2-month-old APP-PSN mice were randomly assigned to three groups. The model group (MG was fed regular, unsupplemented chow, while the low- and high-dose treatment groups (LG and HG, respectively were given a combination of nutrients that included phosphatidylserine, blueberry extracts, docosahexaenoic acid, and eicosapentaenoic acid as part of their diet. An additional 24 wild-type littermates that were fed unsupplemented chow served as the negative control group (NG. After 3 and 7 months of treatment, the cognitive performance was assessed with the Morris water maze and the shuttle box escape/avoidance task, and the biochemical parameters and oxidative stress were evaluated in both the blood and brain.An improvement in antioxidant capacity was observed in the treatment groups relative to the MG at 3 months, while superior behavioral test results were observed in the mice of the HG and NG groups. In the MG, pycnosis was detected in neuronal nuclei, and a loss of neurons was observed in the cerebral cortex and the hippocampus. At 7 months, the β-amyloid1-42 peptide accumulation was significantly elevated in the MG but was markedly lower in the mice fed the nutrient combination. The antioxidant capacity and behavioral test scores were also higher in these mice.Early intervention with a combination of nutrients should be considered as a strategy for preventing cognitive decline and other symptoms associated with AD.

  13. Hydrogen-rich Water Exerting a Protective Effect on Ovarian Reserve Function in a Mouse Model of Immune Premature Ovarian Failure Induced by Zona Pellucida 3

    Science.gov (United States)

    He, Xin; Wang, Shu-Yu; Yin, Cheng-Hong; Wang, Tong; Jia, Chan-Wei; Ma, Yan-Min

    2016-01-01

    Background: Premature ovarian failure (POF) is a disease that affects female fertility but has few effective treatments. Ovarian reserve function plays an important role in female fertility. Recent studies have reported that hydrogen can protect male fertility. Therefore, we explored the potential protective effect of hydrogen-rich water on ovarian reserve function through a mouse immune POF model. Methods: To set up immune POF model, fifty female BALB/c mice were randomly divided into four groups: Control (mice consumed normal water, n = 10), hydrogen (mice consumed hydrogen-rich water, n = 10), model (mice were immunized with zona pellucida glycoprotein 3 [ZP3] and consumed normal water, n = 15), and model-hydrogen (mice were immunized with ZP3 and consumed hydrogen-rich water, n = 15) groups. After 5 weeks, mice were sacrificed. Serum anti-Müllerian hormone (AMH) levels, granulosa cell (GC) apoptotic index (AI), B-cell leukemia/lymphoma 2 (Bcl-2), and BCL2-associated X protein (Bax) expression were examined. Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA) software. Results: Immune POF model, model group exhibited markedly reduced serum AMH levels compared with those of the control group (5.41 ± 0.91 ng/ml vs. 16.23 ± 1.97 ng/ml, P = 0.033) and the hydrogen group (19.65 ± 7.82 ng/ml, P = 0.006). The model-hydrogen group displayed significantly higher AMH concentrations compared with that of the model group (15.03 ± 2.75 ng/ml vs. 5.41 ± 0.91 ng/ml, P = 0.021). The GC AI was significantly higher in the model group (21.30 ± 1.74%) than those in the control (7.06 ± 0.27%), hydrogen (5.17 ± 0.41%), and model-hydrogen groups (11.24 ± 0.58%) (all P hydrogen group compared with that of the hydrogen group (11.24 ± 0.58% vs. 5.17 ± 0.41%, P = 0.021). Compared with those of the model group, ovarian tissue Bcl-2 levels increased (2.18 ± 0.30 vs. 3.01 ± 0.33, P = 0.045) and the Bax/Bcl-2 ratio decreased in the model-hydrogen group

  14. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    Science.gov (United States)

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  15. Indirect application of near infrared light induces neuro-protection in a mouse model of parkinsonism - an abscopal neuro-protective effective evaluation

    International Nuclear Information System (INIS)

    Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Spana, S.; Purushothuman, S.; Stone, J.; El Massri, N.; Mitrofanis, J.; Moro, C.; Torres, N.; Chabrol, C.; De Jaeger, X.; Reinhart, F.; Benabid, A.L.; Wang, X.S.

    2014-01-01

    We have previously shown near infrared light (NIr), directed transcranially, mitigates the loss of dopaminergic cells in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice, a model of parkinsonism. These findings complement others suggesting NIr treatment protects against damage from various insults. However one puzzling feature of NIr treatment is that unilateral exposure can lead to a bilateral healing response, suggesting NIr may have 'indirect' protective effects. We investigated whether remote NIr treatment is neuro-protective by administering different MPTP doses (50-, 75-, 100-mg/kg) to mice and treating with 670-nm light directed specifically at either the head or body. Our results show that, despite no direct irradiation of the damaged tissue, remote NIr treatment produces a significant rescue of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta at the milder MPTP dose of 50-mg/kg (30% increase vs sham-treated MPTP mice, p≤ 0.05). However this protection did not appear as robust as that achieved by direct irradiation of the head (50% increase vs sham-treated MPTP mice, p ≤0.001). There was no quantifiable protective effect of NIr at higher MPTP doses, irrespective of the delivery mode. Astrocyte and microglia cell numbers in substantia nigra pars compacta were not influenced by either mode of NIr treatment. In summary, the findings suggest that treatment of a remote tissue with NIr is sufficient to induce protection of the brain, reminiscent of the 'abscopal effect' sometimes observed in radiation treatment of metastatic cancer. This discovery has implications for the clinical translation of light-based therapies, providing an improved mode of delivery over trans-cranial irradiation. (authors)

  16. In vivo islet protection by a nuclear import inhibitor in a mouse model of type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Daniel J Moore

    2010-10-01

    Full Text Available Insulin-dependent Type 1 diabetes (T1D is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction.Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells.These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D.

  17. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  18. Pancreatic protective and hypoglycemic effects of Vitex agnus-castus L. fruit hydroalcoholic extract in D-galactose-induced aging mouse model.

    Science.gov (United States)

    Ahangarpour, Akram; Oroojan, Ali Akbar; Khorsandi, Layasadat; Najimi, Seyedeh Asma

    2017-04-01

    D-galactose induces pancreatic disorder along with aging mouse model. Vitex agnus-castus (VAC) has potential pancreatic protective effect. Hence, this study was designed to evaluate the hypoglycemic and pancreas protective effects of VAC hydroalcoholic extract in D-galactose-induced aging female mice. In the present experimental study, 72 adult female Naval Medical Research Institute (NMRI) mice (weighing 30-35 g) were divided into 6 groups of control, VAC hydroalcoholic extract, D-galactose, D-galactose + VAC hydroalcoholic extract, aged, aged + VAC hydroalcoholic extract. The aged model was prepared by subcutaneous injection of D-galactose for 45 days and, VAC hydroalcoholic extract was gavaged twice a day in the last 7 days. 24 h after the last drug and extract administrations, serum samples and pancreatic tissues were removed to evaluate experimental and histological determinations. Serum glucose level decreased in VAC, D-galactose and, aged-treated groups compared to the control ( P < 0.05). Insulin level increased in VAC and decreased in D-galactose and aged VAC-treated mice compared to the control ( P < 0.05). Homeostasis model assessment-estimated insulin resistance (HOMA-IR) increased in D-galactose, aging, and VAC hydroalcoholic extract groups ( P < 0.05) and, administration of VAC hydroalcoholic extract improved HOMA-IR in D-galactose and aging treated animals. Despite the size of pancreatic islets decreased in aged and D-galactose groups, VAC administration recovered it. Present data showed that VAC hydroalcoholic extract has hypoglycemic and pancreatic protective effects in natural aged and aging model mice.

  19. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.

    Science.gov (United States)

    Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-06-01

    Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.

  20. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer.

    Directory of Open Access Journals (Sweden)

    Emily L Lowe

    2010-09-01

    Full Text Available Inflammatory bowel disease (IBD is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC in wild type (WT and TLR2(-/- mice. Colons harvested from WT and TLR2(-/- mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/- mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/- colons exhibited a significant increase in aberrant crypt foci (ACF, resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.

  1. Myeloid protein tyrosine phosphatase 1B (PTP1B deficiency protects against atherosclerotic plaque formation in the ApoE−/− mouse model of atherosclerosis with alterations in IL10/AMPKα pathway

    Directory of Open Access Journals (Sweden)

    D. Thompson

    2017-08-01

    Conclusions: Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  2. A humanized monoclonal antibody neutralizes yellow fever virus strain 17D-204 in vitro but does not protect a mouse model from disease.

    Science.gov (United States)

    Calvert, Amanda E; Dixon, Kandice L; Piper, Joseph; Bennett, Susan L; Thibodeaux, Brett A; Barrett, Alan D T; Roehrig, John T; Blair, Carol D

    2016-07-01

    The yellow fever virus (YFV) vaccine 17D-204 is considered safe and effective, yet rare severe adverse events (SAEs), some resulting in death, have been documented following vaccination. Individuals exhibiting post-vaccinal SAEs are ideal candidates for antiviral monoclonal antibody (MAb) therapy; the time until appearance of clinical signs post-exposure is usually short and patients are quickly hospitalized. We previously developed a murine-human chimeric monoclonal antibody (cMAb), 2C9-cIgG, reactive with both virulent YFV and 17D-204, and demonstrated its ability to prevent and treat YF disease in both AG129 mouse and hamster models of infection. To counteract possible selection of 17D-204 variants that escape neutralization by treatment with a single MAb (2C9-cIgG), we developed a second cMAb, 864-cIgG, for use in combination with 2C9-cIgG in post-vaccinal therapy. MAb 864-cIgG recognizes/neutralizes only YFV 17D-204 vaccine substrain and binds to domain III (DIII) of the viral envelope protein, which is different from the YFV type-specific binding site of 2C9-cIgG in DII. Although it neutralized 17D-204 in vitro, administration of 864-cIgG had no protective capacity in the interferon receptor-deficient AG129 mouse model of 17D-204 infection. The data presented here show that although DIII-specific 864-cIgG neutralizes virus infectivity in vitro, it does not have the ability to abrogate disease in vivo. Therefore, combination of 864-cIgG with 2C9-cIgG for treatment of YF vaccination SAEs does not appear to provide an improvement on 2C9-cIgG therapy alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    Science.gov (United States)

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    Directory of Open Access Journals (Sweden)

    Hatice Karauzum

    Full Text Available Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL, gamma hemolysins (Hlg, and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.

  5. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Karen L Wozniak

    2009-09-01

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-gamma-producing C. neoformans strain, H99gamma, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99gamma compared to mice immunized with heat-killed C. neoformans (HKC.n.. Mice immunized with C. neoformans strain H99gamma had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL-4 receptor, IL-12p40, IL-12p35, IFN-gamma, T cell and B cell deficient mice with C. neoformans strain H99gamma demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99gamma-mediated protective immune responses against pulmonary C. neoformans infection. CD4(+ T cells, CD11c(+ cells, and Gr-1(+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-gamma or TNF-alpha in lungs of protected mice. In conclusion, immunization with C

  6. Influence of caffeine on the protective activity of gabapentin and topiramate in a mouse model of generalized tonic-clonic seizures.

    Science.gov (United States)

    Jargiełło-Baszak, Małgorzata; Chrościńska-Krawczyk, Magdalena; Andres-Mach, Marta; Łuszczki, Jarogniew J; Czuczwar, Stanisław J

    2016-08-01

    Caffeine may interact with classical antiepileptic drugs (AEDs), reducing their anticonvulsant effects in basic seizure models. The aim of the present study was to ascertain whether intraperitoneal caffeine (acute or chronic for 15 days) could attenuate the anticonvulsant effect of some newer AEDs: gabapentin (GBP) and topiramate (TPM) against electroconvulsions in mice. Maximal electroshock (MES)-induced mouse seizure model was used for the estimation of the anticonvulsant activity of TPM whilst the protective activity of GBP was evaluated in the threshold test for maximal (tonic) convulsions. Adverse effects were evaluated by measurement of long-term memory (the step-through passive avoidance task) and motor coordination (chimney test). Plasma AED concentrations were also measured to determinate any pharmacokinetic contribution to the observed effects. Caffeine (both acute and chronic at 23.1 and 46.2mg/kg) significantly reduced the protective effects of TPM against MES. As regards GBP, caffeine (acutely at 46.2mg/kg and chronically at 23.1 or 46.2mg/kg) significantly diminished the GBP-induced increases in the electroconvulsive threshold. In addition, caffeine did not affect the free plasma concentrations of TPM or GBP. Acute and chronic caffeine (23.1 and 46.2mg/kg) enhanced the impairment of motor coordination in mice pretreated with GBP whilst an opposite effect was observed in TPM injected mice and pretreated with chronic caffeine at 46.2mg/kg. The results indicate that newer AEDs, GBP or TPM behave in the exactly same way as classical antiepileptics in mice challenged with caffeine. This hazardous effect of caffeine is not subject to tolerance. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Protective effects of seahorse extracts in a rat castration and testosterone-induced benign prostatic hyperplasia model and mouse oligospermatism model.

    Science.gov (United States)

    Xu, Dong-Hui; Wang, Li-Hong; Mei, Xue-Ting; Li, Bing-Ji; Lv, Jun-Li; Xu, Shi-Bo

    2014-03-01

    This study investigated the effects of seahorse (Hippocampus spp.) extracts in a rat model of benign prostatic hyperplasia (BPH) and mouse model of oligospermatism. Compared to the sham operated group, castration and testosterone induced BPH, indicated by increased penile erection latency; decreased penis nitric oxide synthase (NOS) activity; reduced serum acid phosphatase (ACP) activity; increased prostate index; and epithelial thickening, increased glandular perimeter, increased proliferating cell nuclear antigen (PCNA) index and upregulation of basic fibroblast growth factor (bFGF) in the prostate. Seahorse extracts significantly ameliorated the histopathological changes associated with BPH, reduced the latency of penile erection and increased penile NOS activity. Administration of seahorse extracts also reversed epididymal sperm viability and motility in mice treated with cyclophosphamide (CP). Seahorse extracts have potential as a candidate marine drug for treating BPH without inducing the side effects of erectile dysfunction (ED) or oligospermatism associated with the BPH drug finasteride. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Protective effects of a composition of Chinese herbs-Gurigumu-13 on retinal ganglion cell apoptosis in DBA/2J glaucoma mouse model

    Directory of Open Access Journals (Sweden)

    Qiu-Li Zhang

    2018-03-01

    Full Text Available AIM: To explore the concrete mechanism of a Mongolian compound medicine-Gurigumu-13 (GRGM for glaucoma treatment. METHODS: DBA/2J mice, as glaucoma models, were intragastric administrated with GRGM to study the effect of GRGM on retinal ganglion cells (RGCs. The loss of RGCs was evaluated with the number of RGCs and axons. The expression of the target protein of RGCs or mouse retinas was determined by Western blot. The relative content of malondialdehyde (MDA was examined by ELISA assay. RESULTS: GRGM distinctly improved retina damage via increasing the number of neurons, RGCs and axons in a concentration dependent manner. Meanwhile, GRGM obviously decreased the high level of MDA and the expression of oxidative stress-related proteins in retinas of DBA/2J mice, but promoted the expression of antioxidant proteins. Additionally, GRGM also significantly inhibited the protein expression of Bip and Chop, which were markers of endoplasmic reticulum stress-induced apoptosis. CONCLUSION: GRGM have obvious protective effects on RGCs in DBA/2J mice, and increase the number of RGCs and axons via inhibiting oxidative stress and endoplasmic reticulum stress.

  9. Efficacy of rabies vaccines in dogs and cats and protection in a mouse model against European bat lyssavirus type 2.

    Science.gov (United States)

    Nokireki, Tiina; Jakava-Viljanen, Miia; Virtala, Anna-Maija; Sihvonen, Liisa

    2017-10-02

    Rabies is preventable by pre- and/or post-exposure prophylaxis consisting of series of rabies vaccinations and in some cases the use of immunoglobulins. The success of vaccination can be estimated either by measuring virus neutralising antibodies or by challenge experiment. Vaccines based on rabies virus offer cross-protection against other lyssaviruses closely related to rabies virus. The aim was to assess the success of rabies vaccination measured by the antibody response in dogs (n = 10,071) and cats (n = 722), as well as to investigate the factors influencing the response to vaccination when animals failed to reach a rabies antibody titre of ≥ 0.5 IU/ml. Another aim was to assess the level of protection afforded by a commercial veterinary rabies vaccine against intracerebral challenge in mice with European bat lyssavirus type 2 (EBLV-2) and classical rabies virus (RABV), and to compare this with the protection offered by a vaccine for humans. A significantly higher proportion of dogs (10.7%, 95% confidence interval CI 10.1-11.3) than cats (3.5%; 95% CI 2.3-5.0) had a vaccination antibody titre of  60 cm or larger resulted in a higher risk of failing to reach an antibody level of at least 0.5 IU/ml. When challenged with EBLV-2 and RABV, 80 and 100% of mice vaccinated with the veterinary rabies vaccine survived, respectively. When mice were vaccinated with the human rabies vaccine and challenged with EBLV-2, 75-80% survived, depending on the booster. All vaccinated mice developed sufficient to high titres of virus-neutralising antibodies (VNA) against RABV 21-22 days post-vaccination, ranging from 0.5 to 128 IU/ml. However, there was significant difference between antibody titres after vaccinating once in comparison to vaccinating twice (P lyssaviruses. Booster vaccination is recommended for dogs and cats if exposed to infected bats.

  10. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma.

    Science.gov (United States)

    Zoltowska Nilsson, A M; Lei, Y; Adner, M; Nilsson, G P

    2018-03-01

    Interleukin-33 (IL-33) and its receptor ST2 have been influentially associated with the pathophysiology of asthma. Due to the divergent roles of IL-33 in regulating mast cell functions, there is a need to further characterize IL-33/ST2-dependent mast cell responses and their significance in the context of asthma. This study aimed to investigate how IL-33/ST2-dependent mast cell responses contribute to the development of airway hyperresponsiveness (AHR) and airway inflammation in a mouse model of house dust mite (HDM)-induced asthma. Mast cell-deficient C57BL/6-Kit W-sh (Wsh) mice engrafted with either wild-type (Wsh + MC-WT) or ST2-deficient bone marrow-derived mast cells (Wsh + MC-ST2KO) were exposed to HDM delivered intranasally. An exacerbated development of AHR in response to HDM was seen in Wsh + MC-ST2KO compared with Wsh + MC-WT mice. The contribution of this IL-33/ST2-dependent mast cell response to AHR seems to reside within the smaller airways in the peripheral parts of the lung, as suggested by the isolated yet marked effect on tissue resistance. Considering the absence of a parallel increase in cellular inflammation in bronchoalveolar lavage fluid (BALF) and lung, the aggravated AHR in Wsh + MC-ST2KO mice seems to be independent of cellular inflammation. We observed an association between the elevated AHR and reduced PGE 2 levels in BALF . Due to the protective properties of PGE 2 in airway responses, it is conceivable that IL-33/ST2-dependent mast cell induction of PGE 2 could be responsible for the dampening effect on AHR. In conclusion, we reveal that IL-33/ST2-dependent mast cell responses can have a protective, rather than causative role, in the development of AHR.

  11. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  12. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane

    2016-09-01

    Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. Copyright © 2016. Published by Elsevier Inc.

  13. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection

    Directory of Open Access Journals (Sweden)

    Mitra Shourian

    2018-01-01

    Full Text Available Interleukin-1 alpha (IL-1α and interleukin-1 beta (IL-1β are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI. To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT and IL-1RI-deficient (IL-1RI−/− mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1], Th1-associated (IFNγ, and Th17-associated (IL-17A cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.

  14. Protective effects of intermittent hypoxia on brain and memory in a mouse model of apnea of prematurity

    OpenAIRE

    Bouslama, Myriam; Adle-Biassette, Homa; Ramanantsoa, Nelina; Bourgeois, Thomas; Bollen, Bieke; Brissaud, Olivier; Matrot, Boris; Gressens, Pierre; Gallego, Jorge

    2015-01-01

    Apnea of prematurity (AOP) is considered a risk factor for neurodevelopmental disorders in children based on epidemiological studies. This idea is supported by studies in newborn rodents in which exposure to intermittent hypoxia (IH) as a model of AOP significantly impairs development. However, the severe IH used in these studies may not fully reflect the broad spectrum of AOP severity. Considering that hypoxia appears neuroprotective under various conditions, we hypothesized that moderate IH...

  15. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Science.gov (United States)

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  16. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    Directory of Open Access Journals (Sweden)

    Bianca C Bernardo

    Full Text Available Previous animal studies had shown that increasing heat shock protein 70 (Hsp70 using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF. AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC. Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  17. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    Science.gov (United States)

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  18. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model.

    Science.gov (United States)

    Studer, Nicolas; Desharnais, Lyne; Beutler, Markus; Brugiroux, Sandrine; Terrazos, Miguel A; Menin, Laure; Schürch, Christian M; McCoy, Kathy D; Kuehne, Sarah A; Minton, Nigel P; Stecher, Bärbel; Bernier-Latmani, Rizlan; Hapfelmeier, Siegfried

    2016-01-01

    Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species "oligo-mouse microbiota" (Oligo-MM 12 ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM 12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM 12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7

  19. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.

    Science.gov (United States)

    Royce, Simon G; Dang, William; Ververis, Katherine; De Sampayo, Nishika; El-Osta, Assam; Tang, Mimi L K; Karagiannis, Tom C

    2011-12-01

    Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.

  20. Protective Roles for RGS2 in a Mouse Model of House Dust Mite-Induced Airway Inflammation.

    Directory of Open Access Journals (Sweden)

    Tresa George

    Full Text Available The GTPase-accelerating protein, regulator of G-protein signalling 2 (RGS2 reduces signalling from G-protein-coupled receptors (GPCRs that signal via Gαq. In humans, RGS2 expression is up-regulated by inhaled corticosteroids (ICSs and long-acting β2-adrenoceptor agonists (LABAs such that synergy is produced in combination. This may contribute to the superior clinical efficacy of ICS/LABA therapy in asthma relative to ICS alone. In a murine model of house dust mite (HDM-induced airways inflammation, three weeks of intranasal HDM (25 μg, 3×/week reduced lung function and induced granulocytic airways inflammation. Compared to wild type animals, Rgs2-/- mice showed airways hyperresponsiveness (increased airways resistance and reduced compliance. While HDM increased pulmonary inflammation observed on hematoxylin and eosin-stained sections, there was no difference between wild type and Rgs2-/- animals. HDM-induced mucus hypersecretion was also unaffected by RGS2 deficiency. However, inflammatory cell counts in the bronchoalveolar lavage fluid of Rgs2-/- animals were significantly increased (57% compared to wild type animals and this correlated with increased granulocyte (neutrophil and eosinophil numbers. Likewise, cytokine and chemokine (IL4, IL17, IL5, LIF, IL6, CSF3, CXCLl, CXCL10 and CXCL11 release was increased by HDM exposure. Compared to wild type, Rgs2-/- animals showed a trend towards increased expression for many cytokines/chemokines, with CCL3, CCL11, CXCL9 and CXCL10 being significantly enhanced. As RGS2 expression was unaffected by HDM exposure, these data indicate that RGS2 exerts tonic bronchoprotection in HDM-induced airways inflammation. Modest anti-inflammatory and anti-remodelling roles for RGS2 are also suggested. If translatable to humans, therapies that maximize RGS2 expression may prove advantageous.

  1. Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic liver disease.

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Pereira, Isabel Veloso Alves; da Silva, Tereza Cristina; Govoni, Veronica Mollica; Lopes, Valéria Veras; Crespo Yanguas, Sara; Shestopalov, Valery I; Nogueira, Marina Sayuri; de Castro, Inar Alves; Farhood, Anwar; Mannaerts, Inge; van Grunsven, Leo; Akakpo, Jephte; Lebofsky, Margitta; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2018-03-01

    Pannexins are transmembrane proteins that form communication channels connecting the cytosol of an individual cell with its extracellular environment. A number of studies have documented the presence of pannexin1 in liver as well as its involvement in inflammatory responses. In this study, it was investigated whether pannexin1 plays a role in acute liver failure and non-alcoholic steatohepatitis, being prototypical acute and chronic liver pathologies, respectively, both featured by liver damage, oxidative stress and inflammation. To this end, wild-type and pannexin1 -/- mice were overdosed with acetaminophen for 1, 6, 24 or 48h or were fed a choline-deficient high-fat diet for 8weeks. Evaluation of the effects of genetic pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, lipid accumulation, protein adduct formation, oxidative stress and inflammation. In parallel, in order to elucidate molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. The results of this study show that pannexin1 -/- diseased mice present less liver damage and oxidative stress, while inflammation was only decreased in pannexin1 -/- mice in which non-alcoholic steatohepatitis was induced. A multitude of genes related to inflammation, oxidative stress and xenobiotic metabolism were differentially modulated in both liver disease models in wild-type and in pannexin1 -/- mice. Overall, the results of this study suggest that pannexin1 may play a role in the pathogenesis of liver disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Pharmacological doses of daily ascorbate protect tumours from radiation damage after a single dose of radiation in an intracranial mouse glioma model

    Directory of Open Access Journals (Sweden)

    Carole eGrasso

    2014-12-01

    Full Text Available Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumour environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionising radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumour, glioblastoma multiforme (GBM, is very resistant to radiation; radiosensitising GBM cells will improve survival of GBM patients. Here we demonstrate that a single fraction (6 Gy of radiation combined with a one hour exposure to ascorbate (5 mM sensitised murine glioma GL261cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy of whole brain radiation combined with daily intra-peritoneal injections of ascorbate (1 mg/kg in an intra-cranial GL261 glioma mouse model. Tumour-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain eight days after tumour implantation, a second group received daily intra-peritoneal injections of ascorbate (day 8-45 after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumour progression, intra-peritoneal ascorbate alone had no effect on tumour progression. Tumour progression was faster in tumour-bearing mice treated with radiation and daily ascorbate than those treated with radiation alone. Histological analysis showed less necrosis in tumours treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumour micro-environment which determines whether ascorbate remains outside the cell, acting as a pro-oxidant or whether it enters the cells and acts as an anti-oxidant.

  3. Pharmacological doses of daily ascorbate protect tumors from radiation damage after a single dose of radiation in an intracranial mouse glioma model.

    Science.gov (United States)

    Grasso, Carole; Fabre, Marie-Sophie; Collis, Sarah V; Castro, M Leticia; Field, Cameron S; Schleich, Nanette; McConnell, Melanie J; Herst, Patries M

    2014-01-01

    Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.

  4. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  5. Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and β-lactoglobulin-induced intestinal food allergy mouse models

    Science.gov (United States)

    Liu, Meng-Yun; Yang, Zhen-Yu; Dai, Wen-Kui; Huang, Jian-Qiong; Li, Yin-Hu; Zhang, Juan; Qiu, Chuang-Zhao; Wei, Chun; Zhou, Qian; Sun, Xin; Feng, Xin; Li, Dong-Fang; Wang, He-Ping; Zheng, Yue-Jie

    2017-01-01

    AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model. METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured. RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed. CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation. PMID:28405142

  6. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor.

    Science.gov (United States)

    Botsakis, Konstantinos; Mourtzi, Theodora; Panagiotakopoulou, Vasiliki; Vreka, Malamati; Stathopoulos, Georgios T; Pediaditakis, Iosif; Charalampopoulos, Ioannis; Gravanis, Achilleas; Delis, Foteini; Antoniou, Katerina; Zisimopoulos, Dimitrios; Georgiou, Christos D; Panagopoulos, Nikolaos T; Matsokis, Nikolaos; Angelatou, Fevronia

    2017-07-15

    Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD. Copyright © 2017. Published by Elsevier Ltd.

  7. Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage.

    Science.gov (United States)

    Lulli, Matteo; Witort, Ewa; Papucci, Laura; Torre, Eugenio; Schipani, Christian; Bergamini, Christian; Dal Monte, Massimo; Capaccioli, Sergio

    2012-12-17

    To evaluate if coenzyme Q10 (CoQ10) can protect retinal ganglion cells (RGCs) from apoptosis and, when instilled as eye drops on the cornea, if it can reach the retina and exert its antiapoptotic activity in this area in a mouse model of kainate (KA)-induced retinal damage. Rat primary or cultured RGCs were subjected to glutamate (50 μM) or chemical hypoxia (Antimycin A, 200 μM) or serum withdrawal (FBS, 0.5%) in the presence or absence of CoQ10 (10 μM). Cell viability was evaluated by light microscopy and fluorescence-activated cell sorting analyses. Apoptosis was evaluated by caspase 3/7 activity and mitochondrion depolarization tetramethylrhodamine ethyl ester analysis. CoQ10 transfer to the retina following its instillation as eye drops on the cornea was quantified by HPLC. Retinal protection by CoQ10 (10 μM) eye drops instilled on the cornea was then evaluated in a mouse model of KA-induced excitotoxic retinal cell apoptosis by cleaved caspase 3 immunohistofluorescence, caspase 3/7 activity assays, and quantification of inhibition of RGC loss. CoQ10 significantly increased viable cells by preventing RGC apoptosis. Furthermore, when topically applied as eye drops to the cornea, it reached the retina, thus substantially increasing local CoQ10 concentration and protecting retinal layers from apoptosis. The ability of CoQ10 eye drops to protect retinal cells from apoptosis in the mouse model of KA-induced retinal damage suggests that topical CoQ10 may be evaluated in designing therapies for treating apoptosis-driven retinopathies.

  8. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  9. Gynostemma pentaphyllum Ethanolic Extract Protects Against Memory Deficits in an MPTP-Lesioned Mouse Model of Parkinson's Disease Treated with L-DOPA.

    Science.gov (United States)

    Kim, Kyung Sook; Zhao, Ting Ting; Shin, Keon Sung; Park, Hyun Jin; Cho, Yoon Jeong; Lee, Kyung Eun; Kim, Seung Hwan; Lee, Myung Koo

    2017-01-01

    This study investigated the effects of ethanol extract from Gynostemma pentaphyllum (GP-EX) on memory deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD) (MPTP-lesioned mice). MPTP (30 mg/kg/day, 5 days)-lesioned mice showed deficits of habit learning memory and spatial memory, which were further aggravated by treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) (25 mg/kg, 21 days). However, treatment with GP-EX (50 mg/kg, 21 days) ameliorated memory deficits in MPTP-lesioned mice treated with L-DOPA (25 mg/kg): GP-EX prevented the decreases in retention latency time in the passive avoidance test and tyrosine hydroxylase-immunopositive cells and dopamine levels in the nigrostriatum. GP-EX also reduced increases in retention transfer latency time of the elevated plus-maze test and expression of N-methyl-D-aspartate (NMDA) receptor and improved decreases in phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB) in the hippocampus in the same models. By contrast, L-DOPA treatment (10 mg/kg, 21 days) ameliorated memory deficits in MPTP-lesioned mice, which were further improved by GP-EX treatment. These results suggest that GP-EX ameliorates habit learning memory deficits by activating dopaminergic neurons and spatial memory deficits by modulating NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mice treated with L-DOPA. GP-EX may serve as an adjuvant phytonutrient for memory deficits in PD.

  10. Pancreatic Tissue Transplanted in TheraCyte Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes.

    Science.gov (United States)

    Boettler, Tobias; Schneider, Darius; Cheng, Yang; Kadoya, Kuniko; Brandon, Eugene P; Martinson, Laura; von Herrath, Matthias

    2016-01-01

    Type 1 diabetes (T1D) is characterized by destruction of glucose-responsive insulin-producing pancreatic β-cells and exhibits immune infiltration of pancreatic islets, where CD8 lymphocytes are most prominent. Curative transplantation of pancreatic islets is seriously hampered by the persistence of autoreactive immune cells that require high doses of immunosuppressive drugs. An elegant approach to confer graft protection while obviating the need for immunosuppression is the use of encapsulation devices that allow for the transfer of oxygen and nutrients, yet prevent immune cells from making direct contact with the islet grafts. Here we demonstrate that macroencapsulation devices (TheraCyte) loaded with neonatal pancreatic tissue and transplanted into RIP-LCMV.GP mice prevented disease onset in a model of virus-induced diabetes mellitus. Histological analyses revealed that insulin-producing cells survived within the device in animal models of diabetes. Our results demonstrate that these encapsulation devices can protect from an immune-mediated attack and can contain a sufficient amount of insulin-producing cells to prevent overt hyperglycemia.

  11. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  12. Reversible lacrimal gland-protective regulatory T-cell dysfunction underlies male-specific autoimmune dacryoadenitis in the non-obese diabetic mouse model of Sjögren syndrome

    Science.gov (United States)

    Lieberman, Scott M; Kreiger, Portia A; Koretzky, Gary A

    2015-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are required to maintain immunological tolerance; however, defects in specific organ-protective Treg cell functions have not been demonstrated in organ-specific autoimmunity. Non-obese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity and are a well-characterized model of Sjögren syndrome. Lacrimal gland disease in NOD mice is male-specific, but the role of Treg cells in this sex-specificity is not known. This study aimed to determine if male-specific autoimmune dacryoadenitis in the NOD mouse model of Sjögren syndrome is the result of lacrimal gland-protective Treg cell dysfunction. An adoptive transfer model of Sjögren syndrome was developed by transferring cells from the lacrimal gland-draining cervical lymph nodes of NOD mice to lymphocyte-deficient NOD-SCID mice. Transfer of bulk cervical lymph node cells modelled the male-specific dacryoadenitis that spontaneously develops in NOD mice. Female to female transfers resulted in dacryoadenitis if the CD4+ CD25+ Treg-enriched population was depleted before transfer; however, male to male transfers resulted in comparable dacryoadenitis regardless of the presence or absence of Treg cells within the donor cell population. Hormone manipulation studies suggested that this Treg cell dysfunction was mediated at least in part by androgens. Surprisingly, male Treg cells were capable of preventing the transfer of dacryoadenitis to female recipients. These data suggest that male-specific factors promote reversible dysfunction of lacrimal gland-protective Treg cells and, to our knowledge, form the first evidence for reversible organ-protective Treg cell dysfunction in organ-specific autoimmunity. PMID:25581706

  13. Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/β-Catenin Signaling Pathway in a Mouse Model of d-Galactose-induced Aging.

    Science.gov (United States)

    Li, Jing; Cai, Dachuan; Yao, Xin; Zhang, Yanyan; Chen, Linbo; Jing, Pengwei; Wang, Lu; Wang, Yaping

    2016-06-09

    Stem cell senescence is an important and current hypothesis accounting for organismal aging, especially the hematopoietic stem cell (HSC). Ginsenoside Rg1 is the main active pharmaceutical ingredient of ginseng, which is a traditional Chinese medicine. This study explored the protective effect of ginsenoside Rg1 on Sca-1⁺ hematopoietic stem/progenitor cells (HSC/HPCs) in a mouse model of d-galactose-induced aging. The mimetic aging mouse model was induced by continuous injection of d-gal for 42 days, and the C57BL/6 mice were respectively treated with ginsenoside Rg1, Vitamin E or normal saline after 7 days of d-gal injection. Compared with those in the d-gal administration alone group, ginsenoside Rg1 protected Sca-1⁺ HSC/HPCs by decreasing SA-β-Gal and enhancing the colony forming unit-mixture (CFU-Mix), and adjusting oxidative stress indices like reactive oxygen species (ROS), total anti-oxidant (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and malondialdehyde (MDA). In addition, ginsenoside Rg1 decreased β-catenin and c-Myc mRNA expression and enhanced the phosphorylation of GSK-3β. Moreover, ginsenoside Rg1 down-regulated advanced glycation end products (AGEs), 4-hydroxynonenal (4-HNE), phospho-histone H2A.X (r-H2A.X), 8-OHdG, p16(Ink4a), Rb, p21(Cip1/Waf1) and p53 in senescent Sca-1⁺ HSC/HPCs. Our findings indicated that ginsenoside Rg1 can improve the resistance of Sca-1⁺ HSC/HPCs in a mouse model of d-galactose-induced aging through the suppression of oxidative stress and excessive activation of the Wnt/β-catenin signaling pathway, and reduction of DNA damage response, p16(Ink4a)-Rb and p53-p21(Cip1/Waf1) signaling.

  14. Humanized Mouse Models of Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2017-05-01

    Full Text Available Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.

  15. Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson's disease.

    Science.gov (United States)

    De Miranda, Briana R; Popichak, Katriana A; Hammond, Sean L; Miller, James A; Safe, Stephen; Tjalkens, Ronald B

    2015-02-01

    The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-κB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear receptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-κB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-κB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-κB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology

  16. High-anxious individuals show increased chronic stress burden, decreased protective immunity, and increased cancer progression in a mouse model of squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Firdaus S Dhabhar

    Full Text Available In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2-3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED, 3 times/week, 10-weeks. The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome, and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th, cytolytic (CTL, and regulatory (Treg T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden, increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression, lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity, and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis. These results suggest that the deleterious effects of high trait anxiety

  17. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    Science.gov (United States)

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.

  18. Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model.

    Science.gov (United States)

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2015-09-01

    Urinary tract infections (UTIs) caused by Escherichia coli and Proteus mirabilis are an important cause of morbidity and with the high rate of relapse and spread of multi-drug resistant pathogens, pose a significant public health challenge worldwide. Lack of an efficacious commercial vaccine targeting both uropathogens makes development of a combined vaccine highly desirable. In this study the immunogenicity and protective efficacy of different formulations of FimH of UPEC, MrpH of P. mirabilis and their fusion protein (MrpH.FimH) subcutaneously administered with and without Monophosphoryl lipid A (MPL) adjuvant were evaluated. Our data showed that the subcutaneously administered proteins induced both serum and mucosal IgG, which MPL significantly improved developing a mixed Th1 and Th2 immune response. However, the preparations induced a higher systemic and mucosal IgG and IL-2 levels by this route compared to the intranasal. Immunization of mice with MrpH.FimH fusion with MPL or a mixture of FimH, MrpH and MPL conferred the highest protection of the bladder and kidneys when challenged with UPEC and P. mirabilis in a UTI mouse model. Therefore considering these results MrpH.FimH fusion with MPL administered subcutaneously or intranasally could be a promising vaccine candidate for elimination of UTIs caused by UPEC and P. mirabilis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr...

  20. Overexpression of microRNA-26a protects against deficient β-cell function via targeting phosphatase with tensin homology in mouse models of type 2 diabetes.

    Science.gov (United States)

    Song, Yingli; Jin, Di; Jiang, Xiaoshu; Lv, Chunmei; Zhu, Hui

    2018-01-01

    The prevalence of type 2 diabetes mellitus (T2DM) increased rapidly in the world. The development of β-cell dysfunction is the quintessential defects in T2DM patients However, the pathogenesis of β-cell dysfunction is still unclear. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of β-cell dysfunction and T2DM. Here, we investigated the mechanisms by which miR-26a regulate β-cell function and insulin signaling pathway in high fat diet (HFD) fed and db/db T2DM mice model. The expression of miR-26a was down-regulated dramatically in the serum and islets of both HFD and db/db mice model. miR-26a overexpression protected against HFD-induced diabetes and maintained prolonged normoglycemic time in HFD fed mice. Overexpression of miR-26a improved β-cell dysfunction in T2DM mice. Further, we identified that PTEN is a direct target gene of miR-26a. Overexpression of miR-26a significantly inhibited the luciferase activity of hPTEN 3'-UTR, while the effect of miR-26a disappeared when the miR-26a potential binding site within the PTEN 3'-UTR was mutated. Overexpression of miR-26a reduced both the mRNA and protein levels of PTEN in vitro and in vivo. We also found that miR-26a overexpression increased the expression of p-Akt and p-FoxO-1, while the effect of miR-26a was blocked by PTEN overexpression. In conclusion, our data indicated that miR-26a potentially contributes to the β-cell dysfunction in T2DM, and miR-26a may be a new therapeutic strategy against T2DM. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model

    DEFF Research Database (Denmark)

    Hansen, Jon; Jensen, Klaus Thorleif; Follmann, Frank

    2008-01-01

    BACKGROUND: Immunity to chlamydia is thought to rely on interferon (IFN)-gamma-secreting T helper cells type 1 (Th1) with an additional effect of secreted antibodies. A need for Th1-polarizing adjuvants in experimental chlamydia vaccines has been demonstrated, and antigen conformation has also been......-alpha and a profoundly reduced vaginal chlamydial load, compared with control mice. The protection was CD4(+) T cell dependent and was not dependent on MOMP conformation. CONCLUSION: CAF01 adjuvant facilitates a protective anti-MOMP CD4(+) T cell response independent of MOMP conformation....

  2. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-γ-dependent activity

    International Nuclear Information System (INIS)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro; Yasuda, Osamu; Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2011-01-01

    Highlights: → Telmisartan, an angiotensin receptor blocker, acts as a partial PPARγ agonist. → The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NFκB activation and TNF α. → PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. → We provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration

  3. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Yasuda, Osamu [Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto (Japan); Fukuda, Masaya; Tokutomi, Yoshiko; Dong, Yi-Fei [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Ogawa, Hisao [Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan); Kim-Mitsuyama, Shokei, E-mail: kimmitsu@gpo.kumamoto-u.ac.jp [Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto (Japan)

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of

  4. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  5. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  6. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  7. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model.

    Science.gov (United States)

    Pan, Qing; Pais, Roshan; Ohandjo, Adaugo; He, Cheng; He, Qing; Omosun, Yusuf; Igietseme, J U; Eko, F O

    2015-04-08

    Chlamydia abortus (C. abortus) is the causative agent of ovine enzootic abortion (OEA) and poses a zoonotic risk to pregnant women. Current live attenuated 1B vaccines are efficacious but cause disease in vaccinated animals and inactivated vaccines are only marginally protective. We tested the ability of a new C. abortus subunit vaccine candidate based on the conserved and immunogenic polymorphic membrane protein D (Pmp18D) formulated in CpG1826+FL (Fms-like tyrosine kinase 3 Ligand; Flt3L) or Vibrio cholerae ghosts (VCG) to induce innate and cross protective immunity against genital C. abortus infection. We found that delivery of rPmp18D with VCG was more effective than with CpG+FL in up-regulating the expression of molecules critically involved in T cell activation and differentiation, including MHC II, CD40, CD80, and CD86, activation of TLRs and NLRP3 inflammasome engagement, and secretion of IL-1β and TNF-α but not IL-10 and IL-4. rVCG-Pmp18D-immunized mice elicited more robust antigen-specific IFN-γ, IgA and IgG2c antibody responses compared to CpG+FL-delivered rPmp18D. Based on the number of mice with positive vaginal cultures, length of vaginal shedding, and number of inclusion forming units recovered following challenge with the heterologous C. abortus strain B577, vaccine delivery with VCG induced superior protective immunity than delivery with a combination of CpG1826 and FL, a nasal DC-targeting adjuvant. These results demonstrate that the ability of VCG to enhance protective immunity against genital C. abortus infection is superior to that of CpG+FL adjuvants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    Science.gov (United States)

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-11-01

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ 1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  10. Exceptionally High Protection of Photocarcinogenesis by Topical Application of (--Epi gal locatechin-3-Gal late in Hydrophilic Cream in SKH-1 Hairless Mouse Model: Relationship to Inhibition of UVB-Induced Global DNA Hypomethylation

    Directory of Open Access Journals (Sweden)

    Anshu Mittal

    2003-11-01

    Full Text Available (--Epigallocatechin-3-gal late (EGCG has been shown to have potent antiphotocarcinogenic activity, but it was required to develop a cream-based formulation for topical application. For topical application, we tested hydrophilic cream as a vehicle for EGCG. Treatment with EGCG (≈ 1 mg/cm2 skin area in hydrophilic cream resulted in exceptionally high protection against photocarcinogenesis when determined in terms of tumor incidence, tumor multiplicity, and tumor size in a SKI-11-11 hairless mouse model. EGCG also inhibited malignant transformation of ultraviolet B (UVB-induced papillomas to carcinomas. In order to determine the mechanism of prevention of photocarcinogenesis, we determined the effect of EGCG on global DNA methylation pattern using monoclonal antibodies against 5-methyl cytosine and DNA methyltransferase in the long-term UV-irradiated skin because altered DNA methylation silencing is recognized as a molecular hallmark of human cancer. We found that treatment with EGCG resulted in significant inhibition of UVBinduced global DNA hypomethylation pattern. Longterm application of EGCG did not show any apparent sign of toxicity in mice when determined in terms of skin appearance, lean mass, total bone mineral content, and total bone mineral density but showed reduction in fat mass when analyzed using dual-energy X-ray absorptiometry. These data suggest that hydrophilic cream could be a suitable vehicle for topical application of EGCG, and that EGCG is a promising candidate for future cancer therapies based on its influence on the epigenetic pathway.

  11. Expression of the neuronal adaptor protein X11alpha protects against memory dysfunction in a transgenic mouse model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C

    2010-01-01

    X11alpha is a neuronal-specific adaptor protein that binds to the amyloid-beta protein precursor (AbetaPP). Overexpression of X11alpha reduces Abeta production but whether X11alpha also protects against Abeta-related memory dysfunction is not known. To test this possibility, we crossed X11alpha transgenic mice with AbetaPP-Tg2576 mice. AbetaPP-Tg2576 mice produce high levels of brain Abeta and develop age-related defects in memory function that correlate with increasing Abeta load. Overexpression of X11alpha alone had no detectable adverse effect upon behavior. However, X11alpha reduced brain Abeta levels and corrected spatial reference memory defects in aged X11alpha\\/AbetaPP double transgenics. Thus, X11alpha may be a therapeutic target for Alzheimer\\'s disease.

  12. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    Science.gov (United States)

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  13. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  14. Mouse Models of Graves' Disease

    OpenAIRE

    Nagayama, Yuji

    2005-01-01

    Graves' disease is characterized by overstimulation of the thyroid gland with agonistic autoantibodies against the thyrotropin (TSH) receptor, leading to hyperthyroidism and diffuse hyperplasia of the thyroid gland. Our and other laboratories have recently established several animal models of Graves' hyperthyroidism with novel immunization approaches, i.e., in vivo expression of the TSH receptor by injection of syngeneic living cells co-expressing the TSH receptor and major histocompatibility...

  15. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  16. DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Kazuko Takahashi-Niki

    2015-03-01

    Full Text Available Parkinson's disease (PD is caused by dopaminergic cell death in the substantia nigra, leading to a reduced level of dopamine in the striatum. Oxidative stress is one of the causes of PD. Since symptomatic PD therapies are used, identification of compounds or proteins that inhibit oxidative stress-induced neuronal cell death is necessary. DJ-1 is a causative gene product of familial PD and plays a role in anti-oxidative stress reaction. We have identified various DJ-1-binding compounds, including compound-23, that restored neuronal cell death and locomotion defects observed in neurotoxin-induced PD models. In this study, wild-type and DJ-1-knockout mice were injected intraperitoneally with 1 mg/kg of compound-23 and then with 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP at 1 h after injection. Five days after administration, the effects of compound-23 on MPTP-induced locomotion deficits, on dopaminergic cell death and on brain dopamine levels were analyzed by rotor rod tests, by staining cells with an anti-TH antibody and by an HPLC, respectively. The results showed that compound-23 inhibited MPTP-induced reduction of retention time on the rotor rod bar, neuronal cell death in the substantia nigra and striatum and dopamine content in wild-type mice but not in DJ-1-knockout mice, indicating a DJ-1-dependent effect of compound-23.

  17. Experimental photoallergic contact dermatitis: a mouse model

    International Nuclear Information System (INIS)

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-01-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model

  18. Inhibition of Fas-associated death domain-containing protein (FADD protects against myocardial ischemia/reperfusion injury in a heart failure mouse model.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available As technological interventions treating acute myocardial infarction (MI improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure.Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed.FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion, attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3.Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

  19. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  20. Esophageal Cancer: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Marie-Pier Tétreault

    2015-01-01

    Full Text Available Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer.

  1. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  2. A Mouse Model for Human Anal Cancer

    Science.gov (United States)

    Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.

    2010-01-01

    Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489

  3. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Mouse models of long QT syndrome

    Science.gov (United States)

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  5. Rational Design of Mouse Models for Cancer Research

    NARCIS (Netherlands)

    Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W.

    2018-01-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models.

  6. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  7. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  8. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  9. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  10. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  11. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  12. Protective effects ofginger (Zingiberofficinale rhizomeextractonheat-induced testiculardamagein the mouse

    Directory of Open Access Journals (Sweden)

    bahram amuoghlitabrizi

    2013-11-01

    Full Text Available Infertility is a complicated problem with medical significance. Gingeras amedicinalherb is used to treata number of diseasessuch assexualweakness. The aim of this study was to evaluate the effects of ginger rhizome extract on heat-induced testicular damage in the mouse. Fourtymale mice were randomly divided into 4 equal groups including: 1- Control, 2- heat stressed, 3 and 4- stressed and treated with ginger extract (1/5 and 3 mg/animal/day. The scrotum of experimental mice was immersed for 20 min in a water bath at 42°C. Control mice were similarly treated except that the water bath was maintained at 23°C. Mice were euthanized after 50 days. Blood samples were collected for analysis of testosterone levels. Testes were removed for histopathological assessment and oxidant/antioxidant status. Heat stress significantly reduced blood testosterone level and increased lipid peroxidation product and decreased antioxidant activities of superoxide dismutase, catalase and glutathione peroxidase (p

  13. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  14. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaoyu [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Perez-Torres, Carlos J. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Thotala, Dinesh [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Engelbach, John A. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Yuan, Liya [Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Cates, Jeremy [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Gao, Feng [Division of Biostatistics, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Drzymala, Robert E.; Rich, Keith M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Schmidt, Robert E. [Department of Neuropathology, Washington University, St. Louis, Missouri (United States); Ackerman, Joseph J.H. [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Department of Radiology, Washington University, St. Louis, Missouri (United States); Department of Internal Medicine, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Hallahan, Dennis E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States); Garbow, Joel R., E-mail: garbow@wustl.edu [Department of Radiology, Washington University, St. Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri (United States)

    2014-07-15

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors.

  16. A GSK-3β Inhibitor Protects Against Radiation Necrosis in Mouse Brain

    International Nuclear Information System (INIS)

    Jiang, Xiaoyu; Perez-Torres, Carlos J.; Thotala, Dinesh; Engelbach, John A.; Yuan, Liya; Cates, Jeremy; Gao, Feng; Drzymala, Robert E.; Rich, Keith M.; Schmidt, Robert E.; Ackerman, Joseph J.H.; Hallahan, Dennis E.; Garbow, Joel R.

    2014-01-01

    Purpose: To quantify the effectiveness of SB415286, a specific inhibitor of GSK-3β, as a neuroprotectant against radiation-induced central nervous system (brain) necrosis in a mouse model. Methods and Materials: Cohorts of mice were treated with SB415286 or dimethyl sulfoxide (DMSO) prior to irradiation with a single 45-Gy fraction targeted to the left hemisphere (brain) using a gamma knife machine. The onset and progression of radiation necrosis (RN) were monitored longitudinally by noninvasive in vivo small-animal magnetic resonance imaging (MRI) beginning 13 weeks postirradiation. MRI-derived necrotic volumes for SB415286- and DMSO-treated mice were compared. MRI results were supported by correlative histology. Results: Mice treated with SB415286 showed significant protection from radiation-induced necrosis, as determined by in vivo MRI with histologic validation. MRI-derived necrotic volumes were significantly smaller at all postirradiation time points in SB415286-treated animals. Although the irradiated hemispheres of the DMSO-treated mice demonstrated many of the classic histologic features of RN, including fibrinoid vascular necrosis, vascular telangiectasia, hemorrhage, and tissue loss, the irradiated hemispheres of the SB415286-treated mice consistently showed only minimal tissue damage. These studies confirmed that treatment with a GSK-3β inhibitor dramatically reduced delayed time-to-onset necrosis in irradiated brain. Conclusions: The unilateral cerebral hemispheric stereotactic radiation surgery mouse model in concert with longitudinal MRI monitoring provided a powerful platform for studying the onset and progression of RN and for developing and testing new neuroprotectants. Effectiveness of SB415286 as a neuroprotectant against necrosis motivates potential clinical trials of it or other GSK-3β inhibitors

  17. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin

    Science.gov (United States)

    Rojo de la Vega, Montserrat; Zhang, Donna D.; Wondrak, Georg T.

    2018-01-01

    Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/-)]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches. PMID:29636694

  18. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert

    2011-03-01

    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  19. Engineered Lactobacillus rhamnosus GG expressing IgG-binding domains of protein G: Capture of hyperimmune bovine colostrum antibodies and protection against diarrhea in a mouse pup rotavirus infection model.

    Science.gov (United States)

    Günaydın, Gökçe; Zhang, Ran; Hammarström, Lennart; Marcotte, Harold

    2014-01-16

    Rotavirus-induced diarrhea causes more than 500,000 deaths annually in the world, and although vaccines are being made available, new effective treatment strategies should still be considered. Purified antibodies derived from hyperimmune bovine colostrum (HBC), from cows immunized with rotavirus, were previously used for treatment of rotavirus diarrhea in children. A combination of HBC antibodies and a probiotic strain of Lactobacillus (L. rhamnosus GG) was also found to be more effective than HBC alone in reducing diarrhea in a mouse model of rotavirus infection. In order to further improve this form of treatment, L. rhamnosus GG was engineered to display surface expressed IgG-binding domains of protein G (GB1, GB2, and GB3) which capture HBC-derived IgG antibodies (HBC-IgG) and thus target rotavirus. The expression of IgG-binding domains on the surface of the bacteria as well as their binding to HBC-IgG and to rotavirus (simian strain RRV) was demonstrated by Western blot, flow cytometry, and electron microscopy. The prophylactic effect of engineered L. rhamnosus GG and anti-rotaviral activity of HBC antibodies was evaluated in a mouse pup model of RRV infection. The combination therapy with engineered L. rhamnosus GG (PG3) and HBC was significantly more effective in reducing the prevalence, severity, and duration of diarrhea in comparison to HBC alone or a combination of wild-type L. rhamnosus GG and HBC. The new therapy reduces the effective dose of HBC between 10 to 100-fold and may thus decrease treatment costs. This antibody capturing platform, tested here for the first time in vivo, could potentially be used to target additional gastrointestinal pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  1. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Science.gov (United States)

    Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H; Hirsch, Etienne C; Michel, Patrick P; Hartmann, Andreas

    2013-01-01

    Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  2. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ito

    2017-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs, which can be differentiated into various tissues and cell types, have been used for clinical research and disease modeling. Self-organizing three-dimensional (3D tissue engineering has been established within the past decade and enables researchers to obtain tissues and cells that almost mimic in vivo development. However, there are no reports of practical experimental procedures that reproduce photoreceptor degeneration. In this study, we induced photoreceptor cell death in mouse iPSC-derived 3D retinal organoids (3D-retinas by 4-hydroxytamoxifen (4-OHT, which induces photoreceptor degeneration in mouse retinal explants, and then established a live-cell imaging system to measure degeneration-related properties. Furthermore, we quantified the protective effects of representative ophthalmic supplements for treating the photoreceptor degeneration. This drug evaluation system enables us to monitor drug effects in photoreceptor cells and could be useful for drug screening.

  3. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  4. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  5. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  6. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  7. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    Science.gov (United States)

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations.

    Science.gov (United States)

    Kirma, Nameer B; Tekmal, Rajeshwar R

    2012-09-01

    Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin

    Directory of Open Access Journals (Sweden)

    Montserrat Rojo de la Vega

    2018-03-01

    Full Text Available Environmental exposure to solar ultraviolet (UV radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana. Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/-]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.

  11. Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity

    International Nuclear Information System (INIS)

    Guindon, Katherine A.; Foley, Julie F.; Maronpot, Robert R.; Massey, Thomas E.

    2008-01-01

    The carcinogenic mycotoxin aflatoxin B 1 (AFB 1 ) induces 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in mouse lung, an effect that can be prevented by treatment with polyethylene glycol-conjugated catalase (PEG-CAT). G → T transversion mutation in K-ras, an early event in AFB 1 -induced mouse lung carcinogenesis, is thought to result from AFB 1 -8,9-exo-epoxide binding to DNA to form AFB 1 -N 7 -guanine, but may also result from formation of 8-OHdG. Therefore, oxidative DNA damage may be important in AFB 1 carcinogenicity. The objective of this study was to determine whether PEG-CAT would prevent AFB 1 tumorigenicity. Mouse lung tumorigenesis was assessed following treatment of female A/J mice with 300 kU/kg PEG-CAT ip and/or 50 mg/kg AFB 1 . Mice were killed 7 months post-treatment and tumors greater than 1 mm in diameter were excised. Unexpectedly, the mean number of tumors per mouse in the PEG-CAT + AFB 1 group (8.81 ± 3.64, n = 47) was greater than that of the group treated with AFB 1 alone (7.05 ± 3.45, n = 42) (P 1 were larger than those from mice treated with AFB 1 alone (P 1 and PEG-CAT + AFB 1 groups (P > 0.05). In vitro incubation with mouse liver catalase (CAT) resulted in conversion of [ 3 H]AFB 1 into a DNA-binding species, a possible explanation for the results observed in vivo. These results demonstrate that PEG-CAT is not protective against AFB 1 carcinogenicity in mouse lung despite preventing DNA oxidation

  12. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  13. Mouse models for understanding human developmental anomalies

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals

  14. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Science.gov (United States)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  15. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  16. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  17. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  18. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  19. An Adjuvanted A(H5N1) Subvirion Vaccine Elicits Virus-Specific Antibody Response and Improves Protection Against Lethal Influenza Viral Challenge in Mouse Model of Protein Energy Malnutrition.

    Science.gov (United States)

    Jones, Enitra N; Amoah, Samuel; Cao, Weiping; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2017-09-15

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including influenza infection, but no studies have addressed the potential influences of PEM on the immunogenicity and protective efficacy of avian influenza A(H5N1) vaccine. We investigated the role of PEM on vaccine-mediated protection after a lethal challenge with recombinant A(H5N1) virus using isocaloric diets providing either adequate protein (AP; 18% protein) or very low protein (VLP; 2% protein) in an established murine model of influenza vaccination. We demonstrated that mice maintained on a VLP diet succumb to lethal challenge at greater rates than mice maintained on an AP diet, despite comparable immunization regimens. Importantly, there was no virus-induced mortality in both VLP and AP groups of mice when either group was immunized with adjuvanted low-dose A(H5N1) subvirion vaccine. Our results suggest that adjuvanted vaccination in populations where PEM is endemic may be one strategy to boost vaccination-promoted immunity and improve outcomes associated with highly pathogenic A(H5N1). Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    Science.gov (United States)

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  1. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    Directory of Open Access Journals (Sweden)

    Charles A. Specht

    2017-11-01

    Full Text Available Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1 were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4 were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1 afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.

  2. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  3. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  4. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu

    2012-01-01

    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  5. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione...

  6. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... special aspect of ECNO or another; and it would be fair to call them “Mickey Mouse examples”. In this paper, we give a concise overview of the motivation, ideas, and concepts of ECNO. More importantly, we discuss a larger system, which was completely generated from the underlying models: a workflow...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  7. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  8. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  9. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  10. Histologic scoring of gastritis and gastric cancer in mouse models.

    Science.gov (United States)

    Rogers, Arlin B

    2012-01-01

    Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.

  11. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  12. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  13. Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2014-06-03

    Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  15. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deforges, Séverine; Branchu, Julien; Biondi, Olivier; Grondard, Clément; Pariset, Claude; Lécolle, Sylvie; Lopes, Philippe; Vidal, Pierre-Paul; Chanoine, Christophe; Charbonnier, Frédéric

    2009-07-15

    Several studies using transgenic mouse models of familial amyotrophic lateral sclerosis (ALS) have reported a life span increase in exercised animals, as long as animals are submitted to a moderate-intensity training protocol. However, the neuroprotective potential of exercise is still questionable. To gain further insight into the cellular basis of the exercise-induced effects in neuroprotection, we compared the efficiency of a swimming-based training, a high-frequency and -amplitude exercise that preferentially recruits the fast motor units, and of a moderate running-based training, that preferentially triggers the slow motor units, in an ALS mouse model. Surprisingly, we found that the swimming-induced benefits sustained the motor function and increased the ALS mouse life span by about 25 days. The magnitude of this beneficial effect is one of the highest among those induced by any therapeutic strategy in this disease. We have shown that, unlike running, swimming significantly delays spinal motoneuron death and, more specifically, the motoneurons of large soma area. Analysis of the muscular phenotype revealed a swimming-induced relative maintenance of the fast phenotype in fast-twitch muscles. Furthermore, the swimming programme preserved astrocyte and oligodendrocyte populations in ALS spinal cord. As a whole, these data are highly suggestive of a causal relationship not only linking motoneuron activation and protection, but also motoneuron protection and the maintenance of the motoneuron surrounding environment. Basically, exercise-induced neuroprotective mechanisms provide an example of the molecular adaptation of activated motoneurons.

  16. Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Christensen, Jan Pravsgaard; Aagaard, Claus

    2013-01-01

    a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more......-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model....

  17. Occupant Protection Data Mining and Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current National Aeronautics and Space Administration (NASA) occupant protection standards and requirements are based on extrapolations of biodynamic models, which...

  18. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  19. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  20. Protection against photoaging in the hairless mouse by the isoflavone equol.

    Science.gov (United States)

    Reeve, Vivienne E; Widyarini, Sitarina; Domanski, Diane; Chew, Elaine; Barnes, Karen

    2005-01-01

    Topical application of the isoflavone equol immediately following solar-simulated UV (SSUV) radiation exposure has previously been demonstrated to have significant photoprotective effects. Equol reduced both the inflammatory edema and the systemic suppression of the contact hypersensitivity reaction in hairless mice. Furthermore, daily topical equol application immediately following irradiation during a 10-week chronic SSUV exposure regime also reduced photocarcinogenesis severity in the mouse. This study examines the potential for topical equol to prevent photoaging in response to chronic SSUV irradiation for up to 30 weeks. We did not find consistent expression of the characteristic markers of photoaging until 30 weeks, although moderate epidermal hyperplasia and a transient increase in dermal mast cell numbers were evident after 1 week. Daily application of 10 muM equol lotion significantly reduced these early changes. However after 30 weeks of SSUV exposure, photoaging was well developed, as shown histologically by markedly increased epidermal hyperplasia, increased dermal mast cell number, pronounced focal elastotic deposits, degraded dermal collagen and deposition of glycosaminoglycans in the lower dermis. Topical equol treatment protected significantly from each of these impairments, as demonstrated histologically and quantitatively. Additionally, equol was found to have strong antioxidant action against acute UVA (320-400 nm)-induced lipid peroxidation of mouse skin, this property accounting for its antiphotoaging mechanism. The evidence for equol's antiphotoaging activity, taken together with its anti-inflammatory, immunoprotective and anticarcinogenic efficacy against SSUV irradiation in the mouse, suggests that equol could be developed as a helpful topical photoprotective agent for daily use by humans.

  1. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  2. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  3. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  4. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  6. Protective Role of Royal Jelly in Oxymetholone-induced Oxidative Injury in Mouse Testis

    Directory of Open Access Journals (Sweden)

    Gholamreza Najafi

    2014-06-01

    Full Text Available Background: An adverse effect of oxymetholone (OXM, an anabolic-androgenic steroid used as energetic medicine, is reproductive toxicity. Royal jelly (RJ is an efficient antioxidant that has been used to treat reproductive problems. In this study, we investigated the effects of RJ on OXM-induced oxidative injuries in mouse testes. Methods: Male mice were divided into four groups. Two groups of mice were administered OXM (5 mg/kg/day, p.o. for 28 days. One of these groups received RJ (100 mg/kg/day, p.o. concurrently. A vehicle-treated control group and a RJ control group were also included. Results: The OXM-treated group showed a significant decrease in the serum testosterone concentration and spermatogenic activities, along with many histological alterations. OXM treatment also caused a significant decrease in catalase activity with an increase in lipid peroxidation in the mouse testes. The above-noted parameters were restored to near normal levels by RJ co-administration. Conclusion: The results demonstrate that RJ protects against OXM-induced reproductive toxicities.

  7. Resveratrol protects mouse embryonic stem cells from ionizing radiation by accelerating recovery from DNA strand breakage.

    Science.gov (United States)

    Denissova, Natalia G; Nasello, Cara M; Yeung, Percy L; Tischfield, Jay A; Brenneman, Mark A

    2012-01-01

    Resveratrol has elicited many provocative anticancer effects in laboratory animals and cultured cells, including reduced levels of oxidative DNA damage, inhibition of tumor initiation and progression and induction of apoptosis in tumor cells. Use of resveratrol as a cancer-preventive agent in humans will require that its anticancer effects not be accompanied by damage to normal tissue stem or progenitor cells. In mouse embryonic stem cells (mESC) or early mouse embryos exposed to ethanol, resveratrol has been shown to suppress apoptosis and promote survival. However, in cells exposed to genotoxic stress, survival may come at the expense of genome stability. To learn whether resveratrol can protect stem cells from DNA damage and to study its effects on genomic integrity, we exposed mESC pretreated with resveratrol to ionizing radiation (IR). Forty-eight hours pretreatment with a comparatively low concentration of resveratrol (10 μM) improved survival of mESC >2-fold after exposure to 5 Gy of X-rays. Cells pretreated with resveratrol sustained the same levels of reactive oxygen species and DNA strand breakage after IR as mock-treated controls, but repaired DNA damage more rapidly and resumed cell division sooner. Frequencies of IR-induced mutation at a chromosomal reporter locus were not increased in cells pretreated with resveratrol as compared with controls, indicating that resveratrol can improve viability in mESC after DNA damage without compromising genomic integrity.

  8. Efficacy of Enrofloxacin in a Mouse Model of Sepsis

    OpenAIRE

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-01-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciproflox...

  9. Skeletal muscle repair in a mouse model of nemaline myopathy

    OpenAIRE

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2006-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five d...

  10. Behavioral characterization of mouse models of neuroferritinopathy.

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    Full Text Available Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK promoter. Transgenic (Tg mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests. The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help

  11. Behavioral characterization of mouse models of neuroferritinopathy.

    Science.gov (United States)

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  12. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  13. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  14. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    Science.gov (United States)

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  15. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    International Nuclear Information System (INIS)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.; Kosyk, Oksana; Sandot, Amelia; Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S.; Rusyn, Ivan

    2010-01-01

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  16. A Consumer Protection Model for Regulating Lawyers.

    Science.gov (United States)

    Chalfie, Deborah M.

    1992-01-01

    Describes and critiques the "discipline model" of lawyer regulation from a consumer point of view and outlines an alternative model for regulating lawyers that is grounded in consumer protection principles. (JOW)

  17. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shanshan [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800 (China); Wang, Jiaxing [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Zhang, Xu; Shi, Ying; Li, Bochuan; Bao, Qiankun [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Pang, Wei [Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); Ai, Ding [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Zhu, Yi [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191 (China); He, Jinlong, E-mail: hejinlong@tmu.edu.cn [Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070 (China)

    2016-08-19

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.

  18. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis.

    Science.gov (United States)

    Camps, Montserrat; Rückle, Thomas; Ji, Hong; Ardissone, Vittoria; Rintelen, Felix; Shaw, Jeffrey; Ferrandi, Chiara; Chabert, Christian; Gillieron, Corine; Françon, Bernard; Martin, Thierry; Gretener, Denise; Perrin, Dominique; Leroy, Didier; Vitte, Pierre-Alain; Hirsch, Emilio; Wymann, Matthias P; Cirillo, Rocco; Schwarz, Matthias K; Rommel, Christian

    2005-09-01

    Phosphoinositide 3-kinases (PI3K) have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases. But the lack of specificity, isoform selectivity and poor biopharmaceutical profile of PI3K inhibitors have so far hampered rigorous disease-relevant target validation. Here we describe the identification and development of specific, selective and orally active small-molecule inhibitors of PI3Kgamma (encoded by Pik3cg). We show that Pik3cg(-/-) mice are largely protected in mouse models of rheumatoid arthritis; this protection correlates with defective neutrophil migration, further validating PI3Kgamma as a therapeutic target. We also describe that oral treatment with a PI3Kgamma inhibitor suppresses the progression of joint inflammation and damage in two distinct mouse models of rheumatoid arthritis, reproducing the protective effects shown by Pik3cg(-/-) mice. Our results identify selective PI3Kgamma inhibitors as potential therapeutic molecules for the treatment of chronic inflammatory disorders such as rheumatoid arthritis.

  19. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Wang Chuangao; Wang Li; Zhou Pingkun; Wang Zhongwen; Hu Yongzhe; Jin Haiming; Zhang Xueqing; Chen Ying

    2010-01-01

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  20. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    Science.gov (United States)

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-06

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  1. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.

    Science.gov (United States)

    Diekman, Eugene F; van Weeghel, Michel; Wanders, Ronald J A; Visser, Gepke; Houten, Sander M

    2014-07-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited disorder of mitochondrial long-chain fatty acid β-oxidation (FAO). Patients with VLCAD deficiency may present with hypoglycemia, hepatomegaly, cardiomyopathy, and myopathy. Although several mouse models have been developed to aid in the study of the pathogenesis of long-chain FAO defects, the muscular phenotype is underexposed. To address the muscular phenotype, we used a newly developed mouse model on a mixed genetic background with a more severe defect in FAO (LCAD(-/-); VLCAD(+/-)) in addition to a validated mouse model (LCAD(-/-); VLCAD(+/+)) and compared them with wild-type (WT) mice. We found that both mouse models show a 20% reduction in energy expenditure (EE) and a 3-fold decrease in locomotor activity in the unfed state. In addition, we found a 1.7°C drop in body temperature in unfed LCAD(-/-); VLCAD(+/+) mice compared with WT body temperature. We conclude that food withdrawal-induced inactivity, hypothermia, and reduction in EE are novel phenotypes associated with FAO deficiency in mice. Unexpectedly, inactivity was not explained by rhabdomyolysis, but rather reflected the overall reduced capacity of these mice to generate heat. We suggest that mice are partly protected against the negative consequence of an FAO defect.-Diekman, E. F., van Weeghel, M., Wanders, R. J. A., Visser, G., Houten, S. M. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models. © FASEB.

  2. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  3. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  4. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  5. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions

    Directory of Open Access Journals (Sweden)

    D.F. Meinerz

    2011-11-01

    Full Text Available We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS. The co-incubation with diphenyl diselenide (100 µM completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect. Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.

  6. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  7. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  8. VSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infection.

    Science.gov (United States)

    Williams, Kinola J N; Qiu, Xiangguo; Fernando, Lisa; Jones, Steven M; Alimonti, Judie B

    2015-02-01

    Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.

  9. A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2018-01-01

    Full Text Available In recent years, enterovirus D68 (EVD68 has been reported increasingly to be associated with severe respiratory tract infections and acute flaccid myelitis (AFM in children all over the world. Yet, no effective vaccines or antiviral drugs are currently available for EVD68. Although several experimental animal models have been developed, immunogenicity and protective efficacy of inactivated EVD68 vaccines has not been fully evaluated. To promote the development of vaccines, we established an Institute of Cancer Research (ICR suckling mouse model of EVD68 infection in this study. The results showed that ICR neonatal mice up to about nine days of age were susceptible to infection with EVD68 clinical strain US/MO/14-18947 by intraperitoneal injection. The infected mice exhibited progressive limb paralysis prior to death and the mortality of mice was age- and virus dose-dependent. Tissue viral load analysis showed that limb muscle and spinal cord were the major sites of viral replication. Moreover, histopathologic examination revealed the severe necrosis of the limb and juxtaspinal muscles, suggesting that US/MO/14-18947 has a strong tropism toward muscle tissues. Additionally, β-propiolactone-inactivated EVD68 vaccine showed high purity and quality and induced robust EVD68-specific neutralizing antibody responses in adult mice. Importantly, results from both antisera transfer and maternal immunization experiments clearly showed that inactivated EVD68 vaccine was able to protect against lethal viral infection in the mouse model. In short, these results demonstrate the successful establishment of the mouse model of EVD68 infection for evaluating candidate vaccines against EVD68 and also provide important information for the development of inactivated virus-based EVD68 vaccines.

  10. Development of a metastatic fluorescent Lewis Lung carcinoma mouse model

    DEFF Research Database (Denmark)

    Rask, Lene; Fregil, Marianne; Høgdall, Estrid

    2013-01-01

    Cancer metastasis is the foremost cause of death in cancer patients. A series of observable pathological changes takes place during progression and metastasis of cancer, but the underlying genetic changes remain unclear. Therefore, new approaches are required, including insights from cancer mouse...... and the model is well suited for the identification of novel microRNAs and mRNAs involved in malignant progression. Our results suggest that increases in metalloproteinase expression and impairment of microRNA processing are involved in the acquirement of metastatic ability....

  11. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  12. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  13. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: rcmosca@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  15. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz

    2013-01-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  16. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  17. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Visesato Mor

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer, is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  18. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Science.gov (United States)

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  19. Flavocoxid, a Natural Antioxidant, Protects Mouse Kidney from Cadmium-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Antonio Micali

    2018-01-01

    Full Text Available Background. Cadmium (Cd, a diffused environmental pollutant, has adverse effects on urinary apparatus. The role of flavocoxid, a natural flavonoid with antioxidant activity, on the morphological and biochemical changes induced in vivo by Cd in mice kidney was evaluated. Methods. C57 BL/6J mice received 0.9% NaCl alone, flavocoxid (20 mg/kg/day i.p. alone, Cd chloride (CdCl2 (2 mg/kg/day i.p. alone, or CdCl2 plus flavocoxid (2 mg/kg/day i.p. plus 20 mg/kg/day i.p. for 14 days. The kidneys were processed for biochemical, structural, ultrastructural, and morphometric evaluation. Results. Cd treatment alone significantly increased urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; reduced GSH, GR, and GPx; and induced structural and ultrastructural changes in the glomeruli and in the tubular epithelium. After 14 days of treatment, flavocoxid administration reduced urea nitrogen and creatinine, iNOS, MMP-9, and pERK 1/2 expression and protein carbonyl; increased GSH, GR, and GPx; and showed an evident preservation of the glomerular and tubular structure and ultrastructure. Conclusions. A protective role of flavocoxid against Cd-induced oxidative damages in mouse kidney was demonstrated for the first time. Flavocoxid may have a promising antioxidant role against environmental Cd harmful effects on glomerular and tubular lesions.

  20. Dendritic spine pathology in autism: lessons learned from mouse models

    Institute of Scientific and Technical Information of China (English)

    Qiangge Zhang; Dingxi Zhou; Guoping Feng

    2016-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect up to 1.5% of population in the world. Recent large scale genomic studies show that genetic causes of ASD are very heterogeneous. Gene ontology, pathway analysis and animal model studies have revealed several potential converging mechanisms including postsynaptic dysfunction of excitatory synapses. In this review, we focus on the structural and functional specializations of dendritic spines, and describe their defects in ASD. We use Fragile X syndrome, Rett syndrome and Phe-lan-McDermid syndrome, three of the most studied neurodevelopmental disorders with autism features, as examples to demonstrate the significant contribution made by mouse models towards the understanding of monogenic ASD. We envision that the development and application of new technologies to study the function of dendritic spines in valid animal models will eventually lead to innovative treatments for ASD.

  1. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  2. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  3. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  4. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  5. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J

    2014-06-04

    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.

  6. Ibrutinib suppresses alloantibody responses in a mouse model of allosensitization.

    Science.gov (United States)

    Kim, Irene; Wu, Gordon; Chai, Ning-Ning; Klein, Andrew S; Jordan, Stanley

    2017-12-01

    Ibrutinib is a Bruton's tyrosine Kinase (BTK) antagonist that inhibits B cell receptor (BCR) signaling. Complete BTK deficiency is associated with absence of B-cells. Ibrutinb is currently approved by FDA for treatment of B-cell malignancies, including Waldenström macroglobulinaemia. We recently carried out studies to determine if ibrutinib could modify alloantibody responses. A mouse model of allogenic sensitization using a C57BL/6 mouse as the recipient of a skin allograft from an HLA-A2 transgenic mouse was utilized to examine the effects of ibrutinib on alloantibody responses and B cell effector functions. Donor-specific antibody (DSA) levels were measured in a flow-cytometric antibody binding assay. Splenic T and B cell subsets and plasma cells were analyzed in flow cytometry. Control mice developed peak levels of DSA IgM at day 14 PTx while the ibrutinib treated mice had significantly lower levels of DSA IgM (p=0.0047). Control mice developed HLA.A2-specific IgG antibodies at day 14 (230±60 MFI) and reached peak levels at day 21 (426±61 MFI). In contrast, mice in the treatment group had low levels of HLA.A2-specific IgG at day 14 (109±59 MFI, p=0.004) and day 21 (241±86 MFI, p=0.003). FACS analysis found a reduction of B220 + or CD19 + B cell population (pibrutinib attenuated recall DSA IgG responses to re-sensitization (pIbrutinib is effective in suppressing alloantibody responses through blocking BTK-mediated BCR signaling, leading to reduction of B cells and short-lived plasma cells in the spleens. Use of ibrutinib may provide benefits to HLA-sensitized transplant patients for alloantibody suppression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Glycomic analyses of mouse models of congenital muscular dystrophy.

    Science.gov (United States)

    Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min; Porterfield, Mindy; Liu, Mian; Satz, Jakob S; Buskirk, Sean; Xiong, Yufang; Zhang, Peng; Campbell, Kevin P; Hu, Huaiyu; Live, David; Tiemeyer, Michael; Wells, Lance

    2011-06-17

    Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.

  8. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  9. Mouse models of ageing and their relevance to disease.

    Science.gov (United States)

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. An antibiotic-responsive mouse model of fulminant ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Silvia S Kang

    2008-03-01

    Full Text Available BACKGROUND: The constellation of human inflammatory bowel disease (IBD includes ulcerative colitis and Crohn's disease, which both display a wide spectrum in the severity of pathology. One theory is that multiple genetic hits to the host immune system may contribute to the susceptibility and severity of IBD. However, experimental proof of this concept is still lacking. Several genetic mouse models that each recapitulate some aspects of human IBD have utilized a single gene defect to induce colitis. However, none have produced pathology clearly distinguishable as either ulcerative colitis or Crohn's disease, in part because none of them reproduce the most severe forms of disease that are observed in human patients. This lack of severe IBD models has posed a challenge for research into pathogenic mechanisms and development of new treatments. We hypothesized that multiple genetic hits to the regulatory machinery that normally inhibits immune activation in the intestine would generate more severe, reproducible pathology that would mimic either ulcerative colitis or Crohn's disease. METHODS AND FINDINGS: We generated a novel mouse line (dnKO that possessed defects in both TGFbetaRII and IL-10R2 signaling. These mice rapidly and reproducibly developed a disease resembling fulminant human ulcerative colitis that was quite distinct from the much longer and more variable course of pathology observed previously in mice possessing only single defects. Pathogenesis was driven by uncontrolled production of proinflammatory cytokines resulting in large part from T cell activation. The disease process could be significantly ameliorated by administration of antibodies against IFNgamma and TNFalpha and was completely inhibited by a combination of broad-spectrum antibiotics. CONCLUSIONS: Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by combining multiple genetic hits in immune regulation and demonstrate that the resulting

  11. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  12. Oligonol improves memory and cognition under an amyloid β(25-35)-induced Alzheimer's mouse model.

    Science.gov (United States)

    Choi, Yoon Young; Maeda, Takahiro; Fujii, Hajime; Yokozawa, Takako; Kim, Hyun Young; Cho, Eun Ju; Shibamoto, Takayuki

    2014-07-01

    Alzheimer's disease is an age-dependent progressive neurodegenerative disorder that results in impairments of memory and cognitive function. It is hypothesized that oligonol has ameliorative effects on memory impairment and reduced cognitive functions in mice with Alzheimer's disease induced by amyloid β(25-35) (Aβ(25-35)) injection. The protective effect of an oligonol against Aβ(25-35)-induced memory impairment was investigated in an in vivo Alzheimer's mouse model. The aggregation of Aβ25-35 was induced by incubation at 37°C for 3 days before injection into mice brains (5 nmol/mouse), and then oligonol was orally administered at 100 and 200 mg/kg of body weight for 2 weeks. Memory and cognition were observed in T-maze, object recognition, and Morris water maze tests. The group injected with Aβ(25-35) showed impairments in both recognition and memory. However, novel object recognition and new route awareness abilities were dose dependently improved by the oral administration of oligonol. In addition, the results of the Morris water maze test indicated that oligonol exerted protective activity against cognitive impairment induced by Aβ(25-35). Furthermore, nitric oxide formation and lipid peroxidation were significantly elevated by Aβ(25-35), whereas oligonol treatment significantly decreased nitric oxide formation and lipid peroxidation in the brain, liver, and kidneys. The present results suggest that oligonol improves Aβ(25-35)-induced memory deficit and cognition impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  14. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  15. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    Science.gov (United States)

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  16. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    Science.gov (United States)

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Pre implanted mouse embryos as model for uranium toxicology studies

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    Full text: The search of 'in vitro' toxicology model that can predict toxicology effects 'in vivo' is a permanent challenge. A toxicology experimental model must to fill to certain requirements: to have a predictive character, an appropriate control to facilitate the interpretation of the data among the experimental groups, and to be able to control the independent variables that can interfere or modify the results that we are analyzing. The preimplantation embryos posses many advantages in this respect: they are a simple model that begins with the development of only one cell. The 'in vitro' model reproduces successfully the 'in vivo' situation. Due to the similarity that exists among the embryos of mammals during this period the model is practically valid for other species. The embryo is itself a stem cell, the toxicology effects are early observed in his clonal development and the physical-chemical parameters are easily controllable. The purpose of the exhibition is to explain the properties of the pre implanted embryo model for toxicology studies of uranium and to show our experimental results. The cultivation 'in vitro' of mouse embryos with uranylo nitrate demonstrated that the uranium causes from the 13 μgU/ml delay of development, decrease the number of cells per embryo and hipoploidy in the embryonic blastomere. (author)

  18. Movable scour protection. Model test report

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, R.

    2002-07-01

    This report presents the results of a series of model tests with scour protection of marine structures. The objective of the model tests is to investigate the integrity of the scour protection during a general lowering of the surrounding seabed, for instance in connection with movement of a sand bank or with general subsidence. The scour protection in the tests is made out of stone material. Two different fractions have been used: 4 mm and 40 mm. Tests with current, with waves and with combined current and waves were carried out. The scour protection material was placed after an initial scour hole has evolved in the seabed around the structure. This design philosophy has been selected because the situation often is that the scour hole starts to generate immediately after the structure has been placed. It is therefore difficult to establish a scour protection at the undisturbed seabed if the scour material is placed after the main structure. Further, placing the scour material in the scour hole increases the stability of the material. Two types of structure have been used for the test, a Monopile and a Tripod foundation. Test with protection mats around the Monopile model was also carried out. The following main conclusions have emerged form the model tests with flat bed (i.e. no general seabed lowering): 1. The maximum scour depth found in steady current on sand bed was 1.6 times the cylinder diameter, 2. The minimum horizontal extension of the scour hole (upstream direction) was 2.8 times the cylinder diameter, corresponding to a slope of 30 degrees, 3. Concrete protection mats do not meet the criteria for a strongly erodible seabed. In the present test virtually no reduction in the scour depth was obtained. The main problem is the interface to the cylinder. If there is a void between the mats and the cylinder, scour will develop. Even with the protection mats that are tightly connected to the cylinder, scour is expected to develop as long as the mats allow for

  19. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  20. The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington’s Disease Mouse Models

    Directory of Open Access Journals (Sweden)

    Vanita Chopra

    2012-12-01

    Full Text Available Inhibition of sirtuin 2 (SIRT2 deacetylase mediates protective effects in cell and invertebrate models of Parkinson’s disease and Huntington’s disease (HD. Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.

  1. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.

    Science.gov (United States)

    Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H

    2011-09-01

    Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  3. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Science.gov (United States)

    Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés

    2015-01-01

    To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  4. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  5. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  6. A meta-analysis of experimental studies of attenuated Schistosoma mansoni vaccines in the mouse model

    Directory of Open Access Journals (Sweden)

    Mizuho eFukushige

    2015-02-01

    Full Text Available Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades towards the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since the 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963-2007 meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors.Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines.

  7. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum.

    Science.gov (United States)

    Luan, Yanan; Ren, Xiangpeng; Zheng, Wu; Zeng, Zhenhai; Guo, Yingzi; Hou, Zhidong; Guo, Wei; Chen, Xingjun; Li, Fei; Chen, Jiang-Fan

    2018-01-01

    Despite converging epidemiological evidence for the inverse relationship of regular caffeine consumption and risk of developing Parkinson's disease (PD) with animal studies demonstrating protective effect of caffeine in various neurotoxin models of PD, whether caffeine can protect against mutant α-synuclein (α-Syn) A53T-induced neurotoxicity in intact animals has not been examined. Here, we determined the effect of chronic caffeine treatment using the α-Syn fibril model of PD by intra-striatal injection of preformed A53T α-Syn fibrils. We demonstrated that chronic caffeine treatment blunted a cascade of pathological events leading to α-synucleinopathy, including pSer129α-Syn-rich aggregates, apoptotic neuronal cell death, microglia, and astroglia reactivation. Importantly, chronic caffeine treatment did not affect autophagy processes in the normal striatum, but selectively reversed α-Syn-induced defects in macroautophagy (by enhancing microtubule-associated protein 1 light chain 3, and reducing the receptor protein sequestosome 1, SQSTM1/p62) and chaperone-mediated autophagy (CMA, by enhancing LAMP2A). These findings support that caffeine-a strongly protective environment factor as suggested by epidemiological evidence-may represent a novel pharmacological therapy for PD by targeting autophagy pathway.

  8. Improving treatment outcome assessment in a mouse tuberculosis model.

    Science.gov (United States)

    Mourik, Bas C; Svensson, Robin J; de Knegt, Gerjo J; Bax, Hannelore I; Verbon, Annelies; Simonsson, Ulrika S H; de Steenwinkel, Jurriaan E M

    2018-04-09

    Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R p ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E max model in favor over linear or conventional E max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R p ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.

  9. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death

    Science.gov (United States)

    Tang, Yaoping; Wang, Yongchao; Park, Kyoung-mi; Hu, Qiuping; Teoh, Jian-peng; Broskova, Zuzana; Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Jie; Su, Huabo; Tang, Yaoliang; Ramesh, Ganesan; Kim, Il-man

    2015-01-01

    Aims Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. Methods and results Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. Conclusion These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury. PMID:25824147

  10. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: Role of the TNF signaling axis

    International Nuclear Information System (INIS)

    Wahl, Elizabeth C.; Aronson, James; Liu, Lichu; Liu, Zhendong; Perrien, Daniel S.; Skinner, Robert A.; Badger, Thomas M.; Ronis, Martin J.J.; Lumpkin, Charles K.

    2007-01-01

    Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-α signaling. The effects in mice are unreported. Therefore, we hypothesized that in mice (1) administration of a soluble TNF receptor 1 derivative (sTNF-R1) would protect direct bone formation during chronic ethanol exposure, and (2) administration of recombinant mouse TNF-α (rmTNF-α) to ethanol naive mice would inhibit direct bone formation. We utilized a unique model of limb lengthening (distraction osteogenesis, DO) combined with liquid diets to measure chronic ethanol's effects on direct bone formation. Chronic ethanol exposure resulted in increased marrow TNF, IL-1, and CYP 2E1 RNA levels in ethanol-treated vs. control mice, while no significant weight differences were noted. Systemic administration of sTNF-R1 during DO (8.0 mg/kg/2 days) to chronic ethanol-exposed mice resulted in enhanced direct bone formation as measured radiologically and histologically. Systemic rmTNF-α (10 μg/kg/day) administration decreased direct bone formation measures, while no significant weight differences were noted. We conclude that chronic ethanol-associated inhibition of direct bone formation is mediated to a significant extent by the TNF signaling axis in a mouse model

  11. Iodine uptake and prostate cancer in the TRAMP mouse model.

    Science.gov (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  12. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  13. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  14. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  15. Zmpste24-/- mouse model for senescent wound healing research.

    Science.gov (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  16. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  17. HUPO BPP Workshop on Mouse Models for Neurodegeneration--Choosing the right models.

    Science.gov (United States)

    Hamacher, Michael; Marcus, Katrin; Stephan, Christian; van Hall, Andre; Meyer, Helmut E

    2005-09-01

    The HUPO Brain Proteome Project met during the 4th Dutch Endo-Neuro-Psycho Meeting in Doorwerth, The Netherlands, on June 1, 2005, in order to discuss appropriate (mouse) models for neurodegenerative diseases as well as to conceptualise sophisticated proteomics analyses strategies. Here, the topics of the meeting are summarised.

  18. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    Science.gov (United States)

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  19. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  20. Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Tuberous Sclerosis Complex (TSC is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis.

  1. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  2. Interferon lambda (IFN-λ) efficiently blocks norovirus transmission in a mouse model.

    Science.gov (United States)

    Rocha-Pereira, Joana; Jacobs, Sophie; Noppen, Sam; Verbeken, Eric; Michiels, Thomas; Neyts, Johan

    2018-01-01

    Human noroviruses are highly efficient in person to person transmission thus associated with explosive outbreaks of acute gastroenteritis. Outbreak control is limited to disinfection and isolation measures. Strategies to control the spread of noroviruses should be developed and models to study norovirus transmission will greatly facilitate this. Here, a mouse-to-mouse transmission model, in which mice develop acute murine norovirus (MNV)-induced diarrhea, was used to explore the role of interferon lambda (IFN-λ) in the control of a norovirus infection. Sentinel AG129 mice [deficient in IFN-α/β and IFN-γ receptors] that were co-housed with MNV-infected mice shedding high amounts of virus in their stool, developed a MNV-infection with associated diarrhea. Inoculation of such sentinel mice with an IFN-λ expression plasmid resulted in the production of circulating IFN-λ and upregulation of the expression of IFN-stimulated genes (ISGs) of the gut. Injection of the IFN-λ-expressing plasmid to sentinels prevents MNV-induced disease upon exposure to MNV-infected mice, as well as MNV replication in the small intestine, the associated signs of inflammation and the mounting of a specific IgG-based immune response. This demonstrates that IFN-λ can alone mediate protection against transmission of norovirus. The development of a simple delivery method for IFN-λ could be explored as a strategy to control norovirus outbreaks and protect vulnerable populations such as the elderly and immunocompromised. Copyright © 2017. Published by Elsevier B.V.

  3. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built...

  4. Andrographolide protects mouse astrocytes against hypoxia injury by promoting autophagy and S100B expression

    Directory of Open Access Journals (Sweden)

    Juan Du

    2018-04-01

    Full Text Available Andrographolide (ANDRO has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains were subjected to 3 and 21% of O2 for various times (0–12 h to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.

  5. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    Full Text Available The incidence and mortality of prostate cancer (PCa vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1, which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN, and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt, FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC, and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN. In summary, targeted overexpression of h

  6. Lutein facilitates physiological revascularization in a mouse model of retinopathy of prematurity.

    Science.gov (United States)

    Fu, Zhongjie; Meng, Steven S; Burnim, Samuel B; Smith, Lois Eh; Lo, Amy Cy

    2017-07-01

    Retinopathy of prematurity is one of the leading causes of childhood blindness worldwide, with vessel growth cessation and vessel loss in phase I followed by neovascularization in phase II. Ischaemia contributes to its pathogenesis, and lutein protects against ischaemia-induced retinal damages. We aimed to investigate the effects of lutein on a murine model of oxygen-induced retinopathy. Mouse pups were exposed to 75% oxygen for 5 days and returned to room air for another 5 days. Vascular obliteration, neovascularization and blood vessel leakage were examined. Immunohistochemistry for glial cells and microglia were performed. Compared with vehicle controls, mouse pups receiving lutein treatment displayed smaller central vaso-obliterated area and reduced blood vessel leakage. No significant difference in neovascular area was found between lutein and vehicle controls. Lutein promoted endothelial tip cell formation and maintained the astrocytic template in the avascular area in oxygen-induced retinopathy. No significant changes in Müller cell gliosis and microglial activation in the central avascular area were found in lutein-treated pups. Our observations indicated that lutein significantly promoted normal retinal vascular regrowth in the central avascular area, possibly through promoting endothelial tip cell formation and preserving astrocytic template. Our results indicated that lutein might be considered as a supplement for the treatment of proliferative retinopathy of prematurity because of its role in facilitating the revascularization of normal vasculature. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  7. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia.

    Science.gov (United States)

    Chen, Zheng-Zhen; Yang, Dan-Dan; Zhao, Zhan; Yan, Hui; Ji, Juan; Sun, Xiu-Lan

    2016-04-01

    Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A flavor protection for warped Higgsless models

    International Nuclear Information System (INIS)

    Csaki, Csaba; Curtin, David

    2009-01-01

    We examine various possibilities for realistic 5D Higgsless models on a Randall-Sundrum (RS) background, and construct a full quark sector featuring next-to-minimal flavor violation (with an exact bulk SU(2) protecting the first two generations) which satisfies electroweak and flavor constraints. The 'new custodially protected representation' is used for the third generation to protect the light quarks from flavor violations induced due to the heavy top. A combination of flavor symmetries, and an 'RS-GIM' mechanism for the right-handed quarks suppresses flavor-changing neutral currents below experimental bounds, assuming Cabibbo-Kobayashi-Maskawa-type mixing on the UV brane. In addition to the usual Higgsless RS signals, this model predicts an exotic charge-5/3 quark with mass of about 0.5 TeV which should show up at the LHC very quickly, as well as nonzero flavor-changing neutral currents which could be detected in the next generation of flavor experiments. In the course of our analysis, we also find quantitative estimates for the errors of the fermion zero-mode approximation, which are significant for Higgsless-type models.

  9. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis.

    Science.gov (United States)

    Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D; Kim, Marianne M; Summer, Ross; Kim, Kwang Chul

    2017-11-25

    MUC1 (MUC in human and Muc in animals) is a membrane-tethered mucin expressed on the apical surface of lung epithelial cells. However, in the lungs of patients with interstitial lung disease, MUC1 is aberrantly expressed in hyperplastic alveolar type II epithelial (ATII) cells and alveolar macrophages (AM), and elevated levels of extracellular MUC1 are found in bronchoalveolar lavage (BAL) fluid and the serum of these patients. While pro-fibrotic effects of extracellular MUC1 have recently been described in cultured fibroblasts, the contribution of MUC1 to the pathobiology of pulmonary fibrosis is unknown. In this study, we hypothesized that MUC1 deficiency would reduce susceptibility to pulmonary fibrosis in a mouse model of silicosis. We employed human MUC1 transgenic mice, Muc1 deficient mice and wild-type mice on C57BL/6 background in these studies. Some mice received a one-time dose of crystalline silica instilled into their oropharynx in order to induce pulmonary fibrosis and assess the effects of Muc1 deficiency on fibrotic and inflammatory responses in the lung. As previously described in other mouse models of pulmonary fibrosis, we found that extracellular MUC1 levels were markedly increased in whole lung tissues, BALF and serum of human MUC1 transgenic mice after silica. We also detected an increase in total MUC1 levels in the lungs of these mice, indicating that production as well as release contributed to elevated levels after lung injury. Immunohistochemical staining revealed that increased MUC1 expression was mostly confined to ATII cells and AMs in areas of fibrotic remodeling, illustrating a pattern similar to the expression of MUC1 in human fibrotic lung tissues. However, contrary to our hypothesis, we found that Muc1 deficiency resulted in a worsening of fibrotic remodeling in the mouse lung as judged by an increase in number of silicotic nodules, an increase in lung collagen deposition and an increase in the severity of pulmonary inflammation

  10. The Sound of Silence: Mouse Models for Hearing Loss

    Directory of Open Access Journals (Sweden)

    Sumantra Chatterjee

    2011-01-01

    Full Text Available Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI in humans.

  11. Efficacy of enrofloxacin in a mouse model of sepsis.

    Science.gov (United States)

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-07-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections.

  12. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  13. Fundus autofluorescence findings in a mouse model of retinal detachment.

    Science.gov (United States)

    Secondi, Roberta; Kong, Jian; Blonska, Anna M; Staurenghi, Giovanni; Sparrow, Janet R

    2012-08-07

    Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.

  14. Hepatitis C Virus-Related Lymphomagenesis in a Mouse Model

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Sekiguchi, Satoshi; Kasama, Yuri; Salem, Nagla Elwy; Machida, Keigo; Kohara, Michinori

    2011-01-01

    B cell non-Hodgkin lymphoma is a typical extrahepatic manifestation frequently associated with hepatitis C virus (HCV) infection. The mechanism by which HCV infection leads to lymphoproliferative disorder remains unclear. Our group established HCV transgenic mice that expressed the full HCV genome in B cells (RzCD19Cre mice). We observed a 25.0% incidence of diffuse large B cell non-Hodgkin lymphomas (22.2% in male and 29.6% in female mice) within 600 days of birth. Interestingly, RzCD19Cre mice with substantially elevated serum-soluble interleukin-2 receptor α-subunit (sIL-2Rα) levels (>1000 pg/mL) developed B cell lymphomas. Another mouse model of lymphoproliferative disorder was established by persistent expression of HCV structural proteins through disruption of interferon regulatory factor-1 (irf-1_/_/CN2 mice). Irf-1_/_/CN2 mice showed extremely high incidences of lymphomas and lymphoproliferative disorders. Moreover, these mice showed increased levels of interleukin (IL)-2, IL-10, and Bcl-2 as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. PMID:22084693

  15. A mouse model for degeneration of the spiral ligament.

    Science.gov (United States)

    Kada, Shinpei; Nakagawa, Takayuki; Ito, Juichi

    2009-06-01

    Previous studies have indicated the importance of the spiral ligament (SL) in the pathogenesis of sensorineural hearing loss. The aim of this study was to establish a mouse model for SL degeneration as the basis for the development of new strategies for SL regeneration. We injected 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, at various concentrations into the posterior semicircular canal of adult C57BL/6 mice. Saline-injected animals were used as controls. Auditory function was monitored by measurements of auditory brain stem responses (ABRs). On postoperative day 14, cochlear specimens were obtained after the measurement of the endocochlear potential (EP). Animals that were injected with 5 or 10 mM 3-NP showed a massive elevation of ABR thresholds along with extensive degeneration of the cochleae. Cochleae injected with 1 mM 3-NP exhibited selective degeneration of the SL fibrocytes but alterations in EP levels and ABR thresholds were not of sufficient magnitude to allow for testing functional recovery after therapeutic interventions. Animals injected with 3 mM 3-NP showed a reduction of around 50% in the EP along with a significant loss of SL fibrocytes, although degeneration of spiral ganglion neurons and hair cells was still present in certain regions. These findings indicate that cochleae injected with 3 mM 3-NP may be useful in investigations designed to test the feasibility of new therapeutic manipulations for functional SL regeneration.

  16. Skeletal muscle repair in a mouse model of nemaline myopathy.

    Science.gov (United States)

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  17. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. MMP9 is protective against lethal inflammatory mass lesions in the mouse colon

    DEFF Research Database (Denmark)

    Hald, Andreas; Rønø, Birgitte; Melander, Maria C

    2011-01-01

    of individual members of the MMP family in animal models have been shown to have little effect. It has been speculated that this results from a functional overlap between individual MMPs and (as-yet-unclassified) functional overlaps between MMPs and other protease systems. We here present genetic data showing......, enlarged mesenteric lymph nodes, decreased thymus size and altered populations of circulating immune cells. A time-course study provided evidence that the massive lymphoid hyperplasia and reactive changes were secondary to discrete fibrinous lesions also observed in mice only deficient for plasminogen (Plg......), the zymogen for plasmin. These data demonstrate a non-appreciated vital protective role for MMP9 in the absence of Plg....

  19. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules.

    Science.gov (United States)

    Yu, Alfred K; Datta, Sandipan; McMackin, Marissa Z; Cortopassi, Gino A

    2017-12-15

    Inherited mitochondrial optic neuropathies, such as Leber's hereditary optic neuropathy (LHON) and Autosomal dominant optic atrophy (ADOA) are caused by mutant mitochondrial proteins that lead to defects in mitochondrial complex 1-driven ATP synthesis, and cause specific retinal ganglion cell (RGC) loss. Complex 1 defects also occur in patients with primary open angle glaucoma (POAG), in which there is specific RGC loss. The treatment of mitochondrial optic neuropathy in the US is only supportive. The Ndufs4 knockout (Ndufs4 KO) mouse is a mitochondrial complex 1-deficient model that leads to RGC loss and rapid vision loss and allows for streamlined testing of potential therapeutics. Preceding RGC loss in the Ndufs4 KO is the loss of starburst amacrine cells, which may be an important target in the mechanism of complex 1-deficient vision loss. Papaverine and zolpidem were recently shown to be protective of bioenergetic loss in cell models of optic neuropathy. Treatment of Ndufs4 KO mice with papaverine, zolpidem, and rapamycin-suppressed inflammation, prevented cell death, and protected from vision loss. Thus, in the Ndufs4 KO mouse model of mitochondrial optic neuropathy, papaverine and zolpidem provided significant protection from multiple pathophysiological features, and as approved drugs in wide human use could be considered for the novel indication of human optic neuropathy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Altered selenium status in Huntington's disease: neuroprotection by selenite in the N171-82Q mouse model.

    Science.gov (United States)

    Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H

    2014-11-01

    Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  2. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  3. Mouse model for acute Epstein-Barr virus infection.

    Science.gov (United States)

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  4. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz

    2014-01-01

    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  5. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  6. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  7. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  8. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus.

    Directory of Open Access Journals (Sweden)

    Subaschandrabose Rajesh Kumar

    Full Text Available BACKGROUND: Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA. The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n. or subcutaneously (s.c. with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. CONCLUSION: Our results indicated that protection from high pathogenic H7N7 (NL/219/03 virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.

  9. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  10. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Cormier Stephania A

    2009-07-01

    Full Text Available Abstract Background Atrial natriuretic peptide (ANP and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126 of pro-atrial natriuretic factor (proANF and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD, another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma. Methods A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2 through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid. Results pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation. Conclusion VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.

  11. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking.

    Science.gov (United States)

    Phillips, T J; Mootz, J R K; Reed, C

    2016-01-01

    Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction. © 2016 Elsevier Inc. All rights reserved.

  12. [Effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model].

    Science.gov (United States)

    Tunje, Reginachizi; Ye, Yang-Lie; Sonauddin, Ahmed; Hansraj, Bhugun; Ngawang, Sangye; Shivani, Sharma; Zhang, Xiong; Zhu, Jian-Hong; Liu, Rong-Pei

    2016-09-01

    In order to investigate the effect of Shouwu Shudi Yin on dopaminegic neurons in MPTP induced Parkinson's disease mouse model and the possible mechamism, the experimental mice were randomly divided into 4 groups: control, Shouwu Shudi Yin, MPTP and the treatment (MPTP+Shouwu Shudi Yin) groups. The number of tyrosine hydroxylase (TH) positive cells in the substantia nigra was measured by immunohistochemistry, and mRNA expression of TH and glutathione peroxidase (GPX) were detected by PCR. The results showed that the number of TH positive cells and mRNA expression of TH were significantly reduced in MPTP group compared with the control (PYin didn't show protective effect. Compared to MPTP group, the mRNA expression of four subtypes of GPX were increased in various degrees in the treatment group pretreated with Shouwu Shudi Yin, although the difference was not statistically significant. These indicated that the preventive medication of Shouwu Shudi Yin don't have protective effect on the mice with Parkinson' s disease induced by MPTP, but it may enhance the antioxidant capacity through increasing the expression of GPX. Copyright© by the Chinese Pharmaceutical Association.

  13. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    Science.gov (United States)

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  14. Effects of Acanthopanax senticosus on Brain Injury Induced by Simulated Spatial Radiation in Mouse Model Based on Pharmacokinetics and Comparative Proteomics

    Directory of Open Access Journals (Sweden)

    Yingyu Zhou

    2018-01-01

    Full Text Available The active compounds in Acanthopanax senticosus (AS have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC of mouse brain included tubulin protein family (α-, β-tubulin subunits, dihydropyrimidinase-related protein 2 (CRMP2, γ-actin, 14-3-3 protein family (14-3-3ζ, ε, heat shock protein 90β (HSP90β, and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B, Neurotrophin, Rap1 (Ras-related protein RAP-1A, gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1 signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could

  15. Coastal erosion problem, modelling and protection

    Science.gov (United States)

    Yılmaz, Nihal; Balas, Lale; İnan, Asu

    2015-09-01

    Göksu Delta, located in the south of Silifke County of Mersin on the coastal plain formed by Göksu River, is one of the Specially Protected Areas in Turkey. Along the coastal area of the Delta, coastline changes at significant rates are observed, concentrating especially at four regions; headland of İncekum, coast of Paradeniz Lagoon, river mouth of Göksu and coast of Altınkum. The coast of Paradeniz Lagoon is suffering significantly from erosion and the consequent coastal retreating problem. Therefore, the narrow barrier beach which separates Paradeniz Lagoon from the Mediterranean Sea is getting narrower, creating a risk of uniting with the sea, thus causing the disappearance of the Lagoon. The aim of this study was to understand the coastal transport processes along the coastal area of Göksu Delta to determine the coastal sediment transport rates, and accordingly, to propose solutions to prevent the loss of coastal lands in the Delta. To this end, field measurements of currents and sediment grain sizes were carried out, and wind climate, wave climate, circulation patterns and longshore sediment transport rates were numerically modeled by HYDROTAM-3D, which is a three dimensional hydrodynamic transport model. Finally, considering its special importance as an environmentally protected region, some coastal structures of gabions were proposed as solutions against the coastal erosion problems of the Delta. The effects of proposed structures on future coastline changes were also modeled, and the coastlines predicted for the year 2017 are presented and discussed in the paper.

  16. Human anti-plague monoclonal antibodies protect mice from Yersinia pestis in a bubonic plague model.

    Directory of Open Access Journals (Sweden)

    Xiaodong Xiao

    2010-10-01

    Full Text Available Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252 and two anti-V-specific human mAb (m253, m254 by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.

  17. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  18. The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available Spinal muscular atrophy is an autosomal recessive neuromuscular disease characterized by the progressive loss of alpha motor neurons in the spinal cord. Trichostatin A (TSA is a histone deacetylase inhibitor with beneficial effects in spinal muscular atrophy mouse models that carry the human SMN2 transgene. It is currently unclear whether TSA specifically targets the SMN2 gene or whether other genes respond to TSA and in turn provide neuroprotection in SMA mice. We have taken advantage of the Smn2B/- mouse model that does not harbor the human SMN2 transgene, to test the hypothesis that TSA has its beneficial effects through a non-SMN mediated pathway. TSA increased the median lifespan of Smn2B/- mice from twenty days to eight weeks. As well, there was a significant attenuation of weight loss and improved motor behavior. Pen test and righting reflex both showed significant improvement, and motor neurons in the spinal cord of Smn2B/- mice were protected from degeneration. Both the size and maturity of neuromuscular junctions were significantly improved in TSA treated Smn2B/- mice. Of interest, TSA treatment did not increase the levels of Smn protein in mouse embryonic fibroblasts or myoblasts obtained from the Smn2B/- mice. In addition, no change in the level of Smn transcripts or protein in the brain or spinal cord of TSA-treated SMA model mice was observed. Furthermore, TSA did not increase Smn protein levels in the hind limb muscle, heart, or liver of Smn2B/- mice. We therefore conclude that TSA likely exerts its effects independent of the endogenous mouse Smn gene. As such, identification of the pathways regulated by TSA in the Smn2B/- mice could lead to the development of novel therapeutics for treating SMA.

  19. Curcumin Protects against 1-Methyl-4-phenylpyridinium Ion- and Lipopolysaccharide-Induced Cytotoxicities in the Mouse Mesencephalic Astrocyte via Inhibiting the Cytochrome P450 2E1

    Directory of Open Access Journals (Sweden)

    Hai-Yan Gui

    2013-01-01

    Full Text Available Curcumin is extracted from the rhizomes of the ginger family plant Curcuma longa L., which has a good protection for liver, kidney, and immune system. However, there is little information about its contribution in protection of astrocytes recently. The present study was undertaken to elucidate the protective effect of curcumin, an herbal antioxidant, on 1-methyl-4-phenylpyridinium ion- (MPP+- and lipopolysaccharide- (LPS- induced cytotoxicities, as well as the underlying mechanisms by using primary mouse mesencephalic astrocytes. The results showed that curcumin protected the mesencephalic astrocytes from MPP+- and LPS-induced toxicities along with reducing reactive oxygen species (P<0.05 and maleic dialdehyde (P<0.05 sufficiently. Moreover, curcumin significantly inhibited the cytochrome P450 2E1 (CYP2E1 expression (P<0.01 at mRNA level, P<0.05 at protein level and its activity (P<0.05 sufficiently induced by MPP+ and LPS in the mouse mesencephalic astrocytes. And curcumin as well as diallyl sulphide, a CYP2E1 positive inhibitor, ameliorated MPP+- and LPS-induced mouse mesencephalic astrocytes damage. Accordingly, curcumin protects against MPP+- and LPS-induced cytotoxicities in the mouse mesencephalic astrocyte via inhibiting the CYP2E1 expression and activity.

  20. Angelica Sinensis Polysaccharide Prevents Hematopoietic Stem Cells Senescence in D-Galactose-Induced Aging Mouse Model

    Directory of Open Access Journals (Sweden)

    Xinyi Mu

    2017-01-01

    Full Text Available Age-related regression in hematopoietic stem/progenitor cells (HSC/HPCs limits replenishment of the blood and immune system and hence contributes to hematopoietic diseases and declined immunity. In this study, we employed D-gal-induced aging mouse model and observed the antiaging effects of Angelica Sinensis Polysaccharide (ASP, a major active ingredient in dong quai (Chinese Angelica Sinensis, on the Sca-1+ HSC/HPCs in vivo. ASP treatment prevents HSC/HPCs senescence with decreased AGEs levels in the serum, reduced SA-β-Gal positive cells, and promoted CFU-Mix formation in the D-gal administrated mouse. We further found that multiple mechanisms were involved: (1 ASP treatment prevented oxidative damage as total antioxidant capacity was increased and levels of reactive oxygen species (ROS, 8-OHdG, and 4-HNE were declined, (2 ASP reduced the expression of γ-H2A.X which is a DNA double strand breaks (DSBs marker and decreased the subsequent ectopic expressions of effectors in p16Ink4a-RB and p19Arf-p21Cip1/Waf senescent pathways, and (3 ASP inhibited the excessive activation of Wnt/β-catenin signaling in aged HSC/HPCs, as the expressions of β-catenin, phospho-GSK-3β, and TCF-4 were decreased, and the cyto-nuclear translocation of β-catenin was inhibited. Moreover, compared with the positive control of Vitamin E, ASP exhibited a better antiaging effect and a weaker antioxidation ability, suggesting a novel protective role of ASP in the hematopoietic system.

  1. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    Science.gov (United States)

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  2. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Liu, WeiZhen; Li, Yanwei; Jalewa, Jaishree; Saunders-Wood, Taylor; Li, Lin; Hölscher, Christian

    2015-10-15

    Oxyntomodulin is a hormone and a growth factor. It activates two receptors, the Glucagon-like peptide 1 (GLP-1) and the glucagon receptor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first positive results. D-Ser2-oxyntomodulin (Oxy) is a protease resistant oxyntomodulin analogue that has been developed to treat diabetes. Here we demonstrate for the first time that such analogues have neuroprotective effects. The drug showed protective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected daily (20 mg/kg i.p.) for 7 days, and Oxy injected once-daily for 14 days i.p. Oxy treatment prevented or reversed the MPTP- induced motor impairment (Rotarod, spontaneous locomotion, swim activity, muscle strength test), the MPTP-induced reduction in Tyrosine Hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, the reduction of the synaptic marker synapstophysin, the inactivation of the growth factor kinase Akt/PKB and of the anti-apoptotic signaling molecule Bcl-2, and the increase of levels of the pro-inflammatory cytokine TNF-α. The results demonstrate that oxyntomodulin analogues show promise as a novel treatment of PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.

    Science.gov (United States)

    Marks, Ellen; Goggins, Bridie J; Cardona, Jocelle; Cole, Siobhan; Minahan, Kyra; Mateer, Sean; Walker, Marjorie M; Shalwitz, Robert; Keely, Simon

    2015-02-01

    Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.

  4. Taurine Protects Mouse Spermatocytes from Ionizing Radiation-Induced Damage Through Activation of Nrf2/HO-1 Signaling.

    Science.gov (United States)

    Yang, Wenjun; Huang, Jinfeng; Xiao, Bang; Liu, Yan; Zhu, Yiqing; Wang, Fang; Sun, Shuhan

    2017-01-01

    The increasing prevalence of ionizing radiation exposure has inevitably raised public concern over the potential detrimental effects of ionizing radiation on male reproductive system function. The detection of drug candidates to prevent reproductive system from damage caused by ionizing radiation is urgent. We aimed to investigate the protective role of taurine on the injury of mouse spermatocyte-derived cells (GC-2) subjected to ionizing radiation. mouse spermatocytes (GC-2 cells) were exposed to ionizing radiation with or without treatment of Taurine. The effect of ionizing radiation and Taurine treatment on GC-2 cells were evaluated by cell viability assay (CCK8), cell cycle and apoptosis. The relative protein abundance change was determined by Western blotting. The siRNA was used to explore whether Nrf2 signaling was involved in the cytoprotection of Taurine. Taurine significantly inhibited the decrease of cell viability, percentage of apoptotic cells and cell cycle arrest induced by ionizing radiation. Western blot analysis showed that taurine significantly limited the ionizing radiation-induced down-regulation of CyclinB1 and CDK1, and suppressed activation of Fas/FasL system pathway. In addition, taurine treatment significantly increased the expression of Nrf2 and HO-1 in GC-2 cells exposed to ionizing radiation, two components in antioxidant pathway. The above cytoprotection of Taurine was blocked by siNrf2. Our results demonstrate that taurine has the potential to effectively protect GC-2 cells from ionizing radiation- triggered damage via upregulation of Nrf2/HO-1 signaling. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Protective effects of vitamins C and E against γ-ray-induced chromosomal damage in mouse

    International Nuclear Information System (INIS)

    Sarma, L.; Kesavan, P.C.

    1993-01-01

    The effects of vitamins C and E on bone marrow chromosomes of the mouse exposed to 1 Gy of whole-body γ-irradiation were studied. These vitamins, dissolved in water/peanut oil, were administered orally as acute doses, either 2 h before, immediately after, or 2 h after irradiation. Both vitamins significantly reduced the frequencies of micronuclei and chromosomal aberrations in bone marrow cells; radioprotection by vitamin E was, however, appreciably greater than that afforded by vitamin C. Administration of the vitamins to mice immediately after irradiation was as effective as that 2 h before irradiation. A sequential treatment consisting of both the vitamins did not result in additional radioprotection over that afforded by vitamin E alone. The probable mechanisms of radioprotection are discussed. (author)

  6. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  7. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.

    Science.gov (United States)

    Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang

    2015-01-01

    Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.

  8. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  9. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  10. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.

    2011-01-01

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  11. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  12. Neuroprotective effect of erythropoietin against pressure ulcer in a mouse model of small fiber neuropathy.

    Directory of Open Access Journals (Sweden)

    Aurore Danigo

    Full Text Available An increased risk of skin pressure ulcers (PUs is common in patients with sensory neuropathies, including those caused by diabetes mellitus. Recombinant human erythropoietin (rhEPO has been shown to protect the skin against PUs developed in animal models of long-term diabetes. The aim of this work was to determine whether rhEPO could prevent PU formation in a mouse model of drug-induced SFN. Functional SFN was induced by systemic injection of resiniferatoxin (RTX, 50 µg/kg, i.p.. RhEPO (3000 UI/kg, i.p. was given the day before RTX injection and then every other day. Seven days after RTX administration, PUs were induced by applying two magnetic plates on the dorsal skin. RTX-treated mice expressed thermal and mechanical hypoalgesia and showed calcitonin gene-related peptide (CGRP and substance P (SP depletion without nerve degeneration or vascular dysfunction. RTX mice developed significantly larger stage 2 PUs than Vehicle mice. RhEPO prevented thermal and mechanical hypoalgesia and neuropeptide depletion in small nerve fibers. RhEPO increased hematocrit and altered endothelium-dependent vasodilatation without any effect on PU formation in Vehicle mice. The characteristics of PUs in RTX mice treated with rhEPO and Vehicle mice were found similar. In conclusion, RTX appeared to increased PU development through depletion of CGRP and SP in small nerve fibers, whereas systemic rhEPO treatment had beneficial effect on peptidergic nerve fibers and restored skin protective capacities against ischemic pressure. Our findings support the evaluation of rhEPO and/or its non-hematopoietic analogs in preventing to prevent PUs in patients with SFN.

  13. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  14. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  15. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  16. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin.

    Directory of Open Access Journals (Sweden)

    Fu-Shi Quan

    2009-09-01

    Full Text Available Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy.Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge.The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too.

  17. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    Science.gov (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective

  18. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  19. The Role of IL-1 signaling in a mouse model of Kawasaki Disease-associated Abdominal Aortic Aneurysm

    Science.gov (United States)

    Wakita, Daiko; Kurashima, Yosuke; Crother, Timothy R.; Rivas, Magali Noval; Lee, Youngho; Chen, Shuang; Fury, Wen; Bai, Yu; Wagner, Shawn; Li, Debiao; Lehman, Thomas; Fishbein, Michael C.; Hoffmann, Hal; Shah, Prediman K.; Shimada, Kenichi; Arditi, Moshe

    2016-01-01

    Objective Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis mouse model. Methods and Results We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r−/−, Il1a−/−, and Il1a−/− mice were protected from KD associated AAA. Infiltrating CD11c+ macrophages produced active caspase-1 and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with IL-1R antagonist (Anakinra), anti-IL-1α, or anti-IL-1β mAb blocked LCWE-induced AAA formation. Conclusions Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and that use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease. PMID:26941015

  20. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H; Jing, J; Xie, C [Hefei University of Technology, Hefei (China); Lu, Y [Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results: The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.

  1. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  2. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  3. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  4. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  5. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  6. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lei ZG

    2016-01-01

    Full Text Available Zhen-ge Lei,1,* Xiao-hua Ren,2,* Sha-sha Wang,3 Xin-hua Liang,3,4 Ya-ling Tang3,5 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 2Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People’s Hospital, 3State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 4Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, 5Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China *These authors contributed equally to this work Abstract: Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. Keywords: head and neck squamous cell carcinoma, HNSCC, mouse models, immunocompromised models, immunocompetent models, transgenic models

  7. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  8. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    Science.gov (United States)

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  9. Cancer-preventive Properties of an Anthocyanin-enriched Sweet Potato in the APCMIN Mouse Model.

    Science.gov (United States)

    Asadi, Khalid; Ferguson, Lynnette R; Philpott, Martin; Karunasinghe, Nishi

    2017-09-01

    Anthocyanin-rich foods and preparations have been reported to reduce the risk of life-style related diseases, including cancer. The SL222 sweet potato, a purple-fleshed cultivar developed in New Zealand, accumulates high levels of anthocyanins in its storage root. We examined the chemopreventative properties of the SL222 sweet potato in the C57BL/6J-APC MIN/+ (APC MIN ) mouse, a genetic model of colorectal cancer. APC MIN and C57BL/6J wild-type mice (n=160) were divided into four feeding groups consuming diets containing 10% SL222 sweet potato flesh, 10% SL222 sweet potato skin, or 0.12% ARE (Anthocyanin rich-extract prepared from SL222 sweet potato at a concentration equivalent to the flesh-supplemented diet) or a control diet (AIN-76A) for 18 weeks. At 120 days of age, the mice were anaesthetised, and blood samples were collected before the mice were sacrificed. The intestines were used for adenoma enumeration. The SL222 sweet potato-supplemented diets reduced the adenoma number in the APC MIN mice. These data have significant implications for the use of this sweet potato variant in protection against colorectal cancer.

  10. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    Science.gov (United States)

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  11. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  12. CD44 deficiency enhanced Streptococcus equi ssp. zooepidemicus dissemination and inflammation response in a mouse model.

    Science.gov (United States)

    Fu, Qiang; Xiao, Pingping; Chen, Yaosheng; Wei, Zigong; Liu, Xiaohong

    2017-12-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for peritonitis, septicemia, meningitis, arthritis and several other serious diseases in various species. Recent studies have demonstrated that CD44 is implicated in the process of host defense against pathogenic microorganisms. In the present study, the role of CD44 in the host response to S. zooepidemicus infection was investigated in a mouse model. Upon intraperitoneal infection with S. zooepidemicus, the expression of CD44 on the peritoneal exudate cells from wild-type (WT) mice was increased. CD44 deficiency accelerated mortality, which was accompanied by increased peritoneal bacterial growth and dissemination to distant body sites. CD44 knock-out (KO) mice showed enhanced early inflammatory cell recruitment into the peritoneal fluid on S. zooepidemicus infection. In line with this, the expression of proinflammatory cytokines, chemokines in peritoneal exudate cells and peritoneal macrophages of CD44 KO mice were increased compared with those of WT mice. In addition, CD44 deficiency was associated with reduced expression of A20, a negative regulator in TLR signaling. Overall, the present study suggests that CD44 plays a protective role in antibacterial defense against S. zooepidemicus in mice. Copyright © 2017. Published by Elsevier Ltd.

  13. Cardiac endothelial cells isolated from mouse heart - a novel model for radiobiology

    International Nuclear Information System (INIS)

    Jelonek, K.; Walaszczyk, A.; Gabrys, D.; Pietrowska, M.; Widlak, P.; Kanthou, Ch.

    2011-01-01

    Cardiovascular disease is recognized as an important clinical problem in radiotherapy and radiation protection. However, only few radiobiological models relevant for assessment of cardiotoxic effects of ionizing radiation are available. Here we describe the isolation of mouse primary cardiac endothelial cells, a possible target for cardiotoxic effects of radiation. Cells isolated from hearts of juvenile mice were cultured and irradiated in vitro. In addition, cells isolated from hearts of locally irradiated adult animals (up to 6 days after irradiation) were tested. A dose-dependent formation of histone γH 2 A.X foci was observed after in vitro irradiation of cultured cells. However, such cells were resistant to radiation-induced apoptosis. Increased levels of actin stress fibres were observed in the cytoplasm of cardiac endothelial cells irradiated in vitro or isolated from irradiated animals. A high dose of 16 Gy did not increase permeability to Dextran in monolayers formed by endothelial cells. Up-regulated expression of Vcam1, Sele and Hsp70i genes was detected after irradiation in vitro and in cells isolated few days after irradiation in vivo. The increased level of actin stress fibres and enhanced expression of stress-response genes in irradiated endothelial cells are potentially involved in cardiotoxic effects of ionizing radiation. (authors)

  14. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  15. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    Directory of Open Access Journals (Sweden)

    Guruprasad Kanive

    2012-08-01

    Full Text Available Abstract Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR on Ethyl methanesulfonate (EMS-and Methyl methanesulfonate (MMS-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05. On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight or MMS (125 mg / kg body weight were significantly higher (p Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life.

  16. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging.

    Science.gov (United States)

    Di Emidio, Giovanna; Falone, Stefano; Vitti, Maurizio; D'Alessandro, Anna Maria; Vento, Marilena; Di Pietro, Cinzia; Amicarelli, Fernanda; Tatone, Carla

    2014-09-01

    Is SIRT1 involved in the oxidative stress (OS) response in mouse oocytes? SIRT1 plays a pivotal role in the adaptive response of mouse germinal vesicle (GV) oocytes to OS and promotes a signalling cascade leading to up-regulation of the MnSod gene. OS is known to continuously threaten acquisition and maintenance of oocyte developmental potential during in vivo processes and in vitro manipulations. Previous studies in somatic cells have provided strong evidence for the role of SIRT1 as a sensor of the cell redox state and a protector against OS and aging. GV oocytes obtained from young (4-8 weeks) and reproductively old (48-52 weeks) CD1 mice were blocked in the prophase stage by 0.5 µM cilostamide. Groups of 30 oocytes were exposed to 25 µM H2O2 and processed following different times for the analysis of intracellular localization of SIRT1 and FOXO3A, and evaluation of Sirt1, miRNA-132, FoxO3a and MnSod gene expression. Another set of oocytes was cultured in the presence or absence of the SIRT1-specific inhibitor Ex527, and exposed to H2O2 in order to assess the involvement of SIRT1 in the activation of a FoxO3a-MnSod axis and ROS detoxification. In the last part of this study, GV oocytes were maturated in vitro in the presence of different Ex527 concentrations (0, 2.5, 5, 10, 20 µM) and assessed for maturation rates following 16 h. Effects of Ex527 on spindle morphology and ROS levels were also evaluated. SIRT1 and FOXO3A intracellular distribution in response to OS was investigated by immunocytochemistry. Real-time RT-PCR was employed to analyse Sirt1, miR-132, FoxO3a and MnSod gene expression. Reactive oxygen species (ROS) production was evaluated by in vivo measurement of carboxy-H2DCF diacetate labelling. Spindle and chromosomal distribution in in vitro matured oocytes were analysed by immunocytochemistry and DNA fluorescent labelling, respectively. Specific changes in the intracellular localization of SIRT1 and up-regulation of Sirt1 gene were detected in

  17. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease

    OpenAIRE

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical e...

  18. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès

    2015-12-01

    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  19. The selective vitamin D receptor agonist, elocalcitol, reduces endometriosis development in a mouse model by inhibiting peritoneal inflammation.

    Science.gov (United States)

    Mariani, Margherita; Viganò, Paola; Gentilini, Davide; Camisa, Barbara; Caporizzo, Elvira; Di Lucia, Pietro; Monno, Antonella; Candiani, Massimo; Somigliana, Edgardo; Panina-Bordignon, Paola

    2012-07-01

    Endometriosis, which is characterized by the growth of endometrial tissue at ectopic locations as well as vascular development and inflammation, is still an unmet clinical need since an optimal drug that allows for both pain and infertility management does not exist. Since both the eutopic and the ectopic endometrium express the vitamin D receptor (VDR), and VDR agonists are endowed with anti-proliferative and anti-inflammatory properties, we evaluated the effect of elocalcitol, a VDR agonist with low calcaemic liability, in a mouse model of experimentally induced endometriosis. Endometriosis was induced by injection of syngeneic endometrial tissue fragments into adult Balb/c female mice. After having confirmed by immunohistochemistry that endometriotic lesions developing in mice expressed VDR, the mice were administered with elocalcitol (100 μg/kg) or vehicle orally, once a day, for various durations of time. In this model, elocalcitol was able to reduce total lesion weight up to 70% upon treatment for 1 week before and 2 weeks after disease induction. Interestingly, a therapeutic effect was also observed on already established lesions. Elocalcitol was shown to reduce the capacity of mouse endometrial cells to adhere to collagen. In addition in treated mice, a decreased state of peritoneal inflammation was demonstrated by the inhibition of macrophage recruitment and inflammatory cytokine secretion. The VDR agonist elocalcitol inhibits lesion development in a validated mouse model of endometriosis, and exerts a protective effect on both the implantation and organization of transferred endometrial tissue. These preliminary data in mice provide a sound rationale for further testing in primate models and eventually in humans.

  20. Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites

    International Nuclear Information System (INIS)

    Jaffe, R.I.; Lowell, G.H.; Gordon, D.M.

    1990-01-01

    Three inbred mouse strains, C57BL/6 (H-2b), A/J (H-2a), and BALB/c (H-2d), and 1 outbred strain, CD-1, demonstrated differences in susceptibility to iv challenge with the ANKA clone of Plasmodium berghei. Mice were challenged with 100, 1,000, or 10,000 sporozoites, then evaluated daily beginning on day 4 for patency. CD-1 mice were further evaluated at challenge doses of 12,500, 25,000, and 50,000 sporozoites. C57BL/6 mice were the easiest to infect, with 90% becoming infected with 100 sporozoites. The outbred strain CD-1 was the most difficult to infect, requiring a challenge dose of 25,000 sporozoites/mouse in order to achieve a 100% infection rate. Mouse strains also demonstrated differences in their ability to be protected by intravenous immunization with gamma-irradiated sporozoites. A/J mice needed a minimum of 3 doses of irradiated sporozoites for protection against a challenge with 10,000 sporozoites. In contrast, BALB/c mice immunized with a single dose of 1,000 irradiated sporozoites are protected against a 10,000 sporozoite challenge. These data suggest that both infectivity and protection are genetically restricted and that susceptibility to infection may be inversely related to protection

  1. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model.

    Science.gov (United States)

    Platteel, Anouk C M; Nieuwenhuizen, Natalie E; Domaszewska, Teresa; Schürer, Stefanie; Zedler, Ulrike; Brinkmann, Volker; Sijts, Alice J A M; Kaufmann, Stefan H E

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 + T cell responses in vivo . As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4 + and CD8 + T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4 + T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4 + and CD8 + T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4 + T cells responding to Ag85B- and ESAT-6

  2. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  3. Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270.

    Science.gov (United States)

    Qi, Zhizhen; Zhou, Lei; Zhang, Qingwen; Ren, Lingling; Dai, Ruixia; Wu, Benchuan; Wang, Tang; Zhu, Ziwen; Yang, Yonghai; Cui, Baizhong; Wang, Zuyun; Wang, Hu; Qiu, Yefeng; Guo, Zhaobiao; Yang, Ruifu; Wang, Xiaoyi

    2010-02-10

    In this study, a new subunit vaccine that comprised native F1 and recombinant rV270 was evaluated for protective efficacy using mouse, guinea pig and rabbit models in comparison with the live attenuated vaccine EV76. Complete protection against challenging with 10(6) colony-forming units (CFU) of virulent Yersinia pestis strain 141 was observed for mice immunized with the subunit vaccines and EV76 vaccine. In contrast, the subunit vaccine recipes VII (F1-20 microg+rV270-10 microg) and IX (F1-40 microg+rV270-20 microg) and EV76 vaccine provided 86%, 79% and 93% protection against the same level of challenge in guinea pigs and 100%, 83% and 100% protection in rabbits, respectively. The immunized mice with the vaccines had significantly higher IgG titres than the guinea pigs and rabbits, and the immunized guinea pigs developed significantly higher IgG titres than the rabbits, but the anti-F1 response in guinea pigs was more variable than in the mice and rabbits, indicating that guinea pig is not an ideal model for evaluating protective efficacy of plague subunit vaccine, instead the rabbits could be used as an alternative model. All the immunized animals with EV76 developed a negligible IgG titre to rV270 antigen. Furthermore, analysis of IgG subclasses in the immunized animals showed a strong response for IgG1, whereas those receiving EV76 immunization demonstrated predominant production of IgG1 and IgG2a isotypes. The subunit vaccine and EV76 vaccine are able to provide protection for animals against Y. pestis challenge, but the subunit vaccines have obvious advantages over EV76 in terms of safety of use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Uncompensated polyuria in a mouse model of Bartter's syndrome

    Science.gov (United States)

    Takahashi, Nobuyuki; Chernavvsky, Daniel R.; Gomez, R. Ariel; Igarashi, Peter; Gitelman, Hillel J.; Smithies, Oliver

    2000-01-01

    We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney. PMID:10779555

  5. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  6. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.

    Science.gov (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M

    2018-02-01

    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    Science.gov (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. An inducible mouse model of late onset Tay-Sachs disease.

    Science.gov (United States)

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P disease at an earlier age (n = 21, P Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  9. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  10. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  11. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Athanassios Fragoulis

    2017-08-01

    Full Text Available Introduction: There is increasing evidence for the involvement of chronic inflammation and oxidative stress in the pathogenesis of Alzheimer's disease (AD. Nuclear factor erythroid 2-related factor 2 (Nrf2 is an anti-inflammatory transcription factor that regulates the oxidative stress defense. Our previous experiments demonstrated that kavalactones protect neuronal cells against Amyloid β (Aβ-induced oxidative stress in vitro by Nrf2 pathway activation. Here, we tested an in vivo kavalactone treatment in a mouse model of AD. Methods: The kavalactone methysticin was administered once a week for a period of 6 months to 6 month old transgenic APP/Psen1 mice by oral gavage. Nrf2 pathway activation was measured by methysticin treatment of ARE-luciferase mice, by qPCR of Nrf2-target genes and immunohistochemical detection of Nrf2. Aβ burden was analyzed by CongoRed staining, immunofluorescent detection and ELISA. Neuroinflammation was assessed by immunohistochemical stainings for microglia and astrocytes. Pro-inflammatory cytokines in the hippocampus was determined by Luminex multi-plex assays. The hippocampal oxidative damage was detected by oxyblot technique and immunohistochemical staining against DT3 and 4-HNE. The cognitive ability of mice was evaluated using Morris water maze. Results: Methysticin treatment activated the Nrf2 pathway in the hippocampus and cortex of mice. The Aβ deposition in brains of methysticin-treated APP/Psen1 mice was not altered compared to untreated mice. However, methysticin treatment significantly reduced microgliosis, astrogliosis and secretion of the pro-inflammatory cytokines TNF-α and IL-17A. In addition, the oxidative damage of hippocampi from APP/Psen1 mice was reduced by methysticin treatment. Most importantly, methysticin treatment significantly attenuated the long-term memory decline of APP/Psen1 mice. Conclusion: In summary, these findings show that methysticin administration activates the Nrf2 pathway

  12. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  13. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    Science.gov (United States)

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.

  14. A mouse model of paralytic myelitis caused by enterovirus D68.

    Directory of Open Access Journals (Sweden)

    Alison M Hixon

    2017-02-01

    Full Text Available In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68 respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch's postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies.

  15. A mouse model of spontaneous preterm birth based on the genetic ablation of biglycan and decorin

    Science.gov (United States)

    Calmus, Megan L.; Macksoud, Elyse E.; Tucker, Richard; Iozzo, Renato V.; Lechner, Beatrice E.

    2011-01-01

    Preterm premature rupture of membranes is responsible for one third of preterm births. Ehlers-Danlos syndrome (EDS) is associated with preterm premature rupture of membranes in humans. Notably, an EDS variant is caused by a genetic mutation resulting in abnormal secretion of biglycan and decorin, two small leucine-rich proteoglycans highly expressed in reproductive tissues. Because biglycan/decorin null mutant (Bgn−/−Dcn−/−) mice demonstrate phenotypic changes similar to EDS, we utilized this model to test whether either or both biglycan and decorin play a role in the attainment of successful term gestation. Wild-type, biglycan null mutant, decorin null mutant and biglycan/decorin null mutant pregnancies were assessed for length of gestation, pup and placenta weight and litter size. Quantitative real-time polymerase chain reaction was performed to measure biglycan and decorin gene expression and immunohistochemistry was performed to assess protein expression in placenta and fetal membranes at embryonic day E12, E15 and E18. Bgn−/−Dcn−/− dams displayed preterm birth, whereas the possession of at least two biglycan or decorin wild-type alleles was protective of preterm birth. Bgn−/−Dcn−/− pups were decreased at postnatal day P1 but not at E18. Biglycan and decorin were upregulated in the placenta in each other’s absence and were developmentally regulated in fetal membranes, suggesting that these two proteoglycans demonstrate genetic complementation and contribute to gestational success in a dose dependent manner. Thus, the biglycan/decorin null mutant mouse is a model of genetically induced preterm birth and perinatal loss. This model presents novel targets for preventive or therapeutic manipulation of preterm birth. PMID:21502335

  16. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  17. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    International Nuclear Information System (INIS)

    Ley, R.D.

    1997-01-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author)

  18. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R.D. [The Lovelace Institutes, Albuqeurque, NM (United States). Photomdecine Program; Fourtanier, A. [L`Oreal, Advanced Research, Clichy (France)

    1997-06-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author).

  19. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  20. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  1. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  2. Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2013-01-01

    Full Text Available Gastrodia elata (GE Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson’s disease (PD, respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose polymerase (PARP in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms.

  3. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  4. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  5. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  6. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.T. van der Ploeg (Ans); E.H. van de Kamp; M.A. Kroos (Marian); J.-H. Ding (Jia-Huan); B.Z. Yang (Bing); P. Visser (Pim); C.E. Bakker (Cathy); M.Ph. Verbeet (Martin); B.A. Oostra (Ben); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII; Pompe disease), caused by inherited deficiency of acid alpha-glucosidase, is a lysosomal disorder affecting heart and skeletal muscles. A mouse model of this disease was obtained by targeted disruption of the

  7. Role of Stat in Skin Carcinogenesis: Insights Gained from Relevant Mouse Models

    International Nuclear Information System (INIS)

    Macias, E.; Rao, D.; DiGiovanni, J.; DiGiovanni, J.; DiGiovanni, J.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat) is a cytoplasmic protein that is activated in response to cytokines and growth factors and acts as a transcription factor. Stat plays critical roles in various biological activities including cell proliferation, migration, and survival. Studies using keratinocyte-specific Stat-deficient mice have revealed that Stat plays an important role in skin homeostasis including keratinocyte migration, wound healing, and hair follicle growth. Use of both constitutive and inducible keratinocyte-specific Stat-deficient mouse models has demonstrated that Stat is required for both the initiation and promotion stages of multistage skin carcinogenesis. Further studies using a transgenic mouse model with a gain of function mutant of Stat (Stat3C) expressed in the basal layer of the epidermis revealed a novel role for Stat in skin tumor progression. Studies using similar Stat-deficient and gain-of-function mouse models have indicated its similar roles in ultraviolet B (UVB) radiation-mediated skin carcinogenesis. This paper summarizes the use of these various mouse models for studying the role and underlying mechanisms for the function of Stat in skin carcinogenesis. Given its significant role throughout the skin carcinogenesis process, Stat is an attractive target for skin cancer prevention and treatment.

  8. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  9. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability

    NARCIS (Netherlands)

    Lodde, B. M.; Mineshiba, F.; Kok, M. R.; Wang, J.; Zheng, C.; Schmidt, M.; Cotrim, A. P.; Kriete, M.; Tak, P. P.; Baum, B. J.

    2006-01-01

    OBJECTIVES: The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated

  10. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  11. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  12. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  13. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.

    2012-01-01

    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  14. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...

  15. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  16. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  17. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  18. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  19. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  20. BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Burke, Rebecca M; Norman, Timothy A; Haydar, Tarik F; Slack, Barbara E; Leeman, Susan E; Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2013-11-26

    Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.

  1. The therapeutic effect of PLAG against oral mucositis in hamster and mouse model

    Directory of Open Access Journals (Sweden)

    Ha-Reum Lee

    2016-10-01

    Full Text Available Chemotherapy-induced mucositis can limit the effectiveness of cancer therapy and increase the risk of infections. However, no specific therapy for protection against mucositis is currently available. In this study, we investigated the therapeutic effect of PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol, acetylated diglyceride in 5-fluorouracil (5-FU-induced oral mucositis animal models. Hamsters were administered 5-FU (80 mg/kg intraperitoneally on days 0, 6, and 9. The animals’ cheek pouches were then scratched equally with the tip of an 18-gauge needle on days 1, 2, and 7. PLAG was administered daily at 250 mg/kg/day. PLAG administration significantly reduced 5-FU/scratching–induced mucositis. Dramatic reversal of weight loss in PLAG-treated hamsters with mucositis was observed. Histochemical staining data also revealed newly differentiated epidermis and blood vessels in the cheek pouches of PLAG-treated hamsters, indicative of recovery. Whole blood analyses indicated that PLAG prevents 5-FU–induced excessive neutrophil transmigration to the infection site and eventually stabilizes the number of circulating neutrophils. In a mouse mucositis model, mice with 5-FU–induced disease treated with PLAG exhibited resistance to body-weight loss compared with mice that received 5-FU or 5-FU/scratching alone. PLAG also dramatically reversed mucositis-associated weight loss and inhibited mucositis-induced inflammatory responses in the tongue and serum. These data suggest that PLAG enhances recovery from 5-FU–induced oral mucositis and may therefore be a useful therapeutic agent for treating side effects of chemotherapy, such as mucositis and cachexia.

  2. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  3. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  4. Memory enhancement by Tamoxifen on amyloidosis mouse model.

    Science.gov (United States)

    Pandey, Deepika; Banerjee, Sugato; Basu, Mahua; Mishra, Nibha

    2016-03-01

    Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) used in the treatment of breast cancer. Earlier studies show its neuroprotection via regulating apoptosis, microglial functions, and synaptic plasticity. TMX also showed memory enhancement in ovariectomized mice, and protection from amyloid induced damage in hippocampal cell line. These reports encouraged us to explore the role of TMX in relevance to Alzheimer's disease (AD). We report here, the effect of TMX treatment a) on memory, and b) levels of neurotransmitters (acetylcholine (ACh) and dopamine (DA)) in breeding-retired-female mice injected with beta amyloid1-42 (Aβ1-42). Mice were treated with TMX (10mg/kg, i.p.) for 15 days. In Morris water maze test, the TMX treated mice escape latency decreased during training trials. They also spent longer time in the platform quadrant on probe trial, compared to controls. In Passive avoidance test, TMX treated mice avoided stepping on the shock chamber. This suggests that TMX protects memory from Aβ induced toxicity. In frontal cortex, ACh was moderately increased, with TMX treatment. In striatum, dopamine was significantly increased, 3,4-dihydroxyphenylacetic acid (DOPAC) level and DOPAC/DA ratio was decreased post TMX treatment. Therefore, TMX enhances spatial and contextual memory by reducing dopamine metabolism and increasing ACh level in Aβ1-42 injected-breeding-retired-female mice. Copyright © 2015. Published by Elsevier Inc.

  5. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Optimizing Service Protection with Model Driven

    OpenAIRE

    Wendpanga , Francis; Biennier , Frédérique; Merle , Philippe

    2015-01-01

    International audience; Enterprises are more and more involved in collabo-rative business. This leads to open and outsourcing all or part of their information system (IS) to create collaborative processes by composing business services picked in each partner IS and to take advantage of Cloud computing. Business services outsourcing and their dynamic collaboration context can bring lost of control on IS and new security risks can occur. This leads to inconsistent protec-tion allowing competito...

  7. Model assessment of protective barrier designs

    International Nuclear Information System (INIS)

    Fayer, M.J.; Conbere, W.; Heller, P.R.; Gee, G.W.

    1985-11-01

    A protective barrier is being considered for use at the Hanford site to enhance the isolation of previously disposed radioactive wastes from infiltrating water, and plant and animal intrusion. This study is part of a research and development effort to design barriers and evaluate their performance in preventing drainage. A fine-textured soil (the Composite) was located on the Hanford site in sufficient quantity for use as the top layer of the protective barrier. A number of simulations were performed by Pacific Northwest Laboratory to analyze different designs of the barrier using the Composite soil as well as the finer-textured Ritzville silt loam and a slightly coarser soil (Coarse). Design variations included two rainfall rates (16.0 and 30.1 cm/y), the presence of plants, gravel mixed into the surface of the topsoil, an impermeable boundary under the topsoil, and moving the waste form from 10 to 20 m from the barrier edge. The final decision to use barriers for enhanced isolation of previously disposed wastes will be subject to decisions resulting from the completion of the Hanford Defense Waste Environmental Impact Statement, which addresses disposal of Hanford defense high-level and transuranic wastes. The one-dimensional simulation results indicate that each of the three soils, when used as the top layer of the protective barrier, can prevent drainage provided plants are present. Gravel amendments to the upper 30 cm of soil (without plants) reduced evaporation and allowed more water to drain

  8. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts

    International Nuclear Information System (INIS)

    Huang, L.-H.; Shiao, N.-H.; Hsuuw, Y.-D.; Chan, W.-H.

    2007-01-01

    Previous studies have established that ethanol induces apoptosis, but the precise molecular mechanisms are currently unclear. Here, we show that 0.3-1.0% (w/v) ethanol induces apoptosis in mouse blastocysts and that resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties, prevents ethanol-induced apoptosis and inhibition of cell proliferation. Moreover, ethanol-treated blastocysts show normal levels of implantation on culture dishes in vitro but a reduced ability to reach the later stages of embryonic development. Pretreatment with resveratrol prevented ethanol-induced disruption of embryonic development in vitro and in vivo. In an in vitro cell-based assay, we further found that ethanol increases the production of reactive oxygen species in ESC-B5 embryonic stem cells, leading to an increase in the intracellular concentrations of cytoplasmic free Ca 2+ and NO, loss of mitochondrial membrane potential, mitochondrial release of cytochrome c, activation of caspase-9 and -3, and apoptosis. These changes were blocked by pretreatment with resveratrol. Based on these results, we propose a model for the protective effect of resveratrol on ethanol-induced cell injury in blastocysts and ESC-B5 cells

  9. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    OpenAIRE

    Van Leuven Fred; Wera Stefaan; Van der Auwera Ingrid; Henderson Samuel T

    2005-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results S...

  10. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  11. Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome

    OpenAIRE

    Liu, Zhong-Hua; Smith, Carolyn Beebe

    2009-01-01

    Anxiety is a common symptom in fragile X patients. However, an anxiety-prone phenotype in mouse models of fragile X syndrome is not clear. In most studies of fmr1 knockout mice, decreased anxiety-like responses in exploratory-based models are found, but mice also exhibit abnormal social interactions. We hypothesize the coexistence of elevated social anxiety and reduced nonsocial anxiety in fmr1 knockout mice. In the present study, we applied an automated three-chambered social approach method...

  12. Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder

    Science.gov (United States)

    2015-02-28

    analyses of DEGs suggested pos- sible roles in anxiety-related behavioral responses, synaptic plasticity, neurogenesis, inflammation, obesity...Behavioral evaluation of mouse model We established [29] a rodent model manifesting PTSD- like behavioral features. We believe that, because the stres - sor...hippo- campus (HC), medial prefrontal cortex (MPFC) play primary roles in fear learning and memory, and thus, may contribute to the behavioral

  13. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett

    2013-09-01

    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  14. Dystropathology Increases Energy Expenditure and Protein Turnover in the Mdx Mouse Model of Duchenne Muscular Dystrophy

    Science.gov (United States)

    Radley-Crabb, Hannah G.; Marini, Juan C.; Sosa, Horacio A.; Castillo, Liliana I.; Grounds, Miranda D.; Fiorotto, Marta L.

    2014-01-01

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the dietary requirements for these macronutrients at different stages of the disease, are not well-understood. This study used juvenile (4- to 5- wk-old) and adult (12- to 14-wk-old) male dystrophic C57BL/10ScSn-mdx/J and age-matched C57BL/10ScSn/J control male mice to measure total and resting energy expenditure, food intake, spontaneous activity, body composition, whole body protein turnover, and muscle protein synthesis rates. In juvenile mdx mice that have extensive muscle damage, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were higher than in age-matched controls. Adaptations in food intake and decreased activity were insufficient to meet the increased energy and protein needs of juvenile mdx mice and resulted in stunted growth. In (non-growing) adult mdx mice with less severe dystropathology, energy expenditure, muscle protein synthesis, and whole body protein turnover rates were also higher than in age-matched controls. Food intake was sufficient to meet their protein and energy needs, but insufficient to result in fat deposition. These data show that dystropathology impacts the protein and energy needs of mdx mice and that tailored dietary interventions are necessary to redress this imbalance. If not met, the resultant imbalance blunts growth, and may limit the benefits of therapies designed to protect and repair dystrophic muscles. PMID:24586653

  15. Inhalational Gentamicin Treatment Is Effective Against Pneumonic Plague in a Mouse Model

    Directory of Open Access Journals (Sweden)

    David Gur

    2018-04-01

    Full Text Available Pneumonic plague is an infectious disease characterized by rapid and fulminant development of acute pneumonia and septicemia that results in death within days of exposure. The causative agent of pneumonic plague, Yersinia pestis (Y. pestis, is a Tier-1 bio-threat agent. Parenteral antibiotic treatment is effective when given within a narrow therapeutic window after symptom onset. However, the non-specific “flu-like” symptoms often lead to delayed diagnosis and therapy. In this study, we evaluated inhalational gentamicin therapy in an infected mouse model as a means to improve antibiotic treatment efficacy. Inhalation is an attractive route for treating lung infections. The advantages include directly dosing the main infection site, the relative accessibility for administration and the lack of extensive enzymatic drug degradation machinery. In this study, we show that inhalational gentamicin treatment administered 24 h post-infection, prior to the appearance of symptoms, protected against lethal intranasal challenge with the fully virulent Y. pestis Kimberley53 strain (Kim53. Similarly, a high survival rate was demonstrated in mice treated by inhalation with another aminoglycoside, tobramycin, for which an FDA-approved inhaled formulation is clinically available for cystic fibrosis patients. Inhalational treatment with gentamicin 48 h post-infection (to symptomatic mice was also successful against a Y. pestis challenge dose of 10 i.n.LD50. Whole-body imaging using IVIS technology demonstrated that adding inhalational gentamicin to parenteral therapy accelerated the clearance of Y. pestis from the lungs of infected animals. This may reduce disease severity and the risk of secondary infections. In conclusion, our data suggest that inhalational therapy with aerosolized gentamicin may be an effective prophylactic treatment against pneumonic plague. We also demonstrate the benefit of combining this treatment with a conventional parenteral

  16. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model.

    Science.gov (United States)

    Weinberger, Dov; Bor-Shavit, Elite; Barliya, Tilda; Dahbash, Mor; Kinrot, Opher; Gaton, Dan D; Nisgav, Yael; Livnat, Tami

    2017-11-01

    This study aims to evaluate and standardize the reliability of a mobile laser indirect ophthalmoscope in the induction of choroidal neovascularization (CNV) in a mouse model. A diode laser indirect ophthalmoscope was used to induce CNV in pigmented male C57BL/6J mice. Standardization of spot size and laser intensity was determined using different aspheric lenses with increasing laser intensities applied around the optic disc. Development of CNV was evaluated 1, 5, and 14 days post laser application using fluorescein angiography (FA), histology, and choroidal flat mounts stained for the endothelial marker CD31 and FITC-dextran. Correlation between the number of laser hits to the number and size of developed CNV lesions was determined using flat mount choroid staining. The ability of intravitreally injected anti-human and anti-mouse VEGF antibodies to inhibit CNV induced by the mobile laser was evaluated. Laser parameters were standardized on 350 mW for 100 msec, using the 90 diopter lens to accomplish the highest incidence of Bruch's membrane rupture. CNV lesions' formation was validated on days 5 and 14 post laser injury, though FA showed leakage on as early as day 1. The number of laser hits was significantly correlated with the CNV area. CNV growth was successfully inhibited by both anti-human and mouse VEGF antibodies. The mobile laser indirect ophthalmoscope can serve as a feasible and a reliable alternative method for the CNV induction in a mouse model.

  17. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    Science.gov (United States)

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    International Nuclear Information System (INIS)

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young

    2007-01-01

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress

  19. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  20. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse

    Directory of Open Access Journals (Sweden)

    Abdul Salam Jarrah

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.

  2. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  3. The Effect of Silybum marianum on GFAP and Spatial Memory in a Mouse Model of Alzheimer\\'s Disease

    Directory of Open Access Journals (Sweden)

    A Hadinia

    2010-01-01

    Full Text Available Introduction & Objective: Studies have shown that Silybum marianum have high levels of antioxidant polyphenolic substances and have neuro-protective effects on neurodegenerative diseases. Accordingly, this study was conducted to determine the possible effect of Silybum marianum on expression of and spatial memory in a mouse model of Alzheimer's disease. Materials & Methods: This experimental study was conducted at Yasuj University of Medical Sciences in 2009. Thirty adult male Wistar rats were allocated in three groups: sham group, experimental group, and lesion group, each consisting of ten rats. The experimental and lesion groups received Ibotonic acid of the NBM nucleus in stereotaxic apparatus whereas the sham group underwent surgical procedure without any injection. The experimental group received 200mg/kg of Silybum mirianum extract orally, diluted in 1% Arabic gum. Also the sham group received 1% Arabic gum every day for four weeks. The lesion group did not receive anything. The behavioral assessment was measured, after treatment , by using of Y maze test on day 7 and 28 in all groups. The ELISA method was used to measure the GFAP level in Hippocamp at the end of behavioral assessment. The collected data was analyzed by the SPSS software using ANOVA and Repeated Measures of Analysis Variance tests. Results:Improvement of behavioral performance of the experimental animals compared to the lesion and sham groups were increased significantly on day 7 and 28 (P <0.01 & P <0.001 respectively. The ELISA method showed that the level of the GFAP synthesis decreased in the experimental group compared to the lesion and sham groups (P <0.001. Conclusion: The Silybum marianum plant has a protective effect on the nerve tissue in a mouse model of Alzheimer's disease by decreasing of the GFAP synthesis and lead to the improvement of behavioral performance. :

  4. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy.

    Directory of Open Access Journals (Sweden)

    Irma Schabussova

    Full Text Available BACKGROUND: The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. METHODS: BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. RESULTS: Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. CONCLUSION: Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway

  5. COMPARATIVE EFFICIENCIES STUDY OF SLOT MODEL AND MOUSE MODEL IN PRESSURISED PIPE FLOW

    Directory of Open Access Journals (Sweden)

    Saroj K. Pandit

    2014-01-01

    Full Text Available The flow in sewers is unsteady and variable between free-surfac e to full pipe pressurized flow. Sewers are designed on the basis of free surf ace flow (gravity flow however they may carry pressurized flow. Preissmann Slot concep t is widely used numerical approach in unsteady free surface-pressurized flow as it provides the advantage of using free surface flow as a single type flow. Slo t concept uses the Saint- Venant’s equations as a basic equation for one-dimensional unst eady free surface flow. This paper includes two different numerical models using Saint Venant’s equations. The Saint Venant’s e quations of continuity and momen tum are solved by the Method of Characteristics and presented in forms for direct substitution into FORTRAN programming for numerical analysis in the first model. The MOUSE model carries out computation of unsteady flows which is founde d on an implicit, finite difference numerical solut ion of the basic one dimension al Saint Venant’s equations of free surface flow. The simulation results are comp ared to analyze the nature and degree of errors for further improvement.

  6. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  7. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  8. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    Science.gov (United States)

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

  9. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    Energy Technology Data Exchange (ETDEWEB)

    Muizzuddin, N.; Shakoori, A.R. [Univ. of the Punjab, Dept. of Zoology, Cell and Molecular Biology Lab., Lahore (Pakistan); Marenus, K.D. [SUNY at Stonybrook, Stonybrook, NY (United States)

    1998-11-01

    treatment, respectively. Conclusion: Data from these studies suggest that low level chronic exposures to UV can lead to alteration of the skin, like epidermal thickening and appearance of sunburn cells. The data also indicates that a mix of common antioxidants and free radical scavengers are photoprotective against chronic skin damage in the hairless mouse skin model. (au)

  10. Effect of topical application of antioxidants and free radical scavengers on protection of hairless mouse skin exposed to chronic doses of ultraviolet B

    International Nuclear Information System (INIS)

    Muizzuddin, N.; Shakoori, A.R.; Marenus, K.D.

    1998-01-01

    treatment, respectively. Conclusion: Data from these studies suggest that low level chronic exposures to UV can lead to alteration of the skin, like epidermal thickening and appearance of sunburn cells. The data also indicates that a mix of common antioxidants and free radical scavengers are photoprotective against chronic skin damage in the hairless mouse skin model. (au)

  11. Mouse model in food allergy: dynamic determination of shrimp ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Available online at http://www.academicjournals.org/AJB ... Food allergy is now an important health issue, and there is urgent need for a developmental approach to identify ... ideal model and method for the characterization of.

  12. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    Science.gov (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    for each mouse-type; growth models were created using linear interpolation and visualized as 3D animations. Spatial regions of significantly different growth were identified using the local False Discovery Rate method, estimating the expected percentage of false predictions in a set of predictions. For all......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  14. Mouse models in liver cancer research: A review of current literature

    Science.gov (United States)

    Leenders, Martijn WH; Nijkamp, Maarten W; Rinkes, Inne HM Borel

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in East-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used, especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common type of primary liver cancer, accounting for 70%-85% of cases. PMID:19058325

  15. Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.

    Science.gov (United States)

    Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra

    2017-07-01

    Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o 2max ) and tapering off at a higher intensity of exercise (85% V̇o 2max ). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients. NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform

  16. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  17. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding.

    Science.gov (United States)

    Tian, Fengwei; Chi, Feifei; Wang, Gang; Liu, Xiaoming; Zhang, Qiuxiang; Chen, Yongquan; Zhang, Hao; Chen, Wei

    2015-12-01

    Lactobacillus rhamnosus CCFM1107 was screened for high antioxidative activity from 55 lactobacilli. The present study attempted to explore the protective properties of L. rhamnosus CCFM1107 in alcoholic liver injury. A mouse model was induced by orally feeding alcohol when simultaneously treated with L. rhamnosus CCFM1107, the drug Hu-Gan- Pian (HGP), L. rhamnosus GG (LGG), and L. plantarum CCFM1112 for 3 months. Biochemical analysis was performed for both serum and liver homogenate. Detailed intestinal flora and histological analyses were also carried out. Our results indicated that the administration of L. rhamnosus CCFM1107 significantly inhibited the increase in the levels of serum aminotransferase and endotoxin, as well as the levels of triglyceride (TG) and cholesterol (CHO) in the serum and in the liver. Glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were elevated while the levels of malondialdehyde (MDA) were decreased. The enteric dysbiosis caused by alcohol was restored by increasing the numbers of both lactobacilli and bifidobacteria and decreasing the numbers of both enterococci and enterobacter. Histological analysis confirmed the protective effect of L. rhamnosus CCFM1107. Compared with the other lactobacilli and to the drug Hu-Gan-Pian, there is a high chance that L. rhamnosus CCFM1107 provides protective effects on alcoholic liver injury by reducing oxidative stress and restoring the intestinal flora.

  18. Erythropoietin overrides the triggering effect of DNA platination products in a mouse model of Cisplatin-induced neuropathy

    Directory of Open Access Journals (Sweden)

    Egensperger Rupert

    2009-07-01

    Full Text Available Abstract Background Cisplatin mediates its antineoplastic activity by formation of distinct DNA intrastrand cross links. The clinical efficacy and desirable dose escalations of cisplatin are restricted by the accumulation of DNA lesions in dorsal root ganglion (DRG cells leading to sensory polyneuropathy (PNP. We investigated in a mouse model by which mechanism recombinant erythropoietin (rhEPO protects the peripheral nervous system from structural and functional damage caused by cisplatin treatment with special emphasis on DNA damage burden. Results A cumulative dose of 16 mg cisplatin/kg resulted in clear electrophysiological signs of neuropathy, which were significantly attenuated by concomitant erythropoietin (cisplatin 32,48 m/s ± 1,68 m/s; cisplatin + rhEPO 49,66 m/s ± 1,26 m/s; control 55,01 m/s ± 1,88 m/s; p Conclusion The protective effect of recombinant erythropoietin is not mediated by reducing the burden of DNA platination in the target cells, but it is likely to be due to a higher resistance of the target cells to the adverse effect of DNA damage. The increased frequency of intact mitochondria might also contribute to this protective role.

  19. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Cheng Alice

    2011-07-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α. Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.

  20. Model assessment of protective barrier designs: Part 2

    International Nuclear Information System (INIS)

    Fayer, M.J.

    1987-11-01

    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. This study assesses the effectiveness of protective barriers for isolation of wastes from water. In this report, barrier designs are reviewed and several barrier modeling assumptions are tested. 20 refs., 16 figs., 6 tabs

  1. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  2. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  3. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W

    2010-04-01

    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  4. Effect of Serotype on Pneumococcal Competition in a Mouse Colonization Model.

    Science.gov (United States)

    Trzciński, Krzysztof; Li, Yuan; Weinberger, Daniel M; Thompson, Claudette M; Cordy, Derrick; Bessolo, Andrew; Malley, Richard; Lipsitch, Marc

    2015-09-15

    Competitive interactions between Streptococcus pneumoniae strains during host colonization could influence the serotype distribution in nasopharyngeal carriage and pneumococcal disease. We evaluated the competitive fitness of strains of serotypes 6B, 14, 19A, 19F, 23F, and 35B in a mouse model of multiserotype carriage. Isogenic variants were constructed using clinical strains as the capsule gene donors. Animals were intranasally inoculated with a mixture of up to six pneumococcal strains of different serotypes, with separate experiments involving either clinical isolates or isogenic capsule-switch variants of clinical strain TIGR4. Upper-respiratory-tract samples were repeatedly collected from animals in order to monitor changes in the serotype ratios using quantitative PCR. A reproducible hierarchy of capsular types developed in the airways of mice inoculated with multiple strains. Serotype ranks in this hierarchy were similar among pneumococcal strains of different genetic backgrounds in different strains of mice and were not altered when tested under a range of host conditions. This rank correlated with the measure of the metabolic cost of capsule synthesis and in vitro measure of pneumococcal cell surface charge, both parameters considered to be predictors of serotype-specific fitness in carriage. This study demonstrates the presence of a robust competitive hierarchy of pneumococcal serotypes in vivo that is driven mainly, but not exclusively, by the capsule itself. Streptococcus pneumoniae (pneumococcus) is the leading cause of death due to respiratory bacterial infections but also a commensal frequently carried in upper airways. Available vaccines induce immune responses against polysaccharides coating pneumococcal cells, but with over 90 different capsular types (serotypes) identified, they can only target strains of the selected few serotypes most prevalent in disease. Vaccines not only protect vaccinated individuals against disease but also protect by

  5. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  6. Quantification of Lung Metastases from In Vivo Mouse Models

    DEFF Research Database (Denmark)

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical...

  7. Mouse models of acute and chronic hepacivirus infection

    DEFF Research Database (Denmark)

    Billerbeck, Eva; Wolfisberg, Raphael; Fahnøe, Ulrik

    2017-01-01

    An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in labora...

  8. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  9. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  10. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    NARCIS (Netherlands)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Herve; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Oehlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H. M.; Molenaar, IQ; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G. J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and

  11. Mouse Models Applied to the Research of Pharmacological Treatments in Asthma.

    Science.gov (United States)

    Marqués-García, Fernando; Marcos-Vadillo, Elena

    2016-01-01

    Models developed for the study of asthma mechanisms can be used to investigate new compounds with pharmacological activity against this disease. The increasing number of compounds requires a preclinical evaluation before starting the application in humans. Preclinical evaluation in animal models reduces the number of clinical trials positively impacting in the cost and in safety. In this chapter, three protocols for the study of drugs are shown: a model to investigate corticoids as a classical treatment of asthma; a protocol to test the effects of retinoic acid (RA) on asthma; and a mouse model to test new therapies in asthma as monoclonal antibodies.

  12. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption.

    Science.gov (United States)

    Yasoshima, Yasunobu; Shimura, Tsuyoshi

    2015-01-01

    Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Impaired spatial processing in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2018-05-17

    Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    Energy Technology Data Exchange (ETDEWEB)

    Davoudi, Mina [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Kallijärvi, Jukka; Marjavaara, Sanna [Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Kotarsky, Heike; Hansson, Eva [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Levéen, Per [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Fellman, Vineta, E-mail: Vineta.Fellman@med.lu.se [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki 00029 (Finland)

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  15. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    Science.gov (United States)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

  16. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  17. A Susceptible Mouse Model for Zika Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall

    2016-05-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129 mice and the parent strain (129Sv/Ev after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.

  18. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  19. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  20. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  1. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro?

    Science.gov (United States)

    Kugler, Josephine; Luch, Andreas; Oelgeschläger, Michael

    2016-10-01

    Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  3. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  4. Use of mouse thigh as a radiobiological model of radiation-induced skin reactions

    International Nuclear Information System (INIS)

    Smith, A.J.; Hagkyriakou, H.; Martin, R.F.

    2000-01-01

    Full text: The effects of radiation exposure on skin have been widely studied. One of the most useful and relatively easy methods for evaluating radiation-induced skin reactions is the mouse thigh model. This model is non-invasive and has the advantage of not requiring the use of anaesthetic. In the current adaptation of the mouse thigh model, female C3H/HeJ ARC mice (from the Animal Resource Centre, W.A.) were used. The mice were restrained in specially designed jigs where the right leg was held in place by a metal hook. Lead shielding ensured that only the right ventral thigh was exposed to the radiation beam. A 6MeV electron beam from a Varian 2100 Linac (20Gy / minute) was used, thus minimising the time for which the mice were restrained. Eight to twelve days after exposure to the radiation, the first skin reactions can be seen. These are scored according to a scale ranging from 0 (no visible reaction) to 3.5 (breakdown of the entire area with severe exudation). The skin reactions (erythema and moist desquamation) peak approximately 18-22 days after radiation exposure and may remain at peak for only 1-3 days. Therefore, the reactions need to be scored daily and this continues, generally until day 35, or until all moist desquamation has healed. The maximum score in a score versus time profile for each mouse in a group of 5-6 animals are averaged. Radiation-dose response data will be presented. Using the mouse thigh model, hair loss can also be measured (usually on about day 30-35) using a scale from 0-4, where 0 depicts no evident hair loss and 4 represents complete epilation. Leg contraction can also be measured as a late effect by comparison with the length of the unirradiated leg

  5. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  6. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology*

    OpenAIRE

    Paton, Leigh; Bitoun, Emmanuelle; Kenyon, Janet; Priestman, David A.; Oliver, Peter L.; Edwards, Benjamin; Platt, Frances M.; Davies, Kay E.

    2014-01-01

    Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene ...

  7. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    OpenAIRE

    Ihnatko, Robert; Post, Claes; Blomqvist, Anders

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  8. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  9. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  10. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene

    Czech Academy of Sciences Publication Activity Database

    Kašpárek, Petr; Ileninová, Zuzana; Hanečková, Radka; Kanchev, Ivan; Jeníčková, Irena; Sedláček, Radislav

    2016-01-01

    Roč. 397, č. 12 (2016), s. 1287-1292 ISSN 1431-6730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LO1509 Institutional support: RVO:68378050 Keywords : mosaicism * mouse model * netherton syndrome * skin * SPINK5 * TALEN Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.273, year: 2016

  11. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis

    OpenAIRE

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W.; Beier, Frank; Cai, Daozhang

    2018-01-01

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. R...

  12. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    Science.gov (United States)

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.