WorldWideScience

Sample records for protactinium uranium neptunium

  1. Sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite

    International Nuclear Information System (INIS)

    Huitti, T.; Hakanen, M.

    1996-12-01

    The aim of the study is to determine the sorption of cesium, radium, protactinium, uranium, neptunium and plutonium on rapakivi granite in the brackish groundwater of Haestholmen (site of the Loviisa-1, Loviisa-2 reactors). The studies were carried out under aerobic (Cs, Ra, Pa, U, Np, Pu) and anaerobic (Np, Pa, Pu, Tc) laboratory conditions. The cation exchange capasity was determined for the rock and the diffusion of tritiated water in the rocks of different degree of alteration. The sorption and diffusion properties of the rocks are briefly compared with those of host rocks at other sites under investigation by the Finnish company Posiva Oy for the final disposal of spent fuel. (29 refs.)

  2. Metabolism and gastrointestinal absorption of neptunium and protactinium in adult baboons

    International Nuclear Information System (INIS)

    Ralston, L.G.; Cohen, N.; Bhattacharyya, M.H.; Larsen, R.P.; Ayres, L.; Oldham, R.D.; Moretti, E.S.

    1985-01-01

    The metabolism of neptunium and protactinium was studied in adult female baboons following intravenous injection and intragastric intubation. Immediately following intravenous injection (10 -1 to 10 -10 mg Np per kg body wt), neptunium cleared rapidly from blood, deposited primarily in the skeleton (54 +- 5%) and liver (3 +- 0.2%), and was excreted predominantly via urine (40 +- 3%). For the first year post injection, neptunium was retained with a biological half-time of approx.100 days in liver and 1.5 +- 0.2 yr in bone. In comparison, injected protactinium (10 -9 mg/kg) was retained in blood in higher concentrations and was initially eliminated in urine to a lesser extent (6 +- 3%). In vivo measurements indicated that protactinium was retained in bone (65 +- 0.3%) with a half-time of 3.5 +- 0.6 yr. Differences in the physicochemical states of the neptunium or protactinium solutions injected did not alter the metabolic behavior of these nuclides. The gastrointestinal absorption value for neptunium in two fasted baboons, sacrificed at 1 day post administration, was determined to be 0.92 +- 0.04%. Of the total amount of neptunium absorbed, 52 +- 3% was retained in bone, 6 +- 2% was in liver, and 42 +- 0.1% was excreted in urine. A method was developed to estimate GI absorption values for both nuclides in baboons which were not sacrificed. Absorption values calculated by this method for neptunium and protactinium in fasted baboons were 1.8 +- 0.8% and 0.65 +- 0.01%, respectively. Values for fed animals were 1 to 2 orders of magnitude less than those for fasted animals. 14 refs., 3 figs., 4 tabs. (DT)

  3. Metabolism and gastrointestinal absorption of neptunium and protactinium in adult baboons

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, L.G.; Cohen, N.; Bhattacharyya, M.H.; Larsen, R.P.; Ayres, L.; Oldham, R.D.; Moretti, E.S.

    1985-01-01

    The metabolism of neptunium and protactinium was studied in adult female baboons following intravenous injection and intragastric intubation. Immediately following intravenous injection (10/sup -1/ to 10/sup -10/ mg Np per kg body wt), neptunium cleared rapidly from blood, deposited primarily in the skeleton (54 +- 5%) and liver (3 +- 0.2%), and was excreted predominantly via urine (40 +- 3%). For the first year post injection, neptunium was retained with a biological half-time of approx.100 days in liver and 1.5 +- 0.2 yr in bone. In comparison, injected protactinium (10/sup -9/ mg/kg) was retained in blood in higher concentrations and was initially eliminated in urine to a lesser extent (6 +- 3%). In vivo measurements indicated that protactinium was retained in bone (65 +- 0.3%) with a half-time of 3.5 +- 0.6 yr. Differences in the physicochemical states of the neptunium or protactinium solutions injected did not alter the metabolic behavior of these nuclides. The gastrointestinal absorption value for neptunium in two fasted baboons, sacrificed at 1 day post administration, was determined to be 0.92 +- 0.04%. Of the total amount of neptunium absorbed, 52 +- 3% was retained in bone, 6 +- 2% was in liver, and 42 +- 0.1% was excreted in urine. A method was developed to estimate GI absorption values for both nuclides in baboons which were not sacrificed. Absorption values calculated by this method for neptunium and protactinium in fasted baboons were 1.8 +- 0.8% and 0.65 +- 0.01%, respectively. Values for fed animals were 1 to 2 orders of magnitude less than those for fasted animals. 14 refs., 3 figs., 4 tabs. (DT)

  4. The metabolism and gastrointestinal absorption of neptunium and protactinium in adult baboons

    International Nuclear Information System (INIS)

    Ralston, L.G.; Cohen, N.; Bhattacharyya, H.; Larsen, R.P.; Ayres, L.; Oldham, R.D.; Moretti, E.S.

    1985-01-01

    The metabolism of neptunium and protactinium was studied in adult female baboons following intravenous injection and intragastric intubation. Neptunium-239, Np-237, and Pa-233 were prepared as either citrate-buffer, nitrate, or bicarbonate solutions with oxidation states of (V) and (VI). Samples of blood, urine, feces and autopsy tissues were measured by gamma spectrometry. Retention of neptunium and protactinium was determined in vivo using whole and partial body gamma-scintillation spectrometry with [NaI-CsI(T1)] detectors. Fed and fasted baboons were administered solutions of Np(VI) bicarbonate (10/sup -8/ to 10/sup -1/ mg/kg) and Pa(V) citrate-buffer (10/sup -9/ mg/kg) by gavage. The gastrointestinal absorption value for neptunium in two fasted baboons, sacrificed at 1 day post administration, was determined to be 0.92 +- 0.04%. Of the total amount of neptunium absorbed, 52 +- 3% was retained in bone, 6 + 2% was in liver, and 42 +- 0.1% was excreted in urine. The metabolism of neptunium followed oral and iv administrations was found to be similar. This observation was also true for baboons which had received oral and iv doses of protactinium. A method was developed to estimate GI absorption values for both nuclides in baboons, which were not sacrificed, by comparison of activities present in bioassay samples after injection and gavage. Absorption values calculated by this method for neptunium and protactinium in fasted baboons were 1.8 +- 0.8% and 0.65 +- 0.01%, respectively. Values for fed animals were 1 to 2 orders of magnitude less than those for fasted animals. Further experiments are currently underway to evaluate this assay technique

  5. Uranium/plutonium and uranium/neptunium separation by the Purex process using hydroxyurea

    International Nuclear Information System (INIS)

    Zhu Zhaowu; He Jianyu; Zhang Zefu; Zhang Yu; Zhu Jianmin; Zhen Weifang

    2004-01-01

    Hydroxyurea dissolved in nitric acid can strip plutonium and neptunium from tri-butyl phosphate efficiently and has little influence on the uranium distribution between the two phases. Simulating the 1B contactor of the Purex process by hydroxyurea with nitric acid solution as a stripping agent, the separation factors of uranium/plutonium and uranium/neptunium can reach values as high as 4.7 x 10 4 and 260, respectively. This indicates that hydroxyurea is a promising salt free agent for uranium/plutonium and uranium/neptunium separations. (author)

  6. Cyclopentadienyl uranium, neptunium and plutonium chemistry

    International Nuclear Information System (INIS)

    Plews, M.J.

    1985-01-01

    The thesis presents the preparation and characterisation of a number of mono, bis and tris(cyclopentadienyl) complexes of uranium(IV), neptunium(IV) and plutonium(IV). The work of previous studies on mono(cyclopentadienyl) thorium and uranium complexes has been extended, and a range of isostructural neptunium species isolated. Their mode of formation and stability in tetrahydrofuran and acetonitrile solutions was investigated. (author)

  7. Preliminary study of the preparation of uranium 232 by irradiation of protactinium 231; Etude preliminaire a la preparation d'uranium 232 par irradiation de protactinium 231

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Ph. [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    A bibliography about preparation of uranium 232 is done. This even-even isotope of uranium is suitable for radioactive tracer, neutron source through {alpha},n reaction and heat source applications. The irradiation of protactinium 231, the chemical separation and the purification of uranium are studied. (author) [French] Une etude bibliographique de la preparation d'uranium 232 a ete effectuee. Cet isotope pair-pair de l'uranium peut etre utilise en tant que traceur, source d'energie et source de neutrons, lorsqu'il est melange a un element leger tel le beryllium. Une etude du taux de formation des isotopes produits, lors de l'irradiation du protactinium 231 - une des manieres d'obtenir l'uranium 232 - a ete faite a l'aide d'un programme passe sur ordinateur. Les problemes poses par la separation chimique et la purification de l'uranium ont ete egalement envisages dans ce rapport. (auteur)

  8. Preliminary study of the preparation of uranium 232 by irradiation of protactinium 231

    International Nuclear Information System (INIS)

    Guillot, Ph.

    1965-01-01

    A bibliography about preparation of uranium 232 is done. This even-even isotope of uranium is suitable for radioactive tracer, neutron source through α,n reaction and heat source applications. The irradiation of protactinium 231, the chemical separation and the purification of uranium are studied. (author) [fr

  9. Neptunium separation in trace levels from uranium solutions by extraction chromatography

    International Nuclear Information System (INIS)

    Figols, M.E.B.

    1991-01-01

    Neptunium and uranium behavior in extraction chromatography system, aiming the separation of microquantities of neptunium from uranyl nitrate solutions is described. Tri-n-octylamina (TOA), tri-n-butylphosphate (TBP), thenoyltrifluoroacetone (TTA) as stationary phase, alumina, Voltalef-UF-300, silica as support material were verified. The impregnation conditions as well as the best stationary phase/support material ratio were established. TBP/alumina, TBP/Voltalef and TOA/alumina system were selected to uranium and neptunium separation studies. In the system using TBP as extractant agent uranium and neptunium separation was reached by selective elution after the retention of both elements on the column. U-Np separation by selective retention of Np was possible with TOA system. The capacity of the column was the 66.6 mg U/mL and 191.6mg U/mL for the TBP/alumina and TBP/Voltalef systems, respectively. An application of extraction chromatography system in the final phase of irradiated uranium treatment process is proposed. (author)

  10. Neptunium separation in trace levels from uranium solutions by extraction chromatography

    International Nuclear Information System (INIS)

    Cotrim, M.B.; Matsuda, H.T.

    1994-01-01

    Neptunium and uranium behavior in extraction chromatograph system, aiming the separation of micro quantities of neptunium from uranyl solutions is described. Tri-n-octylamine (TOA), Tri-n-butylphosphate (TBP) as stationary phase, alumine, Voltalef UF-300 as support material were verified. The impregnation conditions as well as the best stationary phase/support material ratio were established. TBP/alumine, TBP/Voltalef and TOA/alumine system were selected to uranium and neptunium separation studies. (author) . 12 refs., 03 tabs., 03 figs

  11. Recovery of protactinium from molten fluoride nuclear fuel compositions

    Science.gov (United States)

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  12. XAS and TRLIF spectroscopy of uranium and neptunium in seawater.

    Science.gov (United States)

    Maloubier, Melody; Solari, Pier Lorenzo; Moisy, Philippe; Monfort, Marguerite; Den Auwer, Christophe; Moulin, Christophe

    2015-03-28

    Seawater contains radionuclides at environmental levels; some are naturally present and others come from anthropogenic nuclear activity. In this report, the molecular speciation in seawater of uranium(VI) and neptunium(V) at a concentration of 5 × 10(-5) M has been investigated for the first time using a combination of two spectroscopic techniques: Time-resolved laser-induced fluorescence (TRLIF) for U and extended X-ray absorption fine structure (EXAFS) for U and Np at the LIII edge. In parallel, the theoretical speciation of uranium and neptunium in seawater at the same concentration is also discussed and compared to spectroscopic data. The uranium complex was identified as the neutral carbonato calcic complex UO2(CO3)3Ca2, which has been previously described in other natural systems. In the case of neptunium, the complex identified is mainly a carbonato complex whose exact stoichiometry is more difficult to assess. The knowledge of the actinide molecular speciation and reactivity in seawater is of fundamental interest in the particular case of uranium recovery and more generally regarding the actinide life cycle within the biosphere in the case of accidental release. This is the first report of actinide direct speciation in seawater medium that can complement inventory data.

  13. Synthesis, crystallographic and magnetic properties of protactinium pnictides

    International Nuclear Information System (INIS)

    Hery, Yves.

    1979-03-01

    From a theoretical point of view, protactinium lies in a very important place in the periodic system for it seems to be the first element of the actinide series where the 5f state is occupied. We have studied protactinium pnictides, particularly arsenides and antimonides. PaAs 2 , Pa 3 As 4 , PaSb 2 and Pa 3 Sb 4 were synthetized and their crystallographic properties were determined and discussed. We have measured the magnetic susceptibilities of PaC, PaAs 2 and PaSb 2 . Protactinium exhibits a dual character. In its monocarbide, which is a weakly diamagnet, it behaves as a transition element while in the temperature independent paramagnets PaAs 2 and PaSb 2 , it behaves like a 'f' element. This 'f' element character increases with increasing metal-metal distances. Furthermore the radial expansion of the protactinium 5f orbital seems to be more important than the Uranium one, and consequently the corresponding protactinium 5f electrons are less localized. In addition, some protactinium chalcogenides (βPaS 2 , γPaSe 2 and PaOSe) have been identified [fr

  14. Purification process of uranium hexafluoride containing traces of plutonium fluoride and/or neptunium fluoride

    International Nuclear Information System (INIS)

    Aubert, J.; Bethuel, L.; Carles, M.

    1983-01-01

    In this process impure uranium hexafluoride is contacted with a metallic fluoride chosen in the group containing lead fluoride PbF 2 , uranium fluorides UFsub(4+x) (0 3 at a temperature such as plutonium and/or neptunium are reduced and pure uranium hexafluoride is recovered. Application is made to uranium hexafluoride purification in spent fuel reprocessing [fr

  15. The electroreduction of pentavalent protactinium; Reduction electrolytique du protactinium pentavalent

    Energy Technology Data Exchange (ETDEWEB)

    Musikas, C [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France)

    1966-05-01

    The reduction of pentavalent protactinium to tetravalent protactinium, in sulfuric and hydrochloric media, on a milligram scale was demonstrated by electrolysis in a separate-compartment cell. There was no indication that protactinium may exist at the trivalent state in these solutions. Polarograms in fluoride solutions showed only one reduction wave. The principle of a volumetric method for the titration of protactinium is given. (author) [French] La reduction du protactinium pentavalent en protactinium tetravalent, dans des solutions sulfuriques et chlorhydriques a ete realisee a l'echelle du milligramme, par electrolyse, dans une cellule a compartiments separes. Aucun indice ne permet de penser que le protactinium puisse exister dans ces solutions a l'etat trivalent. De plus les polarogrammes traces en milieu fluorhydrique ne font apparaitre qu'une seule vague de reduction. Le principe d'une methode volumetrique de dosage du protactinium est donne. (auteur)

  16. Energies and electric dipole transitions for low-lying levels of protactinium IV and uranium V

    Energy Technology Data Exchange (ETDEWEB)

    Uerer, Gueldem; Oezdemir, Leyla [Sakarya Univ. (Turkey). Physics Dept.

    2012-01-15

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z = 91) and uranium V (Z = 92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature. (orig.)

  17. Electroanalytical studies of uranium, neptunium, and plutonium ions in solutions

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aoyagi, Hisao; Kihara, Sorin

    1989-01-01

    Redox behavior of uranium, neptunium, and plutonium ions, whose oxidation states in acid solutions are between (VI) and (III), were investigated by flow-coulometry with a column electrode of glassy carbon fibers as well as ordinary voltammetry with a rotating disc electrode. Based on current-potential curves the electrode processes were elucidated taking their disproportionation and/or complexation reactions into account. The flow-coulometry, which provides rapid and quantitative electrolysis, was applied to such analytical purposes as follows; the determination of uranium and plutonium in the solution or the solid with discerning their oxidation states, the preparation of species in a desired oxidation state, even in an unstable state which cannot be prepared by ordinary procedure, and the separation of trace amount of uranium in solutions by the electrodeposition of its hydroxide

  18. Sorption studies of radioelements on geological materials

    International Nuclear Information System (INIS)

    Berry, John A.; Yui, Mikazu; Kitamura, Akira

    2007-11-01

    Batch sorption experiments have been carried out to study the sorption of uranium, technetium, curium, neptunium, actinium, protactinium, polonium, americium and plutonium onto bentonite, granodiorite and tuff. Mathematical modelling using the HARPHRQ program and the HATCHES database was carried out to predict the speciation of uranium and technetium in the equilibrated seawater, and neptunium, americium and plutonium in the rock equilibrated water. Review of the literature for thermodynamic data for curium, actinium, protactinium and polonium was carried out. Where sufficient data were available, predictions of the speciation and solubility were made. This report is a summary report of the experimental work conducted by AEA Technology during April 1991-March 1998, and the main results have been presented at Material Research Society Symposium Proceedings and published as proceedings of them. (author)

  19. Process chemistry of neptunium

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Ramaniah, M. V.; Nadkarni, M. N.; Kumar, S. V.; Patil, S. K.; Ramakrishna, V. V.; Swarup, R.; Avadhany, G. V.N.; Sonawane, R. R.; Kartha, P. K.S.

    1973-07-01

    Research progress is reported on the recovery of neptunium from reprocessing of irradiated uranium. Areas considered are: use of vanadium(V) for oxidation of Np(V) to Np(VI); path of neptunium under partitioning column conditions; co-stability of Np(IV) and Pu(IV); and extraction of Np(IV) by tricaprylmethylammonium nitrate. (DHM)

  20. Computer modelling of the chemical speciation of caesium, uranium(VI) and neptunium(V) in human duodenal fluids under fasting conditions

    International Nuclear Information System (INIS)

    Jones, P.W.; Taylor, D.M.; Webb, L.M.; Williams, D.R.

    2002-01-01

    A model simulating the human duodenal contents under physiologically realistic, fasting conditions was developed using the joint expert speciation system (JESS) computer program and database and used to investigate the chemical speciation of caesium, uranium(VI) and neptunium(V). Over the pH range 5.0-9.0, and the concentration range 5x10 -15 -5x10 -5 mol dm -3 , caesium was predicted to occur predominantly as the absorbable free monovalent cation Cs + (∼95%) with species such as CsHPO 4 - and CsCl representing the remainder. The presence or absence of sulphate at 2.1x10 -3 mol dm -3 did not influence the predicted speciation. Uranium was predicted to be present entirely as a soluble, highly charged species, both in the absence and in the presence of sulphate. Between pH 5.0 and ∼6.5 the UO 2 H 2 (PO 4 ) 2 2- predominated, above this pH carbonate species, either UO 2 (CO 3 ) 4 6- or, possibly, UO 2 (CO 3 ) 5 8- . At pH 8.0, and in the presence of sulphate, neptunium(V) was predicted to exist solely as the tetrasulphate species, whilst in the absence of sulphate, an array of negatively charged soluble carbonate species predominated. Studies over the pH range 5.0-9.0 predicted the formation of a spectrum of negatively charged carbonate and phosphate species, ∼40% of the total neptunium was predicted to be present as the electrically net-neutral species NpO 2 HCO 3 at pH6.0, ∼20% at pH 7.0, ∼10% at pH 7.5 and ∼1% at pH 8.0. The observed speciation patterns of uranium and neptunium did not change over the concentration range 5x10 -15 -5x10 -5 mol dm -3 and no solid species were predicted to occur under the conditions simulated. Whether the predicted electrically net-neutral neptunium species or the uranium pentacarbonate species do actually occur under true physiological conditions remains to be established. The observed speciation patterns for caesium and uranium are consistent with the observed absorption of these elements by humans; however, the

  1. Separation of neptunium from uranium and plutonium in the Purex process

    International Nuclear Information System (INIS)

    Kolarik, Z.; Schuler, R.

    1984-01-01

    The possibility of removing neptunium from the Purex process in the first extraction cycle was investigated. Butyraldehyde was found to reduce Np(VI) to Np(V), but not Pu(IV) to Pu(III). Up to 99.7% Np can be separated from uranium and plutonium in the 1A extractor or, much more favourably, in an additional partitioning extractor. Hydroxylamine nitrate can be used for reducing Np(VI) to Np(V) in a uranium purification cycle at a high U concentration in the feed solution. Here the decontamination factor for Np can be as high as 2300 and is lowered if iron is present in the feed. (author)

  2. The geochemical behavior of protactinium 231 and its chosen geochemical analogue thorium in the biosphere

    International Nuclear Information System (INIS)

    Gillberg-Wickman, M.

    1983-03-01

    To be able to judge whether protactinium 231 might represent a major contribution to the human radiation risk from high level radioactive waste a literature study of the geochemical behavior of protactinium has been made. The interest in protactinium determinations has, as far, been in the field of marine geochemistry and geochronology. These investigations show that thorium may be used as a chemical analogue. The content of protactinium 231 is determined by the 235 U content and consequently the occurrence of protactinium in nature is directly associated to the geochemistry of uranium. The pronounced hydrolytic tendency of protactinium and its great sorption and coprecipitation capacity ought to prevent or at least appreciably delay its transport from a back-filled nuclear waste vault to the uppermost surface of the earth. It also has a tendency to form colloids or particulates which may be strongly fixed on a rock surface. In adsorption and desorption processes kinetics must play an important role. Our knowledge in this field is quite limited. Under the physico-chemical conditions in the sea, protactinium is rapidly scavenged from the water column by particulates. It accumulates in the sediments. (author)

  3. Source-driven noise analysis measurements with neptunium metal reflected by high enriched uranium

    International Nuclear Information System (INIS)

    Valentine, Timothy E.; Mattingly, John K.

    2003-01-01

    Subcritical noise analysis measurements have been performed with neptunium ( 237 Np) sphere reflected by highly enriched uranium. These measurements were performed at the Los Alamos Critical Experiment Facility in December 2002 to provide an estimate of the subcriticality of 237 Np reflected by various amounts of high-enriched uranium. This paper provides a description of the measurements and presents some preliminary results of the analysis of the measurements. The measured and calculated spectral ratios differ by 15% whereas the 'interpreted' and calculated k eff values differ by approximately 1%. (author)

  4. The electroreduction of pentavalent protactinium

    International Nuclear Information System (INIS)

    Musikas, C.

    1966-05-01

    The reduction of pentavalent protactinium to tetravalent protactinium, in sulfuric and hydrochloric media, on a milligram scale was demonstrated by electrolysis in a separate-compartment cell. There was no indication that protactinium may exist at the trivalent state in these solutions. Polarograms in fluoride solutions showed only one reduction wave. The principle of a volumetric method for the titration of protactinium is given. (author) [fr

  5. Determination of milligram amounts of neptunium by potentiometric titration

    International Nuclear Information System (INIS)

    Ryzhinskij, M.V.; Solntseva, L.F.

    1981-01-01

    Two procedures of potentiometric titration of about 1 mg Np are reported which are based on its oxidation to neptunium (6) with silver (2) oxide followed by titration with iron (2) to neptunium (5) in one case and to neptunium (4) in the alternative one. The error is not greater than 0.2% rel. Ten-fold uranium excess does not interfere. Up to 1% of plutonium relative to neptunium does not interfere in the case of the titration to neptunium (5). In the titration to neptunium (4), plutonium is titrated stoichiometrically [ru

  6. A new isotope of protactinium: 239Pa

    International Nuclear Information System (INIS)

    Yuan, S.; Yang, W.; Mou, W.; Zhang, X.; Li, Z.; Yu, X.; Gu, J.; Guo, Y.; Gan, Z.; Liu, H.; Guo, J.

    1995-01-01

    A new nuclide 239 Pa was produced by 50MeV/u 18 O bombardment of uranium. A radiochemical separation method was employed for preparing sources of 239 Pa. The protactinium isotope 239 Pa has been identified for the first time by the results observed from the decay of the 239 Pa and its daughter 239 U. The half-life of 239 Pa has been determined to be 106±30min. (orig.)

  7. Fundamental studies of uranium and neptunium redox flow batteries (II)

    International Nuclear Information System (INIS)

    Shiokawa, Y.; Yamamura, T.; Watanabe, N.

    2002-01-01

    The atomic power generation entails production of so-called minor actinides and accumulation of depleted uranium. The theoretical and experimental investigations are underway to transmute minor actinides for minimizing the long-term radiotoxicity and reducing the radioactive waste. The utilization, however, would be alternative means. The actinide redox couples, An(VI)/An(V) and An(IV)/An(III), have excellent properties as battery active materials. Here j the uranium and neptunium redox flow batteries for the electric power storage are discussed from the electrochemical properties of U, Np, Pu and Am [1,2]. One of the required properties for the batteries for electric power storage is high energy efficiency, which is defined by the ratio of the discharge energy to the charge energy. These energies are dependent on the rapidness of kinetics in the electrode reactions, namely the standard rate constants and also the internal resistance of the battery

  8. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    Counter-extraction experiments were carried out under the conditions relevant to the partitioning column (IBX) in the purex process to know the path of neptunium present as Np (VI) the organic phase during the partitioning step. The results obtained show that when ferrous sulphamates is used as the reducing agent, most of the neptunium continues to remain with uranium in the organic stream while with hydrazine stabilized uranous nitrate as the reducing agent, a major fraction of neptunium follows the aqueous stream. Mixer-settler experiments were also carried out under the conditions relevant to the uranium purification cycle (2D) to establish the conditions for forcing neptunium to the aqueous raffinate or for partitioning it from uranium if both neptunium and uranium are co-extracted in this cycle and the results obtained are reported here. (auth)

  9. PRECIPITATION OF PROTACTINIUM

    Science.gov (United States)

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  10. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    International Nuclear Information System (INIS)

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-01-01

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100 0 C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables

  11. Method of recovering neptunium from spent nuclear fuel

    International Nuclear Information System (INIS)

    Tsuboya, T.; N.

    1976-01-01

    An improved Purex wet recovery process including the step of extracting and separating uranium and plutonium simultaneously from the fission products in the presence of nitric acid and nitrous acid by using a multistage extractor unit having an extracting section and a washing section is provided for separating and recovering neptunium simultaneously with uranium and plutonium contained in spent nuclear fuel. The improved method comprises the steps of maintaining the nitrous acid concentration in said extracting section at a level suited for effecting oxidation of neptunium from (V) to (VI) valence, while lowering the nitrous acid concentration in said washing section so as to suppress reduction of neptunium from (VI) to (V) valence, and maintaining the nitric acid concentration in said washing section at a high level

  12. Counter-current extraction studies for the recovery of neptunium by the Purex process. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Nadkarni, M. N.; Kumar, S. V.; Kartha, P. K.S.; Sonavane, R. R.; Ramaniah, M. V.; Patil, S. K.

    1974-07-01

    It is proposed to recover neptunium-237, along with uranium and plutonium, during the fuel reprocessing in the PREFRE plant at Tarapur. Counter-current extraction studies, relevant to the code contamination (HA) and partitioning (IA) cycles of the purex process, were carried out to arrive at suitable chemical flowsheet conditions which would enable the co-extraction of neptunium along with uranium and plutonium. The results of the studies carried out using a laboratory mixer-settler unit and synthetic mixtures of neptunium and uranium are reported here. Based on these results, the chemical flowsheet conditions are proposed for the co-extraction of neptunium even if it exists as Np(V) in the aqueous feed solution. (auth)

  13. X-ray photoemission spectroscopy (XPS) study of uranium, neptunium and plutonium oxides in silicate-based glasses

    International Nuclear Information System (INIS)

    Lam, D.J.; Veal, B.W.; Paulikas, A.P.

    1982-11-01

    Using XPS as the principal investigative tool, we are in the process of examining the bonding properties of selected metal oxides added to silicate glass. In this paper, we present results of XPS studies of uranium, neptunium, and plutonium in binary and multicomponent silicate-based glasses. Models are proposed to account for the very diverse bonding properties of 6+ and 4+ actinide ions in the glasses

  14. Pressure effects on magnetism in the uranium and neptunium monopnictides

    International Nuclear Information System (INIS)

    Braithwaite, D.; Demuer, A.; Ichas, V.; Rebizant, J.; Spirlet, J.C.; Zwirner, S.; Vogt, O.

    1998-01-01

    The magnetic properties of the cubic NaCl uranium and neptunium monopnictides (UX, NpX; X=N, P, As, Sb, Bi) have been widely studied at ambient pressure. Properties ranging from itinerant to localized magnetism, and a variety of ordered magnetic structures have been observed. In particular the profusion of non-collinear double-k or triple-k structures is a consequence of strongly anisotropic exchange interactions. The application of pressure is a clean way of continuously varying the lattice parameter, and the exchange interactions, from one compound to another. A number of studies have been performed using different high pressure techniques. Some of the effects of pressure can be understood in a simple picture of a continuous variation of the lattice parameter, but some highly anomalous effects are also found which are discussed in relation to the possible nature of the magnetic interactions. (orig.)

  15. Uranium and transuranium analysis

    International Nuclear Information System (INIS)

    Regnaud, F.

    1989-01-01

    Analytical chemistry of uranium, neptunium, plutonium, americium and curium is reviewed. Uranium and neptunium are mainly treated and curium is only briefly evoked. Analysis methods include coulometry, titration, mass spectrometry, absorption spectrometry, spectrofluorometry, X-ray spectrometry, nuclear methods and radiation spectrometry [fr

  16. Direct complexonometric determination of thorium (IV), uranium (IV), neptunium (IV), plutonium (IV) by titration of diethylenetriaminepentaacetic acid with xylenol orange as indicator

    International Nuclear Information System (INIS)

    Rykov, A.G.; Piskunov, E.M.; Timofeev, G.A.

    1975-01-01

    The purpose of the present work was to develop a method of determining Th(IV), U(IV), Np(N) and Pu(IV) in acid solutions by titration with diethylenetriamine pentacetic acid, the indicator being xylenol orange. It has been established that Th, U, Np and Pu can be determined to within 0.5-1.5%. Th and U in quantities of tens of milligrams can be determined with greater accuracy, attaining hundredths of one per cent. During titration the determination is not hindered by singly- and doubly-charged metal ions, trivalent lanthanides and actinides, except plutonium. The proposed method can be used to determine U(IV) in the presence of considerable quantities of U(VI) and Np(IV) in the presence of Np(V). Total concentrations of uranium or neptunium are determined by reducing uranium (VI) or neptunium (V) by a standard method (for example, using metallic lead, cadmium or zinc amalgam) to the tetravalent state and applying the method described in the paper. (E.P.)

  17. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    International Nuclear Information System (INIS)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.; Huddleston, M.H.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do not sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10 -7 to 3 X 10 -5 M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10 -8 to 1 X 10 -4 M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz

  18. Process chemistry of neptunium. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, N.; Ramaniah, M. V.; Patil, S. K.; Ramakrishna, V. V.; Swarup, R.; Chadha, A.; Avadhany, G. V.N.

    1974-07-01

    The oxidation state analysis of neptunium in the aqueous feed solution from the Plutonium Plant at Trombay was carried out and it was found that neptunium existed mainly as Np(V) in the feed solution. Batch extraction data for Np(IV) and Np(VI) into 30% TBP/Shell Sol T at different aqueous nitric acid concentration and uranium saturation of the organic phase were obtained at 45 deg C and 60 deg C and the results are summarized. The distribution coefficients of Np(IV) and Np(VI) were obtained as a function of TBP concentration and the data are reported. The effect of nitrous acid on the extraction of neptunium, present in the aqueous phase as Np(IV) and Np(V), by 30% TBP was studied and the data obtained are given. The data on the rate of reduction of NP(VI) and Np(V) to Np(IV) by U(IV) were obtained for different U(IV) and nitric acid concentrations. Some redox reactions involving Np(IV), Pu(IV) and V(V) were investigated and their possible application in the purex process for neptunium recovery were explored. (auth)

  19. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    Science.gov (United States)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  20. The actinides

    International Nuclear Information System (INIS)

    Bagnall, K.W.

    1987-01-01

    This chapter of coordination compound chemistry is devoted to the actinides and starts with a general survey. Most of the chapter relates to thorium and uranium but protactinium, neptunium and plutonium are included. There are sections on nitrogen, phosphorus, sulfur, selenium, tellurium and halogen ligands of the metals in their +3, +4, +5 and +6 oxidation states and of the transplutonium elements in their +2, +3, +4, and +5 oxidation states. (UK)

  1. Preparation of uranium-230 as a new uranium tracer

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kido, K.; Sotobayashi, T.

    1977-01-01

    A uranium isotope, 230 U(T=20.8 d), was produced from the 231 Pa(γ,n) 230 Pa→viaβ - decay 230 U process with a bremsstrahlung irradiation on a protactinium target. After standing for about one month to obtain a maximal growth of 230 U, the uranium was chemically purified, applying an ion-exchange method. The purity of the 230 U obtained was examined with alpha spectrometry and an intrinsic alpha peak due to 230 U as a new uranium tracer in an alpha spectrometric analysis of uranium isotopes is described. (author)

  2. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    Science.gov (United States)

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  3. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  4. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  5. Design study of Thorium-232 and Protactinium-231 based fuel for long life BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trianti, N.; Su' ud, Z.; Riyana, E. S. [Nuclear Physics and Biophysics Research Division Department of Physics - Institut Teknologi Bandung (ITB) Jalan Ganeca 10 Bandung 40132 (Indonesia)

    2012-06-06

    A preliminary design study for the utilization of thorium added with {sup 231}Pa based fuel on BWR type reactor has been performed. In the previous research utilization of fuel based Thorium-232 and Uranium-233 show 10 years operation time with maximum excess-reactivity about 4.075% dk/k. To increase reactor operation time and reduce excess-reactivity below 1% dk/k, Protactinium (Pa-231) is used as Burnable Poison. Protactinium-231 has very interesting neutronic properties, which enable the core to reduce initial excess-reactivity and simultaneously increase production of {sup 233}U to {sup 231}Pa in burn-up process. Optimizations of the content of {sup 231}Pa in the core enables the BWR core to sustain long period of operation time with reasonable burn-up reactivity swing. Based on the optimization of fuel element composition (Th and Pa) in various moderation ratio we can get reactor core with longer operation time, 20 {approx} 30 years operation without fuel shuffling or refuelling, with average power densities maximum of about 35 watt/cc, and maximum excess-reactivity 0.56% dk/k.

  6. The effect of temperature on the sorption of technetium, uranium, neptunium and curium on bentonite, tuff and granodiorite

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; Tweed, C.J.; Yui, M.

    1997-01-01

    A study of the sorption of the radioelements technetium; uranium; neptunium; and curium onto geological materials has been carried out as part of the PNC program to increase confidence in the performance assessment for a high-level radioactive waste repository in Japan. Batch sorption experiments have been performed in order to study the sorption of the radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water under strongly-reducing conditions at both room temperature and at 60 C. Mathematical modelling using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database has been undertaken in order to interpret the experimental results

  7. Organometallic neptunium(III) complexes.

    Science.gov (United States)

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  8. Organometallic neptunium(III) complexes

    Science.gov (United States)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  9. Determination of neptunium in soil by ICP-MS

    International Nuclear Information System (INIS)

    Ayranov, M.; Kraehenbuehl, U.

    2005-01-01

    A fast and simple method for the determination of 237 Np in soil is presented. The borate fusion decreases the sample pre-treatment time and a TEVA extraction chromatography separates neptunium from uranium and the interfering matrix components. A comparison of the sensitivities of alpha spectrometry and sector field ICP-MS for determination of 237 Np is presented. (orig.)

  10. Adsorption of neptunium and plutonium on metal phosphites

    International Nuclear Information System (INIS)

    Silver, G.L.

    1979-01-01

    The removal of neptunium and plutonium from water by adsorption on titanium, zirconium, bismuth, thorium, and uranium phosphites was investigated. These phosphites hydrolyze in neutral or alkaline solution producing the hydrous metal oxides that are more effective adsorbents than the original phosphite compounds. Ageing the plutonium-238 polymer changes its adsorption characteristics on commercial bone char. 37 figures, 7 tables

  11. Dissolved Concentration Limits of Radioactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  12. Dissolved Concentration Limits of Radioactive Elements

    International Nuclear Information System (INIS)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  13. Uranium, neptunium and plutonium kinetics of extraction by tributylphosphate and trilaurylamine in a centrifugal contactor

    International Nuclear Information System (INIS)

    Bergeonneau, P.; Jaouen, C.; Germain, M.; Bathellier, A.

    1977-01-01

    Uranium, plutonium and neptunium kinetics of transfer between various aqueous nitric solutions and solvents have been measured at the laboratory scale, using a centrifugal contactor especially developed in the laboratory. The transfer kinetics of nitric acid, hexavalent U, tetravalent U, Np and Pu from nitric acid solutions into 30% TBP in r-dodecane and 10% trilaurylamine in r-dodecane have been studied. The effects of rotation speed, temperature, initial nitric acid concentration, metal concentration on extraction and stripping kinetics have been investigated. The results obtained show that TBP extraction and stripping are more rapid than trilaurylamine ones. The low activation energies of transfer reactions with TBP suggest that both in extraction and stripping, the transfer rate is limited by the diffusion of the species in the aqueous and organic phases. For trilaurylamine, the transfer mechanism appears more complex

  14. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  15. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    Science.gov (United States)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  16. An extraction method of uranium 233 from the thorium irradiates in a reactor core; Une methode d'extraction de l'uranium-233 a partir du thorium irradie dans une pile

    Energy Technology Data Exchange (ETDEWEB)

    Chesne, A; Regnaut, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Description of the conditions of separation of the thorium, of the uranium 233 and of the protactinium 233 in hydrochloric solution by absorption then selective elution on anion exchange resin. A precipitation of the thorium by the oxalic acid permits the recuperation of the hydrochloric acid which is recycled, the main, raw material consumed being the oxalic acid. (authors) [French] Description des conditions de separation du thorium, de l'uranium 233 et du protactinium 233 en solution chlorhydrique par absorption puis elution selective sur resine echangeuse d'anions. Une precipitation du thoriun par l'acide oxalique permet la recuperation de l'acide chlorhydrique qui est recycle, la principale matiere premiere consommee etant l'acide oxalique. (auteurs)

  17. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  18. The speciation of dissolved elements in aquatic solution. Radium and actinides

    International Nuclear Information System (INIS)

    Haesaenen, E.

    1994-01-01

    In the publication, the chemistry and speciation of radium, thorium, protactinium, uranium, neptunium, lutonium, americium and curium in ground-water environment is reviewed. Special attention is given to the transuranium elements, which have a central role in the repository of nuclear wastes. The most important methods used in the speciation of these elements is presented. The laser-induced methods, developed in the 1980's, are especially discussed. These have made it possible, e.g., to speciate the transuranium elements in their very low, actual repository ground-water concentrations (10-100 ng/l). (54 refs., 10 figs., 3 tabs.)

  19. Study of neptunium hexafluoride formation and its adsorption on metallic fluorides

    International Nuclear Information System (INIS)

    Matcheret, Georges

    1970-01-01

    This report involves two parts. The first part deals with the action of elementary fluorine on neptunium compounds by a thermogravimetric method. The mechanism and the kinetics of this reaction vary according to the nature of the compound. 1 - With neptunium tetrafluoride the reaction, proceeds in a single step. The kinetics corresponds to a uniform attack of the entire surface of the sample and follows the kinetics law: (1-α) 1/3 1-k rel t . 2 - The reaction with neptunium dioxyde involves two steps, neptunium tetrafluoride being the intermediate compound. The kinetics of the first step corresponds to a diffusion process and follows the kinetic law: log (1-α) = kt 1/2 . The kinetics of the second step corresponds to an uniform attack of the entire sur face of the sample. The object of the second part is a study of the adsorption of uranium hexafluoride and neptunium hexafluoride on sodium, magnesium and barium fluorides by a volumetric method. The adsorption of UF 6 on MgF 2 has been investigated at 20 deg. C. The isothermal curve obtained is characteristic of a physical one layer monomolecular adsorption. In a way similar to the behaviour of UF 6 the adsorption of NpF 6 involves in addition a chemical reduction with formation of NpF 5 and release of fluorine. The reaction of NpF 6 with BaF 2 permitted to confirm the influence of the polarizing power of the Ba ++ ion on formation and stability of the product of addition. (author) [fr

  20. Determination of microamounts of neptunium by differential pulse polarography

    International Nuclear Information System (INIS)

    Cauchetier, Ph.

    1979-01-01

    Neptunium is produced in significant amounts in the ''light-water'' reactors and must be controlled at different steps of fuel reprocessing. For this purpose a method of differential pulse polarography has been developed. A tight cell containing 10 ml solution is set up in a Faraday cage. Adjustment to the tetravalent state, Np(IV), is carried out electrochemically on a mercury layer and the Np(IV) concentration is determined by differential pulse polarography, using a dropping mercury electrode. In 0.5M sulfuric acid medium, the redox potential of the reversible couple Np(IV)/Np(III) is -0.3 V/SCE. Concentrations as low as 5x10 -7 M neptunium can be measured and detection at the 2x10 -7 M level is still possible (0.5 μg in the polarographic cell). Precision is about 2% in the 10 -5 M and 10% in the 10 -6 M range. The method has been applied to aqueous and organic (TBP-dodecane) solutions. Neptunium can be determined without separation in the presence of plutonium or uranium at M/Np ratios of 10 3 and 5x10 4 , respectively. In the presence of fission products a separation is needed. (author)

  1. Determination of microamounts of neptunium by differential pulse polarography

    International Nuclear Information System (INIS)

    Cauchetier, P.

    1978-01-01

    Neptunium is produced in significant amounts in the light water reactors and must be controlled at different steps of the fuel reprocessing. For this purpose, a method of differential pulse polarography was developed. A tight cell containing 10 ml of solution is set up in a Faraday's cage. Adjustment to the tetravalent state, Np (IV), is carried out electrochemically on a mercury layer and the Np (IV) concentration is determined by differential pulse polarography, using a dropping mercury electrode. In 0,5 M sulfuric acid medium, the redox potential of the reversible system Np (IV)/Np (III) is - 0,3 V/SCE. Concentrations as low as 5.10 -7 M of neptunium can be measured and detection at the 2.10 -7 M level is still possible (0,5 μg in the polarographic cell). Precision is about 2% in the 10 -5 M and 10% in 10 -6 M range. The method has been applied to the case of aqueous and organic (TBP dodecane) solutions. Neptunium can be determined without separation in the presence of plutonium or uranium in the M/Np ratios of 10 3 and 5.10 4 respectively. In the presence of fission products a separation is needed

  2. The sorption of polonium, actinium and protactinium onto geological materials

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-01-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  3. The sorption of polonium, actinium and protactinium onto geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-07-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results.

  4. Study of an automatic dosing of neptunium in the industrial process of separation neptunium 237-plutonium 238

    International Nuclear Information System (INIS)

    Ros, Pierre

    1973-01-01

    The objective is to study and to adapt a method of automatic dosing of neptunium to the industrial process of separation and purification of plutonium 238, while taking the information quality and economic aspects into account. After a recall of some generalities on the production of plutonium 238, and the process of separation plutonium-neptunium, the author addresses the dosing of neptunium. The adopted measurement technique is spectrophotometry (of neptunium, of neptunium peroxide) which is the most flexible and economic to adapt to automatic control. The author proposes a project of chemical automatic machine, and discusses the complex (stoichiometry, form) and some aspects of neptunium dosing (redox reactions, process control) [fr

  5. Preconcentration of natural protactinium from thorium concentrate with subsequent determination using Gamma (γ) spectrometry

    International Nuclear Information System (INIS)

    Raja, Naine; Swain, Kallola; Kayasth, S.R.; Pathassarathy, R.; Mathur, P.K.; Anil Kumar, S.

    1999-01-01

    A simple and efficient method has been developed to preconcentrate natural protactinium ( 231 Pa) from large size of thorium concentrate (5.0-100.0g) on Dowex 1 X 8 in acid medium. Gamma spectrometry, a powerful determination technique, has been used for quantitative determination of protactinium

  6. Neptunium determination in PUREX process

    International Nuclear Information System (INIS)

    Rawat, Neetika; Kar, Aishwarya S.; Tomar, B.S.; Pandey, M.P.; Umadevi, K.

    2016-10-01

    237 Np is one of the most important minor actinides present in nuclear spent fuel both from environmental and application point of view. The routing of neptunium to the particular stream of PUREX process is necessary for its separation and purification as 237 Np is the target nuclide for production of 238 Pu. The routing of neptunium to a particular PUREX stream will also help in better nuclear waste management, which in turn, will impart less bearing on the environment considering its long half life, alpha emitting properties and mobile nature. In order to route Neptunium to a particular stream of PUREX process, it is imperative to understand the distribution of neptunium in various process streams. Owing to high dose of actual samples, the neptunium distribution was studied using 239 Np tracer by simulating actual column conditions of PUREX streams in lab scale. The present study deals with neptunium determination in actual PUREX streams samples also. (author)

  7. Metabolism and toxicity of neptunium

    International Nuclear Information System (INIS)

    Nenot, J.C.

    1983-08-01

    The biological behaviour and toxicity of neptunium were studied. Neptunium was administered either intravenously or intramuscularly in rats. In contrast to other transuranium elements the distribution patterns of neptunium in the case of intravenous injection is not dependent on the physico-chemical state. Urinary excretion is high. The distribution after intramuscular injection showed a rather fast migration from the injection site. 237 Neptonium in urine was approximately equal to bone deposit. Neptunium behaviour followed that of alkaline earths rather than that of transplutonium elements

  8. Process for neptunium analysis by absorption spectrophotometry

    International Nuclear Information System (INIS)

    Wagner, J.F.

    1987-01-01

    An aqueous solution of a neptunium compounds is treated by a reagent, preferentially a vanadyl sulfate oxidized by cerium IV ions, to obtain neptunium V by oxidation of neptunium IV and reduction of neptunium VI. The reagent is chosen for a negligible absorption at the wavelength used for neptunium V absorption spectrophotometry for instance 981 nm [fr

  9. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    International Nuclear Information System (INIS)

    Squires, Leah N.; Lessing, Paul

    2016-01-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  10. On formation of neptunium(5) and (6) during thermal decomposition of neptunium(4) compounds

    International Nuclear Information System (INIS)

    Bessonov, A.A.; Afonas'eva, T.V.; Krot, N.N.

    1989-01-01

    A study was made on thermal behaviour of neptunium(4) peroxide (1), binary nitrate of neptunium(4) and ammonium (2), as well as neptunium(4) oxalate (3). It was established that 1 decomposed to NpO 2 in three stages with formation of neptunium(5) hydroxide at 80-100 deg C, transformed to Np 2 O 5 during further heating. The compound 2 is stable up to 150 deg C, and then decomposition, accompanied by intramolecular neptunium oxidation with formation of NH 4 NpO 2 (NO 3 ) 3 , takes place. This compound is transformed to Np 2 O 5 at 260-290 deg C. It was revealed that during 3 heating in the air at 270-330 deg C more than 70 % of metal could be transformed to pentavalent form, which was probably related with (NpO 2 ) 2 C 2 O 4 formation

  11. The extraction neptunium by trilaurylamine; L'extraction du neptunium par le trilaurylamine

    Energy Technology Data Exchange (ETDEWEB)

    Champion, J; Chesne, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The extraction by trilaurylamine of neptunium (IV) from nitric acid and sulfuric acid-nitric acid media has been studied with the aim of developing a purification process for this element. Relative to the plutonium-neptunium separation, conditions are given for the oxidation of neptunium (IV) in sulfuric acid-nitric acid medium and data are presented on the stabilisation of the + 4 oxidation state by the organic solvent. Two procedures have been developed for the simultaneous purification of the two actinides. Both are based on the trilaurylamine extraction of the tetravalent nitrate species. The first utilises a constant redox potential fixed by Fe{sup +++} /Fe{sup ++} couple, while in the second, valencies are determined by successive addition of nitrite and ferrous ions. Gram quantities of neptunium 237 has been recovered from plutonium process solution. Alternate procedures are suggested for the chemical processing of irradiated Np{sup 237}. (authors) [French] L'extraction du neptunium par le trilaurylamine en milieu nitrique et sulfonitrique a ete etudiee dans le cadre de la recherche des procedes de purification de cet element. En vue d'effectuer la separation neptunium-plutonium on a precise d'une part les conditions d'oxydation du Np{sup 4+} en milieu sulfonitrique, d'autre part l'influence du solvant sur la stabilite des valences de ces deux elements. Deux procedes de purification simultanee des deux actinides ont ete developpes. Ils sont bases sur l'extraction du nitrate des elements tetravalents dans la trilaury lamine. Dans l'un, la solution a extraire a un potentiel redox fixe par un systeme auxiliaire (Fe{sup +++}/Fe{sup ++}), dans l'autre elle subit dans le meme extracteur des additions successives de nitrite et de fer ferreux. On decrit un essai semi-industriel de recuperation de neptunium 237 a partir de solution provenant de l'usine de production de plutonium de Marcoule. Differents schemas utilisables lors du traitement chimique des cibles de

  12. Preparation procedure and certification of uranous-uranic oxide and nitric acid solution of neptunium as standard specimens of plant

    International Nuclear Information System (INIS)

    Bulyanitsa, L.S.; Lipovskij, A.A.; Ryzhinskij, M.V.; Preobrazhensskaya, L.D.; Aleksandruk, V.M.; Alekseeva, N.A.; Gromova, E.A.; Solntseva, L.F.; Shereshevskaya, I.I.

    1981-01-01

    Two techniques of certification of standard specimens of plant (SSP) are considered. The first technique-comparison with initial SS-metallic uranium NBS-960 - is used for certification of uranium. protoxide-oxide. The mass part of the sum of analyzed impurities in prepared initial SS is (8.4+-0.8)x10 -3 %. For certification according to mass uranium part the method of gravimetric potentiometric titration with semiautomatic titrator is used; the mean quadratic deviation of the method is s=0.0002-0.0003, certified value of uranium mass part in SSP (taking account of the error of initial SS) is (84.80+-0.02)%. The second technigue - a simplified circular experiment - is used for certification of SSP-nitric acid solution of neptunium as to Np mass part. Coulometry at controlled potential and coulometry at controlled current and two variants of potentiometric titration are used as certification methods of analysis. Relative mean quadratic deviations of the methods are ssub(r)=0.0014-0.0023. When calculating total error of certified value of neptunium mass part constituents of both accidental and unremoved systematic errors of the methods were included. The final certification result of SSP is (5.707+-0.018)% [ru

  13. Radioactivity studies. Progress report, April 30, 1984-June 1, 1985

    International Nuclear Information System (INIS)

    Cohen, N.

    1985-06-01

    This report includes information pertaining to metabolic studies of neptunium and protactinium in the adult baboon. Recent investigations have provided additional data on the uptake, distribution, retention and excretion of Np-237, Np-239 and Pa-233 in baboons following single intravenous and gavage administrations. Data is also presented on the gastrointestinal absorption of isotopes of uranium, neptunium and plutonium in individual baboons after receiving multiple gavage administrations at selected time intervals and nutritional states. The gastrointestinal (GI) absorption (f 1 values) and retention factors have been calculated for each of these nuclides. We have begun metabolic studies on the adult tamarin (Saquinis labiatus). Data are presented in this report on the preliminary results of the metabolism of Np-239 bicarbonate intravenously injected into three females and one male tamarin. These data are discussed in comparison with similar results obtained with our baboons and with other species. 28 refs., 20 figs., 14 tabs

  14. HF effect on dissociation kinetics of plutonium and neptunium complexes with 1,2-diaminocyclohexanetetraacetic acid in nitric acid solutions

    International Nuclear Information System (INIS)

    Nikitina, S.A.; Stepanov, A.V.

    1982-01-01

    Dissociation kinetics of Pusup((4)) and Np sup((4)) complexes with DCTA were investigated in HNO 3 solutions in the presence of HF and arsenazo 3. It was found that HF or NaF produced a differentiating effect on the reactivity of the complexes at [HNO 3 ]=1-6 mol/l as well as inhibiting effect at [HNO 3 ]=0.01 mol/l. Conditions of the differential kinetic analysis of plutonium and neptunium in the mixture and differential spectrophotometric analysis of uranium (6) during the camouflage of neptunium (4) and plutonium (4) were determined

  15. Surface Complexation of Neptunium(V) with Goethite

    International Nuclear Information System (INIS)

    Jerden, James L.; Kropf, A. Jeremy

    2007-01-01

    Batch adsorption experiments in which neptunium-bearing solutions were reacted with goethite (alpha-FeOOH) have been performed to study uptake mechanisms in sodium chloride and calcium-bearing sodium silicate solutions. This paper presents results identifying and quantifying the mechanisms by which neptunium is adsorbed as a function of pH and reaction time (aging). Also presented are results from tests in which neptunium is reacted with goethite in the presence of other cations (uranyl and calcium) that may compete with neptunium for sorption sites. The desorption of neptunium from goethite has been studied by re-suspending the neptunium-loaded goethite samples in solutions containing no neptunium. Selected reacted sorbent samples were analyzed by x-ray absorption spectroscopy (XAS) to determine the oxidation state and molecular speciation of the adsorbed neptunium. Results have been used to establish the pH adsorption edge of neptunium on goethite in sodium chloride and calcium-bearing sodium silicate solutions. The results indicate that neptunium uptake on goethite reaches 95% at a pH of approximately 7 and begins to decrease at pH values greater than 8.5. Distribution coefficients for neptunium sorption range from less than 1000 (moles/kg) sorbed / (moles/kg) solution at pH less than 5.0 to greater than 10,000 (moles/kg) sorbed / (moles/kg) solution at pH greater than 7.0. Distribution coefficients as high as 100,000 (moles/kg) sorbed / (moles/kg) solution were recorded for the tests done in calcite equilibrated sodium silicate solutions. XAS results show that neptunium complexes with the goethite surface mainly as Np(V) (although Np(IV) is prevalent in some of the longer-duration sorption tests). The neptunium adsorbed to goethite shows Np-O bond length of approximately 1.8 angstroms which is representative of the Np-O axial bond in the neptunyl(V) complex. This neptunyl(V) ion is coordinated to 5 or 6 equatorial oxygens with Np-O bond lengths of 2

  16. Fluorescent determination of neptunium in plutonium

    International Nuclear Information System (INIS)

    Alexandruk, V.M.; Babaev, A.S.; Dem'yanova, T.A.; Stepanov, A.V.

    1991-01-01

    This paper describes a new procedure for direct determination of Neptunium in Plutonium using laser induced time resolved fluorescence method. The procedure based on measurement of fluorescence intensity of Neptunium followed its concentration in effective layer of pellet of calcium fluoride. Detection limit of determination of Neptunium is 2 10 -12 g. At the level of Neptunium content in Plutonium more than 5 ppm relative standard deviation is equal 0.08-0.12. For carrying out of single measurement it is necessary neither more nor less 5 mkg Plutonium

  17. The extraction neptunium by trilaurylamine; L'extraction du neptunium par le trilaurylamine

    Energy Technology Data Exchange (ETDEWEB)

    Champion, J.; Chesne, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The extraction by trilaurylamine of neptunium (IV) from nitric acid and sulfuric acid-nitric acid media has been studied with the aim of developing a purification process for this element. Relative to the plutonium-neptunium separation, conditions are given for the oxidation of neptunium (IV) in sulfuric acid-nitric acid medium and data are presented on the stabilisation of the + 4 oxidation state by the organic solvent. Two procedures have been developed for the simultaneous purification of the two actinides. Both are based on the trilaurylamine extraction of the tetravalent nitrate species. The first utilises a constant redox potential fixed by Fe{sup +++} /Fe{sup ++} couple, while in the second, valencies are determined by successive addition of nitrite and ferrous ions. Gram quantities of neptunium 237 has been recovered from plutonium process solution. Alternate procedures are suggested for the chemical processing of irradiated Np{sup 237}. (authors) [French] L'extraction du neptunium par le trilaurylamine en milieu nitrique et sulfonitrique a ete etudiee dans le cadre de la recherche des procedes de purification de cet element. En vue d'effectuer la separation neptunium-plutonium on a precise d'une part les conditions d'oxydation du Np{sup 4+} en milieu sulfonitrique, d'autre part l'influence du solvant sur la stabilite des valences de ces deux elements. Deux procedes de purification simultanee des deux actinides ont ete developpes. Ils sont bases sur l'extraction du nitrate des elements tetravalents dans la trilaury lamine. Dans l'un, la solution a extraire a un potentiel redox fixe par un systeme auxiliaire (Fe{sup +++}/Fe{sup ++}), dans l'autre elle subit dans le meme extracteur des additions successives de nitrite et de fer ferreux. On decrit un essai semi-industriel de recuperation de neptunium 237 a partir de solution provenant de l'usine de production de plutonium de Marcoule. Differents schemas

  18. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  19. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  20. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    International Nuclear Information System (INIS)

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  1. HF effect on dissociation kinetics of plutonium and neptunium complexes with 1,2-diaminocyclohexanetetraacetic acid in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, S.A.; Stepanov, A.V.

    1982-01-01

    Dissociation kinetics of Pusup((4)) and Np sup((4)) complexes with DCTA were investigated in HNO/sub 3/ solutions in the presence of HF and arsenazo 3. It was found that HF or NaF produced a differentiating effect on the reactivity of the complexes at (HNO/sub 3/)=1-6 mol/l as well as inhibiting effect at (HNO/sub 3/)=0.01 mol/l. Conditions of the differential kinetic analysis of plutonium and neptunium in the mixture and differential spectrophotometric analysis of uranium (6) during the camouflage of neptunium (4) and plutonium (4) were determined.

  2. The measurement of neptunium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.; Kyffin, T.W.

    1986-02-01

    Analytical techniques have been developed to measure neptunium in the feed, waste and product streams of a fast reactor fuel reprocessing plant. The estimated level of one microgram per milligram of plutonium in some solutions presented severe separation and measurement problems. An initial separation stage was essential, and both ion exchange and solvent extraction using thenoyltrifluoroacetone were studied. The redox chemistry of neptunium necessary to achieve good separation is considered. Spectrophotometry measurement of the stable neptunium/arsenazo III complex was selected for the final neptunium determination with additional analysis by radiometric methods. Incomplete recovery of neptunium during the separation stages necessitated yield measurements, using either neptunium-237 as an internal standard or the short lived gamma active neptunium-239 isotope as a tracer. The distribution of neptunium between the waste and product streams is discussed, in relation to the chemistry of neptunium in the reprocessing plant. (author)

  3. The extraction neptunium by trilaurylamine

    International Nuclear Information System (INIS)

    Champion, J.; Chesne, A.

    1964-01-01

    The extraction by trilaurylamine of neptunium (IV) from nitric acid and sulfuric acid-nitric acid media has been studied with the aim of developing a purification process for this element. Relative to the plutonium-neptunium separation, conditions are given for the oxidation of neptunium (IV) in sulfuric acid-nitric acid medium and data are presented on the stabilisation of the + 4 oxidation state by the organic solvent. Two procedures have been developed for the simultaneous purification of the two actinides. Both are based on the trilaurylamine extraction of the tetravalent nitrate species. The first utilises a constant redox potential fixed by Fe +++ /Fe ++ couple, while in the second, valencies are determined by successive addition of nitrite and ferrous ions. Gram quantities of neptunium 237 has been recovered from plutonium process solution. Alternate procedures are suggested for the chemical processing of irradiated Np 237 . (authors) [fr

  4. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  5. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  6. JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes. Refinement of thermodynamic data for tetravalent thorium, uranium, neptunium and plutonium

    International Nuclear Information System (INIS)

    Fujiwara, Kenso; Kitamura, Akira; Yui, Mikazu

    2010-03-01

    Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level and TRU radioactive wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of Thorium(IV), Uranium(IV), Neptunium(IV) and Plutonium(IV) was carried out. Refinement of thermodynamic data for the element was performed on a basis of the thermodynamic database for actinide published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Additionally, the latest data after publication of thermodynamic data by OECD/NEA were reevaluated to determine whether the data should be included in the JAEA-TDB. (author)

  7. Biology of neptunium

    International Nuclear Information System (INIS)

    Wirth, R.E.

    1985-11-01

    This work contains detailed information about fractional absorption of neptunium through gastrointestinal tract in vivo as well as about organ and subcellular distribution in rats. Biochemical investigations have shown, that neptunium is bound to the iron transport protein transferrin in the blood serum. A long-term experiment resulted in osteosarkomincidences of 11% (0.2 mp Np-237/kg) and 36% (1 mg Np-237/kg); simultaneous the whole-body retention was measured during the natural lifespan of the animals of 2.5 years. (orig.) [de

  8. Use of radioanalytical methods for determination of uranium, neptunium, plutonium, americium and curium isotopes in radioactive wastes

    International Nuclear Information System (INIS)

    Geraldo, Bianca

    2012-01-01

    Activated charcoal is a common type of radioactive waste that contains high concentrations of fission and activation products. The management of this waste includes its characterization aiming the determination and quantification of the specific radionuclides including those known as Difficult-to-Measure Radionuclides (RDM). The analysis of the RDM's generally involves complex radiochemical analysis for purification and separation of the radionuclides, which are expensive and time-consuming. The objective of this work was to define a methodology for sequential analysis of the isotopes of uranium, neptunium, plutonium, americium and curium present in a type of radioactive waste, evaluating chemical yield, analysis of time spent, amount of secondary waste generated and cost. Three methodologies were compared and validated that employ ion exchange (TI + EC), extraction chromatography (EC) and extraction with polymers (ECP). The waste chosen was the activated charcoal from the purification system of primary circuit water cooling the reactor IEA-R1. The charcoal samples were dissolved by acid digestion followed by purification and separation of isotopes with ion exchange resins, extraction and chromatographic extraction polymers. Isotopes were analyzed on an alpha spectrometer, equipped with surface barrier detectors. The chemical yields were satisfactory for the methods TI + EC and EC. ECP method was comparable with those methods only for uranium. Statistical analysis as well the analysis of time spent, amount of secondary waste generated and cost revealed that EC method is the most effective for identifying and quantifying U, Np, Pu, Am and Cm present in charcoal. (author)

  9. Nuclear forensics of a non-traditional sample: Neptunium

    International Nuclear Information System (INIS)

    Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav

    2016-01-01

    Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditional actinide materials in order to determine potential processing and point-of-origin

  10. Radionuclide interactions with marine sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.

    1987-09-01

    A critical review of the literature on the subject of the interactions of radionuclides with marine sediments has been carried out. On the basis of the information available, an attempt has been made to give ranges and 'best estimates' for the distribution ratios between seawater and sediments. These estimates have been based on an understanding of the sediment seawater system and the porewater chemistry and mineralogy. Field measurements, laboratory measurements and estimates based on stable-element geochemical data are all taken into account. Laboratory measurements include distribution-ratio and diffusion-coefficient determinations. The elements reviewed are carbon, chlorine, calcium, nickel, selenium, strontium, zirconium, niobium, technetium, tin, iodine, caesium, lead, radium, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium and curium. (author)

  11. Investigation on neptunium in a borosilicate glass

    International Nuclear Information System (INIS)

    Poirot, I.

    1988-03-01

    The oxidization state and coordination of neptunium, introduced as dopant in borosilicate glasses were studied through optical, Mossbauer spectroscopies and magnetic measurements. The neptunium oxide, introduced previously as NpO 2 is reduced during the melting process of the glass. This leads to an equilibrium in which the ratio of Np 4+ to Np 3+ valences depends on experimental conditions. Spectroscopic analysises conduct to postulate the presence of different sites for each of the oxydation states of neptunium [fr

  12. Sorption of neptunium under oxidizing and reducing groundwater conditions

    International Nuclear Information System (INIS)

    Hakanen, M.

    1991-01-01

    Sorption of neptunium was studied under aerobic, anoxic and reducing groundwater conditions using solutions with initial Np concentrations of 10 -14 to 10 -8 mol/l. Under aerobic conditions the sorption was the same for all concentrations. Under anoxic conditions the same proportion of neptunium (70-80%) was removed from the water. The neptunium sorbed on rock surfaces was of mixed oxidation states. Only Np(V) was found in waters. Under reducing groundwater conditions, nearly all the neptunium was removed from water. The sorbed neptunium was at first almost completely in the form of Np(IV). The submicrogram amounts of neptunium were partly oxidized with time, but Np(V) did not dissolve in reducing water. The holding oxidant character of the tonalite to Np(V) and, the holding reductant character of rocks to small amounts of Np(IV), was demonstrated under anaerobic and reducing groundwater conditions, respectively. (orig.)

  13. Radioactivity studies. Progress report, January 1-December 31, 1982

    International Nuclear Information System (INIS)

    Cohen, N.

    1983-06-01

    During the last year, the research program in actinide biokinetics in nonhuman primates has been expanded to include preliminary studies of the element neptunium. Recently, Np-237, which is known to be present in high-level nuclear reactor waste, has received increased attention as a potential long-range hazard to man. In addition to the neptunium studies, the metabolism of protactinium-233, the daughter of Np-237, has been investigated. Although characterization of Pa-233 metabolism was originally conducted in order to correct for Pa-233 interference during in vivo and in vitro gamma spectrometry of Np-237, several other considerations indicated that Pa might be of radiological concern itself and should thereby warrant further investigation. Due to the limited amount of data in the literature defining the biokinetics of both neptunium and protactinium, metabolis studies of these nuclides are now being conducted in adult female baboons in a manner similar to that which has been successfully performed at this laboratory for Am-241 and Cm-243,244. Procedures routinely performed include external whole-body counting, excreta collection (separation and measurement), blood sampling, biopsies of liver and bone, and complete tissue and organ analysis after sacrifice

  14. The use of neptunium-239 to assess neptunium distribution throughout a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.; Prentice, P.C.

    1989-08-01

    A radiometric technique has been devised to use the gamma emission from the neptunium-239 daughter of americium-243 to estimate neptunium distribution in a plant reprocessing irradiated plutonium based fuels. Three trials were undertaken with samples from the Prototype Fast Reactor at Dounreay. The trials have confirmed the previous chemical measurements and the usefulness of this technique to highlight the effect of altered flowsheet conditions. (author)

  15. The organometallic chemistry of neptunium

    International Nuclear Information System (INIS)

    Bohlander, R.

    1986-09-01

    Organometallic compounds of neptunium with carbocyclic ligands (C 5 H 5 - =cp, C 8 H 8 2- =cot) have been prepared and investigated. Starting from tetrakis(cyclopentadienyle)neptunium(IV) (cp 4 Np) and tris(cyclopentadienyle)neptunium(IV) chloride (cp 3 NpCl) a lot of other Np(IV)-compounds can be obtained by ligand-exchange reactions. These have the general formula cp 3 NpL with either inorganic ionic (L=Br - , I - , 1/2SO 4 2- , NCS - , AlCl 4 - ) or organic ligands (L=NC 4 H 4 - , N 2 C 3 H 3 - , C=CH - , 1/2C= 2- , CH 3 - , C 2 H 5 - , C 6 H 5 - ). Produced by reduction, tris(cyclopentadienyle)neptunium(III), cp 3 Np) gives similar structured 1:1-adduct complexes, cp 3 Np * B, with Lewis-bases like THF, diethylether, acetonitrile. Physico-chemical properties and changes in the molecular structure of the complexes have been studied using IR-, FTIR- and optical spectroscopy (in the NIR, VIS and UV region) as well as by magnetic and EPR measurements and Moessbauer spectrometry. The results are discussed as to their classification within the actinide complex chemistry and to the comparison with lanthanide complexes. (orig./RB) [de

  16. Potential for radionuclide immobilization in the EBS/NFE: solubility limiting phases for neptunium, plutonium, and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rard, J. A., LLNL

    1997-10-01

    Retardation and dispersion in the far field of radionuclides released from the engineered barrier system/near field environment (EBS/NFE) may not be sufficient to prevent regulatory limits being exceeded at the accessible environment. Hence, a greater emphasis must be placed on retardation and/or immobilization of radionuclides in the EBS/NFE. The present document represents a survey of radionuclide-bearing solid phases that could potentially form in the EBS/NFE and immobilize radionuclides released from the waste package and significantly reduce the source term. A detailed literature search was undertaken for experimental solubilities of the oxides, hydroxides, and various salts of neptunium, plutonium, and uranium in aqueous solutions as functions of pH, temperature, and the concentrations of added electrolytes. Numerous solubility studies and reviews were identified and copies of most of the articles were acquired. However, this project was only two months in duration, and copies of some the identified solubility studies could not be obtained at short notice. The results of this survey are intended to be used to assess whether a more detailed study of identified low- solubility phase(s) is warranted, and not as a data base suitable for predicting radionuclide solubility. The results of this survey may also prove useful in a preliminary evaluation of the efficacy of incorporating chemical additives to the EBS/NFE that will enhance radionuclide immobilization.

  17. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  18. Unusual radiolytic behavior of neptunium ions in aqueous bicarbonate solutions

    International Nuclear Information System (INIS)

    Shilov, V.P.; Gogolev, A.V.; Pikaev, A.K.

    2000-01-01

    Behavior of neptunium ions in carbonate and bicarbonate aqueous solutions saturated with air, oxygen or argon during gamma radiation ( 60 Co) by doses up to 3 kGy at dose rates 10 and 25 Gy/min was studied by the method of spectrophotometry. It is shown that in neptunium (5) bicarbonate solution nearly complete (95%) neptunium ion oxidation occurs under the effect of radiation, whereas no oxidation is observed in carbonate solution. Radiation-chemical yield of neptunium (5) oxidation and stationary concentration of neptunium (6) ions depend on concentration of bicarbonate-ions. Explanation to the results obtained is made from the viewpoint of potential radiolytic reactions [ru

  19. Neptunium: a bibliographic reference

    International Nuclear Information System (INIS)

    Mosley, R.E.

    1979-06-01

    A comprehensive bibliograhy of the literature on the element neptunium published prior to January 1976 is presented. A short abstract is given for each listed reference, with a few exceptions. The references are divided into sections categorized as General, Man-Made Sources (Reactors), Man-Made Sources (Fuel Reprocessing), Chemistry (Solubility), Chemistry (Compounds), Chemistry (Isotopes), Analyses (Instrumental), Analyses (Chemical), Chemical (Animal), Biological (Effects), Biological (Animal-Metabolism-Retention), Biological (Air Movement), Biological (Human Inhalation), Measurement, and Dosimetry. The bibliography contains author and keyword indexes and was compiled to serve as a quick reference source for neptunium-related work. 184 citations

  20. Uranium-series disequilibrium data for tooth fragments from the fossil hominid site at Ternifine, Algeria

    International Nuclear Information System (INIS)

    Szabo, B.J.

    1982-01-01

    Uranium-series dating ussumes that fossil bones rapidly takes up uranium, although no thorium or protactinium, soon after burial, and that the bone neither gains nor loses uranium and 230 Th, and 231 Pa. The report analyses elephant molar-tooth fragments for uranium series dating. Three samples were heated for eight hours, the concentrations were determined on a solid-source mass spectrometer, and the 234 U/ 238 U, 230 Th/ 234 U and 231 Pa/ 235 U activivy ratios were determined by alpha spectrometric analyses using chemical and instrumental procedures. There is no firm radiometric age estimate of the prehistoric site of Ternifine, Algeria but is believe to be between 200 000 and 1 100 000 years

  1. An extraction method of uranium 233 from the thorium irradiates in a reactor core

    International Nuclear Information System (INIS)

    Chesne, A.; Regnaut, P.

    1955-01-01

    Description of the conditions of separation of the thorium, of the uranium 233 and of the protactinium 233 in hydrochloric solution by absorption then selective elution on anion exchange resin. A precipitation of the thorium by the oxalic acid permits the recuperation of the hydrochloric acid which is recycled, the main, raw material consumed being the oxalic acid. (authors) [fr

  2. Phthalocyaninato complexes of thorium, protactinium and uranium

    International Nuclear Information System (INIS)

    Beck, O.F.

    1985-01-01

    For the preparation of Bis(phthalocyaninato)-actinoid(IV) complexes, AnPc 2 , a new optimizing synthesis procedure was developed, with which it was possible to prepare spectrally pure, that is, H 2 Pc-free, ThPc 2 , UPc 2 and the isostructurally similar 231 PaPc 2 .PaPc 2 . This was verified with the help of electron spectra, which were compared to preparations which were synthesized in another manner. The corresponding perfluorinated compounds were also produced for thorium and uranium by use of tetrafluorophthalic acid nitrile instead of phthalic acid nitrile as initial product. Electron and infrared spectra show the typical bands of the non-substituted complexes. By the attempt to produce a mono(phthalocyaninato)-thorium complex with the use of ThI 4 as initial material a pyridine-extracted pure ThPcI 2 (py) 2 was obtained with a typical mono(phthalocyaninato) complex electron spectrum, an extremely moisture sensitive compound which in water or acids decomposes and produces H 2 Pc. (orig./RB) [de

  3. Process for the preparation of uranium dioxide

    International Nuclear Information System (INIS)

    Watt, G.W.; Baugh, D.W. Jr.

    1981-01-01

    A method for the preparation of actinide dioxides using actinide nitrate hexahydrates as starting materials is described. The actinide nitrate hexahydrate is reacted with sodium dithionite, and the product is heated in the absence of oxygen to obtain the dioxide. Preferably, the actinide is uranium, plutonium or neptunium. (LL)

  4. The effect of carbonate on neptunium sorption by hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, R.C.; Holt, K.

    2005-01-01

    Full text of publication follows: Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , is a common mineral, the main inorganic compound in bone and exhibits strong sorptive properties for many radionuclides. It has been widely studied and proposed as a backfill material for nuclear waste repositories. Neptunium is one the radionuclides sorbed by hydroxyapatite. Neptunium is of particular importance to nuclear waste repository performance because of its relatively high aqueous solubility, high mobility in the environment and long half-life. In this work, we report on the effects of carbonate on sorption of neptunium by hydroxyapatite. Batch sorption and desorption studies for neptunium were performed as a function of carbonate concentration in water using a synthetic hydroxyapatite. The results indicate even low concentrations of carbonate significantly reduce neptunium sorption and enhance desorption. The data were fit to several simple isotherm equations with the Langmuir equation giving the best results. The results of the work are discussed with respect to nuclear waste repository performance. (authors)

  5. Redox reactions of neptunium in tributyl phosphate-dodecane mixtures

    International Nuclear Information System (INIS)

    Wehrey, F.

    1989-01-01

    In relation with the reprocessing of irradiated fuels, disproportionation and oxidation by nitric acid of pentavalent neptunium in tributyl phosphate-dodecane mixtures have been studied. The experimental part of this work is based on spectrophotometric measurements. The disproportionation of pentavalent neptunium in organic perchloric medium is a second order reaction with respect to neptunium V. The reaction rate is strongly influenced by the perchloric acid concentration and has a higher value than in an aqueous medium. The reverse reaction in nitric media is a first order with respect to tetravalent and hexavalent ions. The reaction rate is a function of the reverse of the square of the nitric acid concentration. The energy of activation is the same than in aqueous medium. The oxidation rate of pentavalent neptunium by nitric acid is increased by nitrous acid. When no nitrous acid is added to the mixture, the reaction revealed to be autocatalytic, possesses an induction period. When nitrous and nitric acids are in excess to neptunium the reaction is first order with respect to neptunium. The reaction rate depends on the concentration of nitric acid and is a linear function of the concentration of nitrous acid. In tributyl phosphate dodecane mixtures the reaction occurs spontaneously. It is not the case in aqueous media. The values of thermodynamical and kinetical constants determined in this work could be used in a modelization of the behavior of neptunium in the reprocessing of irradiated fuels, which has to eliminate this element among its tasks [fr

  6. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  7. Contribution to the study of liquid-liquid extraction dynamics in the case of fast transfers. Extractions of uranium, plutonium and neptunium in a laboratory centrifugal extractor

    International Nuclear Information System (INIS)

    Bergeonneau, Philippe

    1978-01-01

    The liquid-liquid extraction (also named solvent-based extraction) is a very important technique for the reprocessing of irradiated nuclear fuels. This research thesis is based on the use of a laboratory centrifugal extractor which allows interesting conditions to be achieved: fast transfer due to an intense solution mixing, very short duration of contact between solutions. Thus, after a report of a bibliographical study on chemical mechanisms of extraction, on the composition of extracted species, on extraction kinetics, and on centrifugal extractors, this thesis reports the design, fabrication and use of a centrifugal extractor: presentation of fundamental principles, description and characteristics (materials, hydrodynamic operation test and problems, prototype). It reports studies of fast transfer kinetics: mathematical processing, result interpretation, results and discussions of extraction kinetics for nitric acid, uranium VI and IV, plutonium IV, neptunium IV, and comparison of the different extraction kinetics

  8. Re-evaluating neptunium in uranyl phases derived from corroded spent fuel

    International Nuclear Information System (INIS)

    Fortner, J. A.; Finch, R. J.; Kropf, A. J.; Cunnane, J. C.; Chemical Engineering

    2004-01-01

    Interest in mechanisms that may control radioelement release from corroded commercial spent nuclear fuel (CSNF) has been heightened by the selection of the Yucca Mountain site in Nevada as the repository for high-level nuclear waste in the United States. Neptunium is an important radionuclide in repository models owing to its relatively long half-life and its high aqueous mobility as neptunyl [Np(V)O+2]. The possibility of neptunium sequestration into uranyl alteration phases produced by corroding CSNF would suggest-a process for lowering neptunium concentration and subsequent migration from a geologic repository. However, there remains little experimental evidence that uranyl compounds will, in fact, serve as long-term host phases for the retention of neptunium under conditions expected in a deep geologic repository. To directly explore this possibility, we examined specimens of uranyl alteration phases derived from humid-air-corroded CSNF by X-ray absorption spectroscopy to better determine neptunium uptake in these phases. Although neptunium fluorescence was readily observed from as-received CSNF, it was not observed from the uranyl alteration rind. We establish upper limits for neptunium incorporation into CSNF alteration phases that are significantly below previously reported concentrations obtained by using electron energy loss spectroscopy (EELS). We attribute the discrepancy to a plural-scattering event that creates a spurious EELS peak at the neptunium-MV energy

  9. Investigation of Neptunium Precipitator Cleanout Options

    International Nuclear Information System (INIS)

    Hill, B.C.

    2003-01-01

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  10. Radiation-chemical behaviour of neptunium ions in nitric acid solutions in the presence of curium-244

    International Nuclear Information System (INIS)

    Frolova, L.M.; Frolov, A.A.; Vasil'ev, V.Ya.

    1984-01-01

    Radiation-chemical behaviour of neptunium ions in nitric acid solutions is studied under the action of intensive internal alpha-irradiation conditioned by curium nuclides. In 0.3-1.1 mol/l solutions of nitric acid radiation-chemical oxidation of neptunium (4) and reduction of neptunium (6) is obeyed to the first order law of reaction rate in respect to neptunium concentration. Effective constants of neptunium (4) oxidation rates and neptuniumi(6) reduction rates are not dependent on neptunium ion in1tial concentration and increase with a growth of a dose rate of alpha-irradiation of solution. In equilibrium only neptunium (5) and neptunium (6) are present in solutions with HNO 3 concentration less than 1 mol/l. In more concentrated solutions equilibrium between sexa-, penta- and tetravalent neptunium forms is established. Equilibrium concentrations of neptunium valent forms are not dependent on neptunium initial oxidation state under the same initial conditions (dose rate, neptunium concentration and acidity. It is shown form experimental data that under the action of alpha-irradiation neptunium (5) both is oxidated to neptunium (6) and is reduced to neptunium (4)

  11. Concept and experimental studies on fuel and target for minor actinides and fission products transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Prunier, C; Guerin, Y [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d` Etudes des Combustibles; Salvatores, M [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Zaetta, A [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d` Etudes des Reacteurs

    1994-12-31

    High activity long-lived radionuclides in nuclear wastes, namely minor actinides (americium and neptunium) are in large amount generated by current nuclear reactive. The destruction of these radionuclides is a part of the French SPIN (Partitioning and Burning) program consistent with the determination to send a minimum amount of harmful products for final storage. Transmutation concepts are defined for neptunium and americium taking into account fuel cycle strategies. Neptunium destruction does not pose any major problems. It`s a by-product of uranium consumption, as plutonium and in despite of a slight gamma activity due to the protactinium 233 it`s quite easy to handle. Diluting neptunium in the mixed oxide fuels (MOX) should not be an obstacle for fabrication, in-pile behaviour and reprocessing either. Consequently we make the proposal of homogeneous mode of neptunium in MOX which should be soon explored in the experimental OSIRIS reactor and in the Phenix and Superphenix reactors. The analysis is more complex for the multi isotope americium. Its destruction is difficult because of gamma radioactivity which complicates fabrication. Experiments in Phenix and calculation showed that Phenix reactor offers a good potential for americium incineration, but similar data do not exist for PWR. It will remain a well known difficulty for fabrication and reprocessing. In this case we have to put a real new face to the fabrication flow-sheet of americium compounds and we propose to develop the heterogeneous mode. Targets choice are defined in term of: -safety, considering fuel reaction with cladding and water sodium, -transmutation rate, limited by target behaviour, in FR`s (Phenix), PWR`s (OSIRIS) and HFR (Petten), -reprocessing, checking the solubility of such targets by Purex process. So, at the beginning of our program the account has been on improving fuel and targets properties related to safety and fuel cycle. (authors). 4 figs.

  12. Neptunium 237 behaviour in subcellular fractions of rat kidneys

    International Nuclear Information System (INIS)

    Kreslov, V.V.; Maksutova, A.Ya.; Mushkacheva, G.S.

    1978-01-01

    Subcellular distribution of intravenously injected (1 and 0.5 μCi/rat) neptunium nitrate (5- and 6-valent) in kidneys of rat males and females has been investigated. It has been shown that the radionuclide was unevenly distributed within the cell. As early as 24 hours after administration, about 50 per cent of neptunium were concentrated in the mitochondrial fraction. The data are presented on variations in neptunium behaviour within subcellular fractions of rat kidneys depending on the sex of animals, valency and dose of the isotope

  13. The aqueous solubility and speciation analysis for uranium, neptunium and selenium by the geochemical code(EQ3/6)

    International Nuclear Information System (INIS)

    Takeda, Seiji; Shima, Shigeki; Kimura, Hideo; Matsuzuru, Hideo

    1995-11-01

    The geochemical condition of a geologic disposal system of HLW controls the solubility and physicochemical forms of dominant aqueous species for elements, which are one of essential information required for safety assessment. Based on the measured compositions of groundwater, the compositions of groundwater in the disposal system were calculated. The solubility and speciation analyses for the polyvalent elements, uranium, neptunium, and selenium, were performed by the geochemical code EQ3/6. The results obtained were compared with the data appeared in the literatures on the solubilities and speciations. The geochemical behaviors of the elements with respect to the solubility and speciation could quantitatively be elucidated for the compositions of the interstitial waters in an engineered barrier and ground water in a natural barrier. In the pH range of neutral to alkali, the solubilities of U and Np tend to increase with an increase of the carbonate concentration in groundwater. This carbonate concentration dependence of the solubility was also estimated. In the engineered barrier the predominant aqueous species were specified, and in the natural barrier the change of aqueous species was also predicted while the chemical compositions changed from the reducing to oxidizing conditions. The dominant aqueous species for the elements, which migrate in and through the disposal system, were determined by the speciation analysis. (author)

  14. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  15. Preparation of high purity metallic protactinium. Crystal structure and dissolution enthalpy of the metal

    International Nuclear Information System (INIS)

    Bohet, J.

    1977-01-01

    Some 300 mg of Pa have been produced in a high purity metallic state. Protactinium monocarbide has been obtained by the carboreduction of Pa 2 O 5 . Protactinium iodide, produced by the direct reaction of iodine on the carbide, has been sublimated at 420 0 C and thermally dissociated at 1200 0 C on a W wire. In these conditions Pa metal has been deposited with a yield greater than 85% and presents a bct structure stable at room temperature (a=3.921+-0.001A and c=3.235+-0.001A). The fcc phase (Fm3m type) (a=5.018+-0.001A) has been obtained by quenching metallic samples (bct) heated in argon at 1500 0 C. The chemical analysis and the transformation of the fcc into bct phase by controlled heat treatments show the presence of this high temperature phase in the metal. Protactinium mononitride (5.58% N) produced by direct reaction of N on Pa at 1100 0 C presents the same fcc crystal structure but the lattice parameter is higher (a=5.047+-0.001A). The dissolution heat of metallic Pa (bct) has been determined in the aqueous solution HCl 12M - HF 0.05M at 298.15+-0.05 K. The standard formation enthalpies of the ionic species Pa(IV) and Pa(V) are respectively equal to -672+-15 kJ.mol -1 and -821+-15 kJ.mol -1

  16. Use of tetracycline as complexing agent in radiochemical separations

    International Nuclear Information System (INIS)

    Saiki, M.; Nastasi, M.J.C.; Lima, F.W.

    1981-01-01

    The use of the antibiotic agent tetracycline (TC) for analytical purposes in solvent extraction procedures is presented. Individual extraction curves for the lanthanides, zinc, scandium, uranium, thorium, neptunium and protactinium were obtained. Separation of those elements from one another, and of uranium from selenium, bromine, antimony, barium, tantalum and tungsten was carried out. In all cases benzyl alcohol was the diluent used to dissolve tetracycline hydrochloride. Sodium chloride was used as supporting electrolyte for the lanthanide separations and sodium perchlorate for the other elements mentioned. Stability or formation constants for the lanthanide complexes as well as for thorium complex with tetracycline were determined by using the methods of average number of ligands, the limiting value (for thorium), the two parameters and the weighted least squares. For the lanthanides, the stability constants of the complexes Ln(TC) 3 go from 9.35+-0.22 for lanthanum up to 10.84+-0.11 for lutetium. For the Th(TC) 4 complex the formation constant is equal to 24.6+-0.3. Radioisotopes of the respective elements were used as tracers for the determinations. (author)

  17. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  18. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  19. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  20. Precipitaion of neptunium(6) by urotropin from the heated solutions

    International Nuclear Information System (INIS)

    Logvis', A.I.; Krot, N.N.

    1992-01-01

    The composition of precipitate, formed in the course of neptunium(6) nitric acid solution heating with urotropin under different conditions was studied by the methods of X-ray phase analysis, gravimetry and spectrophotometry. The compound studied is determined as NpO 3 ·xH 2 O·yNH 3 , where x <= 2, y <= 0.28. It is shown that not less than 12 % of the initial amount of neptunium remain in solution in the form of neptunium(5)

  1. Corrosion of type 304L stainless steel in boiling dilute neptunium nitrate solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    2003-01-01

    Corrosion of type 304L stainless steel in nitric acid solution containing neptunium was studied under immersion and heat-transfer condition. Corrosion rates of stainless steel were obtained by the weight loss measurement and the quantitative analysis of metallic ions dissolved in solution. The surface morphology was observed by scanning electron microscopy. The corrosion acceleration mechanism was investigated by polarization measurement and spectrophotometry. The corrosion rate in boiling 9M nitric acid was accelerated by addition of neptunium. The corrosion of stainless steel was promoted under heat-transfer condition compared to immersion condition. In polarization measurements, the cathodic current was increased by addition of neptunium. Spectrophotometric measurements showed the oxidization of neptunium in boiling nitric acid. It was suggested that the accelerated corrosion in nitric acid solution containing neptunium was caused by re-oxidation of neptunium. (author)

  2. Purification method for calcium fluoride containing uranium

    International Nuclear Information System (INIS)

    Ogami, Takeshi

    1998-01-01

    Calcium fluoride (CaF 2 ) containing uranium is heated in an electrolytic bath having a cathode and an anode to form a molten salt, and the molten salt is electrolytically reduced to form metal uranium deposited on the surface of the cathode. The calcium fluoride molten salt separated by the deposition of generated metal uranium on the surface of the cathode is solidified by cooling. The solidified calcium fluoride is recovered. When metal uranium is deposited on the surface of the cathode by the electrolytic reduction of the molten salt, impurities such as plutonium and neptunium are also deposited on the surface of the anodes entrained by the metal uranium. Impurities having high vapor pressures such as americium and strontium are evaporated and removed from the molten salts. Then, nuclides such as uranium can thus be separated and recovered, and residual CaF 2 can be recovered in a state easily storable and reutilizable. (T.M.)

  3. Rapid and Automated Determination of Plutonium and Neptunium in Environmental Samples

    DEFF Research Database (Denmark)

    Qiao, Jixin

    This thesis presents improved analytical methods for rapid and automated determination of plutonium and neptunium in environmental samples using sequential injection (SI) based chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The progress of methodology development...... and optimization for rapid determination of plutonium in environmental samples using SIextraction chromatography prior to inductively coupled plasma mass spectrometry (Paper III); (3) Development of an SI-chromatographic method for simultaneous determination of plutonium and neptunium in environmental samples...... for rapid and simultaneous determination of plutonium and neptunium within an SI system (Paper VI). The results demonstrate that the developed methods in this study are reliable and efficient for accurate assays of trace levels of plutonium and neptunium as demanded in different situations including...

  4. Prospection for natural 231Pa in India

    International Nuclear Information System (INIS)

    Anupama, P.; Gantayet, L.M.; Verma, R.; Parthasarathy, R.; Anil Kumar, S.; Dingankar, M.V.; Ghosh, S.K.; Patra, R.N.

    2001-08-01

    Protactinium-231 ( 231 Pa) occurs in nature as a member of the decay chain of naturally occuring 235 U of the 4n+ 3 radioactive series. The expected protactinium concentration in the Jaduguda ore body (with uranium concentration of 0.03-0.06 %) is around 0.2 parts per billion (ppb) and that in monazite ore (uranium concentration 0.3%) is 0.9 ppb. The process at uranium ore processing plant at Jaduguda was studied. 231 Pa content in samples from the process streams of the plant was determined. The gamma ray spectrometry method was chosen and standardised in our laboratory to detect and measure 231 Pa in parts per billion levels in these samples. A concentrated source of protactinium could not be found among the assessed streams of Jaduguda uranium plant. The Monazite processing plant at IRE, Aluva was then studied. From the known chemistry of protactinium, the possible distribution of the 231 Pa was guessed at. Accordingly, the process streams of IRE process plant were selected to prospect for 231 Pa and determine the fractionation of protactinium. For analysis of 231 Pa, the thorium bearing samples were chemically treated to remove the thorium daughter products, which interfere in gamma spectrometry. This report describes the planning for prospecting, sample selection, the standardisation of the analysis procedure for determination of 231 Pa content, and the analysis results. The 231 Pa content in various streams of Indian Rare Earths plant was found in the range 0.2 -6.5 ppb. Some of the streams did not carry any protactinium. The fractionation of 231 Pa in the various streams of the plant and the selection of source for recovery of protactinium are discussed in detail. (author)

  5. The Influenced of Salting Out Agent of Phosphat Ion and Ferrosulfamic in Extraction of Thorium and Uranium

    International Nuclear Information System (INIS)

    Busron Masduki; Didiek Herhady, R.

    2002-01-01

    It was carried out thorium-uranium extraction using one stage mixer settler to investigate the influenced of salting out agent of nitric acid and nitric aluminium. The result of this experiment showed the salting out of agent for nitric aluminium of 0.5 M much more significantly increase the distribution coefficient of uranium, but not for the thorium. The distribution coefficient of thorium much more significantly increased after nitric aluminium addition ≥1.0 M. There was not any meaningly differences the waste volume between nitric acid and nitric aluminium in its utilization. Reductor agent of ion Fe 2+ for chromi and decontaminate agent for protactinium in feed extraction, did not any influences of thorium and uranium distribution coefficient. (author)

  6. Transuranium element chalcogenides. Crystallochemistry and Moessbauer spectrometry of neptunium 237 chalcogenides

    International Nuclear Information System (INIS)

    Thevenin, T.; Pages, M.; Damien, D.

    1981-09-01

    To study actinide compounds , neptunium 237 has been studied by Moessbauer resonance. The different oxidation degrees of neptunium (7, 6, 5, 4 and 3) have a very important effect on isomeric displacements. In the study of chalcogenides, the isomeric displacement value of NpS 3 confirms the valency 4+ of neptunium in this compound. Results obtained with Np 3 S 5 show two valency state +3 and +4 in this compound. There is a good agreement with the two crystalline sites determined by crystallography [fr

  7. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  8. Investigation of composition and properties of some neptunium (5) oxalate compounds

    International Nuclear Information System (INIS)

    Zubarev, V.G.; Krot, N.N.

    1981-01-01

    A simple way of neptunium (5) oxalate synthesis is described and its composition is determined: (NpO 2 ) 2 C 2 O 4 xH 2 O. The compound is precipitated from solution during pouring together stoichiometric quantities of neptunium (5) nitrate and ammonium, sodium or potassium oxalate at pH=4-5. An explanation to unusual effect of solubility change with time of neptunium (5) monooxalate complexes and alkali metal or ammonium ion is found taking into account the slow formation of precipitate and low solubility of the compound obtained (0.62 g/l as to metal). Thermal decomposition of the compound is studied. At 180 deg C a water molecule is split off and at 260 deg C decomposition of neptunium oxalate starts. IR spectra and interplane distances (dsub(hkl)) of the compound crystal lattice are determined. New data on the synthesis and properties of complex neptunium (5) oxalates and monovalent cation in second sphere with the ratio ligand: metal=2:1 and 3:1 are presented. On the basis of results of IR spectroscopy and X-ray phase analyses a supposition is made on the existence of such complex compounds [ru

  9. Energy efficiency of neptunium redox battery in comparison with vanadium battery

    International Nuclear Information System (INIS)

    Yamamura, T.; Watanabe, N.; Shiokawa, Y.

    2006-01-01

    A neptunium ion possesses two isostructural and reversible redox couples (Np 3+ /Np 4+ and NpO 2 + /NpO 2 2+ ) and is therefore suitable as an active material for a redox-flow battery. Since the plastic formed carbon (PFC) is known to show the largest k values for Np(IV)/Np(III) and Np(V)/Np(VI) reactions among various carbon electrodes, a cell was constructed by using the PFC, with the circulation induced by bubbling gas through the electrolyte. In discharge experiments with a neptunium and a vanadium battery using the cell, the former showed a lower voltage loss which suggests a smaller reaction overvoltage. Because of the high radioactivity of the neptunium, it was difficult to obtain sufficient circulation required for the redox-flow battery, therefore a model for evaluating the energy efficiency of the redox-flow battery was developed. By using the known k values for neptunium and vanadium electrode reactions at PFC electrodes, the energy efficiency of the neptunium battery was calculated to be 99.1% at 70 mA cm -2 , which exceeds that of the vanadium battery by ca. 16%

  10. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Kubota, Takumi; Sasaki, Takayuki; Kudo, Akira

    2002-01-01

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, β α was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, K d , was measured. K d of humic acid can be evaluated from β α . The large value of β α and K d means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of β α of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the K d value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  11. Interaction of neptunium (7) with some oxidation products of normal and secondary alcohols

    International Nuclear Information System (INIS)

    Tananaev, I.G.

    1990-01-01

    Interaction of neptunium (7) with formaldehyde and acetone -products of methane and isopropanol oxidation in alkali medium -was studied. With increase in KOH concentration neptunium (7) reduction rate decreases. The reaction order in the range of 0.2-1.0 mol/l KOH equals -1. The reaction order with regard to reducing agent is 0.9 at acetone concentrations 0.07-0.35 mol/l and 1.0 at formaldehyde concentration 2.5-10 mmol/l. Activation energies are equal to 49±2 kJ/mol for neptunium (7) reduction by acetone and 59±4 kJ/mol - by formaldehyde. Formaldehyde is oxidized by neptunium (7) to formic acid

  12. Partitioning and recovery of neptunium from high level waste streams of PUREX origin using 30% TBP

    International Nuclear Information System (INIS)

    Mathur, J.N.; Murali, M.S.; Balarama Krishna, M.V.; Iyer, R.H.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.

    1995-01-01

    237 Np is one of the longest-lived nuclides among the actinides present in the high level waste solutions of reprocessing origin. Its separation, recovery and transmutation can reduce the problem of long term storage of the vitrified waste to a great extent. With this objective, the present work was initiated to study the extraction of neptunium into TBP under the conditions relevant to high level waste, along with uranium and plutonium by oxidising it to hexavalent state using potassium dichromate and subsequently recovering it by selective stripping. Three types of simulated HLW solutions namely sulphate bearing (SB), with an acidity of ∼ 0.3 M and non-sulphate wastes originating from the reprocessing of fuels from pressurised heavy water reactor (PHWR) and fast breeder reactor (FBR) with acidities of 3.0 M HNO 3 were employed in these studies. The extraction of U(VI), Np(VI) and Pu(VI) was very high for PHWR- and FBR-HLW solutions, whereas for the SB-HLW solution, these values were less but reasonably high. Quantitative recovery of neptunium and plutonium was achieved using a stripping solution containing 0.1 M H 2 O 2 and 0.01 M ascorbic acid at an acidity of 2.0 M. Since, cerium present in the waste solutions is expected to undergo oxidation in presence of K 2 Cr 2 O 7 , its extraction behaviour was also studied under similar conditions. Based on the results, a scheme was formulated for the recovery of neptunium along with plutonium and was successfully applied to actual high level waste solution originating from the reprocessing of research reactor fuels. (author). 19 refs., 2 figs., 17 tabs

  13. An evaluation of safeguards approaches for neptunium

    International Nuclear Information System (INIS)

    Burr, Tom; Stanbro, William D.; Charlton, William

    2001-01-01

    The International Atomic Energy Agency has recently drawn attention to the fact that neptunium (Np), a byproduct of the nuclear power industry, can be used to make nuclear weapons. Current monitoring approaches for Np do not rely on material balance accounting as is used for uranium and plutonium. In the future this may change. Although full material balance accounting is not anticipated for Np, it is informative to evaluate the impact and benefit of full material balance accounting when considering other options. Therefore, this paper will apply systems analysis to evaluate ways to convert the current system to full materials balance accounting that will minimize the intrusiveness of the verification system and minimize costs to both the facility operator and the inspection agency. We then compare full material balance accounting to partial material balance accounting and to a ratio-monitoring technique referred to as flow sheet verification. We conclude that sampling approximately 25% of the batches is likely to be adequate and that Pu (or perhaps 137 Cs) will be the most effective surrogate for estimating the Np in the input accountability tank. (author)

  14. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  15. Dosimetry of the gastrointestinal tract

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Cross, F.T.; Dagle, G.E.

    1987-01-01

    In order to obtain information on radiation doses to the intestine, doses were determined in dogs for beta-emitters ( 106 Ru- 106 Rh, 147 Pm and 91 Y) that might be delivered to critical cells in the bowel in the event of an accident. Thermoluminescent dosimeters were implanted beneath the large-bowel mucose of dogs. Results were related to toxicity in the dogs and extrapolated to toxicity observed in other experiments with suckling, weanling and adult rats similarly treated. With that information the depth of the critical cells in both dogs and rats could be calculated. Studies with isotopes of thorium, uranium, protactinium, neptunium, plutonium, americium, curium and einsteinium showed that substantial amounts of these alpha-emitting actinides were retained in the intestines of neonatal rats, guinea pigs, dogs and swine after gavage. Despite high doses retained by mucosal cells on the villous tips, (some epithelial cells in the ileum received 100 Gy/day) gross injury was seldom observed at necropsy. 26 refs.; 4 figs.; 3 tabs

  16. Selective localization of neptunium-237 in the nuclei of mammalian cells. Localisation selective du neptunium-237 au sein des noyaux des cellules de mammiferes

    Energy Technology Data Exchange (ETDEWEB)

    Galle, P.; Boulahdour, H. (Faculte de Medecine, 94 - Creteil (FR)); Metivier, H. (CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (FR). Inst. de Protection et de Surete Nucleaire)

    1992-01-01

    After injection in the rat of soluble neptunium salt, the distribution of this element was studied at the subcellular level by electron microscopy and electron probe microanalysis. Abnormal structures have been observed by electron microscopy in the nuclei of hepatocytes, and the same structures have also been observed in the nuclei of the proximal tubules cells of the kidney. These structures are formed of clusters of very small and dense particles, several nanometers in diameter. The clusters are localized in the central part of the nuclei and they are separate from nucleoli and heterochromatin. Electron probe X-ray analysis of this cluster have shown that they contain neptunium associated with phosphorus. In the cell containing neptunium inclusions, other non specific lesions are also observed (nuclear pycnosis, mitochondrial depletion).

  17. Rapid and automated determination of plutonium and neptunium in environmental samples

    International Nuclear Information System (INIS)

    Qiao, J.

    2011-03-01

    This thesis presents improved analytical methods for rapid and automated determination of plutonium and neptunium in environmental samples using sequential injection (SI) based chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The progress of methodology development in this work consists of 5 subjects stated as follows: 1) Development and optimization of an SI-anion exchange chromatographic method for rapid determination of plutonium in environmental samples in combination of inductively coupled plasma mass spectrometry detection (Paper II); (2) Methodology development and optimization for rapid determination of plutonium in environmental samples using SI-extraction chromatography prior to inductively coupled plasma mass spectrometry (Paper III); (3) Development of an SI-chromatographic method for simultaneous determination of plutonium and neptunium in environmental samples (Paper IV); (4) Investigation of the suitability and applicability of 242 Pu as a tracer for rapid neptunium determination using anion exchange chromatography in an SI-network coupled with inductively coupled plasma mass spectrometry (Paper V); (5) Exploration of macro-porous anion exchange chromatography for rapid and simultaneous determination of plutonium and neptunium within an SI system (Paper VI). The results demonstrate that the developed methods in this study are reliable and efficient for accurate assays of trace levels of plutonium and neptunium as demanded in different situations including environmental risk monitoring and assessment, emergency preparedness and surveillance of contaminated areas. (Author)

  18. Rapid and automated determination of plutonium and neptunium in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, J.

    2011-03-15

    This thesis presents improved analytical methods for rapid and automated determination of plutonium and neptunium in environmental samples using sequential injection (SI) based chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The progress of methodology development in this work consists of 5 subjects stated as follows: 1) Development and optimization of an SI-anion exchange chromatographic method for rapid determination of plutonium in environmental samples in combination of inductively coupled plasma mass spectrometry detection (Paper II); (2) Methodology development and optimization for rapid determination of plutonium in environmental samples using SI-extraction chromatography prior to inductively coupled plasma mass spectrometry (Paper III); (3) Development of an SI-chromatographic method for simultaneous determination of plutonium and neptunium in environmental samples (Paper IV); (4) Investigation of the suitability and applicability of 242Pu as a tracer for rapid neptunium determination using anion exchange chromatography in an SI-network coupled with inductively coupled plasma mass spectrometry (Paper V); (5) Exploration of macro-porous anion exchange chromatography for rapid and simultaneous determination of plutonium and neptunium within an SI system (Paper VI). The results demonstrate that the developed methods in this study are reliable and efficient for accurate assays of trace levels of plutonium and neptunium as demanded in different situations including environmental risk monitoring and assessment, emergency preparedness and surveillance of contaminated areas. (Author)

  19. Application of Moessbauer spectroscopy to the study of neptunium adsorbed on deep-sea sediments

    International Nuclear Information System (INIS)

    Bennett, B.A.; Rees, L.V.C.

    1987-03-01

    A Neptunium Moessbauer spectrometer (the first in Great Britain) was constructed and the Moessbauer spectra of NpAl Laves phase alloy obtained. Neptunium was sorbed onto a calcareous deep-sea sediment from sea water, using a successive-loading technique. Sorption appeared to be by an equilibrium reaction, and because of the low solubility of neptunium in seawater, this meant that the maximum loading that could be achieved was 8mg 237 Np/g sediment. This proved to be an adequate concentration for Moessbauer measurements and a Moessbauer spectrum was obtained. This showed that most of the neptunium was in exchange sites and not present as precipitates of neptunium compounds. It was probably in the 4+ state indicating that reduction had occurred during sorption. This work has demonstrated that Moessbauer Spectroscopy has great potential as an aid to understanding the mechanism of actinide sorption in natural systems. (author)

  20. Solvent extraction of irradiated neptunium targets. I. Valence stabilization

    International Nuclear Information System (INIS)

    Thompson, G.H.; Thompson, M.C.

    1977-01-01

    Solvent extraction of 237 Np and 238 Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l 237 Np, 0.4 g/l 238 Pu, 1.2M Al 3+ , 4.6M NO 3 - , and 1M H + ). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in 237 Np-- 238 Pu mixtures cannot be maintained for a practicable processing period

  1. Natural Transmutation of Actinides via the Fission Reaction in the Closed Thorium-Uranium-Plutonium Fuel Cycle

    Science.gov (United States)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2017-12-01

    It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.

  2. Neptunium sorption and co-precipitation of strontium in simulated DWPF salt solution

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Orebaugh, E.G.; King, C.M.

    1988-01-01

    Batch experiments performed using crushed slag saltstone (∼40 mesh) removed >80% of 237 Np from simulated Defense Waste Processing Facility (DWPF) salt solution. The concentration of 237 Np (110 pCi/ml) used was 1000x greater than levels in actual DWPF solutions. Neptunium-239 was used as a tracer and was formed by neutron activation of uranyl nitrate. Results showed that small amounts of crushed saltstone (as little as 0.05 grams), removed >80% of neptunium from 15 ml of simulated DWPF solution after several hours equilibration. The neptunium is sorbed on insoluble carbonates formed in and on the saltstone matrix. Further testing showed that addition of 0.01 and 0.10 ml of 1 molar Ca +2 (ie. Ca (NO 3 ) 2 , CaCl 2 ) into 15 ml of simulated DWPF solution yielded a white carbonate precipitate which also removed >80% of the neptunium after 1 hour equilibration. Further experiments were performed to determine the effectiveness of this procedure to co-precipitate strontium

  3. Determination of uranium in plutonium--238 metal and oxide by differential pulse polarography

    International Nuclear Information System (INIS)

    Fawcett, N.C.

    1976-01-01

    A differential pulse polarographic method was developed for the determination of total uranium in 238 Pu metal and oxides. A supporting electrolyte of 0.5 M ascorbic acid in 0.15 N H 2 SO 4 was found satisfactory for the determination of 500 ppM or more of uranium in 10 mg or less of plutonium. A relative standard deviation of 0.27 to 4.3 percent was obtained in the analysis of samples ranging in uranium content from 0.65 to 2.79 percent. The limit of detection was 0.18 μg ml -1 . Peak current was a linear function of uranium concentration up to at least 100 μg ml -1 . Amounts of neptunium equal to the uranium content were tolerated. The possible interference of a number of other cations and anions were investigated

  4. Study on reduction reactions of neptunium(V) on magnetite surface

    International Nuclear Information System (INIS)

    Kitamura, Akira; Kamei, Gento; Nakata, Kotaro; Tanaka, Satoru; Tomura, Tsutomu

    2004-01-01

    Redox reactions between neptunium(V) (Np(V)) and magnetite (Fe(II) 1 Fe(III) 2 O 4 ) surface were investigated in N 2 gas atmosphere. A batch method was applied to the experiment. A magnetite sample and a 0.1 M NaCl solution were mixed in a polypropylene tube, and pH, redox potential and concentration of dissolved neptunium were measured as a function of shaking time, temperature and liquid/solid ratio. The concentration of dissolved neptunium was reduced rapidly within a day, due to the reducing reaction of Np(V) to Np(IV) and the precipitation of Np(IV). The rate constant of the redox reaction and the activation energy for the rate constant were preliminarily obtained. On the other hand, redox reactions between Np(V) and aqueous Fe(II) were hardly observed. Considering the number of transferred electrons, it was suggested that the redox reaction was promoted by not only Fe(II) on the magnetite surface, but also Fe(II) inside the magnetite. (author)

  5. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    Science.gov (United States)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  6. Coprecipitation of neptunium and plutonium with iron and zirconium dibutyl phosphates

    International Nuclear Information System (INIS)

    Sokhina, L.P.; Rovnyj, S.I.; Goncharuk, L.V.

    1988-01-01

    Neptunium and plutonium coprecipitation with precipitates of dibutyl phosphates of some elements significant for radiochemical technology is studied. By the ability to coprecipitation of actinides with precipitates of dibutyl phosphates the cations may be arranged in the series Fe > Al > La > ≥ Zr ≥ Th. The composition of neptunium and plutonium mixed precipitates on the basis of iron dibutyl phosphates corresponding to the formula (Me(NO 3 ) 2 Al 2 ) n x · FeA 3 , where Me-neptunium or plutonium, A-anion of dibutyl phosphoric acid, n=1-4, is determined. Solubility of mixed precipitations in nitric acid and carbonate solutions is studied. Mixed precipitations on the basis of iron dibutyl phosphates are found to have the least solubility, their solubility being lower than that of individual compounds of dibutyl phoshates. The mechanism of formation of mixed precipitates is suggested and discussed

  7. Neptunium-the neglected actinide: a review of the biological and environmental literature

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1982-01-01

    Data from 89 references relating to the biological and environmental behavior of neptunium are reviewed with particular attention to the potential risks from possible releases of neptunium isotopes by the nuclear industry. The behavior of neptunium differs in many significant respects from that of other transuranic elements. It is more mobile environmentally and more readily absorbed by man, although some of the higher reported values for gastrointestinal absorption appear to have been influenced by the very high mass levels of 237 Np required for experimental study. In studies with experimental animals its ratio of deposition in bone/liver is greater than that of other transuranic elements. Its long-term toxicity in experimental animals is similar to that of other transuranics

  8. The photochemistry of neptunium in aqueous perchloric acid solutions

    International Nuclear Information System (INIS)

    Friedman, H.A.; Toth, L.M.; Osborne, M.M.

    1979-01-01

    The photochemistry of neptunium ions in aqueous perchloric acid has been investigated using 254 and 300 nm UV radiation. In the absence of other reagents, Np(IV) and (V) oxidized to Np(VI), in a stepwise fashion, with individual quantum efficiencies for each step that vary from 0.02 to 0.004. Decreasing acid concentration favors the Np(IV) → Np(V) reaction whereas it hinders the Np(V) → Np(VI) photo-oxidation. When ethanol, acetaldehyde and other mild reducing agents are added to neptunium-perchloric acid solutions which are then photolyzed, the Np species are reduced to Np(III) in a stepwise fashion with individual quantum efficiencies that vary from 0.07 to 0.006. The overall photoredox reactions of neptunium are subject to competing secondary product reactions that become significant as the photolysis products accumulate. Absorption spectrophotometry was used to monitor the changes in Np oxidation states and reference spectra of the various Np oxidation states are given for 1.0 N HClO 4 . The Np species have absorption bands in the 300 to 1320 nm region that obey Beer's law only when they were properly resolved. (author)

  9. A study of specific sorption of neptunium(V) on smectite in low pH solution

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Matsumoto, Junko; Banba, Tsunetaka; Ito, Yoshimoto

    1996-01-01

    The 'specific sorption' of neptunium(V) on smectite, in other words, a strong sorption undesorbable by 1 M KCl, is studied with a combination of batch type sorption and desorption experiments over a pH range of 2 to 5. Six types of homoionic smectite (Li-, Na-, K-, Cs-, Mg-, and Ca-smectite) are used in this study. Distribution coefficients (K d ) of neptunium for smectite vary over a wide pH range; the maximum K d value of ∝300 cm 3 x g -1 at around pH 2 for Li- and Na-smectite and the minimum value of ∝2 cm 3 x g -1 for Cs-smectite. The specific sorption of neptunium depends on pH and on the affinity of the exchangeable cation for smectite; the lower the pH of solution or the affinity, the larger the specific sorption. The neptunium-smectite association varies with the elapse of contact time. Within the first day of the neptunium-smectite contact the neptunium sorbed on na-smectite at low pH is desorbable by 1 M KCl solution, and on the passage of time most of the neuptunium sorbed becomes undesorbable by KCl (the specific sorption). Hydronium ion in solution is sorbed on smectite at low pH and dissociates the exchangeable cation from smectite into solution, and the specific sorption of neuptunium increases with increasing the exchangeable cation that is dissociated from smectite. (orig.)

  10. Soil nuclide distribution coefficients and their statistical distributions

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Beals, D.I.; Thibault, D.H.; O'Connor, P.

    1984-12-01

    Environmental assessments of the disposal of nuclear fuel waste in plutonic rock formations require analysis of the migration of nuclides from the disposal vault to the biosphere. Analyses of nuclide migration via groundwater through the disposal vault, the buffer and backfill, the plutonic rock, and the consolidated and unconsolidated overburden use models requiring distribution coefficients (Ksub(d)) to describe the interaction of the nuclides with the geological and man-made materials. This report presents element-specific soil distribution coefficients and their statistical distributions, based on a detailed survey of the literature. Radioactive elements considered were actinium, americium, bismuth, calcium, carbon, cerium, cesium, iodine, lead, molybdenum, neptunium, nickel, niobium, palladium, plutonium, polonium, protactinium, radium, samarium, selenium, silver, strontium, technetium, terbium, thorium, tin, uranium and zirconium. Stable elements considered were antimony, boron, cadmium, tellurium and zinc. Where sufficient data were available, distribution coefficients and their distributions are given for sand, silt, clay and organic soils. Our values are recommended for use in assessments for the Canadian Nuclear Fuel Waste Management Program

  11. An assessment of the thermodynamic behaviour of neptunium in water and model groundwaters from 25 to 150 degrees C

    International Nuclear Information System (INIS)

    Lemire, R.J.

    1984-03-01

    Standard molal Gibbs energy of formation and entropy data for simple neptunium solids and aqueous neptunium complexes with OH - , Cl - , F - , CO 3 2- , PO 4 3- , SO-4 2- and Na + have been critically reviewed. Selected values are used with estimated heat capacity values to derive self-consistent analytical expressions for the temperature dependence of the standard molal Gibbs energies of formation of the species from 25 to 150 degrees C. The Gibbs energies have been used to evaluate the effect of different concentrations of ligands on the solubility of neptunium solids as a function of temperature. Potential-pH diagrams are given for neptunium in pure water and in two model groundwaters. Important deficiencies in the available thermodynamic data for neptunium species are discussed

  12. Investigation on neptunium behavior in electrolytic partitioning process of uranium and plutonium

    International Nuclear Information System (INIS)

    Zhang Qingxuan; Zhang Jiajun; Tian Baosheng; Jiang Dongliang; Li Zhaoyi; He Jianyu

    1988-01-01

    The electrolytic oxidation-raduction of Np(V, VI) in HNO 3 solution was studied. Experimental results showed that the electrode process of Np(V)-Np(VI) couple is reversible, and the half reaction time of the process mentioned above is about 1.5 minutes under given conditions. The overpotential of reduction of Np(V) is high, which makes it difficult to reduce Np(V) into Np(IV) directly at cathode. Owing to a large quantity of U(IV) produced through electrolysis, it is presaged that neptunium will be mainly in tetravalent state in the electrolytic M-S battery. A new type of electrolytic M-S battery was developed, in which anodes were installed in each settling chamber without any specific anode chamber in the battery. Owing to using of the mechanical stirrer driven by a wheel gear, stage efficiency is high. Demonstration campaign was carried out. It follows from the results that the yield of Pu is 99.90 ∼ 99.99%. Separation factor of U from Pu is 3900 ∼ 33000. Material balance of U and Pu is satisfactory. Heavy accumulation of Np in the battery was observed. Np in the battery is mainly in the tetravalent state. It is believed that it is difficult to recover Np quantitatively from single fluent (e.g. 1BP or 1BU) under normal conditions of partitioning step of the PUREX process

  13. Gastrointestinal absorption of neptunium in primates: effect of ingested mass, diet, and fasting

    International Nuclear Information System (INIS)

    Metivier, H.; Bourges, J.; Fritsch, P.; Nolibe, D.; Masse, R.

    1986-01-01

    Absorption and retention of neptunium were determined in baboons after intragastric administration of neptunium nitrate solutions at pH 1. The effects of mass, diet, and fasting on absorption were studied. At higher mass levels (400-800 micrograms Np/kg), absorption was about 1%; at lower mass intakes (0.0009-0.005 micrograms Np/kg), absorption was reduced by 10- to 20-fold. The addition of an oxidizing agent (Fe3+) increased gastrointestinal absorption and supported the hypothesis of a reduction of Np (V) when loss masses were ingested. Diets depleted of or enriched with hydroxy acids did not modify retention of neptunium but increased urinary excretion with increasing hydroxy acid content. The diet enriched with milk components reduced absorption by a factor of 5. Potatoes increased absorption and retention by a factor 5, not necessarily due to the effect of phytate. Fasting for 12 or 24 h increased retention and absorption by factors of about 3 and 10, respectively. Data obtained in baboons when low masses of neptunium were administered suggest that the f1 factor used by ICRP should be decreased. However, fasting as encountered in certain nutritional habits is a factor to be taken into consideration

  14. Speciation and solubility of neptunium in underground environments by paper electrophoresis

    International Nuclear Information System (INIS)

    Nagasaki, S.; Tanaka, Satoru; Takahashi, Yoichi

    1988-01-01

    Speciation and solubility of neptunium were studied using paper electrophoresis, ion exchange and ultrafiltration. Among these methods, the paper electrophoresis was found to be suitable for measuring speciation and solubility of neptunium of low concentration, if chemical species had opposite charge to each other or dissolved species had a charge. Using paper electrophoresis, hydrolysis constants of NpO 2 OH 0 and NpO 2 - (OH) 2 - and solubility product of NpO 2 were obtained and ionic-strength dependence of speciation was observed. (author) 9 refs.; 3 figs.; 2 tabs

  15. Assessment of the thermodynamic behavior of neptunium in water and model groundwaters from 25 to 150/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R J

    1984-03-15

    Standard molal Gibbs energy of formation and entropy data for simple neptunium solids and aqueous neptunium complexes with OH/sup -/, Cl/sup -/, F/sup -/, CO/sub 3//sup 2 -/, PO/sub 4//sup 3 -/, SO/sub 4//sup 2 -/ and Na/sup +/ have been critically reviewed. Selected values are used with estimated heat capacity values to derive self-consistent analytical expressions for the temperature dependence of the standard molal Gibbs energies of formation of the species from 25 to 150/sup 0/C. The Gibbs energies have been used to evaluate the effect of different concentrations of ligands on the solubility of neptunium solids as a function of temperature. Potential-pH diagrams are given for neptunium in pure water and in two model groundwaters. Important deficiencies in the available thermodynamic data for neptunium species are discussed. 90 references, 12 figures, 6 tables.

  16. Neutron activation analysis of rare earths in uranium containing rocks

    International Nuclear Information System (INIS)

    May, S.; Pinte, G.

    1984-01-01

    The determination of rare earths by activation analysis in uranium rocks is disturbed either by fission-produced rare earths, or by neptunium-239 originating from uranium-238. In order to eliminate these interferencies, the chemical separation of rare earths from uranium prior to activation should be performed. The chemical process is as follows: the rock sample is fused with sodium borate, then, after addition of hydrochloric acid, the resulting solution is passed through a Dowex 1x8 column. Uranium is retained on the resin, and rare earths and scandium are eluted. Aluminium is added as a carrier to the solution, and rare earths and scandium are coprecipitated with aluminium hydroxide. This precipitate is irradiated in the nuclear reactor. Gamma spectrometry is used for the determination of earth radionuclide. Activity measurements are performed in successive steps during one month. The following elements are determined: Pr, La, Sm, Nd, Yb, Lu, Ce, Tb, Eu and Sc. The chemical yield is measured by using scandium as an internal standard. (author)

  17. Method of neptunium recovery into the product stream of the Purex second codecontamination step for LWR fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboya, T; Nemoto, S; Hoshino, T; Segawa, T [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1973-04-01

    The neptunium behavior in the second codecontamination step in Purex process of Power Reactor and Nuclear Fuel Development Corporation was experimentally studied, and the conditions for discharging neptunium in product stream were examined. Improved nitrous acid method was applied to the second codecontamination step. Nitrous acid (NaNO/sub 2/) was supplied to the 1st stage of extraction section at feed rate of 7.5 mM/hr, and hydrazine (hydrazine nitrate) was supplied to some stages near feed point at feed rate of 1.6 mM/hr, by using laboratory scale mixer-settlers having 6 ml of mixing volume and 17 ml of settling volume. Neptunium extraction behavior was analyzed by the code NEPTUN-I simulating neptunium concentration profile and by the code NEPTUN-II for calculating Np (V) and Np (VI) concentration. Batch experiments were performed for explaining the reduction reaction of Np (VI) in organic phase. After shaking the aqueous solution containing Np (VI) in 3 M nitric acid with the various volume ratios of TBP, both phases were separated, and the neptunium concentration was determined. In conclusion, the improved nitrous acid method was effective for the neptunium discharge in product stream when the flow ratio of organic phase to aqueous phase was increased to about three times.

  18. Chemical speciation of neptunium in spent fuel. Annual report for period 15 August 1999 to 15 August 2000

    International Nuclear Information System (INIS)

    Ken Czerwinski; Don Reed

    2000-01-01

    (B204) This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R and D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste. Another important aspect of this project is the close cooperation between a university and a national laboratory. The PI has a transuranic laboratory at MIT where

  19. Chemical speciation of neptunium in spent fuel. Annual report for period 15 August 1999 to 15 August 2000

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Don Reed

    2000-09-01

    (B204) This project will examine the chemical speciation of neptunium in spent nuclear fuel. The R&D fields covered by the project include waste host materials and actinide chemistry. Examination of neptunium is chosen since it was identified as a radionuclide of concern by the NERI workshop. Additionally, information on the chemical form of neptunium in spent fuel is lacking. The identification of the neptunium species in spent fuel would allow a greater scientific based understanding of its long-term fate and behavior in waste forms. Research to establish the application and development of X-ray synchrotrons radiation (XSR) techniques to determine the structure of aqueous, adsorbed, and solid actinide species of importance to nuclear considerations is being conducted at Argonne. These studies extend current efforts within the Chemical Technology Division at Argonne National Laboratory to investigate actinide speciation with more conventional spectroscopic and solids characterization (e.g. SEM, TEM, and XRD) methods. Our project will utilize all these techniques for determining neptunium speciation in spent fuel. We intend to determine the chemical species and oxidation state of neptunium in spent fuel and alteration phases. Different types of spent fuel will be examined. Once characterized, the chemical behavior of the identified neptunium species will be evaluated if it is not present in the literature. Special attention will be given to the behavior of the neptunium species under typical repository near-field conditions (elevated temperature, high pH, varying Eh). This will permit a timely inclusion of project results into near-field geochemical models. Additionally, project results and methodologies have applications to neptunium in the environment, or treatment of neptunium containing waste. Another important aspect of this project is the close cooperation between a university and a national laboratory. The PI has a transuranic laboratory at MIT where

  20. The geology and geochemistry of some epigenetic uranium deposits near the Swakop River, South West Africa

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.

    1983-10-01

    This study comprises a geological and geochemical investigation of the uranium deposits in the region near the Swakop River which extends from the Langer Heinrich Mountain in the east to the end of the Tumas River in the west. The general geology of the basement rocks in the Langer Heinrich region only is discussed. The general geology of the younger duricrust formations is discussed. Analytical methods were developed for the separation of thorium, protactinium and uranium from geological materials using various chromatographic procedures. Alpha spectrometry, neutron activation analysis and delayed neutron counting were the main techniques used. The occurrence of uranium in the region of study follows a unique geochemical cycle, and the geochemistry at each stage in the cycle was examined. The first stage in the uranium-geochemical cycle was the basement rocks. The second stage in the geochemical cycle of uranium was the subsurface water. The third stage in the geochemical cycle of uranium concerns its occurrence in the duricrust deposits. Isotopic disequilibrium measurements showed that uranium is still migrating, and that the age of the carnotite precipitation is 30 000 years, based on the open-system model of uranium migration. In the final stage of the geochemical cycle, the geochemistry of uranium in seawater and the diatomaceous muds is discussed. A classification system for the uranium deposits near the Swakop River, based on genetic relationships, is proposed and described in terms of the geochemical cycle of uranium, the mode of transport and mode of deposition. The relationships between the duricrust uranium deposits and the other uranium deposits of South Africa are compared

  1. Magnetic and electronic properties of Neptunium chalcogenides from GGA + U + SOC and DFT investigations

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: sosaid@alfaisal.edu [College of Science, Physics Department, Alfaisal University, Riyadh 11533 (Saudi Arabia)

    2017-06-15

    Highlights: • Electronic and magnetic properties of Neptunium chalcogenides were explored theoretically using DFT approach. • Spin orbit coupling and GGA + U approach described successfully the f–f coupling. • Np{sub 2}X{sub 5} ate metallic with high magnetic character due to the Neptunium. • Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. - Abstract: First-principles calculations techniques were employed to explore the structural, electronic and magnetic properties of Neptunium chalcogenides (Np{sub 2}X{sub 5}, X = S, Se and Te). No experimental or theoretical studies of their physical properties have been previously reported in the literature. The presence of highly localized f states has requested the employment of the spin orbit coupling and GGA + U approach in order to describe correctly the f–f coupling. Np{sub 2}X{sub 5} was found metallic with high magnetic character due to the Neptunium presence. Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. The magnetic moment was found to be between 13.24 and 13.92μ{sub B}, principally induced by Np f and d-orbitals as well as the spin-polarization of the chalcogenes (Te, Se, S) induced by Np. Neptunium chalcogenides have shown interesting magnetic properties and should be manipulated with precaution due to their radioactive properties.

  2. The discovery of plutonium reorganized the periodic table and aided the discovery of new elements

    International Nuclear Information System (INIS)

    Clark, David L.

    2009-01-01

    they named neptunium after the planet Neptune. This rapidly set the stage for the discovery of the next succeeding element, plutonium (Seaborg, McMillan, Kennedy, and Wahl, 1940), named after the next planet away from the Sun, Pluto. The newly discovered elements were presumed to fit comfortably in the Periodic Table under rhenium and osmium, respectively. However, subsequent tracer chemical experiments showed that neptunium and plutonium were closer in their chemical properties to uranium than their presumed homologues, rhenium and osmium. Spectroscopic evidence also indicated that the new elements were not typical transition elements, but had f-electrons in their valence shell. Thus, several researchers, including McMillan and Wahl, and Zachariasen at Los Alamos, suggested that these elements might be part of a second inner-transition series in which the 5f-electron subshell was being filled. It was not clear, however, where the new series would begin. McMillian had proposed a 'uraninide series' that started with neptunium, but attempts to isolate elements with atomic numbers 95 and 96 based on assumed similarities to uranium were unsuccessful. Both Wahl and Zacharias en had proposed a thoride series that started with protactinium. In 1944, Seaborg proposed that the series started with thorium, and that all of the elements heavier than actinium constituted an 'actinide' series similar to the lanthanides. Because the 5f-shell began filling in the same relative position as the 4f-shell, the electronic configuration of elements in the two series would be similar. Guided by the hypothesis that elements 95 and 96 were homologues of europium and gadolinium, new experiments were designed and the elements were uniquely synthesized and separated from all others. The new elements were subsequently named americium and curium. Seaborg's 'Actinide Concept' thus played a major role in the discovery of the transplutonium elements. It provided the framework that supported synthesis

  3. Characterization of Neptunium Oxide Generated Using the HB-Line Phase II Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, J

    2003-08-29

    Approximately 98 grams of neptunium(IV) oxide (NpO{sub 2}) were produced at the Savannah River Technology Center (SRTC) for use in gas generation tests to support the neptunium stabilization program at the Savannah River Site (SRS). The NpO{sub 2} was produced according to the anticipated HB-Line flowsheet consisting of anion exchange, oxalate precipitation, filtration, and calcination. Characterization of the NpO{sub 2} product to be used in gas generation tests included bulk and tap density measurements, X-ray diffraction, particle size distribution, specific surface area measurements, and moisture analysis.

  4. Neptunium and manganese biocycling in nuclear legacy sediment systems

    International Nuclear Information System (INIS)

    Thorpe, Clare L.; Morris, Katherine; Lloyd, Jonathan R.; Denecke, Melissa A.; Law, Kathleen A.; Dardenne, Kathy; Boothman, Christopher; Bots, Pieter; Law, Gareth T.W.

    2015-01-01

    Understanding the behaviour of the highly radiotoxic, long half-life radionuclide neptunium in the environment is important for the management of radioactively contaminated land and the safe disposal of radioactive wastes. Recent studies have identified that microbial reduction can reduce the mobility of neptunium via reduction of soluble Np(V) to poorly soluble Np(IV), with coupling to both Mn- and Fe(III)- reduction implicated in neptunyl reduction. To further explore these processes Mn(IV) as δMnO 2 was added to sediment microcosms to create a sediment microcosm experiment “poised” under Mn-reducing conditions. Enhanced removal of Np(V) from solution occurred during Mn-reduction, and parallel X-ray absorption spectroscopy (XAS) studies confirmed Np(V) reduction to Np(IV) commensurate with microbially-mediated Mn-reduction. Molecular ecology analysis of the XAS systems, which contained up to 0.2 mM Np showed no significant impact of elevated Np concentrations on the microbial population. These results demonstrate the importance of Mn cycling on Np biogeochemistry, and clearly highlight new pathways to reductive immobilisation for this highly radiotoxic actinide. - Highlights: • Neptunium is a high radiotoxicity, alpha emitting actinide. • Biostimulation of Mn(IV)-enriched sediments leads to reductive removal of soluble Np(V) from groundwater onto sediments as Np(IV). • Np(V) reduction occurs under defined Mn-reducing conditions. • Under Mn-reducing conditions, enzymatic processes may be important for Np(V) reduction.

  5. Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nishesh Kumar [National Institute of Technology, Odisha (India). Dept. of Chemistry; Sengupta, Arijit [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Biswas, Sujoy [Bhabha Atomic Research Centre, Mumbai (India). Uranium Extraction Div.

    2017-07-01

    Liquid-liquid extraction of neptunium from aqueous acidic solution using quaternary ammonium based task specific ionic liquid (TSIL) was investigated. The extraction of Np was predominated by the 'cation exchange' mechanism via [NpO{sub 2}.Hpth]{sup +} species for NpO{sub 2}{sup 2+}, while NpO{sub 2}{sup +} was extracted in ionic liquid as [NpO{sub 2}.H.Hpth]{sup +}. The extraction process was thermodynamically spontaneous while kinetically slower. Na{sub 2}CO{sub 3} as strippant showed quantitative back extraction of neptunium ions from TSIL. TSIL showed excellent radiolytic stability upto 500 kGy gamma exposure. Finally, the TSIL was employed for the processing of simulated high level waste solutions revealing high selectivity of TSIL towards neptunium.

  6. Investigations into the sorption of neptunium by loose rock from the cap rock of the Gorleben salt dome under aerobic and anaerobic conditions

    International Nuclear Information System (INIS)

    Muehlenweg, U.

    1988-01-01

    In the experiments with the natural loose rock the sorption behaviour of neptunium was essentially determined by the chemical form in which the neptunium occurred in the ground waters. Under aerobic conditions with Eh values of 300 mV, neptunium in its oxidation state +5 occurred. At a pH of 2 + , and at pH > 8 as carbonato complex. The found neptunium species were relatively mobile, with sorption values from 1 ml/g to 20 ml/g. The sorption of neptunium is comparable to that of alkali and alkaline earth ions, such as Cs + or Sr 2+ . Cations attached to the rock surface are exchanged for NpO 2 + . Sorption in this case is reversible. (orig.) [de

  7. The complex reaction kinetics of neptunium including redox and extraction process in 30% TBP-nitric acid system

    International Nuclear Information System (INIS)

    Hu Zhang; Zhan-yuan Liu; Xian-ming Zhou; Li Li

    2017-01-01

    In order to understand the complex and dynamic neptunium process chemistry in the TBP-HNO_3 system, the kinetics involved reversible redox reaction and extraction mass transfer was investigated. The results indicates that the mass transfer rate of Np(VI) is much faster than the redox reaction in aqueous solution. The concentrations of nitric acid and nitrous acid not only can change the Np(V) oxidation reaction and Np(VI) reduction reaction rate, but also can ultimately determine the distribution of neptunium extraction equilibrium. The variety of temperature can only influence the extraction equilibrium time, but cannot alter the equilibrium state of neptunium. (author)

  8. Separation of Protactinium from Neutron Irradiated Thorium Oxide; Separacion de Protactinio de Oxido de Torio Irradiado con Neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, G; Gutierrez, L; Ropero, M

    1983-07-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO{sub 2} material into ThF{sub 4}. For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs.

  9. Uranium age determination - Separation and analysis of 230Th and 231Pa

    International Nuclear Information System (INIS)

    Morgenstern, A.; Apostolidis, C.; Mayer, K.; Wallenius, M.

    2002-01-01

    uranium must be of high chemical recovery and must afford large decontamination factors. In general, the age obtained from parent/daughter ratios refers to the last separation of the parent nuclide from its daughters, i.e. the last purification of the material. The accuracy of the obtained age therefore depends on the quality of the purification process and assumes that the material subsequently has not been contaminated. Obviously the availability of two analytical methods relying on both, independent parent/daughter pairs will therefore significantly increase the confidence in the experimental results. In this work we demonstrate analytical methods for the age determination of uranium samples using the parent/daughter relations 234 U/ 230 Th and 235 U/ 231 Pa. Thorium is separated from bulk uranium using extraction chromatography and subsequently quantified using □-spectrometry, thermal ionisation mass spectrometry (TIMS) and inductively coupled mass spectrometry (ICP-MS). Protactinium is separated by highly selective sorption of protactinium to silica gel followed by □-spectrometric quantification. The methods were tested and validated using uranium reference materials of different uranium enrichment and of known ages. The experimental results obtained with both methods were found to agree with the assumed ages of the reference materials within the combined uncertainty of the measurement. The analysis exploiting the parent/daughter pair 235 U/ 231 Pa exhibits a slightly larger combined uncertainty and bias than the thorium method but is found valuable in validating the experimental results by means of a second, independent analysis. (author)

  10. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Paulenova, Alena [Principal Investigator; Vandegrift, III, George F. [Collaborator

    2013-09-24

    The objective of the project was to examine the factors controlling redox speciation of plutonium and neptunium in UREX+ extraction in terms of redox potentials, redox mechanism, kinetics and thermodynamics. Researchers employed redox-speciation extractions schemes in parallel to the spectroscopic experiments. The resulting distribution of redox species w studied uring spectroscopic, electrochemical, and spectro-electrochemical methods. This work reulted in collection of data on redox stability and distribution of redox couples in the nitric acid/nitrate electrolyte and the development of redox buffers to stabilize the desired oxidation state of separated radionuclides. The effects of temperature and concentrations on the redox behavior of neptunium were evaluated.

  11. Immobilization of uranium and neptunium by microorganisms in subsurface crystalline rock environments

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk-Baersch, Evelyn; Schmeide, Katja; Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 51 01 19, D-01314 Dresden (Germany); Pedersen, Karsten [Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2014-07-01

    In crystalline rock, the dominant transport medium for radionuclides is groundwater flowing through subsurface fractures. Since groundwater is containing microorganisms, fracture surfaces support biological growth of microbial communities, the so-called bio-films. The microbial diversity of these bio-films depends on the microbial consortia and the chemical composition of the fracture water. Subsurface bio-films have a significant effect on the adsorption capacity of host rock formations by forming a barrier between the rock surface and the groundwater. They can significantly affect subsurface biogeochemical interactions, leading to the immobilization and adsorption of radionuclides. Microbial studies were performed to evaluate the relevance of microbial processes for the immobilization of radionuclides in a deep crystalline repository for high-level radioactive waste. Studies were performed in Olkiluoto, in the rock characterization facility ONKALO in Finland, and in the Aespoe Hard Rock Laboratory (HRL) in Sweden. Massive 5-10-mm thick bio-films were observed in both sites attached to tunnel walls where groundwater was seeping from bedrock fractures. In experiments the effect of uranium on bio-films was studied on site in the ONKALO tunnel by adding UO{sub 2}(ClO{sub 4}){sub 2} with a final U-concentration of 1.0x10{sup -5} M to the fracture water in a self-constructed flow cell by using detached bio-film samples. bio-film specimens collected for transmission electron microscopy studies indicated that uranium in the bio-film was immobilized intracellularly in microorganisms as needle-shaped uranyl phosphate minerals, similar to meta-Autunite (Ca[UO{sub 2}]{sub 2}[PO{sub 4}]{sub 2}.10-12H{sub 2}O). In contrast, thermodynamic calculation of the theoretical predominant fields of uranium species and time-resolved laser fluorescence spectroscopy showed that the formation of aqueous uranium carbonate species Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} and Mg{sub 2}UO{sub 2

  12. Creation of a simplified benchmark model for the neptunium sphere experiment

    International Nuclear Information System (INIS)

    Mosteller, Russell D.; Loaiza, David J.; Sanchez, Rene G.

    2004-01-01

    Although neptunium is produced in significant amounts by nuclear power reactors, its critical mass is not well known. In addition, sizeable uncertainties exist for its cross sections. As an important step toward resolution of these issues, a critical experiment was conducted in 2002 at the Los Alamos Critical Experiments Facility. In the experiment, a 6-kg sphere of 237 Np was surrounded by nested hemispherical shells of highly enriched uranium. The shells were required in order to reach a critical condition. Subsequently, a detailed model of the experiment was developed. This model faithfully reproduces the components of the experiment, but it is geometrically complex. Furthermore, the isotopics analysis upon which that model is based omits nearly 1 % of the mass of the sphere. A simplified benchmark model has been constructed that retains all of the neutronically important aspects of the detailed model and substantially reduces the computer resources required for the calculation. The reactivity impact, of each of the simplifications is quantified, including the effect of the missing mass. A complete set of specifications for the benchmark is included in the full paper. Both the detailed and simplified benchmark models underpredict k eff by more than 1% Δk. This discrepancy supports the suspicion that better cross sections are needed for 237 Np.

  13. Determination of neptunium by redox titration

    International Nuclear Information System (INIS)

    Godbole, A.G.; Patil, S.K.

    1979-01-01

    A simple and quick method for the potentiometric determination of neptunium on the 2 to 5 mg scale has been developed. It consists of oxidation to Np(VI) by AgO or fuming with HClO 4 , destruction of excess of AgO by sulphamic acid, reduction of Np(VI) to Np(IV) with a slight excess of standard Fe(II) in 2M H 2 SO 4 and potentiometric titration of the excess of Fe(II) with standard Ce(IV). The precision is +- 0.5%. (author)

  14. Electronic structure of the actinides and their dioxides. Application to the defect formation energy and krypton solubility in uranium dioxide; Etude de la structure electronique des actinides et de leurs dioxydes. Application aux defauts ponctuels et aux gaz de fission dans le dioxyde d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Petit, T. [CEA Centre d`Etudes Nucleaires de Grenoble, 38 (France)]|[CEA Centre d`Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1996-09-28

    Uranium dioxide is the standard nuclear fuel used in French h power plants. During irradiation, fission products such as krypton and xenon are created inside fuel pellets. So, gas release could become, at very high burnup, a limiting factor in the reactor exploitation. To study this subject, we have realised calculations using the Density Functional Theory (DFT) into the Local Density Approximation (LDA) and the Atomic Sphere Approximation (ASA). First, we have validated our approach by calculating cohesive properties of thorium, protactinium and uranium metals. The good agreement between our results and experimental values implies that 5f electrons are itinerant. Calculated lattice parameter, cohesive energy and bulk modulus for uranium and thorium dioxides are in very good agreement with experiment. We show that binding between uranium and oxygen atoms is not completely ionic but partially covalent. The question of the electrical conductivity still remains an open problem. We have been able to calculate punctual defect formation energies in uranium dioxide. Accordingly to experimental observations, we find that it is easier to create a defect in the oxygen sublattice than in the uranium sublattice. Finally, we have been able to predict a probable site of krypton atoms in nuclear fuel: the Schottky trio. Experiences of Extended X-ray Absorption Fine structure Spectroscopy (EXAFS) and X-ray Photoelectron Spectroscopy (XPS) on uranium dioxide doped by ionic implantation will help us in the comprehension of the studied phenomena and the interpretation of our calculations. (author). 256 refs.

  15. Study of the chemical interactions of actinide cations in solution at macroscopic concentrations

    International Nuclear Information System (INIS)

    Maurice, C.

    1983-01-01

    The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation [fr

  16. Electronic structure of the actinides and their dioxides. Application to the defect formation energy and krypton solubility in uranium dioxide

    International Nuclear Information System (INIS)

    Petit, T.; CEA Centre d'Etudes de Grenoble, 38

    1996-01-01

    Uranium dioxide is the standard nuclear fuel used in French h power plants. During irradiation, fission products such as krypton and xenon are created inside fuel pellets. So, gas release could become, at very high burnup, a limiting factor in the reactor exploitation. To study this subject, we have realised calculations using the Density Functional Theory (DFT) into the Local Density Approximation (LDA) and the Atomic Sphere Approximation (ASA). First, we have validated our approach by calculating cohesive properties of thorium, protactinium and uranium metals. The good agreement between our results and experimental values implies that 5f electrons are itinerant. Calculated lattice parameter, cohesive energy and bulk modulus for uranium and thorium dioxides are in very good agreement with experiment. We show that binding between uranium and oxygen atoms is not completely ionic but partially covalent. The question of the electrical conductivity still remains an open problem. We have been able to calculate punctual defect formation energies in uranium dioxide. Accordingly to experimental observations, we find that it is easier to create a defect in the oxygen sublattice than in the uranium sublattice. Finally, we have been able to predict a probable site of krypton atoms in nuclear fuel: the Schottky trio. Experiences of Extended X-ray Absorption Fine structure Spectroscopy (EXAFS) and X-ray Photoelectron Spectroscopy (XPS) on uranium dioxide doped by ionic implantation will help us in the comprehension of the studied phenomena and the interpretation of our calculations. (author)

  17. Profileration-proof uranium/plutonium and thorium/uranium fuel cycles. Safeguards and non-profileration. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, G.

    2017-07-01

    A brief outline of the historical development of the proliferation problem is followed by a description of the uranium-plutonium nuclear fuel cycle with uranium enrichment, fuel fabrication, the light-water reactors mainly in operation, and the breeder reactors still under development. The next item discussed is reprocessing of spent fuel with plutonium recycling and the future possibility to incinerate plutonium and the minor actinides: neptunium, americium, and curium. Much attention is devoted to the technical and scientific treatment of the IAEA surveillance concept of the uranium-plutonium fuel cycle. In this context, especially the physically possible accuracy of measuring U/Pu flow in the fuel cycle, and the criticism expressed of the accuracy in measuring the plutonium balance in large reprocessing plants of non-nuclear weapon states are analyzed. The second part of the book initially examines the assertion that reactor-grade plutonium could be used to build nuclear weapons whose explosive yield cannot be predicted accurately, but whose minimum explosive yield is still far above that of chemical explosive charges. Methods employed in reactor physics are used to show that such hypothetical nuclear explosive devices (HNEDs) would attain too high temperatures in the required implosion lenses as a result of the heat generated by the Pu-238 isotope always present in reactor plutonium of current light-water reactors. These lenses would either melt or tend to undergo chemical auto-explosion. Limits to the content of the Pu-238 isotope are determined above which such hypothetical nuclear weapons are not feasible on technical grounds. This situation is analyzed for various possibilities of the technical state of the art of making implosion lenses and various ways of cooling up to the use of liquid helium. The outcome is that, depending on the existing state of the art, reactor-grade plutonium from spent fuel elements of light-water reactors with a burnup of 35 to 58

  18. Absorption, distribution, and fate of neptunium in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1988-01-01

    Soil-plant concentration ratios (CR) for neptunium (Np) in bushbean, measured over the range of 5.2 /times/ 10/sup /minus/7/ to 4.1 mg of Np/g of soil, are approximately 2 at soil concentrations below 4 /times/ 10/sup /minus/4/ mg/g and increase to 12 at higher soil levels. The CR values determined for soybean, bushbean, barley, and alfalfa range from 0.5 to 4 at a soil concentration of 2.6 /times/ 10/sup /minus/6/ mg/g. Root absorption by soybean seedlings of Np from solutions containing 7 /times/ 10/sup /minus/7/ to 473 mg of Np(V)/mL is generally proportional to concentration but exhibits some saturation in root absorption at higher concentrations. Seed concentrations in bushbean and wheat are a factor of 10 lower than vegetative tissues. Neptunium is transported within the plant in organic complexes containing one or more organic acid residues. Fractionation of plant tissues indicates that Np is substantially more soluble than plutonium, especially in seeds, with approximately 50% of the soluble Np in roots and leaves associated with plant ligands of less than 5000 molecular weight

  19. Use of radioanalytical methods for determination of uranium, neptunium, plutonium, americium and curium isotopes in radioactive wastes; Utilizacao de metodos radioanaliticos para a determinacao de isotopos de uranio, plutonio, americio e curio em rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Bianca

    2012-07-01

    Activated charcoal is a common type of radioactive waste that contains high concentrations of fission and activation products. The management of this waste includes its characterization aiming the determination and quantification of the specific radionuclides including those known as Difficult-to-Measure Radionuclides (RDM). The analysis of the RDM's generally involves complex radiochemical analysis for purification and separation of the radionuclides, which are expensive and time-consuming. The objective of this work was to define a methodology for sequential analysis of the isotopes of uranium, neptunium, plutonium, americium and curium present in a type of radioactive waste, evaluating chemical yield, analysis of time spent, amount of secondary waste generated and cost. Three methodologies were compared and validated that employ ion exchange (TI + EC), extraction chromatography (EC) and extraction with polymers (ECP). The waste chosen was the activated charcoal from the purification system of primary circuit water cooling the reactor IEA-R1. The charcoal samples were dissolved by acid digestion followed by purification and separation of isotopes with ion exchange resins, extraction and chromatographic extraction polymers. Isotopes were analyzed on an alpha spectrometer, equipped with surface barrier detectors. The chemical yields were satisfactory for the methods TI + EC and EC. ECP method was comparable with those methods only for uranium. Statistical analysis as well the analysis of time spent, amount of secondary waste generated and cost revealed that EC method is the most effective for identifying and quantifying U, Np, Pu, Am and Cm present in charcoal. (author)

  20. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  1. Stabilization of neptunium valence states in nitric media for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Feldhaus, P.

    1996-12-01

    A possibility of standarizing the extraction-behavior of Neptunium during the reprocessing of spent nuclear fuel corresponding to PUREX-Process was investigated. The aim of the work was a qualitative dirigation of the Transuraniumelement (TRUE) into the raffinat of the first extraction cycle by a complete redoxconversion of the Neptunium valence states to unextractable Np(V). In the beginning the theoretical and experimental research focussed on the redoxchemistry of the actinide during the fuel dissolution and the feed preparation. Thereby the nitrous acid, which is produced by a radiological, photochemical and reductive degradation of the nitric acid, revealed an ambivalent influence on the Neptunium valences. By a short-term increase in HNO 2 -concentration the Np(V)-fraction could be obviously risen. The use of some stabilizing reagents inhibited a later reoxidation to Np(VI) also catalyzed by nitrous acid. The urea used for this purpose also led to a further increase in the obtained conversion rates due to a Np(VI)-reduction. The analysis of the valence distribution was performed by an extraction method. This had been compared to chromatographic separation in some preliminary investigations and had turned out to be comparably reliable and easily manageable. (orig.) [de

  2. Selective leaching studies of deep-sea sediments loaded with americium, neptunium and plutonium

    International Nuclear Information System (INIS)

    Cole, T.G.; Higgo, J.J.W.; Cronan, D.S.; Rees, L.V.C.

    1984-07-01

    A series of selective leaching experiments were undertaken to investigate the solid phase speciation and distribution of americium, neptunium and plutonium which had been experimentally loaded onto different marine sediment types. The chemical leaches employed showed rather poor selectivity but certain trends were evident. Adsorption was not by ion exchange. Americium showed a preferential affinity for carbonate and plutonium for organic matter. Neptunium appeared to have no preferential affinities. Americium was sorbed by acetic acid residues (CaCO 3 removed) and by unleached carbonate-rich sediments with equal efficiency. This indicates that it is able to diversify its solid phase affinity/distribution depending upon which solid phases are available. (author)

  3. Near-field solubility studies

    International Nuclear Information System (INIS)

    Thomason, H.P.; Williams, S.J.

    1992-02-01

    Experimental determinations of the solubilities of americium, plutonium, neptunium, protactinium, thorium, radium, lead, tin, palladium and zirconium are reported. These elements have radioactive isotopes of concern in assessments of radioactive waste disposal. All measurements were made under the highly alkaline conditions typical of the near field of a radioactive waste repository which uses cementitious materials for many of the immobilisation matrices, the backfill and the engineered structures. Low redox potentials, typical of those resulting from the corrosion of iron and steel, were simulated for those elements having more than one accessible oxidation state. The dissolved concentrations of the elements were defined using ultrafiltration. In addition, the corrosion of iron and stainless steel was shown to generate low redox potentials in solution and the solubility of iron(II) at high pH was measured and found to be sufficient for it to act as a redox buffer with respect to neptunium and plutonium. (author)

  4. Protactinium and the intersection of actinide and transition metal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; De Sio, Stephanie; Vallet, Valérie

    2018-02-12

    The role of the 5f and 6d orbitals in the chemistry of the actinide elements has been of considerable interest since their discovery and synthesis. Relativistic effects cause the energetics of the 5f and 6d orbitals to change as the actinide series is traversed left to right imparting a rich and complex chemistry. The 5f and 6d atomic states cross in energy at protactinium (Pa), making it a potential intersection between transition metal and actinide chemistries. Herein, we report the synthesis of a Pa-peroxo cluster, A(6)(Pa4O(O-2)(6)F-12) [A = Rb, Cs, (CH3)(4)N], formed in pursuit of an actinide polyoxometalate. Quantum chemical calculations at the density functional theory level demonstrate equal 5f and 6d orbital participation in the chemistry of Pa and increasing 5f orbital participation for the heavier actinides. Periodic changes in orbital character to the bonding in the early actinides highlights the influence of the 5f orbitals in their reactivity and chemical structure.

  5. Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite

    Science.gov (United States)

    Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ≡FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)−carbonato complexes, which are trace constituents at pH carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  6. Enriched uranium processing with 7-1/2% TBP

    International Nuclear Information System (INIS)

    Orth, D.A.; Martin, W.H.; Pickett, C.E.

    1983-01-01

    The 7-1/2% TBP flowsheet gives adequate recovery of uranium and neptunium or plutonium, with reduced waste volume as compared to the prior aluminum-salted 3-1/2% TBP flowsheet. Decontamination from fission products is sensitive to numerous variables, including aluminum nitrate concentration in the feed, impeller speeds, and prior treatment of the fuel solution in head end operations. The impeller speed in the 1A bank also influences uranium losses as well as the fission product decontamination. The magnitudes of these effects suggest that stage efficiency is poor with this flowsheet in this mixer settler unit. The existing continuous solvent washers give evidence of low washing efficiency that limits permissible feed activity and that may be related to low contact time between the solvent and the carbonate wash solution. The most general conclusion is that satisfactory operation can be obtained with all projected domestic and foreign fuels under consideration for processing, by suitable adjustment of operating conditions. Also, possible flowsheet and equipment changes are known that could improve operations with these fuels further. 7 references

  7. Measurement of the initial conversion ratio in AQUILON and EDF 2 reactors

    International Nuclear Information System (INIS)

    Bergeron, J.; Le Baud, P.; Sautiez, B.

    1968-01-01

    In natural uranium fuelled reactors, it is important to know the initial conversion ratio, i.e. the ratio of uranium 238 absorption to uranium 235 destruction. The separation of absorption products from fission products is a difficult feature in the measurement of the conversion ratio. A physical method was chosen, the γγ coincidence technique which uses the properties of the decay scheme of neptunium 239 and allows the neptunium activity to be separated from the fission product activity, with some corrections. Detectors of natural uranium are used. The accuracy obtained in the measurements is of the order of 2%. (authors) [fr

  8. Simulation study of the chemical forms of neptunium and plutonium in groundwater from a borehole in the northwest region

    International Nuclear Information System (INIS)

    Ma Yingming; Jin Yuren; Wang Zhiqiang; Liu Dongxu; Liu Wei; Liu Yan

    2009-01-01

    According to physics-chymistry characteristic of groundwater from a borehole in the northwest region, we performed simulation study of the chemical forms of neptunium and plutonium by the geochemistry modeling program EQ3/6. The main conclusions are as follows: the main chemical form of neptunium in the groundwater is Np(V)'s NpO 2 + , subordination chemical forms are NpO 2 Cl, NpO 2 CO 3 - , NpO 2 OH, NpO 2 SO 4 - ; the main existing form of plutonium in the groundwater is Pu(IV)'s Pu(OH)5-and subordination chemical form is Pu(V)'s PuO 2 + . In addition,the temperature, pH and Eh also have different impacts on the chemical form of neptunium and plutonium. (authors)

  9. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  10. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  11. Retention of redox sensitive waste elements in compacted bentonite

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Allard, B.

    1984-01-01

    The diffusion of technetium, iodine, uranium and neptunium in compacted bentonite has been studied. The possible reduction of the transport rate of these elements (i.e. redoxsensitive elements) by mixing the clay with metallic iron (for technetium, uranium and neptunium) or by adding a chemisorbent (for iodine) to the clay is reported. Technetium has an apparent diffusivity about 5 times higher in the heptavalent state (TcO 4 - ) than in the tetravalent state (TcO(OH) 2 or TcO 2 ), uranium and neptunium in their higher oxidation state (VI and V) have apparent diffusivities about 6 and 50 times higher, respectively, than in the tetravalent state. Iodine, as I - (or IO 3 - ), has a transport rate more than one order of magnitude lower than TcO 4 - . 10 references, 5 figures, 3 tables

  12. Separation of different valency states of neptunium from processing solutions

    International Nuclear Information System (INIS)

    Shabana, R.; EL-Naggar, H.A.

    1990-01-01

    The three main oxidation states of neptunium (Np(IV),Np(V) and Np(V I)) have been separated from each other by solvent extraction and extraction chromatographic techniques. The separation procedure is based on a systematic study of the extraction behaviour of each oxidation state using TBP as an extractant. The purity of separated species is identified using spectrophotometry

  13. A method of neptunium recovery into the product stream of the Purex 1st codecontamination step for LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Tsuboya, Takao; Nemoto, Shinichi; Hoshino, Tadaya; Segawa, Takeshi

    1973-01-01

    An improved nitrous acid method was applied for recovering neptunium in spent fuel. Counter-current solvent extraction has been performed to find out its recovery conditions. The nitrous acid in the form of sodium salt solution was fed to the 1st stage of extraction section, and hydrazine nitrate was fed to some stages near feed point. Flow rate and the concentration of additives were altered for finding out optimum condition. Laboratory scale mixer-settlers having 6 ml of mixing volume and 17 ml of settling volume for each stage were used. The nitrous acid method was improved so that the reduction reaction in scrub section can be eliminated by the decomposition of the nitrous acid using a reagent such as sulfamic acid, urea, or hydrazine. In operation, the feed rate of the nitrous acid was about 3 mM/hr, and about 61% of neptunium charged was discharged in the product stream of Purex-1st codecontamination step designed for the LWR fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation. The calculated value of Δx/x for extraction section agreed with the experimental value, where Δx is the quantity of oxidation, and x is the inventory for neptunium in each stage. In conclusion, the improved nitrous acid method is effective for the neptunium discharge in product stream, and the difference of neptunium extraction between estimate and experiment is caused by some of reduction reaction in scrub section. (Iwakiri, K.)

  14. Crystal and molecular structures of thorium and uranium tetrakis(hexafluoroacetonylpyrazolide) complexes

    International Nuclear Information System (INIS)

    Volz, K.; Zalkin, A.; Templeton, D.H.

    1976-01-01

    Triclinic crystals of thorium(IV) and uranium(IV) tetrakis(hexafluoroacetonylpyrazolide) are isostructural, with space group P1 and Z = 2. At 23 0 C for Th(C 6 H 3 ON 2 F 6 ) 4 α = 11.282 (5) A, b = 16.245 (7) A, c = 10.836 (5) A, α = 90.14 (5) 0 , β = 108.75 (5) 0 , and γ = 107.07 (5) 0 . For the uranium compound a = 11.302 (5) A, b = 16.377 (8) A, c = 11.000 (5) A, α = 87.85 (5) 0 , β = 111.02 (5) 0 , and γ = 109.95 (5) 0 . X-ray diffraction data were measured with a scintillation counter, theta-2theta scans, and Mo Kα radiation. For thorium the conventional R value is 0.026 for 2966 unique data with I greater than sigma(I), and for uranium it is 0.027 for 4125 unique data with I greater than sigma(I). The full-matrix least-squares refinement of the 598 parameters of each structure included anisotropic thermal parameters for the 61 nonhydrogen atoms and isotropic ones for the 12 hydrogen atoms. The actinide ion is at the center of an irregular polyhedron of four oxygen and four nitrogen atoms. The average Th-O, Th-N, U-O, and U-N distances are 2.291 (4), 2.637 (5), 2.237 (3), and 2.574 (5) A. The molecules are packed in a manner which resembles cubic closest packing but which is more nearly analogous to the body-centered tetragonal structure of protactinium metal

  15. An evaluation of the dissolution process of natural uranium ore as an analogue of nuclear fuel

    International Nuclear Information System (INIS)

    Stern, V.H.

    1991-08-01

    The assumption of congruent dissolution of uraninite as a mechanism for the dissolution behaviour of spent fuel was critically examined with regard to the fate of toxic radionuclides. The fission and daughter products of uranium are typically present in spent unreprocessed fuel rods in trace abundances. The principles of trace element geochemistry were applied in assessing the behaviour of these radionuclides during fluid/solid interactions. It is shown that the behaviour of radionuclides in trace abundances that reside in the crystal structure can be better predicted from the ionic properties of these nuclides rather than from assuming that they are controlled by the dissolution of uraninite. Geochemical evidence from natural uranium ore deposits (Athabasca Basin, Northern Territories of Australia, Oklo) suggests that in most cases the toxic radionuclides are released from uraninite in amounts that are independent of the solution behaviour of uranium oxide. Only those elements that have ionic and thus chemical properties similar to U 4+ , such as plutonium, americium, cadmium, neptunium and thorium can be satisfactorily modelled by the solution properties of uranium dioxide and then only if the environment is reducing. (84 refs., 7 tabs.)

  16. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  17. Study on coordination characteristics of neptunium and uranium ions in calcium nitrate hydrate melt by Raman spectrometry and UV/Vis/NIR spectrometry

    International Nuclear Information System (INIS)

    Fujii, T; Okude, G; Uehara, A; Yamana, H

    2010-01-01

    Extraction behavior of neptunium (Np) by tri-n-butyl phosphate from calcium nitrate hydrate melt was investigated. Distribution ratio of Np was found to increase with the decrease of water content. Adding nitric acid into the system resulted in an increase of the distribution ratio. In order to understand the extraction trends, Np species in the hydrate melt were analyzed by Raman spectrometry and UV/Vis/NIR spectrometry. Major fraction was assigned to be NpO 2 2+ of Np(VI) and small fraction to be NpO 2 + of Np(V). A shift of the v 1 symmetric vibrational frequency of NpO 2 2+ in nitrate media was found in Raman spectra. This suggests a coordination circumstance change of NpO 2 2+ .

  18. Spectrophotometric study of neptunium (VI) complexation by nitrate ions; Etude par spectrophotometrie de la complexation du neptunium au degre d'oxydation (VI) par les ions nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[Centre Regional Associe de Lyon, 69 (France)

    2000-07-01

    Neptunium(VI) complexation by nitrate ions was investigated by visible and near-infrared spectrophotometry, a technique suitable for observing the appearance and evolution of the species in solution. In the absence of reference spectra for Np(VI) nitrate- complexes, mathematical (factor analysis) tools were used to interpret the spectra. These chemo-metric techniques were first tested and validated on a simpler chemical system: Np(VI)complexation by the SiW{sub 11}O{sub 39}{sup 8-} anion. The test media used to investigate Np(VI) nitrate- complexes generally contain nitrate and perchlorate salts at high concentrations (high ionic strength). Media effects arising from the presence of cations, acidity or the perchlorate ion concentration are therefore significant, and no doubt account for the scattered values of the complexation constants published in the literature. The evolution of the neptunium spectra according to the parameters of the reaction medium illustrated these effects and allowed them to be quantified by a global 'perturbation constant'. In order to minimize the spectrum modifications due to media effects, the neptunium nitrate-complexes were studied at constant ionic strength in weak acidic media (2 mol.kg{sup -1}{sub H2O}) in the presence of sodium salts. The bulk formation constants and the spectrum of the NpO{sub 2}(NO{sub 3}){sup +} complex were determined for ionic strength values of 2.2, 4, 6 and 8 mol.kg{sup -1}{sub H2O}. The constants remained on the same order of magnitude regardless of the ionic strength; the thermodynamic constant {beta}{sub 1}{sup 0} determined from them according to specific interaction theory is thus probably of little significance. Conversely, the bulk constants can be corrected for the effects of the perchlorate ions by taking the global 'perturbation constant' into account. (author)

  19. Action of copper (3) in periodate complex on hexavalent neptunium and plutonium in alkaline medium

    International Nuclear Information System (INIS)

    Shatokhina, O.B.; Alekseeva, D.P.; Peretrukhin, B.F.; Krot, N.N.

    1977-01-01

    A complex of trivalent copper connected with periodate has been studied in order to determine its possible use for oxidizing hexavalent transuranium elements. Proceeding from the dependence of formal potentials of the pairs Cusup((3))-Cusup((2)), Npsup((7))-Npsup((6)), Pusup((7))-Pusup((6)) on alkali concentration, it has been established that beginning with concentration 1M the potential of the pair Cusup((3))-Cusup((2)) is higher than that of the pair Npsup((7))-Npsup((6)) by approximately 50 mV. This means that a rather complete oxidation of hexavalent neptunium to heptavalent is possible by the action of copper (3) excess on neptunium (6) when KOH concentration is 1M and higher. Oxidation close to quantitative is attained in 1M KOH when excess of copper(3) is used and the ratio Npsup((6)): Cusup((3)) is 1:4 and higher. When KOH concentration is more than 1M a sufficiently complete oxidation (96-97%) of neptunium (6) is attained at Npsup((6)):Cusup((3))=1:2 or 1:3. Optimum conditions for oxidizing plutonium are 11M KOH and 2-3-fold excess of copper (3) reagent. At 9M KOH and a ratio Pusup((6)):Cusup((3))=1:2 the yield of Pu (7) is 33 %

  20. Gastrointestinal absorption and retention of neptunium by fasted and fed mice

    International Nuclear Information System (INIS)

    Larsen, R.P.; Bhattacharyya, M.H.; Oldham, R.D.; Moretti, E.S.

    1982-01-01

    The retention of neptunium in liver and bone subsequent to its gastrointestinal absorption has been determined in both fasted and fed mice. The values obtained for fractional retention were 3 x 10 - 3 and 1 x 10 - 4 , respectively, and are within a factor of two the same as those for plutonium in fasted and fed mice

  1. Review of experience gained in fabricating nuclear grade uranium and thorium compounds and their analytical quality control at the Instituto de Energia Atomica, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Abrao, A.; Franca, J.M. Jr.; Ikuta, A.; Pueschel, C.R.; Federgruen, L.; Lordello, A.R.; Tomida, E.K.; Moraes, S.; Brito, J. de; Gomes, R.P.; Araujo, J.A.; Floh, B.; Matsuda, H.T.

    1977-01-01

    This paper summarizes the main activities dealing with the fabrication of nuclear grade uranium and thorium compounds at the Instituto de Energia Atomica, Sao Paulo. Identification of problems and their resolutions, the experience gained in plant operation, the performance characteristics of an ion-exchange facility and a solvent extraction unit (a demonstration plant based on pulsed columns for purification of uranium and production of ammonium diuranate) are described. A moving-bed facility for UF 4 preparation and its operation is discussed. A pilot plant for uranium and thorium oxide microsphere preparation based on internal gelation for HTGR fuel type is also described. A solvent extraction pilot plant for thorium purification based on a compound extraction-scrubbing column and a mixer-settler battery and the involved technology for thorium purification are commented. The main products, namely ammonium diuranate, uranyl amonium tricarbonate, uranium trioxide, uranium tetrafluoride, thorium nitrate and thorium oxalate and their quality are commented. The development of necessary analytical procedures for the quality control of the mentioned nuclear grade products is summarized. A great majority of such procedures was particularly suitable for analyzing traces impurities. Designed for installation are the units for denitration of uranyl nitrate solutions and pilot plants for elemental fluorine and UF 6 . The installation of a laboratory-scale plant designed for reprocessing irradiated uranium and an experimental unit for the recovery of protactinium from irradiated thorium is in progress

  2. Complexation of neptunium(V) by salicylate, phthalate and citrate ligands in a pH 7.5 phosphate buffered system

    International Nuclear Information System (INIS)

    Rees, T.F.; Daniel, S.R.

    1984-01-01

    Conditional stability constants, enthalpies and entropies of complexation at pH 7.5 and ionic strength 0.1 have been determined for neptunium(V) complexes of phosphate, salicylate, phthalate and citrate. Results are given and discussed. At pH 7.5 salicylate does not form a complex with neptunium(V) due to the low charge density of the NpO 2 + ion and incomplete ionization of the salicylate ion. In all cases, only 1:1 complexes were identified. (U.K.)

  3. Chemical aspects of 237 Np Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1984-01-01

    The 237 Np Moessbauer effect has been especially useful in studies of neptunium chemistry, by virtue of its excellent resolution and straightforward experimental techniques. Neptunium can have valences from +3 to +7, and a broad range of compounds can be prepared that are analogous to those of other actinide elements. Studies on neptunium compounds, for example, have a ready application to the analogous compounds of uranium and plutonium. The emphasis in this paper will be on the application of the 237 Np Moessbauer effect to problems in neptunium chemistry

  4. Formation cross-sections and chromatographic separation of protactinium isotopes formed in proton-irradiated thorium metal

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Engle, Jonathan W.; Wilson, Justin J.; Maassen, Joel R.; Nortier, Meiring F.; Birnbaum, Eva R.; John, Kevin D.; Fassbender, Michael E. [Los Alamos National Laboratory, NM (United States)

    2016-08-01

    Targeted alpha therapy (TAT) is a treatment method of increasing interest to the clinical oncology community that utilizes α-emitting radionuclides conjugated to biomolecules for the selective killing of tumor cells. Proton irradiation of thorium generates a number of α-emitting radionuclides with therapeutic potential for application via TAT. In particular, the radionuclide {sup 230}Pa is formed via the {sup 232}Th(p, 3n) nuclear reaction and partially decays to {sup 230}U, an α emitter which has recently received attention as a possible therapy nuclide. In this study, we estimate production yields for {sup 230}Pa and other Pa isotopes from proton-irradiated thorium based on cross section measurements. We adopt existing methods for the chromatographic separation of protactinium isotopes from proton irradiated thorium matrices to combine and optimize them for effective fission product decontamination.

  5. Use of tetracycline as complexing agent in analytical chemistry

    International Nuclear Information System (INIS)

    Nastasi, M.J.C.; Saiki, M.; Lima, F.W.

    1977-01-01

    The behavior of tetracyline as complexing agent in solvent extraction studies is presented. The extraction curves for the lanthanide elements, scandium, thorium, uranium and neptunium, are determined for the extraction system benzyl alcohol-tetracycline, as well as the acid and extractant dependences of extraction of the lanthanide elements. Separation of neptunium from uranium is formed by carrying out the extraction experiment at a proper pH value. Use is made of masking agents namely, ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), in order to obtain separations of uranium from scadium and lanthanides as well as of uranium and thorium, respectively. The extraction experiments are carried out by using radioisotopes of each element, except for uranium in which case the determinations are by using epithermal neutron activation analysis [pt

  6. Spectroscopic Confirmation of Uranium (VI)-Carbonato Adsorption Complexes on Hematite

    International Nuclear Information System (INIS)

    Bargar, John R

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)-carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of FeO surface -U(VI)-carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)-carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)-carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium

  7. Application of extraction chromatography to the recovery of neptunium, plutonium and americium from an industrial waste

    International Nuclear Information System (INIS)

    Madic, C.; Kertesz, C.; Sontag, R.; Koehly, G.

    1980-01-01

    A pilot scale investigation was made to evaluate the possible application of the extraction chromatographic method (LLC) to the partitioning of alpha emitters from liquid wastes containing traces of transuranium elements. A secondary purpose was to obtain pure Am0 2 , which is used to produce alpha, gamma, and neutron sources. The process developed for alpha partitioning consists essentially of the extraction of macro amounts of uranium with 30% TBP in dodecane in mixer-settlers, then coextraction of Np-237, Pu-239, and Am-241 by LLC on a macro column filled with di-n-hexyl-octoxy-methyl-phosphine oxide (POX.11) adsorbed on an inert support. In each run about 200 liters of initial waste are decontaminated of alpha emitters. The loading step is followed by selective elution of americium, neptunium, and plutonium. The americium eluate is then subjected to the following operations: (1) separation of Am from Fe and Cd by LLC on a TBP column and (2) separation of Am from lanthanide traces by LLC on an HD(DiBM)P column after oxidation of Am(III) to Am(VI). The Am in the eluate is subsequently reduced to Am(III) and precipitated as oxalate with oxalic acid. The oxalate is then filtered and calcined to yield pure AmO 2

  8. Rapid and simultaneous determination of neptunium and plutonium isotopes in environmental samples by extraction chromatography using sequential injection analysis and ICP-MS

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2010-01-01

    plutonium and neptunium in three reference materials were in agreement with the recommended or literature values at the 0.05 significance level. The developed method is suitable for the analysis of up to 10 g of soil and 20 g of seaweed samples. The extraction chromatographic separation within the SI system......This paper reports an automated analytical method for rapid and simultaneous determination of plutonium isotopes (239Pu and 240Pu) and neptunium (237Np) in environmental samples. An extraction chromatographic column packed with TrisKem TEVA® resin was incorporated in a sequential injection (SI...... for a single sample takes less than 1.5 h. As compared to batchwise procedures, the developed method significantly improves the analysis efficiency, reduces the labor intensity and expedites the simultaneous determination of plutonium and neptunium as demanded in emergency actions....

  9. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.

    1985-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  10. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)

    1984-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  11. Sorption and direct speciation of neptunium(V) on aluminium oxide and montmorillonite

    International Nuclear Information System (INIS)

    Wendt, Sonja

    2009-01-01

    This study comprised batch experiments, direct speciation studies via EXAFS, and modelling with the 2SPNE SC/CE model to elucidate the mechanisms of Np(V) sorption on montmorillonite and, for reference, on γ-Al 2 O 3 . The sorption of pM 239 Np(V) and μM 237 Np(V) on montmorillonite (STx-1, 4 g/L) and γ-Al 2 O 3 (0.5 g/L) was studied at room temperature in the presence and absence of ambient CO 2 covering a pH-range from 2.5 (STx-1) or 5 (γ-Al 2 O 3 ) to 10.5 with 0.01 or 0.1M NaClO 4 as background electrolyte. The Np(V) uptake was determined by γ spectroscopy of the supernatants and calculated as percentage as well as distribution coefficient K d . Sorption starts from pH ∼6 and, under exclusion of CO 2 , increases continuously, while, in the presence of ambient air, it reaches a maximum at pH ∝8.5 (γ-Al 2 O 3 : logK d max ∼ 4 mL/g; STx-1: logK d max ∼ 2.7 mL/g). Beyond that it decreases again due to the formation of aqueous neptunium carbonate complexes. Furthermore, neptunium sorption on montmorillonite is influenced by ionic strength at pH <6 through ion exchange processes pointing towards the formation of outer-sphere surface complexes there. Isotherms measured at the sorption maximum showed the precipitation of presumably neptunium carbonate complexes above 3.10 -5 M under ambient air conditions. Additionally, they indicated progressive saturation of the sorption sites of γ-Al 2 O 3 . At selected pH (STx-1: 5.0, 7.0, 8.0, 8.5, 9.0, 9.5; γ-Al 2 O 3 : 8.5, 9.5) EXAFS samples were prepared as wet pastes with μM 237 Np and measured at room temperature in fluorescence mode at ANKA and ESRF. Several spectra were averaged and analysed with EXAFSPAK and FEFF 8.20 employing models of NaNpO 2 (CO 3 ) or soddyite, (UO 2 ) 2 SiO 4 .2(H 2 O). The shorter atomic distances of the neptunyl ion at pH 5 compared to the others hinted at the retention of the hydration shell and, thus, at outer-sphere sorption. On average the bond lengths for Np(V) sorbed on STx

  12. Neptunium detector using fiber-optic light guides

    International Nuclear Information System (INIS)

    Spencer, W.A.; Killeen, T.E.; Herold, T.R.

    1981-01-01

    A colorimeter has been constructed and installed to detect neptunium (IV) on-line as it elutes from an ion exchange column in a plant process stream. Because of the high radiation and corrosive atmosphere at the monitoring location, the instrument was designed using remote electronics and glass fiber optic cables. The five-foot cables transmit pulsed white light into a glass monitoring window in a containment box and return the transmitted portion to a photosensor. A simple spring clamp was designed to couple the cables to the monitoring window without modifying existing processes. Details of the design, installation, and operational problems are discussed. Other applications and modifications of the present colorimeter for other actinides, as well as preliminary results on a fiber optic spectrophotometer, are presented

  13. Feasibility studies of thermonuclear neutron capture synthesis of SHE

    International Nuclear Information System (INIS)

    Meldner, H.W.

    1978-01-01

    A variety of thermonuclear neutron sources and neutron capture targets were investigated for their potential of allowing signigicant production of heavy, perhaps superheavy, isotopes. The neutron sources considered range from inertial confinement microexplosives to (underground) macroexplosives. Optimal capture targets appear to be composites containing uranium and protactinium. 1 figure

  14. Neptunium speciation (complexation and redox behaviour) in aqueous citrate medium

    International Nuclear Information System (INIS)

    Bonin, L.; Ansoborlo, E.; Moisy, Ph.

    2005-01-01

    Full text of publication follows: In the framework of the French Environmental Nuclear Toxicology programme, additional experiments related to the decorporation of actinides are planned. The lack of information on the neptunium behaviour within blood and the inefficiency of therapeutic treatments, led us to study the complexation of this element with basic anions. Within this purpose, the in vitro behaviour of Np IV and Np V in simple media simulating biological media was studied: blood plasma is one of the media of interest and it can be simulated, from a chemical point of view, by an aqueous solution with pH 7.4, containing ions such as citrate (1.6 10 -4 mol/L), lactate (1.5 10 -3 mol/L), CO 3 2- (2.5 10 -2 mol/L), PO 4 3- (1.1 10 -3 mol/L), SO 4 2- (3.3 10 -4 mol/L) and Cl - (9 10 -2 mol/L). This study was more specifically focused on the behaviour of neptunium with citrate ion, which is also a basic ligand to consider when one wishes to study the migration of actinides in the environment, since it exists in significant amounts in the ground due to its production by the plants. In order to determine the speciation of this system, spectrophotometry was more particularly used. Concerning the complexation phenomenon, the existence of several complexes of Np V with various acid-basic forms of the citrate anion was observed; regarding Np IV , two complexes, with 1:1 and 1:2 stoichiometry, have been respectively observed. The reactivity of Np VI is probably similar to the behaviour of U VI , which is reported in literature to form a complex with a 1:1 stoichiometry with the Cit 3- anion From the quantitative study of these equilibria, it has been possible to determine the values of various equilibrium constants. Concerning the stability of neptunium towards oxido-reduction, it was confirmed that Np VI was very quickly reduced to Np V by the citrate anions, whereas Np IV was stable. In the case of Np V , it was observed that, depending on the pH and the citrate

  15. Development of analytical methods for the separation of plutonium, americium, curium and neptunium from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, S.

    2009-07-01

    In this work, separation methods have been developed for the analysis of anthropogenic transuranium elements plutonium, americium, curium and neptunium from environmental samples contaminated by global nuclear weapons testing and the Chernobyl accident. The analytical methods utilized in this study are based on extraction chromatography. Highly varying atmospheric plutonium isotope concentrations and activity ratios were found at both Kurchatov (Kazakhstan), near the former Semipalatinsk test site, and Sodankylae (Finland). The origin of plutonium is almost impossible to identify at Kurchatov, since hundreds of nuclear tests were performed at the Semipalatinsk test site. In Sodankylae, plutonium in the surface air originated from nuclear weapons testing, conducted mostly by USSR and USA before the sampling year 1963. The variation in americium, curium and neptunium concentrations was great as well in peat samples collected in southern and central Finland in 1986 immediately after the Chernobyl accident. The main source of transuranium contamination in peats was from global nuclear test fallout, although there are wide regional differences in the fraction of Chernobyl-originated activity (of the total activity) for americium, curium and neptunium. The separation methods developed in this study yielded good chemical recovery for the elements investigated and adequately pure fractions for radiometric activity determination. The extraction chromatographic methods were faster compared to older methods based on ion exchange chromatography. In addition, extraction chromatography is a more environmentally friendly separation method than ion exchange, because less acidic waste solutions are produced during the analytical procedures. (orig.)

  16. Neptunium(V) sorption on quartz and albite in aqueous suspension

    International Nuclear Information System (INIS)

    Kohler, M.; Leckie, J.O.

    1991-10-01

    The behavior of neptunium in the subsurface environment is of interest since neptunium isotopes are included in nuclear waste. Previous work investigated the sorption behavior of Np onto α-Fe 2 O 3 (hematite), an accessory mineral of the Yucca Mountain repository. The work reported herein involves the much more abundant silicate minerals quartz and albite, and is a logical continuation of the ongoing task. In previous work increased sorption was observed in systems containing hematite and EDTA, a ligand which acts as a surrogate for organic complexing agents. In addition, increased partial pressures of CO 2 are common in many ground waters and the effects of carbonate on sorption of radionuclides have to be studied as well. At concentration levels of 10 -7 M, Np(V) does not adsorb strongly on quartz and albite up to pH values of approximately 9 at solid/solution ratios of 30 to 40 g/l. Significant adsorption (> 20%) occurs on both minerals only at pH > 9. Pretreatment of albite affects the sorption behavior of this mineral at pH > 9, possibly due to the formation of secondary mineral phases at the albite surface. EDTA does not adsorb on quartz at concentrations of 10 -6 M. In the presence of 50 μM EDTA, Np(V) sorption seems to be restricted. EDTA at the 10 -6 M level adsorbs onto albite to an appreciable degree at pH values 3 - is the predominant solution species

  17. The contribution of radioisotopes in secular equilibrium in the transport index of fissile uranium compounds in different enrichments

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian M.A.A.

    2008-01-01

    radioisotopes in secular equilibrium have been made with the thorium 234 Th and protactinium 234 Pa of the uranium series, whose secular equilibrium happens in 100 days. The actinium series the secular equilibrium with 235 U happens after 100 hours. Thus, there was the contribution of these radioisotopes in secular equilibrium in the transport index of compounds UO 2 and U 3 Si 2 or uranium element, for each enrichment up to 10% and the U 3 O 8 up to 20% of enrichment. (author)

  18. Study of extraction chromatography methods of separation of neptunium and its radiometric determination

    International Nuclear Information System (INIS)

    Reich, M.

    2009-04-01

    In presented dissertation thesis the separation procedure for determination of neptunium in model solutions and also in soil samples was designed. 1. The sorbent was prepared on basis of hydrophobised silica gel with silica oil for hydrophobisation - Lukooil H. Extraction agent was anchored on this modified surface -quarternary ammonium salt Aliquat 336. In experiments was proved, that sorbent prepared like this is resist enough to the elution solutions using in separation procedures. It was found out that maximal concentration of deposited Aliquat 336 in benzene on hydrophobised silica gel selected granulate size is 40%. Sorbent prepared with silica gel lower granulate size and also with higher concentration of Aliquat 336 in benzene became sticky and unsuitable for using in separation columns. 2. The prepared sorbent is similar to commercial produced TEVA resin made by company Eichrom and for purpose of this project it was cheaper but the same effective alternative in comparing to mentioned commercial resin. 3. The separation procedure for isolation of 237 Np from radionuclides interfering during its radiometric determination with alpha spectrometry was designed -in scientific publications hasn't been described yet. The procedure consists of using formic acid for reduction of radionuclides interfering by alpha spectrometric determination of 237 Np and subsequent purification of neptunium on the next column by using ferrous sulphamate as reduction agent. This procedure was applied to the model solutions and also to the soil samples. The model solutions and soil samples for these experiments were contaminated with known amounts of 237 Np, 238 pU, 232 Th and mixture of 234 U/ 238 U. The effective separation of neptunium from described radionuclides was achieved with application of the described separation procedure. 4. The separation procedure for separation of 239 Np from its mother radionuclide 241 Am was designed with prepared sorbent. Different washing and

  19. TOWARD AN IMPROVED UNDERSTANDING OF STRUCTURE AND MAGNETISM IN NEPTUNIUM AND PLUTONIUM PHOSPHONATES AND SULFONATES

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas

    2012-03-01

    This grant supported the exploratory synthesis of new actinide materials with all of the actinides from thorium to californium with the exceptions of protactinium and berkelium. We developed detailed structure-property relationships that allowed for the identification of novel materials with selective ion-exchange, selective oxidation, and long-range magnetic ordering. We found novel bonding motifs and identified periodic trends across the actinide series. We identified structural building units that would lead to desired structural features and novel topologies. We also characterized many different spectroscopic trends across the actinide series. The grant support the preparation of approximately 1200 new compounds all of which were structurally characterized.

  20. Kinetics of the reaction between plutonium (4) and neptunium (4) in nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Koltunov, V S; Zhuravleva, G I; Marchenko, V I

    1976-01-01

    The kinetics of the oxidation of neptunium(IV) to neptunium(V) by tetravalent plutonium ions in solutions of HNO/sub 3/ + NaNO/sub 3/ at constant (..mu.. = 2) and variable (..mu.. = 0.7-2.0) ionic strengths of the solution was investigated by a spectrophotometric method. It was established that in the range of concentrations (Np(IV)) = (4.25-10.6) x 10/sup 13/; (Pu(IV)) = (2.6-3.9)x10/sup -3/ M; (H/sup +/) 0.37-1.91 M, a first order is observed with respect to the reagents, while the order of the reaction with respect to H/sup +/ ions is equal to -3. The average value of the true rate constant of the reaction is k = 27.9+-1.3 M/sup 2/xmin/sup -1/ at ..mu..=2 and 39/sup 0/C. It was shown that with increasing analytical concentration of HNO/sub 3/ and NO/sub 3//sup -/ ions (in a mixture of HNO/sub 3/ +HClO/sub 4/), the value of K decreases. On the basis of an invetigation of the dependence of the reaction rate on the temperature in the interval 31-44.8/sup 0/, we calculated the values of the energy (E = 34.6 kcal/mole), enthalpy (..delta..H* = 34 kcal/mole), free energy (..delta..F* = 19.6 kcal/mole, entropy (..delta..S* = 49 entropy units) of activation of the reaction and the formal ionic entropy of the activated complex (PuOOHNp/sup 5 +/)*, S* = -87 entropy units. A reaction mechanism including an interaction of hydrolyzed neptunium and plutonium ions as the rate-determining step was proposed and discusses. The results obtained are compared with data for this reaction in perchloric acid wolution and for other similar redox reactions.

  1. Investigation of separation factors of neptunium and plutonium in the process of mass transfer through liquid impregnated membranes with di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Novikov, A.P.; Mikheeva, M.N.; Myasoedov, B.F.

    1990-01-01

    Kinetics of joint transfer of neptunium(6) and plutonium(4) through liquid membranes with di-2-ethylhexylphosphoric acid, depending on the concentration of the carrier, nature of reextracting agent and ratio of metal concentrations, was investigated. The optimal conditions for selective isolation of microimpurity of one of the elements from solutions of the other were determined. Solution of ammonium carbonate with carrier concentration of 0.1-0.2 mol/l can be expediently utilized as reextracting phase for neptunium impurity removal

  2. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    Science.gov (United States)

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  3. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  4. Actinide sorption on granites and minerals as a function of pH and colloids/pseudocolloids

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Rundberg, R.S.; Mitchell, A.J.

    1988-01-01

    The sorption of uranium, neptunium and plutonium was studied on three granites - Finnsjoe granite, Stripa granite and Westerly granite, and on six minerals - albite, anorthite, bentonite, hornblende, illite and microcline. The aqueous phase was a natural groundwater collected at the Nevada Test Site (NTS). This water is used as reference water for the U.S. Nevada Nuclear Waste Storage Investigations (NNWSI). At neutral pH there was only a minor difference in sorption between the different methods of separation. Below a pH resulting in hydrolysis of the nuclide, the sorption was low. Uranium and especially neptunium sorbed significantly more at high pH, as compared to the sorption at neutral pH. High pH had only little influence on the sorption of plutonium on the minerals with a high cation exchange capacity (CEC); hornblende, bentonite and illite, but on the feldspars albite, anorthite and microcline, with low CEC, there was a pronounced difference between neutral and high pH. For uranium at high pH, the sorption increased significantly with increasing centrifugal force, indicating that part of the uranium either exists as a colloid or as a polymer. This effect was only in a few cases observed for neptunium and plutonium. (orig./RB)

  5. Microscopic Examination of a Corrosion Front in Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    J.A. Fortner; A.J. Kropf; R.J. Finch; J.C. Cunnane

    2006-01-01

    Spent uranium oxide nuclear fuel hosts a variety of trace chemical constituents, many of which must be sequestered from the biosphere during fuel storage and disposal. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within spent uranium oxide nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the plutonium and neptunium in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO 2 matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl U(VI)O 2 2+ mineral assemblage that is depleted in plutonium and neptunium relative to the parent fuel. At the corrosion front interface between intact fuel and the uranyl-mineral corrosion layer, we find evidence of a thin (∼20 micrometer) layer that is enriched in plutonium and neptunium within a predominantly U 4+ environment. Available data for the standard reduction potentials for NpO 2+ /Np 4+ and UO 2 2+ /U 4+ couples indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potentials of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. Neptunium is an important radionuclide in dose contribution according to performance assessment models of the proposed U. S. repository at Yucca Mountain, Nevada. A scientific understanding of how the UO 2 matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of neptunium is needed to predict its behavior at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel [1]. In the immediate vicinity of the spent fuel's surface the redox and nucleation behavior is likely to promote

  6. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides: Chapter D in Hydrological, geological, and biological site characterization of breccia pipe uranium deposits in Northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy

    2010-01-01

    This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a

  7. Neptunium speciation (complexation and redox behaviour) in aqueous citrate medium

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Ansoborlo, E.; Moisy, Ph. [CEA Marcoule (France)

    2005-07-01

    Full text of publication follows: In the framework of the French Environmental Nuclear Toxicology programme, additional experiments related to the decorporation of actinides are planned. The lack of information on the neptunium behaviour within blood and the inefficiency of therapeutic treatments, led us to study the complexation of this element with basic anions. Within this purpose, the in vitro behaviour of Np{sup IV} and Np{sup V} in simple media simulating biological media was studied: blood plasma is one of the media of interest and it can be simulated, from a chemical point of view, by an aqueous solution with pH 7.4, containing ions such as citrate (1.6 10{sup -4} mol/L), lactate (1.5 10{sup -3} mol/L), CO{sub 3}{sup 2-} (2.5 10{sup -2} mol/L), PO{sub 4}{sup 3-} (1.1 10{sup -3} mol/L), SO{sub 4}{sup 2-} (3.3 10{sup -4} mol/L) and Cl{sup -} (9 10{sup -2} mol/L). This study was more specifically focused on the behaviour of neptunium with citrate ion, which is also a basic ligand to consider when one wishes to study the migration of actinides in the environment, since it exists in significant amounts in the ground due to its production by the plants. In order to determine the speciation of this system, spectrophotometry was more particularly used. Concerning the complexation phenomenon, the existence of several complexes of Np{sup V} with various acid-basic forms of the citrate anion was observed; regarding Np{sup IV}, two complexes, with 1:1 and 1:2 stoichiometry, have been respectively observed. The reactivity of Np{sup VI} is probably similar to the behaviour of U{sup VI}, which is reported in literature to form a complex with a 1:1 stoichiometry with the Cit{sup 3-}anion From the quantitative study of these equilibria, it has been possible to determine the values of various equilibrium constants. Concerning the stability of neptunium towards oxido-reduction, it was confirmed that Np{sup VI} was very quickly reduced to Np{sup V} by the citrate anions

  8. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  9. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  10. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  11. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gubina, M.Yu.

    1988-01-01

    Stability concetration constants K and solubility of neptunium and plutonium complexes with di- and monobuthylphosphoric acids (APC) and with orthophosphoric and di-2-ethylhexyl-phosphoric acids in 30% TBP solution-n-dodecane system are determined by spectrophotometric titration and radiometry methods. Posibility of forecasting radiation-chemical behaviour of actinids according to data on K and APC radiation-chemical yield values is demonstrated

  12. Design of polymetallic uranium assemblies for the development of single molecule magnets

    International Nuclear Information System (INIS)

    Chatelain, Lucile

    2016-01-01

    The study of actinide chemistry is not only essential for the development of nuclear fuel, nuclear fuel reprocessing or environmental clean up, but also for the understanding of fundamental actinide/ligand interactions and multiple bounding. The magnetic properties of polynuclear actinide molecules are of significant interest to investigate the magnetic communication between the metallic centres. Furthermore, they are highly promising for the design of molecular magnets. Uranium undergoes redox reactions due to a wide range of available oxidation states and easily forms polynuclear assemblies. However, only a few controlled synthetic routes towards these polynuclear uranium assemblies are described in the literature. In this context, the first part of this work was dedicated to the synthesis of oxo/hydroxo uranium clusters from the controlled hydrolysis of tetravalent uranium in the presence of an environmentally relevant ligand. This led to the synthesis of clusters with novel topologies, for which size could be varied as a function of the reaction conditions employed. However, the obtained clusters do not behave as SMM. In order to gain a stronger interaction between metallic centres, the cation-cation interaction was used to rationally design polynuclear uranyl(V) complexes. The isolation of uranyl(V) complexes had been limited in the past by its disproportionation, however, a fine tuning of the organic ligand and reaction conditions finally allowed to stabilise uranyl(V). We used stable uranyl(V) units as building block to form heteronuclear complexes with 3d and 4f metals with polymeric or discrete structures. The study of the magnetic properties of the uranium polynuclear assemblies was carried out and revealed single molecule or chain magnet behaviours with high energy barriers. The uranyl(V) unit was also used as a structural model for the more radioactive neptunium element, allowing the isolation of an isostructural trinuclear neptunyl(V) assembly in

  13. Partitioning of actinides from high active waste solution of Purex origin counter-current extraction studies using TBP and CMPO

    International Nuclear Information System (INIS)

    Chitnis, R.R.; Dhami, P.S.; Gopalkrishnan, V.; Wattal, P.K.; Ramanujam, A.; Murali, M.S.; Mathur, J.N.; Bauri, A.K.; Chattopadhyay, S.

    2000-10-01

    A solvent extraction scheme has been formulated for the partitioning of actinides from Purex high level waste (HLW). The scheme is based on the results of earlier studies carried out with simulated waste solutions. In the present studies, the scheme was tested with high active waste (HAW) solution generated during the reprocessing of spent fuel from research reactors using laboratory scale mixer-settlers. The proposed process involved two-step extraction using tri-n-butyl phosphate (TBP) and octyl (phenyl)-N,N-diisobutylcarbamolylmethylphosphine oxide (CMPO). In the first step, uranium, neptunium and plutonium were removed from the waste using TBP as extractant. The minor actinides left in the raffinate were extracted using a mixture of CMPO and TBP in the second step. The results showed complete extraction of actinides from the waste solution. Plutonium and neptunium extracted in TBP, were stripped together using a mixture of hydrogen peroxide and ascorbic acid in 2 M nitric acid medium, leaving uranium in the organic phase. Uranium can later be stripped using dilute nitric acid. Actinides extracted in CMPO-TBP phase were stripped using a mixture of formic acid, hydrazine, hydrate and citric acid. The stripping was quantitative in both the stripping runs. An additional extraction step for the preferential recovery of uranium, neptunium and plutonium from the waste solution using TBP is a modification over the conventional Truex process. Selective stripping of neptunium and plutonium from large quantities of uranium. The extraction of uranium using TBP eliminates the possibility of third phase and undesired loading of CMPO-TBP in the following step. Use of citrate-containing strippant allows the recovery of actinides from loaded CMPO-TBP mixture without causing any reflux of the actinides during stripping. The process has been developed with due consideration to minimising the generation of secondary wastes. The proposed strippants are effective even in presence of

  14. Comparative EXAFS study of uranium(VI) and neptunium(V) sorption onto kaolinite

    International Nuclear Information System (INIS)

    Reich, T.; Amayri, S.; Reich, Ta.; Jermolajev, J.

    2005-01-01

    Full text of publication follows: We investigated the surface sorption process of U(VI) and Np(V) on kaolinite by extended X-ray absorption fine structure (EXAFS) spectroscopy in the 10 μM concentration range. Batch experiments with kaolinite in CO 2 -equilibrated systems showed that the adsorption edge of U(VI) occurs at pH 5.5, i.e., near the pH PZC of kaolinite. The adsorption edge of Np(V) occurs well above the pH PZC value at pH 8.5. This may indicate that the bonds between Np(V) and the surface functional groups of kaolinite are not as strong as in the case of U(VI). U(VI) and Np(V) have in common that the amount which is adsorbed decreases when the pH is increased beyond the absorption maximum. This behavior can be attributed to the formation of U(VI) and Np(V) carbonato complexes in the aqueous solutions. The aim of this comparative EXAFS study was to investigate the reason for the different affinities of U(VI) and Np(V) for kaolinite by measuring their local environments at the clay surface. Samples were prepared from 4 g/L kaolinite, 0.1 M NaClO 4 , pH 3.0 - 10.5, presence and absence of ambient CO 2 . The U L 3 - and Np L 2 -edge EXAFS spectra of the wet paste samples were measured at room temperature in fluorescence mode at the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility. The measured U-O and U-Al/Si distances indicate inner-sphere sorption of U(VI) on kaolinite. There was no evidence of uranium neighbors in the EXAFS spectra, suggesting that the adsorbed U(VI) complexes were predominantly monomeric. The average distance between uranium and its equatorial oxygen atoms, O eq , increased from 2.32 to 2.38 Angstrom in the presence of atmospheric CO 2 when the pH was increased from 5.0 to 8.5. In the CO 2 -free system, the U-O eq distance was independent from pH and equal to 2.32 Angstrom. The lengthening of the average U-O eq distance in the presence of carbonate (or bicarbonate) suggests the formation of ternary U

  15. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  16. Formation of actinide hexafluorides at ambient temperatures with krypton difluoride

    International Nuclear Information System (INIS)

    Asprey, L.B.; Eller, P.G.; Kinkead, S.A.

    1986-01-01

    A second low-temperature agent, krypton difluoride, for generating volatile plutonium hexafluoride is reported (dioxygen difluoride is the only other reported agent). Plutonium hexafluoride is formed at ambient or lower temperature by the treatment of various solid substrates with krypton difluoride. Volatilization of uranium and neptunium from solid substrates using gaseous krypton difluoride is also reported for the first time. The formation of actinide hexafluorides has been confirmed for the reaction of krypton difluoride in anhydrous HF with UO 2 and with uranium and neptunium fluorides at ambient temperatures. Treatment of americium dioxide with krypton difluoride did not yield americium hexafluoride under the conditions studied. 15 references, 2 figures

  17. Appraisal of available information on uptake by plants of transplutonium elements and neptunium

    International Nuclear Information System (INIS)

    Thomas, R.L.; Healy, J.W.

    1976-07-01

    A critical review was made of reported information from laboratory studies of plant uptake of transplutonic elements plus neptunium. The available data are meager but indicate that the uptake of Np is the greatest followed by Am and Cm. The data are not sufficient to provide recommended values for use in hazard calculations but they do indicate that the actinides other than plutonium will be accumulated in plants to a greater degree than plutonium

  18. Fabrication of uranium-based ceramics using internal gelation for the conversion of trivalent actinides

    International Nuclear Information System (INIS)

    Daniels, Henrik

    2012-01-01

    Alternative to today's direct final waste disposal strategy of long-lived radionuclides, for example the minor actinides neptunium, americium, curium and californium, is their selective separation from the radioactive wastestream with subsequent transmutation by neutron irradiation. Hereby it is possible to obtain nuclides with a lower risk-potential concerning their radiotoxicity. 1 neutron irradiation can be carried out either with neutron sources or in the next generation of nuclear reactors. Before the treatment, the minor actinides need to be converted in a suitable chemical and physical form. Internal gelation offers a route through which amorphous gel-spheres can be obtained directly from a metal-salt solution. Due to the presence of different types of metal ions as well as changing pH-values in a stock solution, a complex hydrolysis behaviour of these elements before and during gelation occurs. Therefore, investigations with uranium and neodymium as a minor actinide surrogate were carried out. As a result of suitable gelation-parameters, uraniumneodymium gel-spheres were successfully synthesised. The spheres also stayed intact during the subsequent thermal treatment. Based upon these findings, uranium-plutonium and uranium-americium gels were successfully created. For theses systems, the determined parameters for the uraniumneodymium gelation could also be applied. Additionally, investigations to reduce the acidity of uranium-based stock solutions for internal gelation were carried out. The necessary amount of urea and hexamethylenetetramine to induce gelation could hereby be decreased. This lead to a general increase of the gel quality and made it possible to carry out uranium-americium gelation in the first place. To investigate the stability of urea and hexamethylenetetramine, solutions of these chemicals were irradiated with different radiation doses. These chemicals showed a high stability against radiolysis in aqueous solutions.

  19. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gibina, M.Yu.

    1989-01-01

    The concentration stability constants (K s ) and solubility of neptunium and plutonium complexes with di- and monobutylphosphoric acids (APA), as well as with orthophosphoric acid in the system composed of 30% TBP + n-dodecane, have been determined by spectrophotometric titration and radiometry. The feasibility of predicting the radiative chemical behavior of actinides based on their K s values and the radiative chemical yield of APA has been demonstrated

  20. Determination of the distribution of uranium and the transuranic elements in the environment by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Chastagner, P.

    1987-01-01

    Protection of the world population from releases of uranium, plutonium, and other transuranic materials requires, among other things, a knowledge of the sources, transport, and distribution of these elements in the environment. Both isotopic and quantitative analytical data are required in the determination of these factors. Also, the analyses must be precise and accurate enough to distinguish newly released material from older material such as the worldwide deposits from atmospheric weapons testing. For this reason, uranium, neptunium, and plutonium and other transuranic elements in the environment are routinely determined by high-sensitivity thermal ionization mass spectrometric techniques. With current instrumentation and techniques, routine isotope dilution and isotopic analyses are made with purified elemental samples as small as 2 x 10 -14 g. The detection limit for uranium and most of the transuranic isotopes is ∼ 5 x 10 18 g (∼ 13,000 atoms), which is at least an order of magnitude better than the detection limits of the radiometric counting techniques normally employed. The mass spectral sensitivities are equal for all of the isotopes of a given element but vary from element to element. Thus, each elemental sample must be highly purified. Separation techniques recover ∼ 80% of the uranium and the transuranic material from soils and other materials. Interelement separation factors > 10 5 are achieved with advanced ion exchange methods. Results of recent application of these techniques at the Savannah River Lab. and other laboratories are include

  1. Extraction behavior of radionuclides in the first separation cycle in reprocessing

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Asakura, Toshihide; Hotoku, Shinobu; Watanabe, Makio; Fujine, Sachio; Nemoto, Hideyuki.

    1997-01-01

    The chemical flowsheet experiment by using three mixer-settlers was conducted to study the extraction behavior of radionuclides such as technetium, neptunium, iodine, zirconium and ruthenium in the uranium-TBP-nitric acid solution system in the simulated first separation cycle in current reprocessing plants. The following results were obtained: More than 99.999% of the total uranium fed to the co-decontamination step in the simulated dissolver solution was extracted by TBP solvent. About 90% of the total uranium was recovered in the uranium back-extraction step. About 30% of the total neptunium fed to the co-decontamination step was in the raffinate solution in the co-decontamination step, 12% of the total neptunium was in the Tc solution in the Tc separation step and about 58% of the total neptunium was in the Pu solution in the U/Pu partitioning step. As for technetium, about 99% of the total technetium was extracted by TBP in the co-decontamination step, 86% of the total technetium was scrubbed with high acid nitric acid solution in the Tc separation step and 13% of the total technetium was in the Pu solution in the U/Pu partitioning step. As for the other radionuclides, 99% of the total ruthenium and 93% of the total zirconium were distributed into the raffinate in the co-decontamination step. In the Tc separation step, ruthenium was scrubbed more effectively than ruthenium with high acid solution. About 45% of the total iodine fed to the co-decontamination step was vaporized during the experiment. Iodine in aqueous solutions in the flowsheet was mainly in volatile I 2 form. Iodine was rarely distributed into the aqueous solution and was distributed with TBP solvent in the flowsheet. Significant amounts of iodine was contained in the washed solvent. (author)

  2. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and

  3. Geomicrobiological redox cycling of the transuranic element neptunium.

    Science.gov (United States)

    Law, Gareth T W; Geissler, Andrea; Lloyd, Jonathan R; Livens, Francis R; Boothman, Christopher; Begg, James D C; Denecke, Melissa A; Rothe, Jörg; Dardenne, Kathy; Burke, Ian T; Charnock, John M; Morris, Katherine

    2010-12-01

    Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.

  4. Sorption and desorption reactions of radionuclides with a crushed basalt-bentonite packing material

    International Nuclear Information System (INIS)

    Barney, G.S.; Lane, D.L.; Allen, C.C.; Jones, T.E.

    1985-04-01

    Current design of waste packages for disposal of high-level radioactive wastes in underground basalt formations includes a layer of packing material that surrounds the waste container. One of the functions of this material is to limit the release of radionuclides from a breached container into groundwater by providing a low hydraulic conductivity zone and by sorbing dissolved radionuclides. The objective of this study was to assess the radionuclide sorption capability of a proposed packing material composed of 25% sodium bentonite and 75% crushed basalt (by weight). Sorption and desorption reactions of several important waste radioelements (neptunium, uranium, plutonium, technetium, selenium, and radium) were investigated in the absence of air at 90 0 C. Uranium and neptunium were sorbed by slow reactions that follow first-order kinetics. The reaction rates are probably controlled by reduction of weakly sorbed uranium(VI) and neptunium(V) by ferrous iron in the crushed basalt component. Technetium(VII) was not reduced or sorbed under these conditions. Freundlich sorption and desorption isotherms for a given radionuclide were non-singular and show a strong tendency for sorption hysteresis. Applying the isotherm data to a one-dimensional transport model indicated that hysteretic sorption on the packing material provides an important safety factor in controlling releases of some radionuclides

  5. Progress report on SYVAC chemical speciation modelling studies during 1983/4

    International Nuclear Information System (INIS)

    Cross, J.; Smith, G.L.; Williams, D.R.

    1984-01-01

    This report summarises progress made on the SYVAC (System Variability Analysis program) chemical speciation project during 1983-4. Chemical speciation is defined and its importance in the SYVAC approach to Radioactive Waste Management is discussed. Computer modelling of chemical equilibria is described and the two programs presently operational at UWIST - SOLMNQ and MINEQL - are compared and discussed in detail. In view of the shortcomings of the databases supplied with these programs, a new database of equilibrium constants has been compiled containing 483 aqueous species and 329 solid phases, including data for the radionuclides uranium, plutonium, americium, neptunium and thorium. The collaborative work with AERE, Harwell, is reported. A leaching experiment carried out at Harwell has been modelled using the chemical speciation programs. The results for uranium, plutonium, americium and neptunium, are presented. However, the experimental data provided by AERE is insufficient for accurate simulations. Chemical speciation studies relating to specific sites require accurate characterisation of the groundwater, i.e. chemical composition, Eh and pH. In the absence of such information, preliminary studies have been made using an average granite groundwater. The results of these studies are presented and include solubility and speciation plots for uranium, plutonium, thorium and neptunium. The future aims of the project are discussed. (author)

  6. Mechanisms of sorption of neptunium and technetium on argillaceous materials

    International Nuclear Information System (INIS)

    Hooker, P.J.; West, J.M.; Noy, D.J.

    1986-01-01

    It is of pressing concern to understand the behaviour of radionuclides in the environment and in particular long-lived ones (e.g. Np-237 and Te-99) in argillaceous rocks. Clay formations have been chosen as likely candidates for holding low level radioactive waste repositories and in the event of leakage of radionuclides into the geosphere some knowledge of their fate is required in a far-field safety assessment study. The objectives of this present work were to examine the properties of neptunium and technetium in ground-waters associated with clay-rich materials and to ascertain the variations in sorption of these radionuclides under different environmental conditions and to use the information in a forecast of transport through a clay layer

  7. Transport of radionuclides by bentonite and silica colloids in a GR-3 synthetic groundwater-interim report

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.

    1983-08-01

    Radionuclide distributions in groundwater-colloid-basalt systems were measured using GR-3 groundwater and crushed Umtanum basalt at 60 degree C. The objective was to estimate the potential for radionuclide transport from a nuclear waste repository in basalt by colloids suspended in groundwater. Three colloids were studied -- a bentonite colloid representing a potential component of packing or backfill materials in the repository, and two hydrated silica colloids which might represent those generated from a glass waste form. The radioelements studied included isotopes of neptunium, uranium, selenium, technetium, and radium. Measurements of radionuclide distributions in experiments with the bentonite colloid showed that uranium was sorbed strongly on the colloid (under both oxidizing and reducing conditions) but was readily transferred to basalt when it was added to the system. Sorption of neptunium, technetium, and selenium on the colloid was greatly enhanced by using reducing conditions. Only small amounts of neptunium and technetium were transferred to the basalt under reducing conditions, but most of the selenium was readily transferred under these conditions

  8. Study of oxidation-reduction reactions of plutonium and neptunium in sulphuric-phosphoric acid media

    International Nuclear Information System (INIS)

    Moiseev, I.V.; Kuperman, A.Ya.; Borodina, N.N.; Galkina, V.N.; Vinokurov, V.A.

    1976-01-01

    Potentiostatic, coulometric, potentiometric, and amperometric methods have been used for determining the rate constants of disproportionation (ksub(d)) of plutonium(5) and neptunium (5) and normal real redox potentials (Esub(0)sup(p)) of the following ion pairs in sulphur-phosphoric-acid media: PuOsub(2)sup(2)sup(+) (PuO 2 + , Pu 4+ /Pu 3+ , NpO 2 2+ /NpO 2 + , NpO 2 2+ /Np 4+ , NpO 2 + /Np 4+ , and Fe 3+ /Fe 2+ . The regularities have been shown of changing ksub(d) and Esub(o)sup(p) as a function of H 2 SO 4 and H 3 PO 4 concentration. It has been established that for plutonium and neptunium a linear correlation is observed between lg ksub(d) and Esub(o)sup(p) of the ion pairs NpO 2 2+ /NpO 2 + , NpO 2 2 /Np 4+ , NpO 2 + /Np 4+ and PuO 2 2+ /PuO 2 + in a wide range of their values. The correlation coefficient is close to unity in all cases (no less than 0.96). The results of investigations have made it possible to recommend optimum compositions of background electrolytes for performing continuous amperostatic coulometric titration of Pusup((6)) and Npsup((6)) up to four valent state by electrogenerated ions of iron (2)

  9. Analysis of cadmium in high alpha solutions

    International Nuclear Information System (INIS)

    Gray, L.W.; Overman, L.A.; Hodgens, H.F.

    1977-07-01

    Cadmium nitrate is occasionally used as a neutron poison for convenience in the separation of uranium, neptunium, and plutonium. As the classical methods of analysis for cadmium are very time-consuming, a method to isolate it in solution using solvent extraction of uranium, neptunium, and plutonium with TBP in an n-paraffin hydrocarbon was investigated. After removal of the radionuclides, the cadmium is determined by atomic absorption spectroscopy. Precision of the method at the 95 percent confidence level is +-2.4 percent. Alpha content of the solutions was typically reduced from 1-10 x 10 11 dis/(min ml) 238 Pu to 1-15 x 10 4 dis/(min ml). Analysis time was typically reduced from approximately 24 hours per sample to less than 1 hour

  10. Mathematical modeling of the radiation-chemical behavior of neptunium in HNO3. Equilibrium states

    International Nuclear Information System (INIS)

    Vladimirova, M.V.

    1995-01-01

    A mathematical model of the radiation-chemical behavior of neptunium is presented for a wide range of α-and γ-irradiation doses. Equations determining the equilibrium concentrations of NP(IV), Np(V), and Np(VI) are derived for various concentrations of HNO 3 and dose rates of the ionizing irradiation. The rate constants of the reactions NP(IV) + OH, Np(IV) + NO 3 , Np(V) + NO 2 , Np(V) + H, Np(IV), and Np(V) + Np(V) are obtained by the mathematical modeling

  11. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Puukko, E.; Heikkinen, T.; Hakanen, M.

    1993-10-01

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  12. Contribution to the study of the redox couple Np(VI)/Np(V) in the presence of uranium(VI) in solutions of nitric acid and nitrous acid; Contribution a l'etude du comportement redox du couple Np(VI)/Np(V) en presence d'uranium VI dans les solutions constituees d'acide nitrique et d'acide nitreux

    Energy Technology Data Exchange (ETDEWEB)

    Arpigny, S. [CEA Marcoule, Dept. de Radiochimie et Procedes, DRP, 30 (France)

    2001-07-01

    The redox behavior of the Np(VI)/Np(V) couple was the subject of a spectrometric study of the Np(VI) reduction reaction in nitric acid solutions (4 to 5 M) containing variable concentrations (1.5 to 3.5 x 10{sup -3} M) of nitrous acid. A low nitrous acid concentration and a high nitric acid concentration were found to favor the stabilization of Np(VI). The stoichiometric coefficients of nitrous acid and nitric acid in the Np(VI) reduction reaction were determined thermodynamically, although only the reaction order with respect to HNO{sub 2} could be calculated from a kinetic analysis. Adding nitrate ions to a HNO{sub 3}/HNO{sub 2} solution enhanced the stability of neptunium at oxidation state +VI, but also increased the reduction rate. When uranium(VI) was added to the HNO{sub 3}/HNO{sub 2} solutions, the total quantity of neptunium at oxidation state +V (either free or as a Np(V)-U(VI) complex) remained practically unchanged, as did the Np(VI) reduction rate. The electrochemical behavior of the Np(VI)/Np(V) couple was investigated in a weak acidic medium by voltammetry with an ultra-micro-electrode (UME). The oxidation wave limiting current variation was a linear function of the Np(V) concentration when a gold UME was used, but not with a platinum UME; the reduction wave limiting current variation versus the Np(V) concentration was linear with either gold or platinum UMEs. The presence of the Np(V)-U(VI) complex in the neptunium solutions was characterized by a shift in the normal apparent potential of the Np(VI)/Np(V) couple toward anodic potentials consistent with the previously determined values of the complexation constants. (author)

  13. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  14. The significance of lead-210, polonium-210 and protactinium-231 in emissions from coal-fired power stations: a comparison with natural environmental sources

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1981-04-01

    Recently published calculations have suggested that a hypothetical individual may receive an effective radiation dose equivalent of 23 mrem/y from coal-fired power station emissions through the ingestion of lead-210, polonium-210 and protactinium-231. It is shown that the model used in those calculations is over-pessimistic by one or two orders of magnitude when applied to the deposition of Pb-210 and Po-210 derived from the decay of radon naturally present in the atmosphere. A more recent assessment of metabolic data for Pa-231 suggests that estimated doses from this nuclide also can be reduced by about a factor of twenty. It is concluded that the maximum effective dose equivalent from power station emissions probably does not exceed 1-2 mrem/y. (author)

  15. Minor Actinide Burning in Thermal Reactors. A Report by the Working Party on Scientific Issues of Reactor Systems

    International Nuclear Information System (INIS)

    Hesketh, K.; Porsch, D.; Rimpault, G.; Taiwo, T.; Worrall, A.

    2013-01-01

    The actinides (or actinoids) are those elements in the periodic table from actinium upwards. Uranium (U) and plutonium (Pu) are two of the principal elements in nuclear fuel that could be classed as major actinides. The minor actinides are normally taken to be the triad of neptunium (Np), americium (Am) and curium (Cm). The combined masses of the remaining actinides (i.e. actinium, thorium, protactinium, berkelium, californium, einsteinium and fermium) are small enough to be regarded as very minor trace contaminants in nuclear fuel. Those elements above uranium in the periodic table are known collectively as the transuranics (TRUs). The operation of a nuclear reactor produces large quantities of irradiated fuel (sometimes referred to as spent fuel), which is either stored prior to eventual deep geological disposal or reprocessed to enable actinide recycling. A modern light water reactor (LWR) of 1 GWe capacity will typically discharge about 20-25 tonnes of irradiated fuel per year of operation. About 93-94% of the mass of uranium oxide irradiated fuel is comprised of uranium (mostly 238 U), with about 4-5% fission products and ∼1% plutonium. About 0.1-0.2% of the mass is comprised of neptunium, americium and curium. These latter elements accumulate in nuclear fuel because of neutron captures, and they contribute significantly to decay heat loading and neutron output, as well as to the overall radio-toxic hazard of spent fuel. Although the total minor actinide mass is relatively small - approximately 20-25 kg per year from a 1 GWe LWR - it has a disproportionate impact on spent fuel disposal, and thus the longstanding interest in transmuting these actinides either by fission (to fission products) or neutron capture in order to reduce their impact on the back end of the fuel cycle. The combined masses of the trace actinides actinium, thorium, protactinium, berkelium and californium in irradiated LWR fuel are only about 2 parts per billion, which is far too low for

  16. Classification of distribution coefficient data by mineral components and chemical forms

    International Nuclear Information System (INIS)

    Takeda, Seiji; Kimura, Hideo; Matsuzuru, Hideo

    1996-01-01

    The use of distribution coefficient (Kd) in radionuclide transport model has been reported in a number of papers. However, Kd data cover a wide range even for a specific element. In this study the Kd data of neptunium, uranium and selenium, which are included in sorption database (SDB, OECD/NEA) of radionuclides, were classified by a solid phase and a dominant species in a solution. The aqueous species of these elements were estimated by a geochemical model. The Kd data classified by the analyzed speciation were tested by a nonparametric statistical method. The results of tests proved that the Kd data of neptunium or uranium, which covered a wide range, were influenced by the supersaturation of Np(OH) 4 (s) or schoepite. The Kd data of neptunium could be classified by the dominant aqueous species, NpO 2 + , NpO 2 CO 3 - , NpO 2 OH(aq) and Np(OH) 4 (aq). The Kd data of these four dominant species which are not equilibrated with supersaturated Np(OH) 4 (s) are less than 100 ml/g. The analyzed aqueous species of uranium were UO 2 (OH) 2 (aq) and UO 2 (CO 3 ) n 2-2n (n=2,3) in hexavalent state. It is suggested that the distribution coefficient of neptunium and uranium depends on dominant aqueous species or charged species, i.e., cationic, anionic and nonionic forms. The dominant aqueous species of selenium are HSe - , HSeO 3 - , SeO 3 2- and SeO 4 2- . The result of the nonparametric statistical test shows that the Kd value of HSeO 3 - is higher than of other anionic forms. However, the influence of the species, HSe - , SeO 3 2- and SeO 4 2- , on Kd values is not clearly identified. Considering the dominant species, the Kd of elements are in ranges of 1 to 2 orders of magnitude being in general narrower than those classified by mineral and rock types. (author)

  17. Comparison of sample preparation methods for reliable plutonium and neptunium urinalysis using automatic extraction chromatography

    DEFF Research Database (Denmark)

    Qiao, Jixin; Xu, Yihong; Hou, Xiaolin

    2014-01-01

    This paper describes improvement and comparison of analytical methods for simultaneous determination of trace-level plutonium and neptunium in urine samples by inductively coupled plasma mass spectrometry (ICP-MS). Four sample pre-concentration techniques, including calcium phosphate, iron......), it endows urinalysis methods with better reliability and repeatability compared with co-precipitation techniques. In view of the applicability of different pre-concentration techniques proposed previously in the literature, the main challenge behind relevant method development is pointed to be the release...

  18. Fate of neptunium in an anaerobic, methanogenic microcosm

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Webb, S.M.; Rittmann, B.E.; Gaillard, J.F.; Reed, D.T.

    1999-01-01

    Neptunium is found predominantly as Np(IV) in reducing environments, but as Np(V) in aerobic environments. Currently, it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. To evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosm inoculated with anaerobic sediments from a metal-contaminated freshwater lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10 -5 M Np did not inhibit methane production. Total Np solubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbially produced Mn(II/III) and Fe(II) may serve as electron donors for Np reduction

  19. Study of kinetics of extraction of actinides in processes of reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Lamotte, Claude

    1978-01-01

    This research thesis reports a bibliographical study on extraction kinetics. After some generalities on solvent-based extraction, and on the chemistry of actinides in solution, on the methods of kinetics study which are generally used and their mathematical treatments, the author compares the published results for the extraction kinetics of nitric acid, uranium VI, uranium IV, neptunium IV and plutonium IV [fr

  20. Photochemical reactions of neptunium in nitric acid solution containing photocatalyst

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Kawamura, Fumio

    1991-01-01

    Photochemical oxidation and reduction behaviors of neptunium were preliminarily investigated in 3 mol/l nitric acid solution. Nitric acid of 3 mol/l simulated the high level waste solution from a spent fuel reprocessing process. Concentrations of Np(V), Np(VI) and nitrous acid were determined with a photospectrometer, and solution potential with an electrode. Without additives, Np(VI) was reduced to Np(V) by nitrous acid which was photolytically generated from nitric acid. With a scavenger for nitrous acid, Np(V) was oxidized to extractable Np(VI) by a photolytically generated oxidizing reagent which were predicted by the solution potential measurement. The reduction rate was higher than the oxidation rate because of the larger quantity and higher reactivity of nitrous acid than an oxidizing reagent. Photocatalyst was proved to be effective for the oxidation of Np(V) to Np(VI). (author)

  1. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    Mintz, M.H.

    1976-06-01

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  2. Gamma radiolysis of alkaline aqueous solutions of neptunium and plutonium ions

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Gogolev, A.V.; Shilov, V.P.

    1998-01-01

    Full text: The paper is a brief review of data obtained by the authors from the study on redox reactions of neptunium and plutonium ions upon γ radiolysis of their aerated alkaline aqueous solutions. It includes the information on radiolytic reduction of Np(V), Np(VI) and Pu(VI) ions under various experimental conditions. It was found that the values of Np(VI) and Pu(VI) reduction yields do not depend on alkali concentration. The values considerably increase in the presence of some organic compounds (EDTA and formate were investigated). The formation of the Np(V) peroxo complex was observed in the γ radiolysis of alkaline aqueous solutions of Np(VI) and Np(V) in the presence of nitrate. The mechanism of radiolytic redox reactions of the ions is discussed in some detail

  3. The incorporation of neptunium and plutonium in thorutite (ThTi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Gregg, Daniel J.; Lumpkin, Gregory R.; Begg, Bruce D.; Jovanovic, Miodrag

    2013-12-25

    Highlights: •The incorporation of neptunium (Np) and plutonium (Pu) in thorutite (ThTi{sub 2}O{sub 6}) has been studied. •The effect of Np/Pu doping on the unit cell parameter changes has been discussed from the structure point of view. •The effect of Y as charge compensator to encourage the formation of higher valences of Np and Pu has been explored. •The resulting Np/Pu doped thorutite samples have been characterised by using XRD, SEM and DRS. -- Abstract: The incorporation of neptunium (Np) and plutonium (Pu) into the brannerite structured lattice was studied using thorutite (ThTi{sub 2}O{sub 6}) as host lattice and sintering in air. The uncompensated Np and Pu doped samples and the low Y-charge compensated Np and Pu doped samples showed main phases as designed together with trace amounts of rutile. Those samples with larger amounts of Y produced yttrium pyrochlores as an additional minor phase. XRD analyses reveal anisotropic changes of the cell parameters; the a-parameter contracts while b- and c-parameters expand with mean cationic radius. This is in reasonable agreement with previous experimental data on ThTi{sub 2}O{sub 6} and Ce{sub 0.975}Ti{sub 2}O{sub 5.95}. Attempts to form Np or Pu valences >4+ by adding Y as a charge compensator were unsuccessful, suggesting that tetravalent Np and Pu ions are favoured in air-fired thorutite.

  4. Single-column extraction chromatographic separation of U, Pu, Np and Am

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, A.; Apostolidis, C.; Carlos-Marquez, R.; Mayer, K.; Molinet, R. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2002-07-01

    A rapid, single-column extraction chromatographic method using commercially available UTEVA resin has been developed for the separation of uranium, plutonium, neptunium and americium. The method yields recoveries superior to 90% and allows direct loading of separated fractions on filaments for subsequent analysis by thermal ionization mass spectrometry. The use of reagents compatible with robotized equipment allows automation of the separation process for routine analysis of nuclear materials. The redox reactions between plutonium, neptunium and hydrogen peroxide involved in the separation process were studied by UV/Vis/NIR absorption spectroscopy. (orig.)

  5. Study of the hydrolysis of protactinium (V), at tracer scale, by solvent extraction method with thenoyl-tri-fluoro-acetone (TTA) as chelating agent. Characterization of the partition of TTA in the system TTA / H2O / toluene / Na+ / H+ / ClO4-

    International Nuclear Information System (INIS)

    Jaussaud, Ch.

    2003-01-01

    Hydrolysis of protactinium (V) according to the reactions: PaO(OH) 2+ +H 2 O ↔ PaO(OH) 2 + + H + (K 2 ] PaO(OH) 2+ +2H 2 O ↔ PaO(OH) 5 + H + (K 3 ) has been studied, at tracer scale, by solvent extraction method, with thenoyl-tri-fluoro-acetone (TTA) as chelating agent. A previous study concerning the partition of TTA between two immiscible phases (corresponding to TTA/toluene/Na + /H + /ClO 4 - system) has allowed a complete characterization of this system (partition constants, standard thermodynamic values, TTA hydration degree in toluene). Owing to specific properties of protactinium (V) (sorption onto various materials, formation of colloids), an extremely rigorous protocol has been established, protocol which could be used for other hydrolysable elements. Hydrolysis constants were deduced from a systematic study of partition of Pa(V) as a function TTA and proton concentration, ionic strength and temperature. Extrapolations to zero ionic strength were performed using SIT model and the specific interaction coefficients ε (i,j) as well as the Pitzer parameters β (0) and β (1) were determined. Standard thermodynamic data relative to hydrolysis equilibriums of Pa(V) were also estimated. (author)

  6. Long-time safety aspects of ultimate storage of transuranium elements

    International Nuclear Information System (INIS)

    Storck, R.

    1992-10-01

    Based on the amounts of transuranium elements generated in nuclear reactors, the inventories of these elements in the repository are described for various ultimate disposal strategies. The data are used to give an outline description of accident-induced ingress of brines into the backfilled repository shaft during the post-closure period and the resulting mechanisms of a mobilization of the transuranium elements and their escape from the repository, and to calculate amounts released. The effects of the released transuranium elements on the biosphere and the different contributions of the various isotopes to the calculated radiation exposure are given as an estimate and are described in more detail by means of data determined by parameter variation. The effects of transuranium elements during the entire migration process are restricted to the production of daughter nuclides, especially of the uranium isotopes. They give no particular contribution to environmental radiation exposure because of their low mobility. With the only exception of Np-237 which, due to its long half-time and relatively good migration capacity, can reach the biosphere. The contributions of the transuranium elements to the dose maxima, caused by the daughter products, of the uranium isotopes or the neptunium are calculated to be about 50%. All publications to date presenting a safety analysis of the site of the Gorleben repository assume the dose maxima of all uranium isotopes together to be approx. 10%, and those of the neptunium isotope approx. 20%, referring to the most significant fission products. This indicates that uranium or neptunium are of secondary significance in the process, and the other transuranium elements are only third-rate. (orig./HP) [de

  7. An application of actinide elements for a redox flow battery

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2000-01-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials. From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system can be utilized as an active material of the redox flow battery for the electric power storage. A new neptunium redox battery is proposed in the present article: the galvanic cell is expressed by (-)|Np 3+ , Np 4+ |NpO 2 + , NpO 2 2+ |(+). The neptunium battery is expected to have more excellent charge and discharge performance than the current vanadium battery, whereas the thermodynamic one of the former is comparable to the latter. For the development of a uranium redox battery, the application of the redox reactions in the non-aqueous solvents is essential. (author)

  8. The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid in the presence of an organic phase

    Czech Academy of Sciences Publication Activity Database

    Mincher, B.J.; Přeček, Martin; Paulenova, A.

    2016-01-01

    Roč. 308, č. 3 (2016), s. 1005-1009 ISSN 0236-5731 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : neptunium * redox chemistry * radiation chemistry * solvent extraction Subject RIV: CH - Nuclear ; Quantum Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  9. Electronic location and magnetism in uranium and neptunium mono-chalcogenides and mono-pnictides, study of the systems: U_xLa_1_-_x(S,Se), U_0_._2(La_0_._1_5Y_0_._8_5)_0_._8Te and NpAs_1_-_xSe_x

    International Nuclear Information System (INIS)

    Bombardi, Alessandro

    2001-03-01

    This thesis concerns the evolution of the magnetic properties in some solid solutions (U_xLa_1_-_x(S,Se), U_0_._2(La_0_._1_5Y_0_._8_5)_0_._8Te, NpAs_1_-_XSe_x) based on Uranium and Neptunium. This experimental study is an attempt to improve the comprehension of the behavior of the 5f electrons, which are generally considered as responsibles for the physical properties observed in these systems, when a modification 'under control' of their chemical environment occurs. The first part of this thesis is devoted to the study of the effect of the reduction of the density of the magnetic centers (substitution U → La) on some physical properties, mainly magnetic, of the U mono-chalcogenide systems. The ferromagnetic long-range ordering observed in US and USe abruptly collapses at a critical U concentration far above the percolation limit, whereas short-range ferromagnetic correlations are measured well below this critical concentration. Magnetic form factor and X-ray magnetic circular dichroism measurements were performed to relate experimentally the change observed in the macroscopic properties of the materials to the electronic structure. The second part is devoted to the study of the evolution of the magnetic structures in the NpAs_1_-_xSe_x system. In this case a p electron is added, presumably to the conduction band, thus modifying the chemical potential. The magnetic phase diagram up to a Se concentration of 20%, as determined by neutron diffraction, magnetization measurements, and Moessbauer spectroscopy is reported. (author) [fr

  10. Osteosarcoma induction by plutonium-239, americium-241 and neptunium-237 : the problem of deriving risk estimates for man

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1988-01-01

    Spontaneous bone cancer (osteosarcoma) represents only about 0.3% of all human cancers, but is well known to be inducible in humans by internal contamination with radium-226 and radium-224. plutonium-239, americium-241 and neptunium-237 form, or will form, the principal long-lived alpha particle emitting components of high activity waste and burnt-up nuclear fuel elements. These three nuclides deposit extensively in human bone and although, fortunately, no case of a human osteosarcoma induced by any of these nuclides is known, evidence from animal studies suggests that all three are more effective than radium-226 in inducing osteosarcoma. The assumption that the ratio of the risk factors, the number of osteosarcoma expected per 10000 person/animal Gy, for radium-226 and any other bone-seeking alpha-emitter will be independent of animal species has formed the basis of all the important studies of the radiotoxicity of actinide nuclides in experimental animals. The aim of this communication is to review the risk factors which may be calculated from the various animal studies carried out over the last thirty years with plutonium-237, americium-241 and neptunium-237 and to consider the problems which may arise in extrapolating these risk factors to homo sapiens

  11. Sequential injection approach for simultaneous determination of ultratrace plutonium and neptunium in urine with accelerator mass spectrometry

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    An analytical method was developed for simultaneous determination of ultratrace level plutonium (Pu) and neptunium (Np) using iron hydroxide coprecipitation in combination with automated sequential injection extraction chromatography separation and accelerator mass spectrometry (AMS) measurement...... show that preboiling and aging are important for obtaining high chemical yields for both Pu and Np, which is possibly related to the aggregation and adsorption behavior of organic substances contained in urine. Although the optimal condition for Np and Pu simultaneous determination requires 5-day aging...

  12. Reinvestigation of the M emission spectrum of uranium-92.

    Science.gov (United States)

    Dellith, Jan; Scheffel, Andy; Terborg, Ralf; Wendt, Michael

    2011-04-01

    The M spectrum of the element uranium was reinvestigated by using both high-resolution wavelength dispersive (WD) spectrometry as well as energy dispersive (ED) spectrometry. Thereby we observed relative intensities that deviate from data in the literature. These discrepancies were not only observed for the weak U M lines but also for major lines. By measuring the Mα,β region of the spectrum with a PET crystal in second-order reflection, a sufficient energy resolution was achieved to separate Mα(2) (M(5)N(6)) from Mα(1) (M(5)N(7)). The intensity ratio I(M(5)N(6))/I(M(5)N(7)) was determined to be approximately 5%, which is in strong contrast to the data tabulated by White and Johnson [White, E.W. & Johnson, G.G. (1970). X-Ray and Absorption Wavelengths and Two-Theta Tables. ASTM Data Series DS37A, 2nd ed. Philadelphia, PA: American Society for Testing and Materials]. Furthermore M(5)N(7) was clearly observed as the strongest of the M lines that disagrees with data presented by Kleykamp [Kleykamp, H. (1981). Wavelengths of the M X-ray spectra of uranium, neptunium, plutonium, and americium. Z Naturforsch 36a, 1388-1390], who reported Mβ (M(4)N(6)) as the strongest line. Also, after White and Johnson (1970), the line M(2)N(4) should be more intense than M(3)O(5) by a factor of 5. Both our WD and ED spectra show clearly that M(3)O(5) is stronger than M(2)N(4). Altogether, we observed in our WD spectra 26 M lines. In some cases untypical large differences between the line energies given by Bearden [Bearden, J.A. (1967). X-ray wavelengths. Rev Mod Phys 39, 78-124] and measured by us were observed.

  13. Fabrication of uranium-based ceramics using internal gelation for the conversion of trivalent actinides; Herstellung uranbasierter Keramiken mittel interner Gelierung zur Konversion trivalenter Actinoiden

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Henrik

    2012-07-01

    Alternative to today's direct final waste disposal strategy of long-lived radionuclides, for example the minor actinides neptunium, americium, curium and californium, is their selective separation from the radioactive wastestream with subsequent transmutation by neutron irradiation. Hereby it is possible to obtain nuclides with a lower risk-potential concerning their radiotoxicity. 1 neutron irradiation can be carried out either with neutron sources or in the next generation of nuclear reactors. Before the treatment, the minor actinides need to be converted in a suitable chemical and physical form. Internal gelation offers a route through which amorphous gel-spheres can be obtained directly from a metal-salt solution. Due to the presence of different types of metal ions as well as changing pH-values in a stock solution, a complex hydrolysis behaviour of these elements before and during gelation occurs. Therefore, investigations with uranium and neodymium as a minor actinide surrogate were carried out. As a result of suitable gelation-parameters, uraniumneodymium gel-spheres were successfully synthesised. The spheres also stayed intact during the subsequent thermal treatment. Based upon these findings, uranium-plutonium and uranium-americium gels were successfully created. For theses systems, the determined parameters for the uraniumneodymium gelation could also be applied. Additionally, investigations to reduce the acidity of uranium-based stock solutions for internal gelation were carried out. The necessary amount of urea and hexamethylenetetramine to induce gelation could hereby be decreased. This lead to a general increase of the gel quality and made it possible to carry out uranium-americium gelation in the first place. To investigate the stability of urea and hexamethylenetetramine, solutions of these chemicals were irradiated with different radiation doses. These chemicals showed a high stability against radiolysis in aqueous solutions.

  14. Training Course of Experimental Chemistry in the Nuclear Fuel Cycle: Solid State and Solution Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    In this experimental study program in Tohoku University, basic experiments were done by the participants. First one is the hydrogen reduction experiment of the mixture of UO{sub 2} and ZrO{sub 2}. Second one is to observe microscopic structure of solid solution of UO{sub 2} and ZrO{sub 2} using SEM/EDX and XRD system, simulated fuel debris. Third one is milking process of {sup 239}Np from {sup 243}Am by solvent extraction using Tri-n-Octylamine (TOA). Last one is solvent extraction in PUREX by the simulated mixed aqueous solution of U, {sup 85}Sr and {sup 239}Np which is represented minor actinide elements included in the spent nuclear fuel. Uranium is separated from aqueous phase to organic phase during solvent extraction procedure using TBP and dodecane. Also, neptunium can be extracted to organic phase as nitric acid concentration change. The extraction behavior of neptunium is different by oxidation state in aqueous phase. The behavior of neptunium is represented as a combined form of these oxidation states in experiment. Therefore, because the oxidation states of neptunium can be controlled by controlling the concentration of nitric acid, the extractability of neptunium can be controlled.

  15. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    International Nuclear Information System (INIS)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean-Francois; Ams, David; Richmann, M.K.; Khaing, H.; Swanson, J.S.

    2010-01-01

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  16. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  17. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    International Nuclear Information System (INIS)

    Albrecht-Schmitt, Thomas Edward

    2013-01-01

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry

  18. Method for Determination of Neptunium in Large-Sized Urine Samples Using Manganese Dioxide Coprecipitation and 242Pu as Yield Tracer

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of 237Np. 242Pu was utilized as a nonisotopic tracer to monitor the chemical yield of 237Np. A sequential injection extraction chr...... and rapid analysis of neptunium contamination level for emergency preparedness....

  19. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  20. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  1. Comparison of extraction chromatography and a procedure based on the molecular recognition method as separation methods in the determination of neptunium and plutonium radionuclides

    International Nuclear Information System (INIS)

    Strisovska, Jana; Galanda, Dusan; Drabova, Veronika; Kuruc, Jozef

    2012-01-01

    The potential of various types of sorbents for separation of radionuclides of plutonium and neptunium were examined. Extraction chromatography and a procedure based on the molecular recognition method were used for the separation. The suitability of the various sorbent types and brands for this purpose was determined. (orig.)

  2. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  3. Utilization of actinide as cell active materials. JAERI's nuclear research promotion program, H10-034-1. Contract research

    International Nuclear Information System (INIS)

    Shiokawa, Yoshinobu; Yamamura, Tomoo; Watanabe, Nobutaka; Umekita, Satoshi

    2002-03-01

    The electrochemical properties of U, Np, Pu and Am were discussed from the viewpoint of cell active materials From the thermodynamic properties and the kinetics of electrode reactions, it is found that neptunium in the aqueous system and some uranium complexes in the polar aprotic solvents can be utilized as an active material of the redox flow battery for the electric power storage. Moreover, A new actinide redox battery is proposed in the present article: the galvanic cell is expressed by Electrode(-) |An 3+ , An 4+ | |AnO 2 + , AnO 2 2+ | Electrode(+). The actinide batteries are expected to have more excellent charge and discharge performance than the current vanadium battery because of the great similarity of chemical species in the each redox couple. The standard rate constants and formal potential of Np(VI)/Np(V) and Np(IV)/Np(III) couples were determined by the cyclic voltammetry and the neptunium battery was demonstrated. For the development of uranium redox flow battery, the redox reaction mechanisms and redox potentials of uranium -diketones including new -tetraketones were elucidated and it was found the open circuit voltage is increased with the acid dissociation constant of the ligand. (author)

  4. Analysis of 137Cs in fission based neutron dosimetry

    International Nuclear Information System (INIS)

    Peltonen, T.

    1995-11-01

    137 Cs analysis is based on dissolving an irradiated fission dosimeter and chemically separating the cesium from the rest of the fission material. The samples consisted of uranium and neptunium in the form of metal or oxide. The uranium samples were dissolved in nitric acid and the neptunium samples in a mixture of nitric acid and chloric acid with addition of hydrogen peroxide. Cs was precipitated into a mixture of ammonium molyndophoshate and cellulose powder. A preparate for measurement was made from the precipitate and covered with polyethen plastic. Since other fission products than cesium were precipitated as well from the more recently irradiated samples, the activity measurements could not be carried out with a NaI(Tl) cavity crystal, but had to be made with a less efficient but more selective germanium semiconductor crystal. The method is well suited for 137 Cs determination, especially for older dosimeters where the more short-lived fission products have decayed. (orig.) (6 refs., 7 figs., 7 tabs.)

  5. Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste, April--June 1978

    International Nuclear Information System (INIS)

    Herald, W.R.; Roberts, R.C.

    1978-01-01

    A series of runs was performed in which waste processing facility influent was spiked with americium-241, neptunium-237, and uranium-233 and run through the ultrafiltration and reverse osmosis (RO) units. The results of these experiments show that the ultrafiltration membranes are ionic dependent, whereas the RO unit is not. Membrane irradiation studies have been started. Continuous run parameters are being verified through a series of experiments. The small laboratory column tests were continued this quarter on several adsorbents. Decontamination factors were calculated for these adsorbents in removing neptunium-237 and americium-241 from waste solutions. Tests were continued with the 2-in. Engineering Columns using ultrafiltration product spiked with uranium-233. A 6-in. diameter column was installed in the combined raffinate line from the three Engineering Columns. This ''mixed bed'' column will polish the waste solution that is returned to the waste processing facility tanks. A quality control program was started this quarter

  6. Study of the oxidation-reduction kinetics involved in the Np(V) + Fe(II) in equilibrium Np(IV) + Fe(III) system in nitric acid solutions

    International Nuclear Information System (INIS)

    Jao, Y.

    1975-08-01

    Ferrous nitrate-hydrazine is one of the more attractive alternate reactants to the currently used reagent, ferrous sulfamate, for partitioning plutonium from neptunium and uranium. An understanding of the kinetics of the reduction of Np(VI) to Np(IV) by ferrous nitrate-hydrazine is needed before a satisfactory evaluation of the feasibility of this reductant in actinide element separations can be made. The purpose of this work was to study the kinetics and mechanisms of the reduction of Np(V) by Fe(II) and the oxidation of Np(IV) by Fe(III) in 1-2 M nitric acid solutions. The acid concentration range was chosen to include that typically used in the separation of plutonium from neptunium and uranium by solvent extraction with tributylphosphate. The forward and reverse rate constants, hydrogen ion dependence, temperature dependence, ionic strength effects and nitrate ion influence were determined. The proposed reaction mechanisms involve protonation of the NpO 2 + ions and hydroxyoxygenation of Np 4 + ions. (LK)

  7. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  8. A contribution to the study of thorium and neptunium (IV) complexes in acidic phosphoric media; Contribution a l`etude des complexes de thorium et de neptunium (IV) en milieux phosphoriques acides

    Energy Technology Data Exchange (ETDEWEB)

    Ghafar, M

    1995-11-30

    The thorium and neptunium (IV) phosphate complexes formation in acidic media has been investigated, essentially at the indicator`s level with {sup 227} Th, {sup 234} Th, {sup 235} Np and {sup 239} Np. Solvent extraction, a commonly used method for determining stability constants in solutions, was used with HDEHP in toluene. In order to get a better understanding of inorganic transparent gels formation in phosphoric aqueous solutions, the effect of the thorium concentration is also studied. Specific experimental conditions have been chosen in order to avoid the formation of chelate and hydrolysis in the aqueous solution. The equilibrium constants and stability constants are calculated, and the results are compared with literature. The results show that increasing the thorium concentration does not lead to polymer forms. refs., 42 figs., 19 tabs.

  9. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  10. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  11. Complexation of Np(V) in aqueous solutions

    International Nuclear Information System (INIS)

    Askarieh, M.M.; Hansford, M.I.; Staunton, S.; Rees, L.V.C.

    1992-01-01

    Various parameters affecting the diffusion coefficient of neptunium (V) in clay systems have been studied; e.g. clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands. Several well established techniques have been employed to obtain stability constants for the neptunium systems; Np(V)/EDTA and Np(V)/citrate, Np(V)/Aldrich Humic Acid (AHA), Np(V)/Gorleben Humic Acid (GHA) and for the uranium systems U(VI)/EDTA, U(VI)/citrate and U(VI)/AHA. The experimental techniques employed were UV/visible spectroscopy, polarography, solvent extraction and ion exchange. (Author)

  12. Complexation of Np(V) in aqueous solutions

    International Nuclear Information System (INIS)

    Askarieh, M.M.; Hansford, M.I.; Staunton, S.; Rees, L.V.C.

    1993-01-01

    Various parameters affecting the diffusion coefficient of neptunium (V) in clay systems have been studied; e.g. clay mineralogy, the charge compensating cation in the clay, the ionic strength of a background perchlorate solution and the presence of three organic ligands. Several well established techniques have been employed to obtain stability constants for the neptunium systems; Np(V) EDTA and Np(V)/citrate, Np(V)/Aldrich Humic Acid (AHA), Np(V)/Gorleben Hulic Acid (GHA) and for the uranium systems U(VI)/EDTA, U(VI)/citrate and U(VI)/AHA. The experimental techniques employed were UV/visible spectroscopy, polarography, solvent extraction and ion exchange. (author). 50 refs., 24 figs., 9 tabs

  13. The effect of organics on the sorption of strontium, caesium, iodine, neptunium, uranium and europium by glacial sand

    International Nuclear Information System (INIS)

    Haigh, D.; Higgo, J.J.W.; Williams, G.M.; Hooker, P.J.; Ross, C.A.M.; Falck, W.E.; Allen, M.A.; Warwick, P.

    1991-01-01

    This study has been undertaken within the Commission of the European Communities MIRAGE II program on the determination of radionuclides in the geosphere. Preliminary batch sorption experiments have been carried out to study the behaviour of strontium, caesium, iodine, europium and uranium in a glacial sand-groundwater system. The effect of (i) the presence or absence of natural organic material and (ii) the addition of increasing quantities of EDTA or acetate on the distribution ratios was determined. In some cases speciation modelling was used as an aid to designing the experiments and interpreting the results. The aim of this work was to select suitable tracers for use in field experiments at Drigg. Cumbria and the results are intended to aid the design of future experiments rather than to provide a complete analysis of the radionuclide-organic interactions. 11 tabs., 49 refs

  14. Effect of mass of neptunium V in intestinal absorption in the monkey and the rat

    International Nuclear Information System (INIS)

    Metivier, H.; Masse, R.; Lafuma, J.

    1983-01-01

    The coefficient of gastrointestinal transfer of neptunium as pentavalent neptunyl nitrate was studied in rats and monkeys as a function of the ingested mass. In both species, the transfer coefficient ranged between 1.10 - 3 - 1.10 - 2 when the administered mass varied from 0.3 ng to 2 mg per kg. At low concentrations, the values obtained in the monkey are about twice as low as thoses obtained in the rat. Considering the strong urinary excretion, the amounts retained at the organ levels represent about 0.1% in the rat and 0.04% in the monkey for low concentrations. The values obtained are usually in good agreement with the few data published on the rat [fr

  15. The reduction of plutonium (IV) and neptunium (VI) ions by N,N-ethyl (hydroxyethyl) hydroxylamine in nitric acid

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Baranov, S.M.; Mezhov, E.A.; Taylor, R.J.; May, I.

    1999-01-01

    The kinetics of the reduction of neptunium (VI) and plutonium (IV) ions in nitric acid solution by a new rapid salt free reductant, N,N-ethyl (hydroxyethyl) hydroxylamine, have been studied and rate equations determined. Under equivalent conditions, both Np(VI) and Pu(IV) are reduced faster than by the related reagent, N,N-diethyl hydroxylamine, and it is suggested that this is due to the introduction of the hydroxy group into the reductant molecule. Possible reaction mechanisms have been suggested to account for the observed reaction stoichiometry. (orig.)

  16. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  17. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  18. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  19. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  20. Forefront of PUREX system engineering. Chemistry and engineering of ruthenium, technetium and neptunium

    International Nuclear Information System (INIS)

    2004-07-01

    The paper reports the activity of the research committee organized by the Atomic Energy Society of Japan on 'Ruthenium and Technetium Chemistry in the PUREX System', with focusing on basic behaviors of ruthenium, technetium and neptunium in the PUREX process, the principles of plant design, and behaviors during the final waste treatment. The scope of the work includes the following major topics: (1) basic solution and solid-state chemistry; (2) basic solution and solid-state chemistry of minor actinides in particular, Np; (3) partitioning chemistry in the PUREX system and environmental behavior of the components; (4) processes of recovery, purification, and utilization of rare metal fission products; (5) field data on plant design, operation, decontamination, and decommissioning; (6) numerical process simulations and process control technologies; (7) compilation of a data base for process chemistry and plant engineering. (S. Ohno)

  1. Actinide nuclides in environmental air and precipitation samples after the Chernobyl accident

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1988-01-01

    The present paper describes the analysis of isotopes of uranium, neptunium, plutonium, americium and curium, in air and deposition samples taken at our laboratory site 10 km north of Munich, subsequent to the Chernobyl accident. Uranium-234, 237 U, 238 U, 239 Np, 238 Pu, 239+240 Pu and 242 Cm have been identified and upper limits of detection have been established for 241 Am and 244 Cm. Deposition and air concentration values are discussed. 12 refs., 1 fig., 2 tabs

  2. Possible uranium sources of Streltsovsky uranium ore field

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    The uranium deposit of the Late Jurassic Streltsovaky caldera in Transbaikalia of Russia is the largest uranium field associated with volcanics in the world, its uranium reserves are 280 000 t U, and it is the largest uranium resources in Russia. About one third of the caldera stratigraphic pile consists of strongly-altered rhyolites. Uranium resources of the Streltsovsky caldera are much larger than any other volcanic-related uranium districts in the world. Besides, the efficiency of hydrothermal alteration, uranium resources appear to result from the juxtaposition of two major uranium sources; highly fractionated peralkaline rhyolites of Jurassic age in the caldera, and U-rich subalkaline granites of Variscan age in the basement in which the major uranium-bearing accessory minerals were metamict at the time of the hydrothermal ore formation. (authors)

  3. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  4. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  5. Neptunium(V) sorption onto kaolinite in the absence and presence of CO2

    International Nuclear Information System (INIS)

    Amayri, S.; Reich, Ta.; Reich, T.

    2005-01-01

    Full text of publication follows: The adsorption of heavy metals on clay minerals such as kaolinite is an important process that affects the migration and retardation of neptunium and other actinides in the geosphere. The sorption of Np(V) onto the reference clay mineral kaolinite KGa-1b was investigated both by batch experiments and EXAFS measurements. The aim of our study was to combine macroscopic studies (batch experiments) with microscopic techniques (EXAFS) to study the Np(V) speciation at the kaolinite surface. The batch experiments were done under relevant environmental conditions with Np(V) concentrations of 10 -11 and 10 -12 mol/L. Sorption samples were prepared in 0.1 mol/L NaClO 4 , 4 g/L kaolinite, pH 6.0 to 10.5, presence and absence of ambient CO 2 , and 60-h equilibration. The sorption curves for 10 -11 and 10 -12 mol/L Np(V) obtained in the presence and absence of CO 2 , respectively, show that the adsorption edge occurs at pH 8.5. The uptake of Np(V) by kaolinite strongly increased above pH 7.0 and reached its sorption maximum (70 %) at pH 9.0. Above pH 9.0, the amount of Np(V) sorbed onto kaolinite decreased and reached ca. 30 % at pH 10.5 due to the formation of Np(V) carbonato species in the aqueous solution. In the CO 2 -free system, the sorption of Np(V) increased continuously with pH until the sorption maximum of 100 % was reached at pH 10.5. The same sorption behavior was found in batch experiments in the CO 2 equilibrated system with Np concentrations ranging from 1 μmol/L to 10 μmol/L. EXAFS experiments on some of these batch samples indicated the formation of Np(V) carbonato species at the kaolinite surface at pH 9.0 where the uptake of Np(V) by kaolinite reaches its maximum [1]. [1] T. Reich, S. Amayri, Ta. Reich, J. Drebert, A. Jermolajev, P. Thoerle, N. Trautmann, C. Hennig, S. Sachs, Feasibility of EXAFS experiments at the Np L-edge to investigate neptunium sorption on kaolinite, Institut fuer Kernchemie, Universitaet Mainz, Annual

  6. MOX-fuel inherent proliferation-protection due to {sup 231}Pa admixture

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Glebov, V.B.; Apse, V.A.; Shmelev, A.N. [Moscow Engineering Physics Institute (State University), Moscow (Russian Federation)

    2003-07-01

    The proliferation protection levels of MOX-fuel containing small additions of protactinium are evaluated for equilibrium closed and open cycles of a light-water reactor (LWR).Analysis of the ways to the proliferation protection of MOX-fuel by small {sup 231}Pa addition and comparison of this way with another options for giving MOX-fuel the proliferation self-protection property enable us to make the 3 following conclusions: -1) Unique nature of protactinium as a small addition to MOX-fuel is determined by the following properties: - Protactinium is available in the nature (uranium ore) as a long-lived mono-isotope {sup 231}Pa, - under neutron irradiation, {sup 231}Pa is converted into {sup 232}U, which is a long-term source of high energy gamma-radiation and practically non-separable from main fuel mass, - essentially, {sup 231}Pa is a high-quality burnable neutron absorber. -2) From the proliferation self-protection point of view, nuclear fuel cycle closure with fuel recycle is a preferable option because, under this condition, introduction of protactinium into MOX-fuel allows to create the inherent radiation barrier which is in action during full cycle of fuel management at the level corresponding to the accepted today criterion of the Spent Fuel Standard (SFS). In particular, the considered example of multiple MOX-fuel recycle with small addition of {sup 231}Pa (0.2% HM) at each cycle demonstrates a possibility to reach the proliferation protection level of fresh MOX-fuel corresponding to once irradiated fuel with the same cooling time. In this case, the lethal dose (at 30 cm distance from fuel assembly) is received within the minute range. -3) Introduction of {sup 231}Pa into MOX-fuel composition in amount of 0.5% HM allows to prolong action of the SFS from 100 to 200 years. If {sup 231}Pa content is increased up to 5% HM, then MOX-fuel conserves the proliferation self-protection property in respect to short-term unauthorized actions for 200-year period of its

  7. {open_quotes}Transmutation efficiency calculation in the blanket on melted salts with central neptunium target{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Kolesov, V.F.; Shtarev, S.K.; Khoruzhiy, V.K. [Russia Federal Nuclear Center, Arzamas (Russian Federation)] [and others

    1995-10-01

    In the limits of ABC project version of two-sectional reactor system in the form of combination of subcritical blanket on melted salts and multiplying target from threshold fissile material {sup 237}Np is considered. This research is the development of the VNIIEF`s earlier work`s (Russia) investigating of usage possibilities in ABC project the conception of multisectional blankets with single-sided neutron coupling between sections. With the help of Monte-Carlo program the calculations results of system mentioned are given. The possibility of accelerator`s considerable power reduction at the account of thorium target substitution with neptunium-237 multiplying target is shown.

  8. Strong crystal field effect in Np{sup 4+}:ThCl{sub 4} - optical absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, Z. [Instytut Niskich Temperatur i Badan Strukturalnych, Polska Akademia Nauk, 50-950 Wroclaw 2, Skr. Poczt. 1410 (Poland); Krupa, J.C. [Laboratoire de Radiochimie, Institut de Physique Nucleaire, BP 1, 91406 Orsay Cedex (France)

    1998-12-21

    Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a ThCl{sub 4} single crystal are reported. The recorded spectra are complex, pointing to the presence of an Np{sup 3+} impurity. The electronic transitions assigned to the Np{sup 4+} ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 36 cm{sup -1} have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host. (author)

  9. Process for the preparation of uranium dioxide

    International Nuclear Information System (INIS)

    Watt, G.W.; Baugh, D.W. Jr.

    1977-01-01

    An actinide dioxide, e.g., uranium dioxide, plutonium dioxide, neptunium dioxide, etc., is prepared by reacting the actinide nitrate hexahydrate with sodium dithionite as a first step; the reaction product from this first step is a novel composition of matter comprising the actinide sulfite tetrahydrate. The reaction product resulting from this first step is then converted to the actinide dioxide by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) to a temperature of about 500 0 to about 950 0 C for about 15 to about 135 minutes. If the reaction product resulting from the first step is, prior to carrying out the second heating step, exposed to an oxygen-containing atmosphere such as air, the resultant product is a novel composition of matter comprising the actinide oxysulfite tetrahydrate which can also be readily converted to the actinide dioxide by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) at a temperature of about 400 0 to about 900 0 C for about 30 to about 150 minutes. Further, the actinide oxysulfite tetrahydrate can be partially dehydrated at reduced pressures (and in the presence of a suitable dehydrating agent such as phosphorus pentoxide). The partially dehydrated product may be readily converted to the dioxide form by heating it in the absence of an oxygen-containing atmosphere (e.g., nitrogen) at a temperature of about 500 0 to about 900 0 C for about 30 to about 150 minutes. 16 claims

  10. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  11. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  12. Modelling interaction of deep groundwaters with bentonite and radionuclide speciation

    International Nuclear Information System (INIS)

    Wanner, H.

    1986-04-01

    In the safety analysis recently reported for a potential Swiss high-level waste repository, radionuclide speciation and solubility limits are calculated for expected granitic groundwater conditions. This report describes a thermodynamic model which is used to estimate the chemical composition of the pore water in compacted sodium bentonite. The model is based on available experimental data and describes the basic reactions between bentonite and groundwater by an ion-exchange model for sodium, potassium, magnesium, and calcium. The model assumes equilibrium with calcite as long as sufficient carbonates remain in the bentonite, as well as quartz saturation. The long-term situation is modelled by the assumption that the near-field of a deep repository behaves like a mixing tank. It is found that sodium bentonite will slowly be converted to calcium bentonite. The modelled composition of the pore water of compacted sodium bentonite is used to estimate radionuclide solubilities in the near-field of a deep repository. The elements considered are: uranium, neptunium, plutonium, thorium, americium, and technetium. The redox potential in the near-field is assumed to be controlled by the corrosion products of the iron canister. Except for uranium and neptunium, radionuclide solubilities turn out to be lower under the modelled near-field conditions than in the groundwater of the surrounding granitic host rock. Uranium and neptunium solubility might be higher by orders of magnitude in the near-field than in the far-field. From the chemical point of view, calcium bentonite seems to be more stable than sodium bentonite in the presence of Swiss Reference Groundwater. The use of calcium bentonite instead of sodium bentonite will improve the reliability in the prediction of source terms for radionuclide transport in the geosphere. (author)

  13. Rapid Multisample Analysis for Simultaneous Determination of Anthropogenic Radionuclides in Marine Environment

    DEFF Research Database (Denmark)

    Qiao, Jixin; Shi, Keliang; Hou, Xiaolin

    2014-01-01

    An automated multisample processing flow injection (FI) system was developed for simultaneous determination of technetium, neptunium, plutonium, and uranium in large volume (200 L) seawater. Ferrous hydroxide coprecipitation was used for the preliminary sample treatment providing the merit of sim...... reliable data with reduced analytical cost in both radioecology studies and nuclear emergency preparedness....

  14. Nuclear magnetic resonance and the question of 5F electron localization in the actinides

    International Nuclear Information System (INIS)

    Fradin, F.Y.

    1976-01-01

    Nuclear magnetic resonance results are presented for a number of NaCl-type compounds and cubic Laves-phase type compounds of uranium, neptunium, and plutonium. Special emphasis is placed on the Knight shift and spin-lattice relaxation time measurements and their interpretation in terms of localized or itinerant pictures of the 5Line integral electrons

  15. Periodic Table of Elements: Los Alamos National Laboratory

    Science.gov (United States)

    metal buttons (photo courtesy Lawrence Berkeley National Laboratory) Neptunium metal buttons (photo Configuration: [Rn]7s25f46d1 Oxidation States: 7, 6, 5, 4, 3, 2 History Named for the planet Neptune (named bombarding uranium with neutrons followed by beta decay would lead to the formation of element 93. In 1934

  16. Analytical method of uranium (IV) and uranium (VI) in uranium ores and uranium-bearing rocks

    International Nuclear Information System (INIS)

    Shen Zhuqin; Zheng Yongfeng; Li Qingzhen; Zhong Miaolan; Gu Dingxiang

    1995-11-01

    The best conditions for keeping the original valences of uranium during the dissolution and separation procedure of geological samples (especially those micro uranium-bearing rock) were studied. With the exist of high concentration protectants, the sample was decomposed with concentration HF at 40 +- 5 degree C. The U(VI) was dissolved completely and formed stable complex UO 2 F 2 , the U(IV) was precipitated rapidly and carried by carrier. Quantitative separation was carried out immediately with suction. The decomposition of sample and separation of solid/liquid phases was completed within two minutes. After separation, the U(IV) and U(VI) were determined quantitatively with laser fluorescence or voltametry respectively according to the uranium content. The limit of detection for this method is 0.7 μg/g, RSD is 10.5%, the determinate range of uranium is 2 x 10 -6 ∼10 -1 g/g. The uranium contents and their valence state ratio were measured for more than one hundred samples of sand stone and granite, the accuracy and precision of these results are satisfactory for uranium geological research. (12 tabs.; 11 refs.)

  17. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  18. Precise coulometric titration of uranium in a high-purity uranium metal and in uranium compounds

    International Nuclear Information System (INIS)

    Tanaka, Tatsuhiko; Yoshimori, Takayoshi

    1975-01-01

    Uranium in uranyl nitrate, uranium trioxide and a high-purity uranium metal was assayed by the coulometric titration with biamperometric end-point detection. Uranium (VI) was reduced to uranium (IV) by solid bismuth amalgam in 5M sulfuric acid solution. The reduced uranium was reoxidized to uranium (VI) with a large excess of ferric ion at a room temperature, and the ferrous ion produced was titrated with the electrogenerated manganese(III) fluoride. In the analyses of uranium nitrate and uranium trioxide, the results were precise enough when the error from uncertainty in water content in the samples was considered. The standard sample of pure uranium metal (JAERI-U4) was assayed by the proposed method. The sample was cut into small chips of about 0.2g. Oxides on the metal surface were removed by the procedure shown by National Bureau of Standards just before weighing. The mean assay value of eleven determinations corrected for 3ppm of iron was (99.998+-0.012) % (the 95% confidence interval for the mean), with a standard deviation of 0.018%. The proposed coulometric method is simple and permits accurate and precise determination of uranium which is matrix constituent in a sample. (auth.)

  19. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  20. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  1. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  2. Method for the recovery of actinide elements from nuclear reactor waste

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid

  3. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  4. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  5. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  6. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    International Nuclear Information System (INIS)

    Tits, Jan; Laube, Andreas; Wieland, Erich; Gaona, Xavier

    2014-01-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO 2 ) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO 2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO 2 R d values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R d values for the three redox states are also identical at pH = 10. While the R d values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R d values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO 2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R d values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the

  7. Computational Study on Mössbauer Isomer Shifts of Some Organic-neptunium (IV Complexes

    Directory of Open Access Journals (Sweden)

    Masashi Kaneko

    2015-12-01

    Full Text Available Relativistic DFT calculations are applied to some organo-neptunium (IV complexes, Cp3NpIVX (Cp = η5-C5H5; X = BH4, Cl, OtBu, Ph, nBu, in order to understand their bonding properties between Np and the ligands. We employ scalar-relativistic ZORA Hamiltonian with all-electron basis set (SARC. The calculated electron densities at Np nucleus position in the complexes at B2PLYP / SARC theory strongly correlate to the experimental Mössbauer isomer shifts of 237Np system. The result of bond overlap population analysis indicates that the bonding strength decreases in order of X = BH4, Cl, OtBu, Ph and nBu. The tendency depends on the degree of the covalent interaction between Np 5f-electron and X ligand. It is suggested that it is important to estimate the bonding contribution of 5f-orbital to understand the electronic state for organo-actinide complexes.

  8. Neptunium immobilization and recovery using phase separated glasses

    International Nuclear Information System (INIS)

    Meaker, T.F.

    1997-01-01

    A phase separated (amorphous) glass has been developed which allows very efficient recovery of +4 valence actinides. The total amount of crystal formation in a heat treated vycor-type glass can be controlled with time, temperature and loading. Heat treatments at lower temperatures and for less time inhibit crystal formation while still allowing significant phase separation. If the Thorium loading exceeds 10 weight percent oxide, crystal formation during heat treatment may not be avoided. The total amount of crystal growth has a direct affect on thorium leachability. An increase in crystal formation limits the Th recovery significantly. High thorium loaded glasses (15 weight percent) with heat treatments (increased crystal formation) leach at approximately the same rate as non-heat treated glasses. A phase separated (amorphous) glass has been produced using thorium as a surrogate for neptunium. Two different homogeneous vycor compositions targeting 10 and 15 weight percent thorium oxide have been processed, heat treated and leached with concentrated nitric acid at 110 degrees C. Thorium recovery rates have been shown to be considerably better when the glass has been heat treated inducing phase separation that is relatively crystal free. Non-heat treated and crystalline (due to heat treatment) glasses have similar Th recovery rates with respect to surface area. Phase separated amorphous samples were found to have significantly higher thorium concentrations in the leachate compared to non-heat treated and crystalline glasses for all mesh sizes. All glasses had increased thorium concentration in the leachate as surface area increased

  9. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    International Nuclear Information System (INIS)

    Cooper, Bernard R.; Gayanath W. Fernando; Beiden, S.; Setty, A.; Sevilla, E.H.

    2004-01-01

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste)

  10. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  11. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  12. Uranium in Niger; L'uranium au Niger

    Energy Technology Data Exchange (ETDEWEB)

    Gabelmann, E

    1978-03-15

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities. [French] Le document presente la politique de l'Etat dans le cadre de la mise en valeur des ressources d'uranium, les societes minieres existantes et leurs productions, les projets d'exploitation d'uranium et les retombees economiques liees aux activites uraniferes et connexes.

  13. Actinide nuclides in environmental air and precipitation samples after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (West Germany))

    1988-01-01

    The present paper describes the analysis of isotopes of uranium, neptunium, plutonium, americium and curium, in air and deposition samples taken at our laboratory site 10 km north of Munich, subsequent to the Chernobyl accident. Uranium-234, {sup 237}U, {sup 238}U, {sup 239}Np, {sup 238}Pu, {sup 239+240}Pu and {sup 242}Cm have been identified and upper limits of detection have been established for {sup 241}Am and {sup 244}Cm. Deposition and air concentration values are discussed. 12 refs., 1 fig., 2 tabs.

  14. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  15. Pengaruh Kandungan Uranium Dalam Umpan Terhadap Efisiensi Pengendapan Uranium

    OpenAIRE

    Torowati

    2010-01-01

    PENGARUH KANDUNGAN URANIUM DALAM UMPAN TERHADAP EFISIENSI PENGENDAPAN URANIUM. Setiap aktivitas analisis di Laboratorium Kendali Kualitas, Bidang Bahan Bakar Nuklir selalu dihasilkan limbah radioaktif cair. Limbah radioaktif cair di laboratorium masih mengandung uranium yang cukup besar ± 0,600 g U/l dengan keasamaan yang cukup besar pula. Karena uranium mempunyai nilai ekonomis yang cukup tinggi maka perlu USAha untuk mengambil kembali uranium tersebut. Pada kegiatan ini telah dilak...

  16. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  17. Glances on uranium. From uranium in the earth to electric power

    International Nuclear Information System (INIS)

    Valsardieu, C.

    1995-01-01

    This book is a technical, scientific and historical analysis of the nuclear fuel cycle from the origin of uranium in the earth and the exploitation of uranium ores to the ultimate storage of radioactive wastes. It comprises 6 chapters dealing with: 1) the different steps of uranium history (discovery, history of uranium chemistry, the radium era, the physicists and the structure of matter, the military uses, the nuclear power, the uranium industry and economics), 2) the uranium in nature (nuclear structure, physical-chemical properties, radioactivity, ores, resources, cycle, deposits), 3) the sidelights on uranium history (mining, prospecting, experience, ore processing, resources, reserves, costs), 4) the uranium in the fuel cycle, energy source and industrial product (fuel cycle, fission, refining, enrichment, fuel processing and reprocessing, nuclear reactors, wastes management), 5) the other energies in competition and the uranium market (other uranium uses, fossil fuels and renewable energies, uranium market), and 6) the future of uranium (forecasting, ecology, economics). (J.S.)

  18. Investigation of the system ThO2-NpO2-P2O5. Solid solutions of thorium-neptunium (IV) phosphate-diphosphate

    International Nuclear Information System (INIS)

    Dacheux, N.; Thomas, A.C.; Brandel, V.; Genet, M.

    1998-01-01

    Considering that phosphate matrices could be potential candidates for the immobilization of actinides or for the final disposal of the excess plutonium from dismantled nuclear weapons, the chemistry of thorium phosphates has been re-examined. In the ThO 2 -P 2 O 5 system, the thorium phosphate-diphosphate Th 4 (PO 4 ) 4 P 2 O 7 (TPD) can be synthesized by wet and dry chemical processes. The substitution of thorium by other tetravalent actinides like uranium or plutonium can be obtained for 0 4-x Np x (PO 4 ) 4 P 2 O 7 (TNPD) with 0 4+ by Np 4+ in the TPD structure is evaluated to 2.08 (which corresponds to about 52 mol% of thorium replaced by neptunium (IV)). The field of existence of solid solutions Th 4-x U -x Np -x Pu U x U Np x Np Pu x Pu (PO 4 )4P 2 O 7 has been calculated. These solid solutions should be synthesized for 5x U +7x Np +9x Pu ≤15. In the NpO 2 -P 2 O 5 system, the unit cell parameters of Np 2 O(PO 4 ) 2 were refined by analogy with U 2 O(PO 4 ) 2 which crystallographic data have been published recently. For Np 2 O(PO 4 ) 2 the unit cell is orthorhombic with the following cell parameters: a=7.033(2)A, b=9.024(3)A, c=12.587(6)A and V=799(1)A 3 . The unit cell parameter obtained for α-NpP 2 O 7 (a=8.586(1)A) is in good agreement with those already reported in literature. (orig.)

  19. Solubility of neptunium and technetium dioxides in a Yucca Mountain simulated groundwaters

    International Nuclear Information System (INIS)

    Kulyako, Yu.; Perevalov, S.; Malikov, D.; Myasoedov, B.; Atkins-Duffin, Cynthia E.

    2005-01-01

    Full text of publication follows: Solubility of NpO 2 and TcO 2 in the Yucca Mountain simulated ground waters J-13 and UE-25p-1 were studied. It is shown that contents of the dissolved neptunium and technetium in simulated groundwater (SGW) depend on solid/liquid phase ratio in these systems under ambient conditions. Average values of NpO 2 solubility in the suspensions of J-13 SGW are equal to (1.1±0.2) x 10 -6 M, (4.7±0.5) x 10 -6 M and (1.3±0.2) x 10 -5 M at solid/liquid ratios (mg/mL) of 0.4, 2.5 and 9.8 respectively. Average solubility values of NpO 2 in the suspensions of UE-25p-1 SGW are equal to (1.6±0.2) x 10 -7 M, (4.3±0.7) x 10 -7 M and (4.2±1.2) x 10 -6 M for solid/liquid ratios (mg/mL) of 1.2, 3.7 and 18.6, respectively. At equal solid/liquid ratios the solubility of NpO 2 in J-13 SGW is higher than that in UE-25p-1 SGW. At equal contents of solid phase in the suspensions solubility of TcO 2 in J-13 SGW are close to those in UE-25p-1 SGW and they are approximately proportional to the solid/liquid ratio. Average values of TcO 2 solubility in the suspensions of J-13 SGW are equal to (3.0±0.2) x 10 -5 M, (1.7±0.2) x 10 -4 , (6.2±0.2) x 10 -4 M at solid/liquid ratios (mg/mL) of 0.6, 4.8 and 15.5 respectively. Average values of TcO 2 solubility in the suspensions of UE-25p-1 SGW are equal to (5.8±0.3) x 10 -5 M, (2.2±0.1) x 10 -4 M and (3.8±0.2) x 10 -4 M at solid/liquid ratios 1.6, 7.0 and 13.6 (mg/mL) respectively. The dependence of solubility of NpO 2 and TcO 2 on solid/liquid ratio may be explained by the fact that transition of the neptunium and technetium from solid phase into the liquid one occurs on phase interface owing to the dissolving of Np(V) and Tc(VII) compounds being formed under ambient conditions. (authors)

  20. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  1. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  2. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  3. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  4. Uranium complex recycling method of purifying uranium liquors

    International Nuclear Information System (INIS)

    Elikan, L.; Lyon, W.L.; Sundar, P.S.

    1976-01-01

    Uranium is separated from contaminating cations in an aqueous liquor containing uranyl ions. The liquor is mixed with sufficient recycled uranium complex to raise the weight ratio of uranium to said cations preferably to at least about three. The liquor is then extracted with at least enough non-interfering, water-immiscible, organic solvent to theoretically extract about all of the uranium in the liquor. The organic solvent contains a reagent which reacts with the uranyl ions to form a complex soluble in the solvent. If the aqueous liquor is acidic, the organic solvent is then scrubbed with water. The organic solvent is stripped with a solution containing at least enough ammonium carbonate to precipitate the uranium complex. A portion of the uranium complex is recycled and the remainder can be collected and calcined to produce U 3 O 8 or UO 2

  5. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  6. Recovery of uranium from uranium bearing black shale

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Singh, Ajay K.

    2016-01-01

    Black shale is the unconventional resource of uranium. Recovery of uranium from black shale has been carried out by the following steps: i) size reduction, ii) leaching of uranium in the aqueous medium, iii) fluoride ion removal, iv) solvent extraction of uranium from the aqueous leach solution, v) scrubbing of the loaded solvent after extraction to remove impurities as much as possible and vi) stripping of uranium from the loaded organic into the aqueous phase. Leaching of black shale has been carried out in hydrochloric acid. Free acidity of the leach solution has been determined by potentiometric titration method. Removal of fluoride ions has been done using sodium chloride. Solvent extraction has been carried out by both tributyl phosphate and alamine-336 as extractants. Scrubbing has been tried with oxalic acid and sulphuric acid. Stripping with sodium carbonate solution has been carried out. Overall recovery of uranium is 95%. (author)

  7. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  8. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  9. Method for the recovery of actinide elements from nuclear reactor waste

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.

    1979-01-01

    A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.

  10. Recovery actinide values

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Delphin, W.H.; Mason, G.W.

    1979-01-01

    A process is described for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of di-hexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid. (author)

  11. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  12. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  13. High-temperature thermal conductivity of uranium chromite and uranium niobate

    International Nuclear Information System (INIS)

    Fedoseev, D.V.; Varshavskaya, I.G.; Lavrent'ev, A.V.; Oziraner, S.N.; Kuznetsova, D.G.

    1979-01-01

    The technique of determining thermal conductivity coefficient of uranium niobate and uranium chromite on heating with laser radiation is described. Determined is the coefficient of free-convective heat transfer (with provision for a conduction component) by means of a standard specimen. The thermal conductivity coefficients of uranium chromite and niobate were measured in the 1300-1700 K temperature range. The results are presented in a diagram form. It has been calculated, that the thermal conductivity coefficient for uranium niobate specimens is greater in comparison with uranium chromite specimens. The thermal conductivity coefficients of the materials mentioned depend on temperature very slightly. Thermal conductivity of the materials considerably depends on their porosity. The specimens under investigation were fabricated by the pressing method and had the following porosity: uranium chromite - 30 %, uranium niobate - 10 %. Calculation results show, that thermal conductivity of dense uranium chromite is higher than thermal conductivity of dense uranium niobate. The experimental error equals approximately 20 %, that is mainly due to the error of measuring the temperature equal to +-25 deg, with a micropyrometer

  14. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  15. Uranium rich granite and uranium productive granite in south China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Debao, He [CNNC Key Laboratory of Uranium Resource Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology (China)

    2012-07-15

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  16. Uranium rich granite and uranium productive granite in south China

    International Nuclear Information System (INIS)

    Feng Mingyue; He Debao

    2012-01-01

    The paper briefly introduces the differences between uranium rich granite and uranium productive granite in the 5 provinces of South China, and discusses their main characteristics in 4 aspects, the uranium productive granite is highly developed in fracture, very strong in alteration, often occurred as two-mica granite and regularly developed with intermediate-basic and acid dikes. The above characteristics distinguish the uranium productive granite from the uranium rich granite. (authors)

  17. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  18. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  19. Production of sized particles of uranium oxides and uranium oxyfluorides

    International Nuclear Information System (INIS)

    Knudsen, I.E.; Randall, C.C.

    1976-01-01

    A process is claimed for converting uranium hexafluoride (UF 6 ) to uranium dioxide (UO 2 ) of a relatively large particle size in a fluidized bed reactor by mixing uranium hexafluoride with a mixture of steam and hydrogen and by preliminary reacting in an ejector gaseous uranium hexafluoride with steam and hydrogen to form a mixture of uranium and oxide and uranium oxyfluoride seed particles of varying sizes, separating the larger particles from the smaller particles in a cyclone separator, recycling the smaller seed particles through the ejector to increase their size, and introducing the larger seed particles from the cyclone separator into a fluidized bed reactor where the seed particles serve as nuclei on which coarser particles of uranium dioxide are formed. 9 claims, 2 drawing figures

  20. Uranium 2000 : International symposium on the process metallurgy of uranium

    International Nuclear Information System (INIS)

    Ozberk, E.; Oliver, A.J.

    2000-01-01

    The International Symposium on the Process Metallurgy of Uranium has been organized as the thirtieth annual meeting of the Hydrometallurgy Section of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM). This meeting is jointly organized with the Canadian Mineral Processors Division of CIM. The proceedings are a collection of papers from fifteen countries covering the latest research, development, industrial practices and regulatory issues in uranium processing, providing a concise description of the state of this industry. Topics include: uranium industry overview; current milling operations; in-situ uranium mines and processing plants; uranium recovery and further processing; uranium leaching; uranium operations effluent water treatment; tailings disposal, water treatment and decommissioning; mine decommissioning; and international regulations and decommissioning. (author)

  1. Objectives, Strategies, and Challenges for the Advanced Fuel Cycle Initiative

    International Nuclear Information System (INIS)

    Steven Piet; Brent Dixon; David Shropshire; Robert Hill; Roald Wigeland; Erich Schneider; J. D. Smith

    2005-01-01

    This paper will summarize the objectives, strategies, and key chemical separation challenges for the Advanced Fuel Cycle Initiative (AFCI). The major objectives are as follows: Waste management--defer the need for a second geologic repository for a century or more, Proliferation resistance--be more resistant than the existing PUREX separation technology or uranium enrichment, Energy sustainability--turn waste management liabilities into energy source assets to ensure that uranium ore resources do not become a constraint on nuclear power, and Systematic, safe, and economic management of the entire fuel cycle. There are four major strategies for the disposal of civilian spent fuel: Once-through--direct disposal of all discharged nuclear fuel, Limited recycle--recycle transuranic elements once and then direct disposal, Continuous recycle--recycle transuranic elements repeatedly, and Sustained recycle--same as continuous except previously discarded depleted uranium is also recycled. The key chemical separation challenges stem from the fact that the components of spent nuclear fuel vary greatly in their influence on achieving program objectives. Most options separate uranium to reduce the weight and volume of waste and the number and cost of waste packages that require geologic disposal. Separated uranium can also be used as reactor fuel. Most options provide means to recycle transuranic (TRU) elements--plutonium (Pu), neptunium (Np), americium (Am), curium (Cm). Plutonium must be recycled to obtain repository, proliferation, and energy recovery benefits. U.S. non-proliferation policy forbids separation of plutonium by itself; therefore, one or more of the other transuranic elements must be kept with the plutonium; neptunium is considered the easiest option. Recycling neptunium also provides repository benefits. Americium recycling is also required to obtain repository benefits. At the present time, curium recycle provides relatively little benefit; indeed, recycling

  2. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  3. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  4. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  5. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  6. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  7. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  8. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  9. Rapid column extraction method for actinides and strontium in fish and other animal tissue samples

    International Nuclear Information System (INIS)

    Maxwell III, S.L.; Faison, D.M.

    2008-01-01

    The analysis of actinides and radiostrontium in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes and strontium with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid separation method has been developed that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin R , TRU Resin R and DGA Resin R cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alphaspectrometry. Strontium is collected on Sr Resin R from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and 89/90 Sr are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. Vacuum box cartridge technology with rapid flow rates is used to minimize sample preparation time. (author)

  10. Itinerant ferromagnetism in actinide 5 f -electron systems: Phenomenological analysis with spin fluctuation theory

    Science.gov (United States)

    Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Sakai, Hironori; Matsuda, Tatsuma D.; Yamamoto, Etsuji

    2017-07-01

    We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium, and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi [Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986), 10.1143/JPSJ.55.3553]. The basic and spin fluctuation parameters of the actinide ferromagnets are determined and the applicability of the spin fluctuation theory to actinide 5 f system has been discussed. Itinerant ferromagnets of the 3 d transition metals and their intermetallics follow a generalized Rhodes-Wohlfarth relation between peff/ps and TC/T0 , viz., peff/ps∝(TC/T0) -3 /2 . Here, ps, peff, TC, and T0 are the spontaneous and effective magnetic moments, the Curie temperature, and the width of spin fluctuation spectrum in energy space, respectively. The same relation is satisfied for TC/T0uranium and neptunium ferromagnets below (TC/T0)kink=0.32 ±0.02 , where a kink structure appears in relation between the two quantities. ps increases more weakly above (TC/T0)kink. A possible interpretation with the TC/T0 dependence of ps is given.

  11. Uranium prospecting; La prospection de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Roubault, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    This report is an instruction book for uranium prospecting. It appeals to private prospecting. As prospecting is now a scientific and technical research, it cannot be done without preliminary studies. First of all, general prospecting methods are given with a recall of fundamental geologic data and some general principles which are common with all type of prospecting. The peculiarities of uranium prospecting are also presented and in particular the radioactivity property of uranium as well as the special aspect of uranium ores and the aspect of neighbouring ores. In a third part, a description of the different uranium ores is given and separated in two different categories: primary and secondary ores, according to the place of transformation, deep or near the crust surface respectively. In the first category, the primary ores include pitchblende, thorianite and rare uranium oxides as euxenite and fergusonite for example. In the second category, the secondary ores contain autunite and chalcolite for example. An exhaustive presentation of the geiger-Mueller counter is given with the presentation of its different components, its functioning and utilization and its maintenance. The radioactivity interpretation method is showed as well as the elaboration of a topographic map of the measured radioactivity. A brief presentation of other detection methods than geiger-Mueller counters is given: the measurement of fluorescence and a chemical test using the fluorescence properties of uranium salts. Finally, the main characteristics of uranium deposits are discussed. (M.P.)

  12. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  13. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  14. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  15. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  16. Electrodeposition of Actinide and Lanthanide Elements

    International Nuclear Information System (INIS)

    Baerring, N.E.

    1966-02-01

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given

  17. Electrodeposition of Actinide and Lanthanide Elements

    Energy Technology Data Exchange (ETDEWEB)

    Baerring, N E

    1966-02-15

    Some deposition parameters for the quantitative electrodeposition of hydrolysis products of plutonium were qualitatively studied at trace concentrations of plutonium. The hydrogen ion concentration, the current and the electrolysis time proved to be the determining factors in the quantitative electrolytic precipitation of plutonium, while other factors such as cathode material, the pretreatment of the cathode surface, the nature of the electrolytic anion, and the oxidation state of plutonium in the starting solution were found to be of less importance. The conditions selected for quantitative electrodeposition of plutonium from slightly acid nitrate solutions on a stainless steel cathode were successfully tried also with uranium, neptunium, americium, cerium and thulium. Details of a procedure used for plating mg amounts of plutonium and neptunium on small stainless steel cylinders are also given.

  18. Strong crystal field effect in ? - optical absorption study

    Science.gov (United States)

    Gajek, Z.; Krupa, J. C.

    1998-12-01

    =-1 Results of optical absorption measurements in polarized light on tetravalent neptunium diluted in a 0953-8984/10/50/021/img6 single crystal are reported. The recorded spectra are complex, pointing to the presence of an 0953-8984/10/50/021/img7 impurity. The electronic transitions assigned to the 0953-8984/10/50/021/img8 ion are interpreted in terms of the usual model, following the actual understanding of the neptunium electronic structure and independent theoretical predictions. R.m.s. deviations of the order of 0953-8984/10/50/021/img9 have been obtained for 42 levels fitted with 11 free parameters. The crystal field effect resulting from the fitting is considerably larger than that observed for the uranium ion in the same host.

  19. Speciation of neptunium during migration in clay rock; Speziation von Neptunium bei der Migration in Tongestein

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Daniel

    2011-12-15

    The present work was performed within a fellowship of the interdisciplinary research training group 826 ''trace analysis of elemental species: method development and application'' funded by the German Research Foundation (DFG) and the federal state Rheinland-Pfalz. Aim of this work was to gain new knowledge of the interaction between neptunium and natural clay rock with respect to the disposal of high-level nuclear waste in deep geological formations. The isotope {sup 237}Np with its long half-life of more than two million years will be one of main contributors to the radiotoxicity of the radioactive waste material after storage times of more than 1000 years. In aqueous solution under environmental relevant conditions Np can exist in the oxidation states +IV and +V. Due to its high solubility and higher mobility Np(V) is the much more hazardous species compared to Np(IV). Opalinus Clay (OPA) from Mont Terri, Switzerland, was used as a natural reference material in the migration studies. The focus of this work was on speciation of Np on the mineral surface by synchrotron based X-ray absorption spectroscopy (EXAFS/XANES). The interaction between Np(V) and OPA was studied in batch sorption and diffusion experiments in dependence of various experimental parameters (e.g. pH, temperature, background electrolyte, effect of humic acid, concurrence with U(VI), aerobic/anaerobic conditions). The investigation of Np speciation was performed on two types of samples. Powder samples from batch experiments were prepared under aerobic and anaerobic conditions and measured by EXAFS spectroscopy. Diffusion samples and OPA thin sections contacted with Np(V) were analyzed by locally resolved μ-XANES measurements on enrichments of Np. A combination with μ-XRF (X-ray fluorescence) mapping and μ-XRD (X-ray diffraction) measurements provided further information about the spatial distribution of Np and other elements contained in OPA as well as crystalline mineral

  20. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  1. Formation mechanism of uranium minerals at sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Li Shengfu; Zhang Yun

    2004-01-01

    By analyzing the behavior and existence form of uranium in different geochemical environments, existence form of uranium and uranium minerals species, this paper expounds the formation mechanism of main commercial uranium mineral--pitchblende: (1) uranium is a valence-changeable element. It is reactivated and migrates in oxidized environment, and is reduced and precipitated in reducing environment; (2) [UO 2 (CO 3 ) 3 ] 4- , [UO 2 (CO 3 ) 2 ] 2- coming from oxidized environment react with reductants such as organic matter, sulfide and low-valence iron at the redox front to form simple uranium oxide--pitchblende; (3)the adsorption of uranium by organic matter and clay minerals accelerates the reduction and the concentration of uranium. Therefore, it is considered, that the reduction of SO 4 2- by organic matter to form H 2 S, and the reduction of UO 2 2+ by H 2 S are the main reasons for the formation of pitchblende. This reaction is extensively and universally available in neutral and weakly alkaline carbonate solution. The existense of reductants such as H 2 S is the basic factor leading to the decrease of Eh in environments and the oversaturation of UO 2 2+ at the redox front in groundwater, thus accelerating the adsorption and the precipitation of uranium

  2. Measurement of total alpha activity of neptunium, plutonium, and americium in highly radioactive Hanford waste by iron hydroxide precipitation and 2-heptanone solvent extraction

    International Nuclear Information System (INIS)

    Maiti, T.C.; Kaye, J.H.

    1992-06-01

    An improved method has been developed to concentrate the major alpha-emitting actinide elements neptunium, plutonium, and americium from samples with high salt content such as those resulting from efforts to characterize Hanford storage tank waste. Actinide elements are concentrated by coprecipitation of their hydroxides using iron carrier. The iron is removed by extraction from 8M HCI with 2-heptanone. The actinide elements remain in the aqueous phase free from salts, iron, and long-lived fission products. Recoveries averaged 98 percent

  3. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  4. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  5. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  6. Combined transuranic-strontium extraction process

    Science.gov (United States)

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  7. Device for the determination of concentrations of fissile and/or fertile materials by means of x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Neuber, J.

    1975-01-01

    In analyzing fissile and/or fertile materials in the thorium, uranium, neptunium, plutonium, americium and curium group, time and accuracy are significant factors. An automated system for rapidly analyzing these materials includes: sample preparation device in which aliquots of sample are weighed and mixed with known amounts of solution; x-ray fluorescence spectrometer; and, a central control system for controlling the operation and analyzing the data. (auth)

  8. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  9. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  10. Hydrolysis constants of tetravalent neptunium by using solvent extraction method

    International Nuclear Information System (INIS)

    Fujiwara, K.; Kohara, Y.

    2008-01-01

    The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free 239 Np(V) was from 243 Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants (β m ) of the reactions, Np 4+ + mOH - = Np(OH) m (4-m)+ was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H 2 -N 2 atmosphere (below 1.0 ppm of O 2 ) in a glove-box at room temperature (23 ± 2 C) to avoid oxidation of Np(IV). The β m values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log β 1 = 13.91 ± 0.23, log β 2 = 27.13 ± 0.15, log β 3 = 37.70 ± 0.30 and log β 4 = 46.16 ± 0.30. The ion interaction coefficients were also evaluated to be ε(NpOH 3+ , ClO 4 - ) = 0.49 ± 0.15, ε(Np(OH) 2 2+ , ClO 4 - ) = 0.35 ± 0.11, and ε(Np(OH) 3 + , ClO 4 - ) = 0.29 ± 0.15. (orig.)

  11. The Geochemical Behaviour of Tc, Np, and Pu in Spent Nuclear Fuel in an Oxidizing Environment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Hanson, Brady D.; McNamara, Bruce K.; R. Giere and P. Stille

    2004-10-01

    Studies at the Nopal and Shinkolowbwe uranium deposits show that the primary uraninite (UO2) altered to a suite of secondary uranyl minerals similar to those observed in corrosion tests with uranium oxide . Although the Nopal I deposit tells us something about the possible fate of uranium, it tells us little about the likely fate of the important long-lived radionuclides; iodine (129I), cesium (135Cs), technetium (99Tc), neptunium (237Np), and plutonium (239Pu). Most performance assessment (PA) models, assume conservatively, that as the UO2 matrix corrodes, the key radionuclides (129I, 99Tc, 237Np, and 239Pu) will be released congruently. In so doing, these PA models force increased reliance on human engineered barriers.

  12. The Geochemical Behavior of Tc, Np, and Pu in Spent Nuclear Fuel in an Oxidizing Environment

    International Nuclear Information System (INIS)

    Buck, Edgar C.; Hanson, Brady D.; McNamara, Bruce K.; R. Giere; P. Stille

    2004-01-01

    Studies at the Nopal and Shinkolowbwe uranium deposits show that the primary uraninite (UO2) altered to a suite of secondary uranyl minerals similar to those observed in corrosion tests with uranium oxide . Although the Nopal I deposit tells us something about the possible fate of uranium, it tells us little about the likely fate of the important long-lived radionuclides; iodine (129I), cesium (135Cs), technetium (99Tc), neptunium (237Np), and plutonium (239Pu). Most performance assessment (PA) models, assume conservatively, that as the UO2 matrix corrodes, the key radionuclides (129I, 99Tc, 237Np, and 239Pu) will be released congruently. In so doing, these PA models force increased reliance on human engineered barriers

  13. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  14. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  15. Uranium recovering from slags generated in the metallic uranium by magnesiothermic reduction

    International Nuclear Information System (INIS)

    Fornarolo, F.; Carvalho, E.F. Urano de; Durazzo, M.; Riella, H.G.

    2008-01-01

    The Nuclear Fuel Center of IPEN/CNEN-SP has recent/y concluded a program for developing the fabrication technology of the nuclear fuel based on the U 3 Si 2 -Al dispersion, which is being used in the IEA-R1 research reactor. The uranium silicide (U 3 Si 2 ) fuel production starts with the uranium hexafluoride (UF 6 ) processing and uranium tetrafluoride (UF 4 ) precipitation. Then, the UF 4 is converted to metallic uranium by magnesiothermic reduction. The UF 4 reduction by magnesium generates MgF 2 slag containing considerable concentrations of uranium, which could reach 20 wt%. The uranium contained in that slag should be recovered and this work presents the results obtained in recovering the uranium from that slag. The uranium recovery is accomplished by acidic leaching of the calcined slag. The calcination transforms the metallic uranium in U 3 O 8 , promoting the pulverization of the pieces of metallic uranium and facilitating the leaching operation. As process variables, have been considered the nitric molar concentration, the acid excess regarding the stoichiometry and the leaching temperature. As result, the uranium recovery reached a 96% yield. (author)

  16. Process for producing uranium oxide rich compositions from uranium hexafluoride

    International Nuclear Information System (INIS)

    DeHollander, W.R.; Fenimore, C.P.

    1978-01-01

    Conversion of gaseous uranium hexafluoride to a uranium dioxide rich composition in the presence of an active flame in a reactor defining a reaction zone is achieved by separately introducing a first gaseous reactant comprising a mixture of uranium hexafluoride and a reducing carrier gas, and a second gaseous reactant comprising an oxygen-containing gas. The reactants are separated by a shielding gas as they are introduced to the reaction zone. The shielding gas temporarily separates the gaseous reactants and temporarily prevents substantial mixing and reacting of the gaseous reactants. The flame occurring in the reaction zone is maintained away from contact with the inlet introducing the mixture to the reaction zone. After suitable treatment, the uranium dioxide rich composition is capable of being fabricated into bodies of desired configuration for loading into nuclear fuel rods. Alternatively, an oxygen-containing gas as a third gaseous reactant is introduced when the uranium hexafluoride conversion to the uranium dioxide rich composition is substantially complete. This results in oxidizing the uranium dioxide rich composition to a higher oxide of uranium with conversion of any residual reducing gas to its oxidized form

  17. Processing of LEU targets for 99Mo production--testing and modification of the Cintichem process

    International Nuclear Information System (INIS)

    Wu, D.; Landsberger, S.; Buchholz, B.

    1995-09-01

    Recent experimental results on testing and modification of the Cintichem process to allow substitution of low enriched uranium (LEU) for high enriched uranium (HEU) targets are presented in this report. The main focus is on 99 Mo recovery and purification by its precipitation with α-benzoin oxime. Parameters that were studied include concentrations of nitric and sulfuric acids, partial neutralization of the acids, molybdenum and uranium concentrations, and the ratio of α-benzoin oxime to molybdenum. Decontamination factors for uranium, neptunium, and various fission products were measured. Experiments with tracer levels of irradiated LEU were conducted for testing the 99 Mo recovery and purification during each step of the Cintichem process. Improving the process with additional processing steps was also attempted. The results indicate that the conversion of molybdenum chemical processing from HEU to LEU targets is possible

  18. Formation conditions of uranium minerals in oxidation zone of uranium deposits

    International Nuclear Information System (INIS)

    Li Youzhu

    2005-01-01

    The paper concerns about the summary and classification of hydrothermal uranium deposit with oxidation zone. Based on the summary of observation results of forty uranium deposits located in CIS and Bulgaria which are of different sizes and industrial-genetic types, analysis on available published information concerning oxidation and uranium mineral enrichment in supergenic zone, oxidation zone classification of hydrothermal uranium had been put forward according to the general system of the exogenetic uranium concentration. (authors)

  19. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  20. Research on geochronology and uranium source of sandstone-hosted uranium ore-formation in major uranium-productive basins, Northern-China

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Lin Jinrong; Fan Guang; Hou Yanxian

    2004-12-01

    A method is developed for correcting uranium content in uranium ore samples by considering the U-Ra equilibrium coefficient, then a U-Pb isochron is drawn up. By performing the above correction ore-formation ages of sandstone-hosted uranium mineralization which may be more realistic have been obtained. The comparative research on U-Pb isotopic ages of detritic zircon in ore-hosting sandstone and zircon in intermediate-acid igneous rocks in corresponding provenance area indicates that the ore-hosting sandstone is originated from the erosion of intermediate-acid igneous rocks and the latters are the material basis for the formation of the uranium-rich sandstone beds. On the basis of the study on U-Pb isotopic system evolution of the provenance rocks and sandstones from ore-hosting series, it is verified that the uranium sources of the sandstone-hosted uranium deposit are: the intermediate-acid igneous rocks with high content of mobile uranium, and the sandstone bodies pre-concentrated uranium. (authors)

  1. Control of uranium hazards - Portsmouth uranium enrichment plant

    International Nuclear Information System (INIS)

    Wagner, E.R.

    1985-01-01

    This report summarizes the Environmental, Safety and Health programs to control uranium hazards at the Portsmouth Gaseous Diffusion Plant. A description of the physical plant, the facility processes and the attendant uranium flows and effluents are provided. The hazards of uranium are discussed and the control systems are outlined. Finally, the monitoring programs are described and summaries of recent data are provided. 11 figs., 20 tabs

  2. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  3. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  4. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  5. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  6. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  7. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  8. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  9. Complex formation between neptunium(V) and various thiosemicarbazide derivatives in aqueous solution

    International Nuclear Information System (INIS)

    Chuguryan, D.G.; Dzyubenko, V.I.; Gerbeleu, N.V.

    1987-01-01

    Complex formation between neptunium(V) and various thiosemicarbazide derivatives in solution has been studied spectrophotometrically in the pH range 4-10. Stepwise formation of three types of complexes, with composition NpO 2 HA, NpO 2 A - , and NpOHA 2- , has been demonstrated with salicylaldehyde thiosemicarbazone (H 2 L) and salicylaldehyde S-methyl-isothiosemicarbazone (H 2 Q) at t = 25 +/- 1 0 C and μ = 0.05. The logarithmic stability constants of the first two complexes are 5.14 +/- 0.06, 11.85 +/- 0.04 and 8.42 +/- 0.09, 13.33 +/- 0.015 for H 2 L and H 2 Q, respectively; equilibrium constants for the formation of hydroxo complexes of the form NpO 2 OHL 2- and NpO 2 OHQ 2- were also determined, and found to be equal to (2.23 +/-0.37) x 10 -5 and (5.02 +/- 0.9) x 10 -5 , respectively. In the case of S-methyl-N 1 ,N 4 -bis(salicylidene)isothiosemicarbazide (H 2 Z), only one type of complex is formed under these experimental conditions, namely, NpO 2 Z - , with a logarithmic stability constant of 4.78 +/- 0.03. Dissociation constants for H 2 Q and H 2 Z were also determined

  10. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  11. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  12. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  13. Chapter 1. General information about uranium. 1.3. Uranium ores

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.

    2012-01-01

    The uranium ores were described. It was found that uranium ores and natural mineral formations containing uranium and its compounds, can be found in concentrations that are technically possible for industrial utilization and which are economically profitable. It was defined that oxidation levels of uranium minerals have an impact on their reprocessing technology and behavior in hydrometallurgical re partition. It was found that the chemical composition of ores has a decisive importance during selection of their reprocessing method.

  14. Uranium production in thorium/denatured uranium fueled PWRs

    International Nuclear Information System (INIS)

    Arthur, W.B.

    1977-01-01

    Uranium-232 buildup in a thorium/denatured uranium fueled pressurized water reactor, PWR(Th), was studied using a modified version of the spectrum-dependent zero dimensional depletion code, LEOPARD. The generic Combustion Engineering System 80 reactor design was selected as the reactor model for the calculations. Reactors fueled with either enriched natural uranium and self-generated recycled uranium or uranium from a thorium breeder and self-generated recycled uranium were considered. For enriched natural uranium, concentrations of 232 U varied from about 135 ppM ( 232 U/U weight basis) in the zeroth generation to about 260 ppM ( 232 U/U weight basis) at the end of the fifth generation. For the case in which thorium breeder fuel (with its relatively high 232 U concentration) was used as reactor makeup fuel, concentrations of 232 U varied from 441 ppM ( 232 U/U weight basis) at discharge from the first generation to about 512 ppM ( 232 U/U weight basis) at the end of the fifth generation. Concentrations in freshly fabricated fuel for this later case were 20 to 35% higher than the discharge concentration. These concentrations are low when compared to those of other thorium fueled reactor types (HTGR and MSBR) because of the relatively high 238 U concentration added to the fuel as a denaturant. Excellent agreement was found between calculated and existing experimental values. Nevertheless, caution is urged in the use of these values because experimental results are very limited, and the relevant nuclear data, especially for 231 Pa and 232 U, are not of high quality

  15. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  16. Equations of state for enriched uranium and uranium alloy to 3500 MPa

    International Nuclear Information System (INIS)

    Bai Chaomao; Hai Yuying; Liu Jenlong; Li Zhenrong

    1990-04-01

    The volume compressions of 6 kinds of cast materials including enriched uranium, poor uranium, U-0.57 wt% Ti, U-0.33 wt% Nb, U-2.85 wt% Nb and U-7.5 wt% Nb-3.3 wt% Zr have been determined by monitoring piston displacements in a piston cylinder apparatus with double strengthening rings to 3500 MPa at room temperature. The dilation of the cylinder vessel and the press deformation were corrected by some experiments. The calculational data free from using the standard sample closed with used standard sample. The volume compressions of enriched uranium and poor uranium are nearly coincident. Pure uranium is more compressible than uranium alloys. These values of enriched uranium are in close agreement with values of Bridgman's pure uranium. The fitting coefficients of Bridgman's polynomial and Anderson's equation of state and isothermal bulk modules for the above materials are given

  17. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  18. Research on deeply purifying effluent from uranium mining and metallurgy to remove uranium by ion exchange. Pt.2: Elution uranium from lower loaded uranium resin by the intense fractionation process

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqiang; Qi Jing

    2002-01-01

    Developing macroporous resin for purifying uranium effluent from uranium mining and metallurgy is presented. The Intense Fractionation Process is employed to elute uranium from lower loaded uranium resin by the eluent of sulfuric acid and ammonium sulfate. The result is indicated that the uranium concentration in the rich elutriant is greatly increased, and the rich liquor is only one bed column volume, uranium concentration in the elutriant is increased two times which concentration is 10.1 g/L. The eluent is saved about 50% compared with the conventional fixed bed elution operation. And also the acidity in the rich elutriant is of benefit to the later precipitation process in uranium recovery

  19. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  20. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  1. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    International Nuclear Information System (INIS)

    Smirnov, A Yu; Sulaberidze, G A; Dudnikov, A A; Nevinitsa, V A

    2016-01-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment. (paper)

  2. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  3. Criticality of a 237Np sphere

    International Nuclear Information System (INIS)

    Sanchez, Rene; Loaiza, David; Kimpland, Robert; Hayes, David; Cappiello, Charlene; Chadwick, Mark

    2006-01-01

    this paper establish the critical masses of neptunium surrounded with HEU and reflected by various reflectors. The primary purpose of these experiments is to provide criticality data that will be used to validate models in support of decommissioning activities at the Savannah River plant and establish well defined subcritical mass limits that can be used in the transportation of these materials to other Department of Energy facilities. Finally, a critical experiment using an α-phase plutonium sphere surrounded with similar HEU shells and using the same set-up used for the neptunium experiments was performed to validate plutonium and uranium cross section data. (authors)

  4. Recycling of americium

    International Nuclear Information System (INIS)

    Hagstroem, Ingela

    1999-12-01

    Separation of actinides from spent nuclear fuel is a part of the process of recycling fissile material. Extracting agents for partitioning the high level liquid waste (HLLW) from conventional PUREX reprocessing is studied. The CTH-process is based on three consecutive extraction cycles. In the first cycle protactinium, uranium, neptunium and plutonium are removed by extraction with di-2-ethylhexyl-phosphoric acid (HDEHP) from a 6 M nitric acid HLLW solution. Distribution ratios for actinides, fission products and corrosion products between HLLW and 1 M HDEHP in an aliphatic diluent have been investigated. To avoid addition of chemicals the acidity is reduced by a tributylphosphate (TBP) extraction cycle. The distribution ratios of elements present in HLLW have been measured between 50 % TBP in an aliphatic diluent and synthetic HLLW in range 0.1-6 M nitric acid. In the third extraction cycle americium and curium are extracted. To separate trivalent actinides from lanthanides a method based on selective stripping of the actinides from 1 M HDEHP is proposed. The aqueous phase containing ammonia, diethylenetriaminepentaacetic acid (DTPA) and lactic acid is recycled in a closed loop after reextraction of the actinides into a second organic phase also containing 1 M HDEHP. Distribution ratios for americium and neodymium have been measured at varying DTPA and lactic acid concentrations and at varying pH. Nitrogen-donor reagents have been shown to have a potential to separate trivalent actinides from lanthanides. 2,2':6,2''-terpyridine as extractant follows the CHON-principle and can in synergy with 2-bromodecanoic acid separate americium from europium. Distribution ratios for americium and europium, in the range of 0.02-0.12 M nitric acid, between nitric acid and 0.02 M terpyridine with 1 M 2-bromodecanoic acid in tert-butylbenzene (TBB) was investigated. Comparison with other nitrogen-donor reagents show that increasing lipophilicity of the molecule, by substitution of

  5. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  6. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  7. Why can rossing uranium mine keep mining even in low price conditions of uranium market

    International Nuclear Information System (INIS)

    Tan Chenglong

    2004-01-01

    Rossing uranium mine is the only operating uranium mine in the world where the uranium occurs in intrusive alaskite. In the past 10 years, uranium market regressed in the world, uranium production weakened, expenditures of capital for uranium exploration were insufficient. Uranium spot market price rapidly decreased from $111.8/kg U in late 1970's to $22.1/kg U in mid-1990's. Why can Rossing uranium mine mined with traditional underground and open pit operation can keep running even in low price conditions of uranium market? Augumenting research on the deposit, mineral and technology, decreasing production cost and improving selling strategy can not only maintain Rossing's uranium production at present, but also ensure sustainable development in the coming 15 years. Exploration of low-costed uranium deposits is very important. However, obvious economic benefits can be obtained, as Rossing uranium mine does, by augumenting geological-economical research on the known uranium deposits of hard-rock type and by using new techniques to improve the conventional techniques in the uranium mine development. (authors)

  8. Hydrolysis constants of tetravalent neptunium by using solvent extraction method

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K. [Japan Atomic Energy Agency (JAEA), Naka-gun, Ibaraki-ken (Japan); Kohara, Y. [Inspection and Development Co., Naka-gun, Ibaraki-ken (Japan)

    2008-07-01

    The hydrolysis constants of tetravalent neptunium (Np(IV)) were determined by solvent extraction method using thenoyltrifluoroacetone(TTA). In order to avoid colloid formation, a stock solution of carrier-free {sup 239}Np(V) was from {sup 243}Am milked. The valence of Np in the solution was then reduced to Np(IV) by using zinc amalgam. The hydrolysis constants ({beta}{sub m}) of the reactions, Np{sup 4+} + mOH{sup -} = Np(OH){sub m}{sup (4-m)+} was evaluated by using distribution ratios at ionic strengths (I) = 0.1, 0.5 and 1.0. All experiments were performed in oxygen-free 0.5% H{sub 2}-N{sub 2} atmosphere (below 1.0 ppm of O{sub 2}) in a glove-box at room temperature (23 {+-} 2 C) to avoid oxidation of Np(IV). The {beta}{sub m} values were extrapolated to the standard state (I = 0) by using the specific ion interaction theory (SIT), and the formation constants at I = 0 were determined to be log {beta}{sub 1} = 13.91 {+-} 0.23, log {beta}{sub 2} = 27.13 {+-} 0.15, log {beta}{sub 3} = 37.70 {+-} 0.30 and log {beta}{sub 4} = 46.16 {+-} 0.30. The ion interaction coefficients were also evaluated to be {epsilon}(NpOH{sup 3+}, ClO{sub 4}{sup -}) = 0.49 {+-} 0.15, {epsilon}(Np(OH){sub 2}{sup 2+}, ClO{sub 4}{sup -}) = 0.35 {+-} 0.11, and {epsilon}(Np(OH){sub 3}{sup +}, ClO{sub 4}{sup -}) = 0.29 {+-} 0.15. (orig.)

  9. Uranium in Canada

    International Nuclear Information System (INIS)

    1987-09-01

    Canadian uranium exploration and development efforts in 1985 and 1986 resulted in a significant increase in estimates of measured uranium resources. New discoveries have more than made up for production during 1985 and 1986, and for the elimination of some resources from the overall estimates, due to the sustained upward pressure on production costs and the stagnation of uranium prices in real terms. Canada possesses a large portion of the world's uranium resources that are of current economic interest and remains the major focus of inter-national uranium exploration activity. Expenditures for uranium exploration in Canada in 1985 and 1986 were $32 million and $33 million, respectively. Although much lower than the $130 million total reported for 1979, expenditures for 1987 are forecast to increase. Exploration and surface development drilling in 1985 and 1986 were reported to be 183 000 m and 165σ2 000 m, respectively, 85 per cent of which was in Saskatchewan. Canada has maintained its position as the world's leading producer and exporter of uranium. By the year 2000, Canada's annual uranium requirements will be about 2 100 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are either in operation now or expected to be in service by the late 1990s. A substantial portion of Canada's identified uranium resources is thus surplus to Canadian needs and available for export. Annual sales currently approach $1 billion, of which exports account for 85 per cent. Forward domestic and export contract commitments totalled 73 000 tU and 62 000 tU, respectively, as of early 1987

  10. Uranium - what role

    International Nuclear Information System (INIS)

    Grey, T.; Gaul, J.; Crooks, P.; Robotham, R.

    1980-01-01

    Opposing viewpoints on the future role of uranium are presented. Topics covered include the Australian Government's uranium policy, the status of nuclear power around the world, Australia's role as a uranium exporter and problems facing the nuclear industry

  11. Uranium's scientific history

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1990-01-01

    The bicentenary of the discovery of uranium coincides with the fiftieth anniversary of the discovery of fission, an event of worldwide significance and the last episode in the uranium -radium saga which is the main theme of this paper. Uranium was first identified by the German chemist Martin Klaproth in 1789. He extracted uranium oxide from the ore pitchblende which was a by-product of the silver mines at Joachimsthal in Bohemia. For over a century after its discovery, the main application for uranium derived from the vivid colours of its oxides and salts which are used in glazes for ceramics, and porcelain. In 1896, however, Becquerel discovered that uranium emitted ionizing radiation. The extraction by Pierre and Marie Curie of the more radioactive radium from uranium in the early years of the twentieth century and its application to the treatment of cancer shifted the chief interest to radium production. In the 1930s the discovery of the neutron and of artificial radioactivity stimulated research in a number of European laboratories which culminated in the demonstration of fission by Otto Frisch in January 1939. The new found use of uranium for the production of recoverable energy, and the creation of artificial radioelements in nuclear reactors, eliminated the radium industry. (author)

  12. Uranium tipped ammunition

    International Nuclear Information System (INIS)

    Roche, P.

    1993-01-01

    During the uranium enrichment process required to make nuclear weapons or fuel, the concentration of the 'fissile' U-235 isotope has to be increased. What is left, depleted uranium, is about half as radioactive as natural uranium, but very dense and extremely hard. It is used in armour piercing shells. External radiation levels from depleted uranium (DU) are low. However DU is about as toxic as lead and could be harmful to the kidneys if eaten or inhaled. It is estimated that between 40 and 300 tonnes of depleted uranium were left behind by the Allied armies after the Gulf war. The biggest hazard would be from depleted uranium shells which have hit Iraqui armoured vehicles and the resulting dust inhaled. There is a possible link between depleted uranium shells and an illness known as 'Desert Storm Syndrome' occurring in some Gulf war veterans. As these shells are a toxic and radioactive hazard to health and the environment their use and testing should be stopped because of the risks to troops and those living near test firing ranges. (UK)

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  14. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  15. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  16. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    Science.gov (United States)

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  17. The uranium in the environment; L'uranium dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The uranium is a natural element omnipresent in the environment, with a complex chemistry more and more understood. Many studies are always today devoted to this element to better improve the uranium behavior in the environment. To illustrate this knowledge and for the public information the CEA published this paper. It gathers in four chapters: historical aspects and properties of the uranium, the uranium in the environment and the impacts, the metrology of the uranium and its migration. (A.L.B.)

  18. Secondary Uranium-Phase Paragenesis and Incorporation of Radionuclides into Secondary Phase

    Energy Technology Data Exchange (ETDEWEB)

    R. Finch

    2001-06-05

    The purpose of this analysis/model report (AMR) is to assess the potential for uranium (U) (VI) compounds, formed during the oxidative corrosion of spent uranium-oxide (UO{sub 2}) fuels, to sequester certain radionuclides and, thereby, limit their release. The ''unsaturated drip tests'' being conducted at Argonne National Laboratory (ANL) provide the basis of this AMR (Table 1). The ANL drip tests on spent fuel are the only experiments on fuel corrosion from which solids have been analyzed for trace levels of radionuclides. Brief summaries are provided of the results from other selected corrosion and dissolution experiments on spent UO{sub 2} fuels, specifically those conducted under nominally oxidizing conditions. Discussions of the current understanding of thermodynamic and kinetic properties of U(VI) compounds is provided in order to outline the scientific basis for modeling precipitation and dissolution of potential radionuclide-bearing phases under repository-relevant conditions. Attachment I provides additional information on corrosion mechanisms and behaviors of radionuclides in the tests at ANL. Attachment II reviews occurrence, formation, and alteration (collectively known as paragenesis) of naturally occurring U(VI) minerals because natural mineral occurrences can be used to assess the possible long-term behaviors of U(VI) compounds formed in short-term laboratory experiments and to extrapolate experimental results to repository-relevant time scales. This AMR develops a model for calculating dissolved concentrations of radionuclides that are incorporated into U(VI) compounds, which is an alternative to models currently used in TSPA to calculate dissolved concentration limits for certain radionuclides. In particular, the model developed in this AMR applies to Np (neptunium) concentrations being controlled by solid uranyl oxyhydroxides that are known to contain trace levels of Np. The results of this AMR and the conceptual model

  19. Secondary Uranium-Phase Paragenesis and Incorporation of Radionuclides into Secondary Phases

    International Nuclear Information System (INIS)

    Finch, R.

    2001-01-01

    The purpose of this analysis/model report (AMR) is to assess the potential for uranium (U) (VI) compounds, formed during the oxidative corrosion of spent uranium-oxide (UO 2 ) fuels, to sequester certain radionuclides and, thereby, limit their release. The ''unsaturated drip tests'' being conducted at Argonne National Laboratory (ANL) provide the basis of this AMR (Table 1). The ANL drip tests on spent fuel are the only experiments on fuel corrosion from which solids have been analyzed for trace levels of radionuclides. Brief summaries are provided of the results from other selected corrosion and dissolution experiments on spent UO 2 fuels, specifically those conducted under nominally oxidizing conditions. Discussions of the current understanding of thermodynamic and kinetic properties of U(VI) compounds is provided in order to outline the scientific basis for modeling precipitation and dissolution of potential radionuclide-bearing phases under repository-relevant conditions. Attachment I provides additional information on corrosion mechanisms and behaviors of radionuclides in the tests at ANL. Attachment II reviews occurrence, formation, and alteration (collectively known as paragenesis) of naturally occurring U(VI) minerals because natural mineral occurrences can be used to assess the possible long-term behaviors of U(VI) compounds formed in short-term laboratory experiments and to extrapolate experimental results to repository-relevant time scales. This AMR develops a model for calculating dissolved concentrations of radionuclides that are incorporated into U(VI) compounds, which is an alternative to models currently used in TSPA to calculate dissolved concentration limits for certain radionuclides. In particular, the model developed in this AMR applies to Np (neptunium) concentrations being controlled by solid uranyl oxyhydroxides that are known to contain trace levels of Np. The results of this AMR and the conceptual model developed from it and presented in

  20. Uranium loans

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    When NUEXCO was organized in 1968, its founders conceived of a business based on uranium loans. The concept was relatively straightforward; those who found themselves with excess supplies of uranium would deposit those excesses in NUEXCO's open-quotes bank,close quotes and those who found themselves temporarily short of uranium could borrow from the bank. The borrower would pay interest based on the quantity of uranium borrowed and the duration of the loan, and the bank would collect the interest, deduct its service fee for arranging the loan, and pay the balance to those whose deposits were borrowed. In fact, the original plan was to call the firm Nuclear Bank Corporation, until it was discovered that using the word open-quotes Bankclose quotes in the name would subject the firm to various US banking regulations. Thus, Nuclear Bank Corporation became Nuclear Exchange Corporation, which was later shortened to NUEXCO. Neither the nuclear fuel market nor NUEXCO's business developed quite as its founders had anticipated. From almost the very beginning, the brokerage of uranium purchases and sales became a more significant activity for NUEXCO than arranging uranium loans. Nevertheless, loan transactions have played an important role in the international nuclear fuel market, requiring the development of special knowledge and commercial techniques

  1. Uranium isotopes in groundwater: their use in prospecting for sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1977-01-01

    The relative abundances of dissolved 238 U and its daughter 234 U appear to be greatly affected as the uranium is transported downdip in sandstone aquifers. In an actively forming uranium accumulation at a reducing barrier, an input of 234 U occurs in proximity to the isotopically non-selective precipitation of uranium from the water. The result is a downdip water much lower in uranium concentration but relatively enriched in 234 U. The measurement of isotopic as well as concentration changes may increase the effectiveness of hydrogeochemical exploration of uranium. The investigation includes the uranium isotopic patterns in aquifers associated with known uranium orebodies in the Powder River and Shirley Basins, Wyoming, and Karnes County, Texas, USA. In addition, the Carrizo sandstone aquifer of Texas was studied in detail and the presence of an uranium accumulation inferred

  2. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  3. Investigation on leaching of actinide oxides into supercritical fluids

    International Nuclear Information System (INIS)

    Shafikov, D.N.; Kamachev, V.A.; Babain, V.A.; Murzin, A.A.; Shadrin, A.Yu.; Podojnitsin, S.V.

    2006-01-01

    The extraction of actinide oxides into solutions of the TBP-HNO 3 complex in supercritical (SC) CO 2 was investigated. Experiments on the extraction of the TBP-HNO 3 complex into SC CO 2 were first conducted. It was found that a constant concentration of TBP in SC CO 2 of 13.5-14.8 % vol. can be attained using a constant molar ratio of [HNO 3 ]:[TBP] about 2.5 : 1. Joint leaching of uranium, plutonium and neptunium from mixtures of actinide oxides with solutions of TBP-HNO 3 in SC CO 2 was found feasible. If the leaching of uranium is about 95 %, its purification coefficients from major gamma-emitting radionuclides (Cs and Sr) exceed 100, while the purification coefficients of uranium from rare earth elements are 10-20

  4. Training manual for uranium mill workers on health protection from uranium

    International Nuclear Information System (INIS)

    McElroy, N.; Brodsky, A.

    1986-01-01

    This report provides information for uranium mill workers to help them understand the radiation safety aspects of working with uranium as it is processed from ore to yellowcake at the mills. The report is designed to supplement the radiation safety training provided by uranium mills to their workers. It is written in an easily readable style so that new employees with no previous experience working with uranium or radiation can obtain a basic understanding of the nature of radiation and the particular safety requirements of working with uranium. The report should be helpful to mill operators by providing training material to support their radiation safety training programs

  5. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO 3 and concentrated H 2 SO 4 to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis

  6. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  7. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  8. NEW METHOD FOR DETERMINATION OF ACTINIDES AND STRONTIUM IN ANIMAL TISSUE

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S; Jay Hutchison, J; Don Faison, D

    2007-05-07

    The analysis of actinides in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. Sr-90 is collected on Sr Resin{reg_sign} from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and Sr-89/90 are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  9. A Study of the 384 KeV Complex Gamma Emission from Plutonium-239

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Ronqvist, N.

    1965-11-01

    Plutonium-239 has been reported to emit a gamma of energy 384 KeV. Subsequent workers, using radiation of this energy as a nondestructive measure of the plutonium content of various materials, found that the peak obtained by sodium iodide scintillation spectrometry showed a pronounced shoulder at about 330 KeV. This shoulder has been attributed to protactinium-233 and to uranium-237. From the width of the peak, however, it is obvious that at least three contributors are present. The present paper describes gamma spectrometric studies of plutonium samples of several isotopic compositions using a sodium iodide detector and a lithium-drifted germanium detector. The 384 KeV peak has been shown to be a complex peak containing 12 gamma components due to plutonium-239 between 300 - 450 KeV, and their relative intensities have been estimated. Anion exchange and solvent extraction experiments have also demonstrated that two further contributions due to uranium-237 are present in plutonium containing significant amounts of plutonium-241

  10. A Study of the 384 KeV Complex Gamma Emission from Plutonium-239

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Ronqvist, N

    1965-11-15

    Plutonium-239 has been reported to emit a gamma of energy 384 KeV. Subsequent workers, using radiation of this energy as a nondestructive measure of the plutonium content of various materials, found that the peak obtained by sodium iodide scintillation spectrometry showed a pronounced shoulder at about 330 KeV. This shoulder has been attributed to protactinium-233 and to uranium-237. From the width of the peak, however, it is obvious that at least three contributors are present. The present paper describes gamma spectrometric studies of plutonium samples of several isotopic compositions using a sodium iodide detector and a lithium-drifted germanium detector. The 384 KeV peak has been shown to be a complex peak containing 12 gamma components due to plutonium-239 between 300 - 450 KeV, and their relative intensities have been estimated. Anion exchange and solvent extraction experiments have also demonstrated that two further contributions due to uranium-237 are present in plutonium containing significant amounts of plutonium-241.

  11. Solid state processing of massive uranium mononitride, using uranium and uranium higher nitride powders as starting materials (1962); Preparation a l'etat solide de mononitrure d'uranium massif a partir de poudres d'uranium et de nitrures superieurs d'uranium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    The mechanism and the optimum conditions for preparing uranium mononitride have been studied. The results have been used for hot pressing (250 kg/cm{sup 2}, 1000 deg. C, under vacuum) a mixture of powders of uranium and uranium higher nitrides. The products obtained have been identified by X-ray measurements and may be - at will and depending upon the stoichiometry - either UN, or a cermet a U{sub {alpha}}-UN. As revealed by the curved shape of grain boundaries, the sinters obtained here do not easily evolve towards physico-chemical equilibrium when submitted to heat treatment. This behaviour is quite different from the one observed with uranium monocarbide prepared by a similar method. This fact may be ascribed to the insolubility in the matrix UN of particles of UO{sub 2} being present as impurities. The density, hardness and thermal conductivity of these products are higher than those measured on uranium nitride or cermets U-UN obtained by other methods. (author) [French] Apres une etude prealable du mecanisme et des conditions optimales de nitruration de l'uranium, on a montre qu'il est possible de preparer par frittage sous charge (250 kg/cm{sup 2}, 1000 deg. C sous vide) d'un melange de poudres d'uranium et de nitrures superieurs d'uranium, un produit qui a ete identifie par diffraction de rayons X. On peut ainsi obtenir a volonte, soit le monocarbure UN, soit un cermet U{sub {alpha}}-UN dans le cas de compositions sous-stoechiometriques. Au contraire du monocarbure d'uranium prepare dans des conditions analogues, les produits obtenus ici, soumis a un traitement thermique, n'evoluent pas facilement vers un etat d'equilibre physico-chimique caracterise par l'existence de joints de grains rectilignes. On attribue ce phenomene a l'insolubilite de l'impurete UO{sub 2} dans UN. La densite, la durete, la conductibilite thermique de ces produits se revelent superieures a celles des nitrures d'uranium ou des cermets U-UN obtenus par les autres methodes. (auteur)

  12. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  13. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  14. URANIUM LEACHING AND RECOVERY PROCESS

    Science.gov (United States)

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  15. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O., E-mail: isadora.goncalves@ime.eb.br, E-mail: wichrowski@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear

    2017-11-01

    It is known that isotope {sup 232}thorium is a fertile nuclide with the ability to convert into {sup 233}uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of {sup 233}uranium, the emergence of {sup 231}protactinium (an isotope that only occurs as a fission product of {sup 232}Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  16. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    International Nuclear Information System (INIS)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O.

    2017-01-01

    It is known that isotope "2"3"2thorium is a fertile nuclide with the ability to convert into "2"3"3uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of "2"3"3uranium, the emergence of "2"3"1protactinium (an isotope that only occurs as a fission product of "2"3"2Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  17. Politics of Uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Uranium is the most political of all the elements, the material for the production of both the large amounts of electricity and the most destructive weapons in the world. The problems that its dual potential creates are only now beginning to become evident. Author Norman Moss looks at this situation and sheds light on many of the questions that emerge. The nuclear issue always comes back to how much uranium there is, what can be done with it, and which countries have it. Starting with a concise history of uranium and explaining its technology in terms the nonspecialist can understand, The Politics of Uranium considers the political issues that technical arguments obscure. It tells the little-known story of the international uranium cartel, explains the entanglements of governments with the uranium trade, and describes the consequences of wrong decisions and blunders-especially the problems of nuclear waste. It also examines the intellectual and emotional roots of the anti-nuclear movement

  18. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  19. The significance of zircon characteristic and its uranium concentration in evaluation of uranium metallogenetic prospect

    International Nuclear Information System (INIS)

    Li Yaosong; Zhu Jiechen; Xia Yuliang

    1992-02-01

    Zircon characteristic and its relation to uranium metallogenetic process have been studied on the basis of physics properties and chemical compositions. It is indicated that the colour of zircon crystal is related to uranium concentration; on the basis of method of zircon population type of Pupin J.P., the sectional plan of zircon population type has been designed, from which result that zircon population type of uranium-producing rock body is distributed mainly in second section, secondly in fourth section; U in zircon presents synchronous increase trend with Th, Hf and Ta; the uranium concentration in zircon from uranium-producing geologic body increases obviously and its rate of increase is more than that of the uranium concentration in rock; the period, in which uranium concentration in zircon is increased, is often related to better uranium-producing condition in that period of this area. 1785 data of the average uranium concentration in zircon have been counted and clear regularity has been obtained, namely the average uranium concentrations in zircon in rich uranium-producing area, rock, geologic body and metallogenetic zone are all higher than that in poor or no uranium-producing area, rock, geologic body and metallogenetic zone. This shows that the average uranium concentration in zircon within the region in fact reflects the primary uranium-bearing background in region and restricts directly follow-up possibility of uranium mineralization. On the basis of this, the uranium source conditions of known uranium metallogenetic zones and prospective provinces have been discussed, and the average uranium concentrations in zircon from magmatic rocks for 81 districts have been contrasted and graded, and some districts in which exploration will be worth doing further are put forward

  20. Method of preparing uranium nitride or uranium carbonitride bodies

    International Nuclear Information System (INIS)

    Wilhelm, H.A.; McClusky, J.K.

    1976-01-01

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U 3 O 8 and carbon by varying the weight ratio of carbon to U 3 O 8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies. 6 claims, no drawings

  1. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  2. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  3. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  4. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    International Nuclear Information System (INIS)

    Silva Neto, Joao Batista da

    2008-01-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium suicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF 6 hydrolysis solution with stannous chloride, and the hydro fluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH 4 HF 2 precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO 2 , which comes from the U mini plates recovery, also to its conversion in a solid state reaction, to obtain UF 4 . That returns to the process of metallic uranium production unity to the U 3 Si 2 obtention. This fuel is considered in IPEN CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U 3 Si 2 -Al fuel. (author)

  5. Uranium dioxide electrolysis

    Science.gov (United States)

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  6. Uranium distribution in Brazilian granitic rocks. Identification of uranium provinces

    International Nuclear Information System (INIS)

    Tassinari, C.G.G.

    1993-01-01

    The research characterized and described uranium enriched granitoids in Brazil. They occur in a variety of tectonic environments and are represented by a variety granite types of distinct ages. It may be deduced that in general they have been generated by partial melting process of continental crust. However, some of them, those with tonality composition, indicate a contribution from mantle derived materials, thus suggesting primary uranium enrichment from the upper mantle. Through this study, the identification and characterization of uranium enriched granite or uranium provinces in Brazil can be made. This may also help identify areas with potential for uranium mineralization although it has been note that uranium mineralization in Brazil are not related to the uranium enrichment process. In general the U-anomalous granitoids are composed of granites with alkaline composition and granite ''sensu strictu'' which comprise mainly of syenites, quartz-syenites and biotite-hornblende granites, with ages between 1,800 - 1,300 M.a. The U-anomalous belongings to this period present high Sr initial ratios values, above 0.706, and high Rb contents. Most of the U-enriched granitoids occur within ancient cratonic areas, or within Early to Mid-Proterozoic mobile belts, but after their cratonization. Generally, these granitoids are related to the border zones of the mobile belts or deep crustal discontinuity. Refs, 12 figs, 3 tabs

  7. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  8. Neptunium redox behavior and sorption onto goethite and hematite in the presence of humic acids with different hydroquinone content

    International Nuclear Information System (INIS)

    Khasanova, A.B.; Kalmykov, St.N.; Perminova, I.V.; Clark, S.B.

    2007-01-01

    The effect of humic acids (HA) on neptunium redox behavior and sorption onto hematite, α-Fe 2 O 3 , and goethite, α-FeOOH, colloids was established in batch sorption experiments that were carried out in broad pH interval. The sorption isotherms were provided for two samples of HA: commercial sample of leonardite humic acid and its hydroquinone-enriched derivative obtained using formaldehyde copolycondensation. The distribution of Np fitted the distribution of hydroquinone-enriched HA at low pH values in case of both solids while the influence of parent HA on Np sorption was negligible. This is due to Np(V) reduction upon interaction with hydroquinone-enriched derivative having higher reducing capacity compared to the parent HA. The order of components addition was found to be significant for Np retention

  9. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  10. Uranium energy dependence

    International Nuclear Information System (INIS)

    Erkes, P.

    1981-06-01

    Uranium supply and demand as projected by the Uranium Institute is discussed. It is concluded that for the industrialized countries, maximum energy independence is a necessity. Hence it is necessary to achieve assurance of supply for uranium used in thermal power reactors in current programs and eventually to move towards breeders

  11. Uranium-236 as an indicator of fuel-cycle uranium in ground water

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1989-08-01

    Environmental monitoring on and around the Hanford Site includes regular sampling of onsite monitoring wells and offsite farm wells. Uranium has been identified in the ground water onsite and also in water from farm wells located on the east side of the Columbia River, across from the Hanford Site. Information on the hydrology of the area indicates that the source of the offsite uranium is not the Hanford Site. This study evaluated the isotopic composition of the uranium in water from the various wells to differentiate the onsite uranium contamination from natural uranium offsite. 5 refs., 2 figs., 2 tabs

  12. Analytical evaluation of actinide sensitivities

    International Nuclear Information System (INIS)

    Sola, A.

    1977-01-01

    The analytical evaluation of the sensitivities of actinides to various parameters such as cross sections, decay constants, flux and time is presented. The formulae are applied to isotopes of the Uranium, Neptunium, Plutonium and Americium series. The agreement between analytically obtained and computer evaluated sensitivities being always good, it is throught that the formulation includes all the important parameters entering in the evaluation of sensitivities. A study of the published data is made

  13. Uranium in Canada

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988 Canada's five uranium producers reported output of concentrate containing a record 12,470 metric tons of uranium (tU), or about one third of total Western world production. Shipments exceeded 13,200 tU, valued at $Cdn 1.1 billion. Most of Canada's uranium output is available for export for peaceful purposes, as domestic requirements represent about 15 percent of production. The six uranium marketers signed new sales contracts for over 11,000 tU, mostly destined for the United States. Annual exports peaked in 1987 at 12,790 tU, falling back to 10,430 tU in 1988. Forward domestic and export contract commitments were more than 70,000 tU and 60,000 tU, respectively, as of early 1989. The uranium industry in Canada was restructured and consolidated by merger and acquisition, including the formation of Cameco. Three uranium projects were also advanced. The Athabasca Basin is the primary target for the discovery of high-grade low-cost uranium deposits. Discovery of new reserves in 1987 and 1988 did not fully replace the record output over the two-year period. The estimate of overall resources as of January 1989 was down by 4 percent from January 1987 to a total (measured, indicated and inferred) of 544,000 tU. Exploration expenditures reached $Cdn 37 million in 1987 and $59 million in 1988, due largely to the test mining programs at the Cigar Lake and Midwest projects in Saskatchewan. Spot market prices fell to all-time lows from 1987 to mid-1989, and there is little sign of relief. Canadian uranium production capability could fall below 12,000 tU before the late 1990s; however, should market conditions warrant output could be increased beyond 15,000 tU. Canada's known uranium resources are more than sufficient to meet the 30-year fuel requirements of those reactors in Canada that are now or are expected to be in service by the late 1990s. There is significant potential for discovering additional uranium resources. Canada's uranium production is equivalent, in

  14. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  15. Precipitation of uranium peroxide from the leach liquor of uranium ores

    International Nuclear Information System (INIS)

    Gao Xizhen; Lin Sirong; Guo Erhua; Lu Shijie

    1995-06-01

    A chemical precipitation process of recovering uranium from the leach liquor of uranium ores was investigated. The process primarily includes the precipitation of iron with lime, the preprocessing of the slurry of iron hydroxides and the precipitation of uranium with H 2 O 2 . The leach liquor is neutralized by lime milk to pH 3.7 to precipitate the iron hydroxides which after flocculation and settle is separated out and preprocessed at 170 degree C in an autoclave. H 2 O 2 is then used to precipitate uranium in the leach liquor free of iron, and the pH of process for uranium precipitation adjusted by adding MgO slurry to 3.5. The barren solution can be used to wash the filter cakes of leach tailing. The precipitated slurry of iron hydroxides after being preprocessed is recycled to leaching processes for recovering uranium in it. This treatment can not only avoid the filtering of the slurry of iron hydroxides, but also prevent the iron precipitate from redissolving and consequently the increase of iron concentration in the leach liquor. The results of the investigation indicate that lime, H 2 O 2 and MgO are the main chemical reagents used to obtain the uranium peroxide product containing over 65% uranium from the leach liquor, and they also do not cause environmental pollution. In accordance with the uranium content in the liquor, the consumption of chemical reagent for H 2 O 2 (30%) and MgO are 0.95 kg/kgU and 0.169 kg/kgU, respectively. (1 fig., 8 tabs., 7 refs.)

  16. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  17. Calculation of a TBP extraction column

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de.

    1973-01-01

    Problems involving the number of stages in an extraction column and the equipment needed in most aqueous methods of reprocessing of nuclear fuels were studied. A solution for the separation of uranium from fission products in a feed solution that contains these components plus nitric acid, thorium and protactinium is obtained. The program has peculiarities such as treatment of tracer components; acceptance of decontamination and recuperation factors better than the set values for the solution; occurrence of niaxima concentrations; change of key component; criterion for ending of section; corrections for interaction; input data not including concentration estimates of the raffinate and organic extract; set of limitations for the concentrations based on input data to help convergence

  18. Recovering uranium from phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, M [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney-Ugine Kuhlmann, 75 - Paris (France)

    1981-06-01

    Processes for the recovery of the uranium contained in phosphates have today become competitive with traditional methods of working uranium sources. These new possibilities will make it possible to meet more rapidly any increases in the demand for uranium: it takes ten years to start working a new uranium deposit, but only two years to build a recovery plant.

  19. The measurement test of uranium in a uranium-contaminated waste by passive gamma-rays measurement method

    CERN Document Server

    Sukegawa, Y; Ohki, K; Suzuki, S; Yoshida, M

    2002-01-01

    This report is completed about the measurement test and the proofreading of passive gamma - rays measurement method for Non - destructive assay of uranium in a uranium-contaminated waste. The following are the results of the test. 1) The estimation of the amount of uranium by ionization survey meter is difficult for low intensity of gamma-rays emitted from uranium under about 50g. 2) The estimation of the amount of uranium in the waste by NaI detector is possible in case of only uranium, but the estimation from mixed spectrums with transmission source (60-cobalt) is difficult to confirm target peaks. 3) If daughter nuclides of uranium and thorium chain of uranium ore exist, measurement by NaI detector is affected by gamma-rays from the daughter nuclides seriously-As a result, the estimation of the amount of uranium is difficult. 4) The measurement of uranium in a uranium-contaminated waste by germanium detector is possible to estimate of uranium and other nuclides. 5) As to estimation of the amount of uranium...

  20. Jabiluka uranium project

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Jabiluka uranium and gold deposit located in the Northern Territory of Australia is the world's largest known primary uranium deposits and as such has the potential to become one of the most important uranium projects in the world. Despite the financial and structural challenges facing the major owner Pancontinental Mining Limited and the changing political policies in Australia, Jabiluka is well situated for development during the 1990's. With the availability of numerous financial and development alternatives, Jabiluka could, by the turn of the century, take its rightful place among the first rank of world uranium producers. The paper discusses ownership, location, property rights, licensing, environmental concerns, marketing and development, capital costs, royalties, uranium policy considerations, geologic exploration history, regional and site geology, and mining and milling operations

  1. Uranium and the War: The effects of depleted uranium weapons in Iraq

    International Nuclear Information System (INIS)

    Jon williams

    2007-01-01

    The U.S. Army revealed in March 2003 that it dropped between 320 and 390 tons of depleted uranium during the Gulf War-the first time the material was ever used in combat-and it is estimated that more still has been dropped during the current invasion, though there have been no official counts as yet. Nuclear weapons and nuclear power plants require highly radioactive uranium, so the uranium 238 is removed from the naturally occurring uranium by a process known as enrichment. Depleted uranium is the by-product of the uranium enrichment process. Depleted uranium was a major topic of discussion during a Feb. 24 forum at Santa Cruz with speakers from the Iraq Veterans Against War (IVAW). The panel consisted of five members of the IVAW chapter in Olympia, Washington who visited Santa Cruz as part of a speaking tour of the west coast. These members of the IVAW believe that their experiences in the Gulf War were the beginnings of what will be a long-term health problem in the region. A study conducted by the Pentagon in 2002 predicted that every future battlefield will be contaminated with depleted uranium. Up-to-date health information from Iraq is difficult to come by. But a November report from Al-jazeera concluded that the cancer rate in Iraq has increased tenfold, and the number of birth defects has multiplied fivefold times since the 1991 war. The increase is believed to be caused by depleted uranium.

  2. Selective Removal of Uranium from the Washing Solution of Uranium-Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Choi, J. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This study examined selective removal methods of uranium from the waste solution by ion exchange resins or solvent extraction methods to reduce amount of the 2{sup nd} waste. Alamine-336, known as an excellent extraction reagent of uranium from the leaching solution of uranium ore, did not remove uranium from the acidic washing solution of soil. Uranyl ions in the acidic waste solution were sorbed on ampholyte resin with a high sorption efficiency, and desorbed from the resin by a washing with 0.5 M Na{sub 2}CO{sub 3} solution at 60 .deg. C. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. A great amount of uranium-contaminated (U-contaminated) soil had been generated from the decommissioning of a uranium conversion plant. Our group has developed a decontamination process with washing and electrokinetic methods to decrease the amount of waste to be disposed of. However, this process generates a large amount of waste solution containing various metal ions.

  3. Recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Takagi, Norio; Katoh, Shunsaku

    1995-01-01

    Present status of the development of chelating adsorbents for the recovery of uranium from seawater is outlined with emphasis on the research by the author. Uranium is estimated to exist as stable tri (carbonate) uranylate (6) ion in seawater in a very low concentration. The adsorbent for uranium from seawater in a very low concentration. The adsorbent for uranium from seawater should have high selectivity and affinity for uranium around pH 8. The required characteristics for uranium adsorbent are examined. Various chelating adsorbents have been proposed for the uranium adsorbent and their structures are discussed. Amidoxime type adsorbents have the highest adsorbing power for uranium among the adsorbents hitherto developed and fibrous amidoxime adsorbents are most promising for the practical application. Synthesis, structure and suitable shape of the amidoxime adsorbents are discussed. Uranium adsorption behavior and the amount of saturated adsorption are examined theoretically based on the complexation of an amidoxime monomer and the formula for the adsorption equiliburium is derived. The adsorption and recovery process for uranium from seawater is composed of adsorption, desorption, separation and concentration and finally, uranium is recovered as the yellow cake. A floating body mooring system is proposed by Nobukawa. (T.H.)

  4. Uranium producers foresee new boom

    International Nuclear Information System (INIS)

    McIntyre, H.

    1979-01-01

    The status of uranium production in Canada is reviewed. Uranium resources in Saskatchewan and Ontario are described and the role of the Cluff Lake inquiry in securing a government decision in favour of further uranium development is mentioned. There have been other uranium strikes near Kelowna, British Columbia and in the Northwest Territories. Increasing uranium demand and favourable prices are making the development of northern resources economically attractive. In fact, all uranium currently produced has been committed to domestic and export contracts so that there is considerable room for expanding the production of uranium in Canada. (T.I.)

  5. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  6. METHOD OF RECOVERING URANIUM COMPOUNDS

    Science.gov (United States)

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  7. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  8. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  9. Bicarbonate leaching of uranium

    International Nuclear Information System (INIS)

    Mason, C.

    1998-01-01

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented

  10. Bicarbonate leaching of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  11. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  12. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.) [pt

  13. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  14. Feasibility study of the dissolution rates of uranium ore dust, uranium concentrates and uranium compounds in simulated lung fluid

    International Nuclear Information System (INIS)

    Robertson, R.

    1986-01-01

    A flow-through apparatus has been devised to study the dissolution in simulated lung fluid of aerosol materials associated with the Canadian uranium industry. The apparatus has been experimentally applied over 16 day extraction periods to approximately 2g samples of < 38um and 53-75um particle-size fractions of both Elliot Lake and Mid-Western uranium ores. The extraction of uranium-238 was in the range 24-60% for these samples. The corresponding range for radium-226 was 8-26%. Thorium-230, lead-210, polonium-210, and thorium-232 were not significantly extracted. It was incidentally found that the elemental composition of the ores studied varies significantly with particle size, the radionuclide-containing minerals and several extractable stable elements being concentrated in the smaller size fraction. Samples of the refined compounds uranium dioxide and uranium trioxide were submitted to similar 16 day extraction experiments. Approximately 0.5% of the uranium was extracted from a 0.258g sample of unsintered (fluid bed) uranium dioxide of particle size < 38um. The corresponding figure for a 0.292g sample of uranium trioxide was 97%. Two aerosol samples on filters were also studied. Of the 88ug uranium initially measured on stage 2 of a cascade impactor sample collected from the yellow cake packing area of an Elliot Lake mill, essentially 100% was extracted over a 16 day period. The corresponding figure for an open face filter sample collected in a fuel fabrication plant and initially measured at 288ug uranium was approximately 3%. Recommendations are made with regard to further work of a research nature which would be useful in this area. Recommendations are also made on sampling methods, analytical methods and extraction conditions for various aerosols of interest which are to be studied in a work of broader scope designed to yield meaningful data in connection with lung dosimetry calculations

  15. Purification of uranium metal

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Shikama, Tatsuo; Ochiai, Akira.

    1993-01-01

    We developed the system for purifying uranium metal and its metallic compounds and for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. The degree of the purity of uranium metal was examined by the conventional electrical resistivity measurement and by the chemical analysis using the inductive coupled plasma emission spectrometry (ICP). The results show that some metallic impurities evaporated by the r.f. heating and other usual metallic impurities moved to the end of a rod with a molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained high purified uranium metal of 99.99% up with regarding to metallic impurities. The maximum residual resistivity ratio, the r.r.r., so far obtained was about 17-20. Using the purified uranium, we are attempting to grow a highly pure uranium-titanium single crystals. (author)

  16. Uranium. Resources, production and demand

    International Nuclear Information System (INIS)

    1997-01-01

    The events characterising the world uranium market in the last several years illustrate the persistent uncertainly faced by uranium producers and consumers worldwide. With world nuclear capacity expanding and uranium production satisfying only about 60 per cent of demand, uranium stockpiles continue to be depleted at a high rate. The uncertainty related to the remaining levels of world uranium stockpiles and to the amount of surplus defence material that will be entering the market makes it difficult to determine when a closer balance between uranium supply and demand will be reached. Information in this report provides insights into changes expected in uranium supply and demand until well into the next century. The 'Red Book', jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is the foremost reference on uranium. This world report is based on official information from 59 countries and includes compilations of statistics on resources, exploration, production and demand as of 1 January 1997. It provides substantial new information from all of the major uranium producing centres in Africa, Australia, Eastern Europe, North America and the New Independent States, including the first-ever official reports on uranium production in Estonia, Mongolia, the Russian Federation and Uzbekistan. It also contains an international expert analysis of industry statistics and worldwide projections of nuclear energy growth, uranium requirements and uranium supply

  17. A review of the environmental behavior of uranium derived from depleted uranium alloy penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R.L.; Hostetler, C.J.; Divine, J.R.; Price, K.R.

    1990-01-01

    The use of depleted uranium (DU) penetrators as armor-piercing projectiles in the field results in the release of uranium into the environment. Elevated levels of uranium in the environment are of concern because of radioactivity and chemical toxicity. In addition to the direct contamination of the soil with uranium, the penetrators will also chemically react with rainwater and surface water. Uranium may be oxidized and leached into surface water or groundwater and may subsequently be transported. In this report, we review some of the factors affecting the oxidation of the DU metal and the factors influencing the leaching and mobility of uranium through surface water and groundwater pathways, and the uptake of uranium by plants growing in contaminated soils. 29 refs., 10 figs., 3 tabs.

  18. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  19. Uranium XAFS analysis of kidney from rats exposed to uranium.

    Science.gov (United States)

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino

    2017-03-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.

  20. Discussion on prospecting potential for rich uranium deposits in Xiazhuang uranium ore-field, northern Guangdong

    International Nuclear Information System (INIS)

    Wu Lieqin; Tan Zhengzhong

    2004-01-01

    Based on analyzing the prospecting potential for uranium deposits in Xiazhuang uranium ore field this paper discusses the prospecting for rich uranium deposits and prospecting potential in the region. Research achievements indicate: that the Xiazhuang ore-field is an ore-concentrated area where uranium has been highly enriched, and possesses good prospecting potential and perspective, becoming one of the most important prospecting areas for locating rich uranium deposits in northern Guangdong; that the 'intersection type', the alkaline metasomatic fractured rock type and the vein-group type uranium deposits are main targets and the prospecting direction for future uranium prospecting in this region