Sample records for propyne

  1. Macrochain configuration, stucture of free volume and transport properties of poly(1-trimethylsilyl-1-propyne) and poly(1-trimethylgermyl-1-propyne)

    Matson, Samira M.; Rä tzke, Klaus; Shaikh, Muhammad Qasim; Litvinova, Elena G.; Shishatskiy, Sergey M.; Peinemann, Klaus-Viktor; Khotimskiy, Valeriy S.


    The relationship between poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-trimethylger- myl-1-propyne) (PTMGP) microstructure, gas permeability and structure of free volume is reported. n-Butane/methane mixed-gas permeation properties of PTMSP

  2. Isomer-specific combustion chemistry in allene and propyne flames

    Hansen, Nils; Miller, James A. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Westmoreland, Phillip R. [Department of Chem. Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kasper, Tina [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Wang, Juan; Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States)


    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  3. A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials.

    Yang, Lifeng; Cui, Xili; Yang, Qiwei; Qian, Siheng; Wu, Hui; Bao, Zongbi; Zhang, Zhiguo; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin


    Propyne/propylene (C 3 H 4 /C 3 H 6 ) separation is a critical process for the production of polymer-grade C 3 H 6 . However, optimization of the structure of porous materials for the highly efficient removal of C 3 H 4 from C 3 H 6 remains challenging due to their similar structures and ultralow C 3 H 4 concentration. Here, it is first reported that hybrid ultramicroporous materials with pillared inorganic anions (SiF 6 2- = SIFSIX, NbOF 5 2- = NbOFFIVE) can serve as highly selective C 3 H 4 traps for the removal of trace C 3 H 4 from C 3 H 6 . Especially, it is revealed that the pyrazine-based ultramicroporous material with square grid structure for which the pore shape and functional site disposition can be varied in 0.1-0.5 Å scale to match both the shape and interacting sites of guest molecule is an interesting single-molecule trap for C 3 H 4 molecule. The pyrazine-based single-molecule trap enables extremely high C 3 H 4 uptake under ultralow concentration (2.65 mmol g -1 at 3000 ppm, one C 3 H 4 per unit cell) and record selectivity over C 3 H 6 at 298 K (>250). The single-molecule binding mode for C 3 H 4 within ultramicroporous material is validated by X-ray diffraction experiments and modeling studies. The breakthrough experiments confirm that anion-pillared ultramicroporous materials set new benchmarks for the removal of ultralow concentration C 3 H 4 (1000 ppm on SIFSIX-3-Ni, and 10 000 ppm on SIFSIX-2-Cu-i) from C 3 H 6 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Inhibition of HIV-1 in vitro by C-5 propyne phosphorothioate antisense to rev

    Lund, O S; Nielsen, Jens Ole; Hansen, J E


    in a sequence-dependent manner. The antiviral effect was obtained by lipofection or simple addition of 0.2-1 microM modified oligodeoxynucleotide to the culture medium of H9 cells chronically infected with the HIV-1LAI isolate of human immunodeficiency virus type 1. We conclude that C-5 propyne...

  5. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    Es-sebbar, Et-touhami


    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  6. Quantitative mid-infrared spectra of allene and propyne from room to high temperatures

    Es-sebbar, Et-touhami; Jolly, A.; Benilan, Y.; Farooq, Aamir


    Allene (a-C3H4; CH2CCH2) and propyne (p-C3H4; CH3C2H) have attracted much interest because of their relevance to the photochemistry in astrophysical environments as well as in combustion processes. Both allene and propyne have strong absorption in the infrared region. In the present work, infrared spectra of a-C3H4 and p-C3H4 are measured in the gas phase at temperatures ranging from 296 to 510 K. The spectra are measured over the 580-3400 cm-1 spectral region at resolutions of 0.08 and 0.25 cm-1 using Fourier Transform Infrared spectroscopy. Absolute integrated intensities of the main infrared bands are determined at room temperature and compared with values derived from literature for both molecules. Integrated band intensities are also determined as a function of temperature in various spectral regions.

  7. Macrochain configuration, stucture of free volume and transport properties of poly(1-trimethylsilyl-1-propyne) and poly(1-trimethylgermyl-1-propyne)

    Matson, Samira M.


    The relationship between poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-trimethylger- myl-1-propyne) (PTMGP) microstructure, gas permeability and structure of free volume is reported. n-Butane/methane mixed-gas permeation properties of PTMSP and PTMGP membranes with different cis-/trans-composition have been investigated. The n-butane/methane selectivities for mixed gas are by an order higher than the selectivities calculated from pure gas measurements (the mixed-gas n-butane/methane selectivities are 20-40 for PTMSP and 22-35 for PTMGP). Gas permeability and n-butane/methane selec- tivity essentially differ in polymers with different cis-/trans-composition. Positron annihilation lifetime spec- troscopy investigation of PTMSP and PTMGP with different microstructure has determined distinctions in total amount and structure of free volume, i.e. distribution of free volume elements. The correlation between total amount of free volume and gas transport parameters is established: PTMSP and PTMGP with bigger free volume exhibit higher n-butane permeability and mixed-gas n-butane/methane selectivity. Such behav- ior is discussed in relation to the submolecular structure of polymers with different microstructure and sorp- tion of n-butane in polymers with different free volume. © Pleiades Publishing, Ltd., 2012.

  8. Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures

    Es-sebbar, Et-touhami


    Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.

  9. Microwave Assisted Enzymatic Kinetic Resolution of (±-1-Phenyl-2-propyn-1-ol in Nonaqueous Media

    Saravanan Devendran


    Full Text Available Kinetic resolution of 1-phenyl-2-propyn-1-ol, an important chiral synthon, was studied through trans-esterification with acyl acetate to investigate synergism between microwave irradiation and enzyme catalysis. Lipases from different microbial origins were employed for the kinetic resolution of (R/S-1-phenyl-2-propyn-1-ol, among which Candida antarctica lipase B, immobilized on acrylic resin (Novozym 435, was found to be the best catalyst in n-hexane as solvent. Vinyl acetate was the most effective among different acyl esters studied. The effect of various parameters was studied in a systematic manner. Definite synergism between microwave and enzyme was observed. The initial rate was improved around 1.28 times under microwave irradiation than conventional heating. Under optimum conditions, maximum conversion (48.78% and high enantiomeric excess (93.25% were obtained in 2 h. From modeling studies, it is concluded that the reaction follows the Ping-Pong bi-bi mechanism with dead end alcohol inhibition. Kinetic parameters were obtained by using nonlinear regression. This process is green, clean, and easily scalable as compared to the chemical process.

  10. Kinetic evaluation of propyne surface diffusivity on silica-alumina-supported chromium(VI) using positron annihilation surface detection

    Ferrieri, R.A.; Wolf, A.P.


    A study has been performed on the rate of the translational surface diffusivity of propyne on a silica-alumina-supported Cr(VI) catalyst. This rate was measured via nonchemical acetylene-propyne sorbate interactions coupled with positron annihilation surface detection (PASD). The surface displacement rate of [ 11 C]acetylene by propyne was measured in a transient experiment as a function of the adjacent Cr-site distance and correlated to propyne surface diffusivity, D/sub s/. Results indicated that D/sub s/ increased linearly when the adjacent site distance was decreased for catalysts loaded with between 0.08 and 0.8 wt % of chromium. However, D/sub s/ fell off drastically to nearly zero when greater Cr-site dispersion was achieved at support loadings below 0.08 wt % of chromium. Catalytic selectivity for p-xylene production was also measured as a function of D/sub s/ and was shown to have a strong dependence of its rate. 25 references, 4 figures

  11. 7α-alkylation and 7,7-bis-alkylation of 20-hydroxyecdysone with propargyl bromide in a lithium-ammonia solution and catalytic reductive spirocyclization of 7,7-bis(2-propyn-1-yl)-14-deoxy-Δ(8(14))-20-hydroxyecdysone.

    Galyautdinov, Ilgiz V; Khairullina, Zarema R; Sametov, Valery P; Muslimov, Zabir S; Khalilov, Leonard M; Odinokov, Victor N


    7α-Alkylation and 7,7-bis-alkylation of 20-hydroxyecdysone with propargyl bromide in a lithium-ammonia solution resulted in the formation of 7α-(2-propyn-1-yl)- and 7,7-bis(2-propyn-1-yl)-14-deoxy-Δ(8(14))-20-hydroxyecdysone in 92% and 75% yield respectively. Upon catalytic hydrogenation (10% Pd-C) of 7,7-bis(2-propyn-1-yl) derivative spirocyclization occurs by geminal 2-propyn-1-yl groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Capillary Columns with a Sorbent Based on Functionalized Poly(1-Trimethylsilyl-1-Propyne) for the Elution Analysis of Natural Gas

    Yakovleva, E. Yu.; Patrushev, Yu. V.; Pai, Z. P.


    The chromatographic properties of capillary columns prepared using functionalized poly(1- trimethylsilyl-1-propyne) (PTMSP) are evaluated and compared with the performance of a commercial column with divinylbenzene polymer sorbent. The loading capacity of a PTMSP column with dimensions of 30 m × 0.53 mm × 0.8 μm is shown to be about 2.5 times higher than that of a divinylbenzene polymer column with a diameter of 0.32 mm and a film thickness of 10 μm. The increased value of the background current for PTMSP columns at 220°C is explained by the presence of non-polar bulky substituents in the polymer chain. Differences in the order of elution are found for the following pairs of compounds: acetylene-ethylene; ethane-water; butene-1-isobutane; and sulfur dioxide-carbonyl sulfide. On a column with the functionalized PTMC, analysis of a mixture composition close to natural gas is found to be complete within 27 min.

  13. Coherent Synchrotron Radiation for Rotational Spectroscopy: Application to the Rotational Spectrum of Propynal in the 200-750 GHz Range

    Barros, J.; Roy, P.; Appadoo, D.; Naughton, D. Mc; Robertson, E.; Manceron, L.


    In storage rings, short electron bunches can produce an intense THz radiation called Coherent Synchrotron Radiation (CSR). The flux of this emission between 250 and 750 GHz (in the mW range, up the 10000 times the regular synchrotron emission) is very advantageous for broad band absorption spectroscopy, using interferometric techniques. This source is, however, inherently difficult to stabilize, and intensity fluctuations lead to artifacts on the FT-based measurements, which strongly limit the use of CSR in particular for high-resolution measurements. At SOLEIL however, by screening different currents and bunch lengths, we defined stable CSR conditions for which the signal-to-noise ratio (S/N) allows for measurements at high resolution. Moreover, we developed an artifact correction system, based on a simultaneous detection of the input and the output signals of the interferometer, which allows to further improve the S/N. For this purpose, the optics and electronics of two bolometers were matched. The stable CSR combined with this ingenious technique allowed us to record for the first time high-resolution FT spectra in the sub-THz range, with a S/N of 100 in a few hours. This enables many applications such as broadband rotational spectra in the THz range, studies of molecules with low frequency torsional modes, absolute intensities determinations, or studies of unstable species. Results obtained on Propynal illustrate these possibilities and enabled to improve significantly the ground state spectroscopic constants.

  14. A new method for the preparation of 1, 3-dilithium propyne and their applications in synthesis: I. Regioselective synthesis of mono and disubstituted homopropargylic alcohols. II. A new method of synthesis of ethyl (2E, 13Z)-2,13-octadecadienyl. Sex pheromone of the Zeuzera pyrine moth. III. A new method for the preparation of 1,5 diynes. Synthesis of (4E, 6Z, 10Z) -4,6,10-Hexadecatrien-1-ol, the pheromone component of the cocoa moth Conopomorpha cramellera

    Pereira Badilla, Alban Roberto


    A new method for obtaining 1,3-dilithium propyne has developed from propargyl bromide and regioselective synthesis of mono and disubstituted homopropargylic alcohols by addition of the same dianion to carbonyl compounds. The procedure has shown high versatility and yields above 80%, being more economical to allene and propyne used in previous methods; both in drilling Sanninoidea tipuliformis as other common pests of timber and fruit trees, Zeuzera pyrine (Cossidea) and Vitacea polistiformis (Sesiidea). Acetate (2E, 13Z) octadecadienyl was synthesized, whose biological activity has been an alternative for the biological control of these insects. The (Z)-1-iodinetetraceden-9-ene has been approved with 1,3 dilithium propyne and paraformaldehyde followed by stereoselective reduction procedures and acetylation with a total performance of 31%. The predecessors synthesis were surpassed in the simplicity of chemical transformations, relative ease of purification stages, so as requirements for equipment, reagents and minimal skill. A new method was developed for the preparation of linear and functionalized 1,5-diynes by propargylation with acceptable yields (50-80%) of various propargylic halides with 1,3 dilithium propyne obtained by dilithiation of allene with n-BuLi at low temperature. Also certain experimental cares were identified for the purification and isolation of 1,5 diynes not functionalized, compounds considerably volatile and sensitive to atmospheric oxygen and moisture. The 1,5 undecadiyne has been used as precursor in a synthesis of new route for the (4E, 6Z, 10Z)-4, 6, 10-hexadecatrien-1-ol, the main component of the sex pheromone of cocoa moth Conopomorpha cramellera (Lepidoptera : Gracillariidae). The same was prepared in a total yield of 51% in just 5 steps, through a strategy of coupling C11 + C5 to generate the precursor enin. Two different approaches have yielded to get such enin in yields close to 90%: the first has been the coupling of 1

  15. Selectivity in catalytic alkyne cyclotrimerization over chromium(VI): kinetic evaluation using the characteristics of radioactive carbon-11 decay for nondisruptive ultrasensitive detection of adsorbed species

    Ferrieri, R.A.; Wolf, A.P.


    The application of carbon-11 to kinetic measurements of molecular sorption is reported using positron annihilation surface detection (PASD). The technique is nondisruptive to dynamic processes and has the sensitivity to detect 10 -8 of a monolayer. In studies of alkyne cyclomerization on silica-alumina-supported Cr(VI), a high selectivity toward p-xylene formation was observed when acetylene-propyne mixtures were cotrimerized at monolayer total alkyne coverages. This selectivity was enhanced to 84% p-xylene, as the partial acetylene coverage was reduced to 1.0% of a monolayer. Competitive sorption studies utilized PASD to measure the surface concentration of [ 11 C]-acetylene coupled with macroscopic sorption measurements of propyne. Surface displacement of sorbed acetylene by propyne was observed with subsequent readsorption. The kinetics of this displacement were evaluated by using PASD in pulse-flow studies with various acetylene and propyne coverages and were modeled to a calculation of the isomeric xylene distribution. A near-identical fit was obtained between experimental and modeled results. This strongly suggested that the observed selectivity for p-xylene formation was due to sorbate interactions resulting in a specific molecular ordering of the alkyne mixture on the catalyst surface

  16. 5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetrapropynyloxy-2,8,14,20-tetrathiacalix[4]arene

    Xiang-Gao Meng


    Full Text Available The title compound [systematic name: 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrapropynyloxy-2,8,14,20-tetrathiacalix[4]arene], C52H56O4S4, is an alkylated product bearing four propyne groups at the lower rim of a 5,11,17,23-tetra-tert-butyl-tetrathiacalix[4]arene. The molecule is located on a crystallographic twofold rotation axis, running through two S atoms and perpendicular to the long axis of the molecule. The four propyne groups, located in an alternate fashion above and below the mean plane of the four S atoms, are almost parallel to the calixarene long axis. The dihedral angle between the two crystallographically independent benzene rings is 86.77 (14°. Two tert-butyl groups are disordered over two positions with site occupancies of 0.59 (2 and 0.41 (2.

  17. Infrared study of the nature of the copper ion--alkyne bond in Y zeolite

    Pichat, P.


    The infrared spectra of acetylene, deuterated acetylene, propyne, and but-2-yne, chemisorbed in Cu, Na--Y zeolites, which have undergone various treatments, were studied. It is concluded that the OH groups interact only with the weakly absorbed molecules, the Cu + ions are not involved, the acetylenic hydrogen atoms do not take part in the bonding, the Cu 2+ ion--alkyne bone results mainly from π donation from the unsaturated hydrocarbon to the metallic ion. (auth)

  18. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R


    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  19. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A


    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  20. Laser separation of isotopes of hydrogen

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.


    Laser isotope separation technique is explained and various methods based on the technique are discussed in detail. Requirements of any laser isotope separation method to be acceptable for the production of heavy water are mentioned and economic viability of this process for heavy water production is examined. Investigations carried out to use this technique for deuterium separation using methanol, formaldehyde, propynal, 2,2,-dichloro-1-1-1,-trifluoroethane (Freon 123), polyvinyl chloride and fluoroform-d are reviewed. (M.G.B.)

  1. Photodissociaton of allyl-d2 iodide excited at 193 nm: Stability of highly rotationally excited H2CDCH2 radicals to C-D fission

    Szpunar, D.E.; Liu, Y.; McCullagh, M.J.; Butler, L.J.; Shu, J.


    The photodissociation of allyl-d2 iodide (H2C=CDCH2I) and the dynamics of the nascent allyl-d2 radical (H2CCDCH2) were studied using photofragment translational spectroscopy. A previous study found the allyl radical stable at internal energies up to 15 kcal/mol higher than the 60 kcal/mol barrier to allene + H formation as the result of a centrifugal barrier. The deuterated allyl radical should then also show a stability to secondary dissociation at internal energies well above the barrier due to centrifugal effects. A comparison in this paper shows the allyl-d2 radical is stable to allene + D formation at energies of 2-3 kcal/mol higher than that of the non-deuterated allyl radical following photolysis of allyl iodide at 193 nm. This is most likely a result of a combination of the slight raising of the barrier from the difference in zero-point levels and a reduction of the impact parameter of the dissociative fragments due to the decrease in frequency of the C-D bending modes, and the refore allene + D product orbital angular momentum. Integrated signal taken at m/e = 40 (allene) and m/e = 41 (allene-d1 and propyne-d3) shows a minor fraction of the allyl-d2 radicals isomerize to the 2-propenyl radical, in qualitative support of earlier conclusions of the domination of direct allene + H formation over isomerization


    WANG Xinwei; SHI Yanqiao; CHEN Guanwen


    An investigation into the organic permselective separation through poly [1-trimethylsilyl1-propyne] (PTMSP) and (1-trimethylsily1)-1-(1-penta-methyl-disilyl)-l-propyne copolymer (TMSP-PMDSP) dense membranes was made to gain an insight into the effect of the chemical structure of membrane materials on pervaporation (PV) characteristics. The results show that the copolymer has a higher separation factor αorg/water but with a relatively Lower value of flux Jt(g/m2·h)than pure PTMSP.This phenomenon may be attributed to the introduction of side chain with large bulk volume in copolymer, which brought about a decrease of excess free volume and the improvement of diffusion selectivity to some extent. With the same molar concentration of organic liquids in feed, THF/water solutions have the highest value of αorg/water as well as Jt in comparison with ethanol/water,iso-propanol/water and THF/water mixtures.

  3. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry

    Cool, Terrill A.; Nakajima, Koichi; Mostefaoui, Toufik A.; Qi, Fei; McIlroy, Andrew; Westmoreland, Phillip R.; Law, Matthew E.; Poisson, Lionel; Peterka, Darcy S.; Ahmed, Musahid


    We report the first use of synchrotron radiation, continuously tunable from 8 to 15 eV, for flame-sampling photoionization mass spectrometry (PIMS). Synchrotron radiation offers important advantages over the use of pulsed vacuum ultraviolet lasers for PIMS; these include superior signal-to-noise, soft ionization, and access to photon energies outside the limited tuning ranges of current VUV laser sources. Near-threshold photoionization efficiency measurements were used to determine the absolute concentrations of the allene and propyne isomers of C 3 H 4 in low-pressure laminar ethylene-oxygen and benzene-oxygen flames. Similar measurements of the isomeric composition of C 2 H 4 O species in a fuel-rich ethylene-oxygen flame revealed the presence of substantial concentrations of ethenol (vinyl alcohol) and acetaldehyde. Ethenol has not been previously detected in hydrocarbon flames. Absolute photoionization cross sections were measured for ethylene, allene, propyne, and acetaldehyde, using propene as a calibration standard. PIE curves are presented for several additional reaction intermediates prominent in hydrocarbon flames

  4. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio


    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radiation effects on polyacetylenes having substituents

    Higashimura, Toshinobu; Tang, Ben-Zhong; Masuda, Toshio; Yamaoka, Hitoshi; Matsuyama, Tomochika.


    Effects of γ-ray irradiation on high molecular weight polyacetylenes with various substituents were studied in air and in vacuum. The molecular weights of polymers from aliphatic disubstituted acetylenes (2-octyne and 2-decyne) remarkably reduced with irradiation in air. Their G values for chain scission in air were as high as 3 - 12, whereas no degradation occurred in vacuum. The degraded polymers contain carbonyl and hydroxyl groups, and are soluble in polar solvents such as methyl ethyl ketone and acetone. In contrast, polymers of aromatic disubstituted acetylenes (1-phenyl-1-propyne and 1-chloro-2-phenylacetylene) hardly degraded in air even with irradiation up to 40 Mrad. The degradation behavior of poly(t-butylacetylene) was intermediate between those of the above aliphatic and aromatic polymers. Thus the radiolysis of polyacetylenes was found to be greatly dependent on the kind of substituents. (author)

  6. Measurements of distributions of energy loss for 51, 102 and 153 keV protons in nine hydrocarbon gases

    Thorngate, J.H.


    The mean energies, second central moments (a measure of the width of the energy-loss distributions) and the third central moments (a measure of asymmetry) were calculated from energy-loss distributions measured for 51, 102 and 153 keV protons traversing methane, ethyne, ethene, ethane, propyne, propadiene, propene, cyclopropane and propane. For the second central moments, the best, but hardly satisfactory, agreement between measurement and theory was obtained when the classical scattering probability was used for the calculations; measured values exceeding calculated values by as much as 40%. Use of the first Born approximation gave values 20-50% below measured values. Measured third central moments exceeded theoretical values by 10-250%. (Auth.)

  7. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang


    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  8. Organic Microporous Nanofillers with Unique Alcohol Affinity for Superior Ethanol Recovery toward Sustainable Biofuels.

    Cheng, Xi Quan; Konstas, Kristina; Doherty, Cara M; Wood, Colin D; Mulet, Xavier; Xie, Zongli; Ng, Derrick; Hill, Matthew R; Lau, Cher Hon; Shao, Lu


    To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro


    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  10. Characteristics of non-premixed oxygen-enhanced combustion: II. Flame structure effects on soot precursor kinetics resulting in soot-free flames

    Skeen, S.A.; Axelbaum, R.L. [Department of Energy, Environmental, Chemical Engineering, Washington University in St. Louis, St. Louis, MO (United States); Yablonsky, G. [Department of Energy, Environmental, Chemical Engineering, Washington University in St. Louis, St. Louis, MO (United States); Parks College, Saint Louis University, St. Louis, MO (United States)


    A detailed computational study was performed to understand the effects of the flame structure on the formation and destruction of soot precursors during ethylene combustion. Using the USC Mech Version II mechanism the contributions of different pathways to the formation of benzene and phenyl were determined in a wide domain of Z{sub st} values via a reverse-pathway analysis. It was shown that for conventional ethylene-air flames two sequential reversible reactions play primary roles in the propargyl (C{sub 3}H{sub 3}) chemistry, namely (1) C{sub 2}H{sub 2}+CH{sub 3}= pC{sub 3} H{sub 4}+H, (2) pC{sub 3} H{sub 4}= C{sub 3} H{sub 3}+ H with the corresponding overall endothermic reaction of propargyl formation (3) C{sub 2} H{sub 2}+CH{sub 3}= C{sub 3} H{sub 3}+2H. The contributions of these reactions to propyne (pC{sub 3}H{sub 4}) and propargyl formation and propargyl self-combination leading to benzene and phenyl were studied as a function of physical position, temperature, Z{sub st}, and H concentration. In particular, the role of H radicals on soot precursor destruction was studied in detail. At low Z{sub st}, Reactions 1 and 2 contribute significantly to propyne and propargyl formation on the fuel side of the radical pool at temperatures greater than approx. 1600 K. At higher local temperatures near the radical pool where the concentration of H is significant, the reverse reactions begin to dominate resulting in soot precursor destruction. As Z{sub st} is increased, these regions merge and only net propargyl consumption is observed. Based on the equilibrium constant of Reaction 3, a Z{sub st} value was estimated above which the rate of propargyl formation as a soot precursor is greatly reduced (Z{sub st} = 0.3). This condition compares well with the experimental results for permanently blue counterflow flames in the literature. (author)

  11. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  12. Chiral synthesis of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, sex pheromone components of the satin moth, Leucoma salicis.

    Wimalaratne, Priyantha D C; Slessor, Keith N


    All four isomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4, have been synthesized using D-xylose as the chirally pure starting material. D-Xylose was first converted to 2-deoxy-4,5-O-isopropylidene-3-t-butyldimethylsilyl-D-threopentose 11, via several steps of selective protection, dehydroxylation, and deprotection. Wittig coupling of 11 with nonyltriphenylphosphonium bromide followed by hydrogenation and acid catalyzed deprotection of hydroxyl groups yielded the chiral (2R,3R)-1,2,3-triol, 14, which was used as the precursor for the C-8 to C-21 unit of the (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes. Selective tosylation of 14 followed by stereospecific cyclization yielded (2R,3R)-1,2-epoxytetradecan-3-ol, 16, which was then divergently converted to the t-butyldimethylsilyl ether 17 and tosylate 22, respectively. Establishment of the C-5 through C-7 unit of the target molecules was accomplished via regiospecific coupling of 17 with 1-t-butyldimethylsiloxy-2-propyne to form 18. Stepwise transformation of 18 via the formation of tosylate 19, desilylation, and stereospecific cyclization to form epoxy alcohol 20, followed by P2-Ni reduction yielded a key intermediate, allylic epoxy alcohol (Z)-2-(5S,6R)-cis-5,6-epoxyheptadecen-1-ol, 21. Similarly, the coupling of 22 with 1-t-butyldimethylsiloxy-2-propyne yielded 23, which was stereospecifically cyclized to form 24. Desilylation and P2-Ni reduction of 24 gave the antipodal intermediate, (Z)-2-(5R,6S)-cis-5,6-epoxyheptadecen-1-ol, 26. Asymmetric epoxidation of antipodes 21 and 26 with (L)- or (D)-diethyl tartrates resulted in the formation of diepoxy alcohols 27 and 29 from 21, and 33 and 31 from 26, respectively. Tosylation of these diepoxy alcohols followed by coupling with lithium dibutenyl cuprate yielded the four stereoisomers of (Z)-3-cis-6,7-cis-9,10-diepoxyhenicosenes, 1-4. Analysis of the retention characteristics of these materials revealed that one or both of the S*,R*,S*,R* stereoisomers comprise the

  13. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.


    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  14. Development of vinylic and acetylenic functionalized structures based on high permeable glassy polymers as membrane materials for gas mixtures separation

    Roizard, D.; Kiryukhina, Y.; Masalev, A.; Khotimskiy, V.; Teplyakov, V.; Barth, D.


    There are several challenging separation problems in industries which can be solved with the help of membrane technologies. It is the case for instance of the purification of gas energy carriers (i.e. H2, CH4) from CO2 as well as the CO2 recovery from flue gas. Glassy polymers containing trimethylsilyl residues like poly(1-trimethylsilyl-1-propyne) [PTMSP] and polyvinyltrimethylsilane [PVTMS] are known to exhibit good membrane properties for gas separation. This paper reports two ways of improving their performances based on the controlled introduction of selective groups - alkyl imidazomium salts (C4I) and polyethyleneglycol (M-PEG)- able to enhance CO2 selectivity. CO2 Isotherm sorption data and permeability measurements have shown that the membrane performances could be significantly improved when C4I and M-PEG were introduced as residues covalently bounded to the main polymer chain. Moreover the introduced bromine reactive centres could also be used to induce chemical crosslinking giving rise to more resistant and stable membranes to organic vapours. With the C4I groups, the CO2 sorption could be enhanced by a factor 4.4.

  15. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    Ana Fernández-Barquín


    Full Text Available In this work, mixed matrix membranes (MMMs composed of small-pore zeolites with various topologies (CHA (Si/Al = 5, LTA (Si/Al = 1 and 5, and Rho (Si/Al = 5 as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne (PTMSP as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K.

  16. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    Barros, J.


    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  17. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Ilya Borisov


    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  18. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar


    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chromatographic properties PLOT multicapillary columns.

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N


    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-resolved Fourier-transform spectroscopy and quasiclassical trajectories

    Chang, C.-M.; Huang, Y.-H.; Liu, S.-Y.; Lee, Y.-P.; Pombar-Perez, Marta; Martinez-Nunez, Emilio; Vazquez, Saulo A.


    Following photodissociation of 2-chloropropene (H 2 CCClCH 3 ) at 193 nm, vibration-rotationally resolved emission spectra of HCl (υ≤6) in the spectral region of 1900-2900 cm -1 were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to ∼400 K and a major high-J component corresponding to 7100-18 700 K with average rotational energy of 39± 3 11 kJ mol -1 . The vibrational population of HCl is inverted at υ=2, and the average vibrational energy is 86±5 kJ mol -1 . Two possible channels of molecular elimination producing HCl+propyne or HCl+allene cannot be distinguished positively based on the observed internal energy distribution of HCl. The observed rotational distributions fit qualitatively with the distributions of both channels obtained with quasiclassical trajectories (QCTs), but the QCT calculations predict negligible populations for states at small J. The observed vibrational distribution agrees satisfactorily with the total QCT distribution obtained as a weighted sum of contributions from both four-center elimination channels. Internal energy distributions of HCl from 2-chloropropene and vinyl chloride are compared.

  1. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap

    Velasco-Vélez, J. J., E-mail:, E-mail:; Schlögl, R. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Pfeifer, V.; Algara-Siller, G.; Stotz, E.; Teschner, D.; Kube, P.; Knop-Gericke, A. [Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Hävecker, M., E-mail:, E-mail:; Skorupska, K. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Wang, R.; Braeuninger-Weimer, P.; Hofmann, S. [Engineering Department, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Centeno, A.; Zurutuza, A. [Graphenea, San Sebastian 20018 (Spain)


    One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the “pressure gap.” We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder).

  2. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Singh, Suvam; Antony, Bobby


    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  3. A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.; Gans, Bérenger; de Oliveira, N.; Ito, K.; Joyeux, D.; Archer, L. E.; Lucchese, R. R.; Xu, Hong; Pratt, S. T.


    The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) character and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.


    Zhao, Dongfeng; Doney, Kirstin D.; Linnartz, Harold, E-mail: [Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL 2300 RA Leiden (Netherlands)


    The cyclopropenyl cation (c-C{sub 3}H{sub 3} {sup +}) is the smallest aromatic hydrocarbon molecule and considered to be a pivotal intermediate in ion-molecule reactions in space. An astronomical identification has been prohibited so far, because of a lack of gas-phase data. Here we report the first high resolution infrared laboratory gas-phase spectrum of the ν {sub 4} (C-H asymmetric stretching) fundamental band of c-C{sub 3}H{sub 3} {sup +}. The c-C{sub 3}H{sub 3} {sup +} cations are generated in supersonically expanding planar plasma by discharging a propyne/helium gas pulse, yielding a rotational temperature of ∼35 K. The absorption spectrum is recorded in the 3.19 μm region using sensitive continuous-wave cavity ring-down spectroscopy. The analysis of about 130 ro-vibrational transitions results in precise spectroscopic parameters. These constants allow for an accurate comparison with high-level theoretical predictions, and provide the relevant information needed to search for this astrochemically relevant carbo-cation in space.

  5. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)


    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  6. Photodissociation dynamics of gaseous CpCo(CO)2 and ligand exchange reactions of CpCoH2 with C3H4, C3H6, and NH3.

    Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd


    The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).

  7. Laboratory studies of ion-molecule reactions and interstellar chemistry

    Koyano, Inosuke


    Several types of laboratory studies have been performed on ion-molecule reactions relevant to the formation of the interstellar molecules. Special emphasis is placed on the formation, structure, and reactivity of the C 3 H 3 + ions, which are believed to play a key role in interstellar chemistry. When these ions are produced by the reaction of C 3 H 4+ with C 3 H 4 in a beam-gas arrangement, their times-of-flight (TOF) show abnormally broad distributions regardless of the sources of the reactant C 3 H 4 + ion (photoionization of allene, propyne, the cyclopropene) and the nature of the neutral reactant, while all other product ions from the same reaction show sharp TOF distributions. On the other hand, all C 3 H 3 + ions produced by unimolecular decomposition of energetic C 3 H 4 + ions show sharp TOF distribution. The peculiarity of the C 3 H 3 + ions manifested in these and other experiments is discussed in conjunction with interstellar chemistry

  8. Palladium-catalyzed Reppe carbonylation.

    Kiss, G


    PdX2L2/L/HA (A = weakly coordinating anion, L = phosphine) complexes are active catalysts in the hydroesterification of alkenes, alkynes, and conjugated dienes. Shell, the only major corporate player in the field, recently developed two very active catalyst systems tailored to the hydroesterification of either alkenes or alkynes. The hydroesterification of propyne with their Pd(OAc)2/PN/HA (PN = (2-pyridyl)diphenylphosphine, HA = strong acid with weakly coordinating anion, like methanesulfonic acid) catalyst has been declared commercially ready. However, despite the significant progress in the activity of Pd-hydroesterification catalysts, further improvements are warranted. Thus, for example, activity maintenance still seems to be an issue. Homogeneous Pd catalysts are prone to a number of deactivation reactions. Activity and stability promoters are often corrosive and add to the complexity of the system, making it less attractive. Nonetheless, the versatility of the process and its tolerance toward the functional groups of substrates should appeal especially to the makers of specialty products. Although hydroesterification yields esters from alkenes, alkynes, and dienes in fewer steps than hydroformylation does, the latter has some advantages at the current state of the art. (1) Hydroformylation catalysts, particularly some recently published phosphine-modified Rh systems, can achieve very high regioselectivity for the linear product that hydroesterification catalysts cannot match yet. By analogy with hydroformylation, bulkier ligands ought to be tested in hydroesterification to increase normal-ester selectivity. (2) Hydroformylation is proven, commercial. Hydroesterification can only replace it if it can provide significant economic incentives. Similar or just marginally better performance could not justify the cost of development of a new technology. (3) Hydroesterification requires pure CO while hydroformylation uses syngas, a mixture of CO and H2. The latter

  9. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    Loeffler, Mark Josiah; Hudson, Reggie Lester


    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  10. Chemistry of the High-mass Protostellar Molecular Clump IRAS 16562–3959

    Guzmán, Andrés E.; Guzmán, Viviana V.; Garay, Guido; Bronfman, Leonardo; Hechenleitner, Federico


    We present molecular line observations of the high-mass molecular clump IRAS 16562‑3959 taken at 3 mm using the Atacama Large Millimeter/submillimeter Array at 1.″7 angular resolution (0.014 pc spatial resolution). This clump hosts the actively accreting high-mass young stellar object (HMYSO) G345.4938+01.4677, which is associated with a hypercompact H II region. We identify and analyze emission lines from 22 molecular species (encompassing 34 isomers) and classify them into two groups, depending on their spatial distribution within the clump. One of these groups gathers shock tracers (e.g., SiO, SO, HNCO) and species formed in dust grains like methanol (CH3OH), ethenone or ketene (H2CCO), and acetaldehyde (CH3CHO). The second group collects species closely resembling the dust continuum emission morphology and are formed mainly in the gas phase, like hydrocarbons (CCH, c-C3H2, CH3CCH), cyanopolyynes (HC3N and HC5N), and cyanides (HCN and CH3C3N). Emission from complex organic molecules (COMs) like CH3OH, propanenitrile (CH3CH2CN), and methoxymethane (CH3OCH3) arise from gas in the vicinity of a hot molecular core (T ≳ 100 K) associated with the HMYSO. Other COMs such as propyne (CH3CCH), acrylonitrile (CH2CHCN), and acetaldehyde seem to better trace warm (T ≲ 80 K) dense gas. In addition, deuterated ammonia (NH2D) is detected mostly in the outskirts of IRAS 16562‑3959 and associated with near-infrared dark globules, probably gaseous remnants of the clump’s prestellar phase. The spatial distribution of molecules in IRAS 16562‑3959 supports the view that in protostellar clumps, chemical tracers associated with different evolutionary stages—starless to hot cores/H II regions—exist coevally.

  11. Low-Temperature Synchrotron Photoionization Study of 2-Methyl-3-buten-2-ol (MBO) Oxidation Initiated by O(3P) Atoms in the 298-650 K Range.

    Fathi, Yasmin; Price, Chelsea; Meloni, Giovanni


    This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O( 3 P) atoms. The oxidation was investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary reaction species were obtained and used to characterize their identity. Using electronic structure calculations, potential energy surface scans of the different species produced throughout the oxidation were examined and presented in this paper to further validate the primary chemistry occurring. Branching fractions of primary products at all three temperatures were also provided. At room temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone (53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene (2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses corresponds to the 550 K data. At the highest temperature, a small amount of propyne (1.0%) was also observed.

  12. Measurements of energy losses, distributions of energy loss and additivity of energy losses for 50 to 150 keV protons in hydrogen and nine hydrocarbon gases

    Thorngate, J.H.


    Measurements of energy-loss distributions were made for 51, 102, and 153 keV protons traversing hydrogen, methane, ethyne (acetylene), ethene (ethylene), ethane, propyne (methyl acetylene), propadiene (allene), propene (propylene), cyclopropane and propane. The objectives were to test the theories of energy-loss distribution in this energy range and to see if the type of carbon bonding in a hydrocarbon molecule affects the shape of the distribution. Stopping powers and stopping cross sections were also measured at these energies and at 76.5 and 127.5 keV to determine effects of chemical binding. All of the measurements were made at the gas density required to give a 4 percent energy loss. The mean energy, second central moment (a measure of the width of the distribution), and the third central moment (a measure of the skew) were calculated from the measured energy-loss distributions. Stopping power values, calculated using the mean energy, compared reasonably well with those calculated from the Bethe stopping power theory. For the second and third central moments, the best agreement between measurement and theory was when the classical scattering probability was used for the calculations, but even these did not agree well. In all cases, variations were found in the data that could be correlated to the type of carbon binding in the molecule. The differences were statistically significant at a 99 percent confidence interval for the stopping powers and second central moments measured with 51 keV protons. Similar trends were noted at other energies and for the third central moment, but the differences were not statistically significant at the 99 percent confidence interval

  13. Inactivation of Toluene 2-Monooxygenase in Burkholderia cepacia G4 by Alkynes

    Yeager, Chris M.; Bottomley, Peter J.; Arp, Daniel J.; Hyman, Michael R.


    High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene. PMID:9925593

  14. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.

    Dilworth, M J; Eady, R R; Eldridge, M E


    1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672

  15. A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils.

    Allaire, S E; Yates, S R; Ernst, F F; Gan, J


    There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.


    Nixon, C. A.; Flasar, F. M. [Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jennings, D. E. [Detector Systems Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bézard, B.; Vinatier, S.; Coustenis, A. [LESIA, Observatoire de Paris, CNRS, 5 Place Jules Janssen, F-92195 Meudon Cedex (France); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen' s Road, Bristol BS8 1RJ (United Kingdom); Sung, K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, CA 91109 (United States); Ansty, T. M. [Department of Space Science, Cornell University, Ithaca, NY 14853 (United States); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Gorius, N. [IACS, Catholic University of America, Washington, DC 20064 (United States); Cottini, V. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)


    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared interferometer spectrometer (IRIS). These included propane (C{sub 3}H{sub 8}) and propyne (CH{sub 3}C{sub 2}H), while the intermediate-sized C{sub 3}H {sub x} hydrocarbon (C{sub 3}H{sub 6}) was curiously absent. Using spectra from the Composite Infrared Spectrometer on Cassini, we show the first positive detection of propene (C{sub 3}H{sub 6}) in Titan's stratosphere (5σ significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from 2.0 ± 0.8 ppbv at 125 km, to 4.6 ± 1.5 ppbv at 200 km. The abundance of C{sub 3}H{sub 6} is less than both C{sub 3}H{sub 8} and CH{sub 3}C{sub 2}H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby alkanes > alkynes > alkenes within the C{sub 2}H {sub x} and C{sub 3}H {sub x} chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species than double-bonded, likely due to the greater resistance of triple bonds to photolysis and chemical attack.

  17. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V


    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Golovitchev, Valeri I; Yang, Junfeng


    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  19. The CO-H2 van der Waals complex and complex organic molecules in cold molecular clouds: A TMC-1C survey

    Potapov, A.; Sánchez-Monge, Á.; Schilke, P.; Graf, U. U.; Möller, Th.; Schlemmer, S.


    Context. Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than six atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. Aims: We aim to detect, for the first time, the CO-H2 van der Waals complex in the ISM, which could be a sensitive indicator for low temperatures if detected. Methods: We used the IRAM 30 m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of ~10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band were observed with a spectral resolution of 0.5-0.7 km s-1, reaching a rms noise level of ~2 mK. The simultaneous observation of a broad frequency band, 16 GHz, allowed us to conduct a serendipitous spectral line survey. Results: We did not detected any lines belonging to the CO-H2 complex. We set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] ~ 5 × 10-6, while we expect the abundance of the complex to be in the range ~10-8-10-3. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, for example methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH), and ketene (CH2CO), associated with cold gas (excitation temperatures ~7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Reduced spectra (FITS files) are only available at the CDS via anonymous ftp to ( or via

  20. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation

    Stepan D. Bazhenov


    Full Text Available In the development of the composite gas separation membranes for post-combustion CO2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite (TFC membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl-1-propyne] (PTMSP. This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the СО2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine (PEI and poly (ethyleneglycol diglycidyl ether (PEGDGE as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1–2.5 μm. The claimed membranes showed the following characteristics: CO2 permeance is equal to 50–54 m3(STP/(m2 h bar (18,500–20,000 GPU, ideal CO2/N2 selectivity is 3.6–3.7, and their selective layers are insoluble in chloroform. Thus, the developed high-permeance TFC membranes are considered as a promising supports for further modification by enhanced CO2 selective layer formation. Keywords: Thin-film composite membrane

  1. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.


    = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust), which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA) yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene > naphthalene > toluene > xylenes > monoterpenes > trimethylbenzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley.

  2. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    C. Sarkar


    ( ∼  1 ppb to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m ∕ z  =  46.029 and acetamide (m ∕ z  =  60.051, which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust, which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7, a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %, isoprene (20.2 % and propene (18.7 %, while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene  >  naphthalene  >  toluene  >  xylenes  >  monoterpenes  >  trimethylbenzenes  >  styrene  >  isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid in the Kathmandu Valley.


    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis


    been completed using AutoCAD software, (B) The preliminary design of an electronics baseplate has been completed and aided in the optimization of positioning electrical components inside the instrument housing, (C) First spectroscopic investigations of the highly permeable polymer, poly(trimethylsilyl)propyne (PTMSP), as a potential sensing membrane for methane, have commenced, (D) High-pressure multireflection ATR measurements were continued during this project period to investigate the potential influences of hydrostatic pressure on sensing principles and data evaluation strategies. (6) Progress on the Seismo-acoustic Characterization of Sea Floor Properties and Processes at the Hydrate Monitoring Station: (A) work has concentrated on the design and building of the hardware, bench testing and preliminary field trials, (B) development work to extend the capability of the electronics to allow remote operation on the seabed for up to 3 months at a time done.

  4. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V


    . Lastly, measurements of H-atoms from the reaction of CH3 with C2H2 provided direct unambiguous determinations of the rate constant for the dominant process under the present experimental conditions, the addition-elimination, CH3 + C2H2 → p-C3H4 + H (3b). Experimental rate constants for k(3b) can be represented by the Arrhenius equation k(3b)(T) = 5.16 × 10(-13) exp(-3852 K/T) cm(3) molecules(-1) s(-1) (1127 K ≤ T ≤ 1346 K). The present determinations for k(3b) represent the only direct measurements for this reaction and are also in good agreement with recent theoretical predictions. The present experimental k(3b) values were also used to derive rate constants, k(-3b), for the more extensively studied back-process, the reaction of H-atoms with propyne. The best fit Arrhenius equation, combining the presently derived k(-3b) values with a recent experimental determination for k(-3b), can be represented by k(-3b)(T) = 3.87 × 10(-11) exp(-1313 K/T) cm(3) molecules(-1) s(-1) (870 K ≤ T ≤ 1346 K). The present studies represent a novel implementation of the sensitive H-ARAS technique to measure rate constants for poorly characterized and difficult to isolate "slow" CH3-radical reactions with stable C2 hydrocarbons.


    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis


    resulting from matrix substances has been developed and will be incorporated into an optimized ''deepSniff'' program upon completion of initial systems tests of the ''sphereIR''; Continuation of spectroscopic investigations of the highly permeable polymer, poly(trimethylsilyl)propyne (PTMSP), as a potential sensing membrane for methane have continued and will continue in the following project period.; High-pressure multireflection ATR measurements simulating deep-sea conditions for evaluating environmental impact on the sensor system and multivariate data analysis continue. (6) Progress on the Seismo-acoustic Characterization of Sea Floor Properties and Processes at the Hydrate Monitoring Station: Work has continued on developing the electronic part of the acoustic logging system designed for investigating fine-scale temporal changes in sea floor acoustic reflection responses at the Gas Hydrate Monitoring Station; The hardware has been built and extensively tested.