WorldWideScience

Sample records for propulsion system upper

  1. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    Science.gov (United States)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  2. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  3. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.

    Science.gov (United States)

    Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R

    2012-11-01

    The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  5. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.

    Science.gov (United States)

    Tsai, Chung-Ying; Lin, Chien-Ju; Huang, Yueh-Chu; Lin, Po-Chou; Su, Fong-Chin

    2012-11-22

    The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration.

  6. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  7. Low Cost Upper Stage-Class Propulsion (LCUSP)

    Science.gov (United States)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  8. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    Science.gov (United States)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  9. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    Science.gov (United States)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  10. An Empirical Study of Overlapping Rotor Interference for a Small Unmanned Aircraft Propulsion System

    Directory of Open Access Journals (Sweden)

    Mantas Brazinskas

    2016-10-01

    Full Text Available The majority of research into full-sized helicopter overlapping propulsion systems involves co-axial setups (fully overlapped. Partially overlapping rotor setups (tandem, multirotor have received less attention, and empirical data produced over the years is limited. The increase in demand for compact small unmanned aircraft has exposed the need for empirical investigations of overlapping propulsion systems at a small scale (Reynolds Number < 250,000. Rotor-to-rotor interference at the static state in various overlapping propulsion system configurations was empirically measured using off the shelf T-Motor 16 inch × 5.4 inch rotors. A purpose-built test rig was manufactured allowing various overlapping rotor configurations to be tested. First, single rotor data was gathered, then performance measurements were taken at different thrust and tip speeds on a range of overlap configurations. The studies were conducted in a system torque balance mode. Overlapping rotor performance was compared to an isolated dual rotor propulsion system revealing interference factors which were compared to the momentum theory. Tests revealed that in the co-axial torque-balanced propulsion system the upper rotor outperforms the lower rotor at axial separation ratios between 0.05 and 0.85. Additionally, in the same region, thrust sharing between the two rotors changed by 21%; the upper rotor produced more thrust than the lower rotor at all times. Peak performance was recorded as a 22% efficiency loss when the axial separation ratio was greater than 0.25. The performance of a co-axial torque-balanced system reached a 27% efficiency loss when the axial separation ratio was equal to 0.05. The co-axial system swirl recovery effect was recorded to have a 4% efficiency gain in the axial separation ratio region between 0.05 and 0.85. The smallest efficiency loss (3% was recorded when the rotor separation ratio was between 0.95 and 1 (axial separation ratio was kept at 0

  11. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  12. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  13. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  14. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  15. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  16. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  17. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  18. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  19. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the

  20. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  1. Characteristics of combined propulsion, levitation and guidance system with asymmetric figure between upper and lower coils in EDS; Joge coil ga hitaishona suishin fujo annai ken`yo yudoshiki jiki fujo no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Murai, T.; Fujiwara, S. [Railway Technical Research Institute, Tokyo (Japan)

    1996-11-20

    In commercializing the superconducting maglev system it is important to reduce the cost, especially that of ground coils constructed along the whole length of the guideway. For a system to save the cost, we have examined the combined propulsion, levitation and guidance system (PLG system) which can generate levitation, guidance and propulsion forces by the same ground cogs. This system is composed of superconducting coils on board and 8-shaped ground coils on the side wall of the guideway whose unit coils are connected reversely between the upper and lower sides and between the right and left sides to make null flux circuits, and serially between the front and rear sides to make a three phase circuit with the power source. On the contrary, the EDS (Electro-Dynamic Suspension) maglev including the PLG system needs auxiliary wheels at low speed at which the levitation force and the electromagnetic stiffness are insufficient for non-contact running. The take off velocity is desirably made as low as possible for dispensing with the strength design and maintenance of track and wheels. Since the side wall levitation system has a large coupling between guidance and rolling, it is important to improve the stiffness considering this coupling, which restricts the take off velocity. The ground coils in the above- mentioned examination have symmetric figure and same impedance between upper and lower coda. This paper describes the PLG system with asymmetric figure between upper and lower coils which reduce the large coupling between guidance and roiling and increase the guidance stiffness. We present not only the principle but also the characteristics of this system with a numerical example and a test run at Miyazaki test track. 4 refs., 19 figs., 3 tabs.

  2. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  3. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  4. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  5. Distributed Multi-propulsion Units System

    OpenAIRE

    原田, 正志; HARADA, Masashi

    2002-01-01

    Reduction of the weight of the propulsion system is important in the design of a stratospheric airship. However, it also important to increaseefficiency of the system because available energy generated by solar cells on the hull is quite limited. One solution to increase efficiency of the propulsion system is to use a stern propeller, the propeller mounted on the stern of the hull as shown in Figure 1. Mounted on the stern of the hull, the stern propeller is merged with the boundary layer of ...

  6. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.

    Science.gov (United States)

    Bertolaccini, Guilherme da Silva; Carvalho Filho, Idinei Francisco Pires de; Christofoletti, Gustavo; Paschoarelli, Luis Carlos; Medola, Fausto Orsi

    2018-06-01

    Wheelchair configuration is an important factor influencing the ergonomics of the user-device interface and, from a biomechanical point of view, small changes in chair setup may have a positive influence on the demand on the upper limbs during manual propulsion. This study aimed to investigate the influence of the position of the rear wheels' axle and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion. Electromyography signals of the biceps, triceps, anterior deltoids and pectoralis major were collected for 11 able-bodied subjects in a wheelchair propulsion protocol with four different wheelchair configurations (differing in axle position and the use of accessories) on a straightforward sprint and a slalom course. With accessories, moving the axle forward led to a decrease in the activity of all muscles in both the straightforward sprint (significant differences in triceps, anterior deltoids and biceps) and the slalom course (significant difference in anterior deltoids and biceps). However, when propelling the chair without accessories, no difference was found related to axle position. Changes in wheelchair configuration can influence the ergonomics of manual wheelchair propulsion. Reducing the biomechanical loads may benefit users' mobility, independence and social participation.

  7. Modifications in Wheelchair Propulsion Technique with Speed.

    Science.gov (United States)

    Russell, Ian M; Raina, Shashank; Requejo, Philip S; Wilcox, Rand R; Mulroy, Sara; McNitt-Gray, Jill L

    2015-01-01

    Repetitive loading of the upper limb joints during manual wheelchair (WC) propulsion (WCP) has been identified as a factor that contributes to shoulder pain, leading to loss of independence and decreased quality of life. The purpose of this study was to determine how individual manual WC users with paraplegia modify propulsion mechanics to accommodate expected increases in reaction forces (RFs) generated at the pushrim with self-selected increases in WCP speed. Upper extremity kinematics and pushrim RFs were measured for 40 experienced manual WC users with paraplegia while propelling on a stationary ergometer at self-selected free and fast propulsion speeds. Upper extremity kinematics and kinetics were compared within subject between propulsion speeds. Between group and within-subject differences were determined (α = 0.05). Increased propulsion speed was accompanied by increases in RF magnitude (22 of 40, >10 N) and shoulder net joint moment (NJM, 15 of 40, >10 Nm) and decreases in pushrim contact duration. Within-subject comparison indicated that 27% of participants modified their WCP mechanics with increases in speed by regulating RF orientation relative to the upper extremity segments. Reorientation of the RF relative to the upper extremity segments can be used as an effective strategy for mitigating rotational demands (NJM) imposed on the shoulder at increased propulsion speeds. Identification of propulsion strategies that individuals can use to effectively accommodate for increases in RFs is an important step toward preserving musculoskeletal health of the shoulder and improving health-related quality of life.

  8. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  9. Aeronautic propulsion systems; Propulseurs aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Lepourry, P; Ciryci, R

    1992-12-31

    This book is devoted to airplane pilots having a private licence and who would like to take up a professional rank. It comprises 8 chapters dealing with: the different type of propulsion systems, turbojet, turbofan and piston engines; the propeller (characteristics, different types, functioning, protection systems..); the piston engines (4-stroke cycle, power and efficiency, description, characteristics); the gas generator and its limitations (air intake, combustion chamber, turbines, nozzles, fuel systems..); the performances of propulsion systems; the drive, control and instruments; and the use of engines. The last chapter is a self-evaluation questionnaire about the notions developed in the book. (J.S.)

  10. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  11. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  12. Critical Propulsion Components. Volume 1; Summary, Introduction, and Propulsion Systems Studies

    Science.gov (United States)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/ Inlet Acoustic Team.

  13. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.

    Science.gov (United States)

    Gorce, P; Louis, N

    2012-01-01

    Biomechanical studies have linked the handrim wheelchair propulsion with a prevalence of upper limb musculoskeletal disorders. The purpose of this study was to examine the influence of the wheelchair settings on upper limb kinematics during wheelchair propulsion. Recordings were made under various wheelchair configuration conditions to understand the effect of wheelchair settings on kinematics parameters such shoulder, elbow and wrist angles. Ten experts and ten beginners' subjects propelled an experimental wheelchair on a roller ergometer system at a comfortable speed. Twelve wheelchair configurations were tested. Kinematics were recorded for each configuration. Based on the hand position relatively to the handrim, the main kinematic parameters of wheelchair propulsion were investigated on the whole propulsion cycle and a key event such as handrim contact and release. Compared to the beginner subjects, all the experts' subjects generally present higher joint amplitude and propulsion speeds. Seat height and antero-posterior axle position influence usage of the hand-rim, timing parameters and configurations of upper limb joints. Results seem to confirm that low and backward seat position allow a greater efficiency. Nevertheless, according that proximity of joint limit is a well known factor of musculoskeletal disorders, our results let us think that too low and backward seat position, increasing joints positions and amplitudes, could increase the risk of upper limb injuries in relation with manual wheelchair propulsion. Kinematic differences highlight that future studies on wheelchair propulsion should only be done with impaired experienced subjects. Furthermore, this study provides indications on how wheelchair settings can be used for upper limb injury prevention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  15. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  16. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  17. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    Science.gov (United States)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height

  18. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.

    Science.gov (United States)

    Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R

    2011-04-29

    Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The Space Nuclear Thermal Propulsion Program: Propulsion for the twenty first century

    International Nuclear Information System (INIS)

    Bleeker, G.; Moody, J.; Kesaree, M.

    1993-01-01

    As mission requirements approach the limits of the chemical propulsion systems, new engines must be investigated that can meet the advanced mission requirements of higher payload fractions, higher velocities, and consequently higher specific Impulses (Isp). The propulsion system that can meet these high demands is a nuclear thermal rocket engine. This engine generates the thrust by expanding/existing the hydrogen, heated from the energy derived from the fission process in a reactor, through a nozzle. The Department of Defense (DoD), however, initiated a new nuclear rocket development program in 1987 for ballistic missile defense application. The Space Nuclear Thermal Propulsion (SNTP) Program that seeks to improve on the technology of ROVER/NERVA grew out of this beginning and has been managed by the Air Force, with the involvement of DoE and NASA. The goal of the SNTP Program is to develop an engine to meet potential Air Force requirements for upper stage engine, bimodal propulsion/power applications, and orbital transfer vehicles, as well as the NASA requirements for possible missions to the Moon and Mars. During the entire life of the program, the DoD has considered safety to be of paramount importance, and is following all national environmental policies

  20. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  1. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  2. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  3. Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship

    International Nuclear Information System (INIS)

    Choi, Byung Chul; Kim, Young Min

    2013-01-01

    A dual loop waste heat recovery power generation system that comprises an upper trilateral cycle and a lower organic Rankine cycle, in which discharged exhaust gas heat is recovered and re-used for propulsion power, was theoretically applied to an internal combustion engine for propulsion in a 6800 TEU container ship. The thermodynamic properties of this exhaust gas heat recovery system, which vary depending on the boundary temperature between the upper and lower cycles, were also investigated. The results confirmed that this dual loop exhaust gas heat recovery power generation system exhibited a maximum net output of 2069.8 kW, and a maximum system efficiency of 10.93% according to the first law of thermodynamics and a maximum system exergy efficiency of 58.77% according to the second law of thermodynamics. In this case, the energy and exergy efficiencies of the dual loop system were larger than those of the single loop trilateral cycle. Further, in the upper trilateral cycle, the volumetric expansion ratio of the turbine could be considerably reduced to an adequate level to be employed in the practical system. When this dual loop exhaust gas heat recovery power generation system was applied to the main engine of the container ship, which was actually in operation, a 2.824% improvement in propulsion efficiency was confirmed in comparison to the case of a base engine. This improvement in propulsion efficiency resulted in about 6.06% reduction in the specific fuel oil consumption and specific CO 2 emissions of the main engine during actual operation. - Highlights: • WHRS was theoretically applied to exhaust gas of a main engine for ship propulsion. • A dual loop EG-WHRS using water and R1234yf as working fluids has been suggested. • Limitation of single loop trilateral cycle was improved by the dual loop system. • The propulsion efficiency of 2.824% was improved by the dual loop EG-WHRS. • This resulted in about 6.06% reduction in the SFOC and specific CO

  4. A study on effects of backrest thickness on the upper arm and trunk muscle load during wheelchair propulsion.

    Science.gov (United States)

    Lee, Joo-Hyun; Yoo, In-Gyu

    2016-05-01

    [Purpose] The purpose of this study was to investigate the effects of the thickness of a wheelchair backrest provided for support and comfort on upper arm and trunk muscle load during wheelchair propulsion by using accelerometers. [Subjects and Methods] The Fourteen healthy participants were enrolled in this study. The study compared effects of three backrest conditions including no pad, a 3-cm-thick lumbar pad, and a 6-cm-thick lumbar pad. The instruments used for measurement were used two accelerometers. The participants were asked to propel their wheelchairs, which had been equipped with two accelerometers, 30 times. [Results] The intensity of muscle movement with the 3-cm-thick lumbar pad was significantly lower than the intensities with no lumbar pad and the 6-cm-thick lumbar pad. The muscle intensity did not differ significantly between the no pad and 6-cm-thick lumbar pad conditions. [Conclusion] An appropriately thick backrest has good effects on upper arm and trunk muscles during wheelchair propulsion. In the future, we must consider the appropriate backrest thickness for providing wheelchair users with a comfortable wheelchair.

  5. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  6. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  7. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  8. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  9. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  10. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  11. State-of-the-Art for Small Satellite Propulsion Systems

    Science.gov (United States)

    Parker, Khary I.

    2016-01-01

    SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.

  12. Using Additive Manufacturing to Print a CubeSat Propulsion System

    Science.gov (United States)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  13. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  14. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.

    Science.gov (United States)

    Vegter, Riemer J K; Hartog, Johanneke; de Groot, Sonja; Lamoth, Claudine J; Bekker, Michel J; van der Scheer, Jan W; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    2015-03-10

    To propel in an energy-efficient manner, handrim wheelchair users must learn to control the bimanually applied forces onto the rims, preserving both speed and direction of locomotion. Previous studies have found an increase in mechanical efficiency due to motor learning associated with changes in propulsion technique, but it is unclear in what way the propulsion technique impacts the load on the shoulder complex. The purpose of this study was to evaluate mechanical efficiency, propulsion technique and load on the shoulder complex during the initial stage of motor learning. 15 naive able-bodied participants received 12-minutes uninstructed wheelchair practice on a motor driven treadmill, consisting of three 4-minute blocks separated by two minutes rest. Practice was performed at a fixed belt speed (v = 1.1 m/s) and constant low-intensity power output (0.2 W/kg). Energy consumption, kinematics and kinetics of propulsion technique were continuously measured. The Delft Shoulder Model was used to calculate net joint moments, muscle activity and glenohumeral reaction force. With practice mechanical efficiency increased and propulsion technique changed, reflected by a reduced push frequency and increased work per push, performed over a larger contact angle, with more tangentially applied force and reduced power losses before and after each push. Contrary to our expectations, the above mentioned propulsion technique changes were found together with an increased load on the shoulder complex reflected by higher net moments, a higher total muscle power and higher peak and mean glenohumeral reaction forces. It appears that the early stages of motor learning in handrim wheelchair propulsion are indeed associated with improved technique and efficiency due to optimization of the kinematics and dynamics of the upper extremity. This process goes at the cost of an increased muscular effort and mechanical loading of the shoulder complex. This seems to be associated with an

  15. An N+3 Technology Level Reference Propulsion System

    Science.gov (United States)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  16. Integrated Propulsion Data System Public Web Site

    Science.gov (United States)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  17. Artist's concept of Antimatter propulsion system

    Science.gov (United States)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  18. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  19. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    Science.gov (United States)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  20. Development of Liquid Propulsion Systems Testbed at MSFC

    Science.gov (United States)

    Alexander, Reginald; Nelson, Graham

    2016-01-01

    As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the

  1. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  2. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  3. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  4. Multi-disciplinary coupling for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  5. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  6. Definition of an arcjet propulsion sub-system

    International Nuclear Information System (INIS)

    Price, T.W.

    1989-01-01

    An engineering flight demonstration of a 100 kW3 Space Reactor Power System is planned for the mid to late 1990s. An arcjet based propulsion subsystem will be included on the flight demonstraction as a secondary experiment. Two studies, sponsored by the Kay Technologies Directorate of the SDI Organization and managed by the Jet Propulsion Laboratory are currently under way to define that propulsion subsystem. The principal tasks of those contracts and the plans for two later phases, an experimental verification of the concept and a flight qualification/delivery of a flight unit, are described. 9 refs

  7. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  8. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    International Nuclear Information System (INIS)

    Dagle, J.E.

    1991-01-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or a larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems

  9. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  10. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  11. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  12. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    International Nuclear Information System (INIS)

    Ohashi, S.; Nishio, R.; Hashikawa, T.

    2010-01-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  13. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kanasi-u.ac.j [Kansai University 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Nishio, R.; Hashikawa, T. [Kansai University 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2010-11-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  14. Economic effects of propulsion system technology on existing and future transport aircraft

    Science.gov (United States)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  15. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  16. Nuclear Bi-Brayton system for aircraft propulsion

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1979-01-01

    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  17. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 2

    Science.gov (United States)

    Levak, Daniel

    1993-01-01

    The Alternate Propulsion Subsystem Concepts contract had five tasks defined for the first year. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, Space Shuttle Main Engine (SSME) Upper Stage Use, and CER's for Liquid Propellant Rocket Engines. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume 1.

  18. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    Science.gov (United States)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  19. Multi-disciplinary coupling effects for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  20. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  1. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  2. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  3. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  4. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  5. Definition of propulsion system for V/STOL research and technology aircraft

    Science.gov (United States)

    1977-01-01

    Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.

  6. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.

    Science.gov (United States)

    Soltau, Shelby L; Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment.

  7. A graphical user-interface for propulsion system analysis

    Science.gov (United States)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  8. Phase 1 space fission propulsion system design considerations

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system

  9. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  10. Intelligent Propulsion System Foundation Technology: Summary of Research

    Science.gov (United States)

    2008-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.

  11. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  12. Investigation of Various Novel Air-Breathing Propulsion Systems

    Science.gov (United States)

    Wilhite, Jarred M.

    The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable

  13. A Dual Mode Propulsion System for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Kevin R. Gagne

    2018-05-01

    Full Text Available This study focused on the development of a chemical micropropulsion system suitable for primary propulsion and/or attitude control for a nanosatellite. Due to the limitations and expense of current micropropulsion technologies, few nanosatellites with propulsion have been launched to date; however, the availability of such a propulsion system would allow for new nanosatellite mission concepts, such as deep space exploration, maneuvering in low gravity environments and formation flying. This work describes the design of “dual mode” monopropellant/bipropellant microthruster prototype that employs a novel homogeneous catalysis scheme. Results from prototype testing are reported that validate the concept. The micropropulsion system is designed to be fabricated using a combination of additively-manufactured and commercial off the shelf (COTS parts along with non-toxic fuels, thus making it a low-cost and environmentally-friendly option for future nanosatellite missions.

  14. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  15. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  16. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  17. Advanced Propulsion System Studies for General Aviation Aircraft

    Science.gov (United States)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  18. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  19. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    Science.gov (United States)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  20. Development of technology for creating intelligent control systems for power plants and propulsion systems for marine robotic systems

    Science.gov (United States)

    Iakovleva, E. V.; Momot, B. A.

    2017-10-01

    The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.

  1. Dynamic analysis and design of air spring mounting system for marine propulsion system

    Science.gov (United States)

    He, Lin; Xu, Wei; Bu, Wenjun; Shi, Liang

    2014-09-01

    Marine propulsion unit (MPU) is one of the dominant vibration and noise sources onboard ship. Its vibration can be attenuated effectively by isolating MPU with low-frequency mounting system. But this is difficult to implement due to the stringent requirement of MPU alignment with the propulsion shafting. In this paper a novel air spring mounting system (ASMS) for propulsion system is proposed consisting of air spring subsystem, alignment control subsystem and safety protection subsystem. The load distribution optimization method and dynamic model of ASMS are presented. The factors that affect system stability and natural frequencies are analyzed, as well as the design measures to enhance system performance. A theoretical model is presented to estimate the isolation effect of ASMS. The monitoring model of alignment between MPU and propulsion shafting is established, followed by the alignment control algorithm and converge rule which assures the fast and uniform convergence of both air springs load distribution and alignment control process. Safety protection mechanism is designed to ensure that the MPU can operate safely in case of ASMS failure or other extreme circumstances. A scaled ASMS prototype is manufactured and tested on a special experimental setup. Experimental results validate the effectiveness of theoretical models and show that the performance of ASMS satisfies the operation requirements of MPU.

  2. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  3. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  4. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  6. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  7. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  8. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    Science.gov (United States)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  9. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study.

    Science.gov (United States)

    Gagnon, Dany H; Roy, Audrey; Gabison, Sharon; Duclos, Cyril; Verrier, Molly C; Nadeau, Sylvie

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.

  10. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  11. Solar thermal upper stage: Economic advantage and development status

    Science.gov (United States)

    Adams, Alan M.

    1995-01-01

    A solar thermal upper stage (STUS) is envisioned as a propulsive concept for the future. The STUS will be used for low Earth orbit (LEO) to geostationary-Earth orbit (GEO) transfer and for planetary exploration missions. The STUS offers significant performance gains over conventional chemical propulsion systems. These performance gains translate into a more economical, more efficient method of placing useful payloads in space and maximizing the benefits derived from space activity. This paper will discuss the economical advantages of an STUS compared to conventional chemical propulsion systems, the potential market for an STUS, and the recent activity in the development of an STUS. The results of this assessment combined with the performance gains, will provide a strong justification for the development of an STUS.

  12. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    Science.gov (United States)

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  13. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    Science.gov (United States)

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  14. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  15. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  16. Discrete Event Supervisory Control Applied to Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  17. Propulsion systems from takeoff to high-speed flight

    Science.gov (United States)

    Billig, F. S.

    Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.

  18. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  19. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    Science.gov (United States)

    Şöhret, Yasin

    2018-05-01

    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  20. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  1. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  2. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  3. The TRANSRAPID propulsion system - development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Henning, U [Siemens AG, Erlangen (Germany); Kamp, P G [Siemens AG, Erlangen (Germany); Hochleitner, J [Siemens AG, Erlangen (Germany)

    1996-12-31

    The structure of the propulsion system for the Transrapid comprises a number of components which are located along the guideway. These drive components are temporarily switched together to form the drive control zones necessary to permit maglev operation over the guideway. The paper describes the development of the stationary propulsion converter with GTO thyristors. The drive components are tested under realistic operating conditions. The test results confirm the performance capability as well as verify the suitability of the concept for use in revenue service. (HW)

  4. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  5. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  6. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  7. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  8. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  9. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  10. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with

  11. Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael

    2013-01-01

    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and

  12. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  13. Development of An Intelligent Flight Propulsion Control System

    Science.gov (United States)

    Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.

    1999-01-01

    The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of

  14. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  15. Health management and controls for Earth-to-orbit propulsion systems

    Science.gov (United States)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  16. MSFC Propulsion Systems Department Knowledge Management Project

    Science.gov (United States)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  17. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  18. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  19. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  20. Numerical analysis of a waterjet propulsion system

    NARCIS (Netherlands)

    Bulten, N.W.H.

    2006-01-01

    A waterjet propulsion system is used to propel ships, using a pump which produces a high speed jet. A standard waterjet installation can be divided into an inlet, a pump and a nozzle. For manoeuvring and reversing purposes an additional steering device can be integrated into the installation. The

  1. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  2. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  3. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  4. Advanced Chemical Propulsion System Study

    Science.gov (United States)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  5. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    Science.gov (United States)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  6. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    Science.gov (United States)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  7. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2009-01-01

    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  8. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  9. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  10. Enabling the Use of Space Fission Propulsion Systems

    International Nuclear Information System (INIS)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-01-01

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  11. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  12. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Science.gov (United States)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  13. Development of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Aizawa, K; Yokoyama, M; Yoshikawa, K [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan); Kimura, Y; Izumi, M [Tokyo University of Marine Science Technology, 135-8533, Tokyo (Japan); Ohashi, K; Numano, M [National Maritime Research Institute, 181-0004, Tokyo (Japan); Okumura, K; Yamaguchi, M; Gocho, Y; Kosuge, E, E-mail: umemoto@ati.khi.co.j [Japan Super-conductivity Organization Co. LTD., 135-8533, Tokyo (Japan)

    2010-06-01

    To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO{sub 2}, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research and development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

  14. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  15. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI

  16. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  17. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  18. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  19. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  20. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  1. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  2. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  3. The influence of verbal training and visual feedback on manual wheelchair propulsion.

    Science.gov (United States)

    DeGroot, Keri K; Hollingsworth, Holly H; Morgan, Kerri A; Morris, Carrie L; Gray, David B

    2009-03-01

    To determine if verbal training with visual feedback improved manual wheelchair propulsion; to examine propulsion differences between an individual with paraplegia and an individual with tetraplegia. Quasi-experimental study: Nine manual wheelchair-using adults participated in propulsion assessments and training. Baseline propulsion performance was measured on several tasks on different surfaces. Participants were trained on a wheelchair treadmill with verbal and visual feedback to increase push length, reduce push frequency and to modify propulsion pattern. Handrim biomechanics were measured with an instrumented wheel. Changes in propulsion were assessed. Differences in propulsion characteristics between a participant with paraplegia and a participant with tetraplegia were examined. Push length increased (p propulsion characteristics between a participant with paraplegia and a participant with tetraplegia. Verbal training may produce changes in push biomechanics of manual wheelchair users. Longer training periods may be needed to sustain propulsion changes. Findings from this study support other studies that have shown propulsion differences between people with tetraplegia and paraplegia. Propulsion training for populations with upper-extremity impairments warrants further study.

  4. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  5. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    Science.gov (United States)

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate

  6. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  7. A study on optimal control of the aero-propulsion system acceleration process under the supersonic state

    Directory of Open Access Journals (Sweden)

    Fengyong Sun

    2017-04-01

    Full Text Available In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet control problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.

  8. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  9. Lunar lander and return propulsion system trade study

    Science.gov (United States)

    Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John

    1993-01-01

    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

  10. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  11. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  12. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  13. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  14. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  15. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  16. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  17. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  18. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  19. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  20. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  1. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Distributed control is potentially an enabling technology for advanced intelligent propulsion system concepts and is one of the few control approaches that is able to provide improved component...

  2. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  3. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  4. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.

    Science.gov (United States)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2013-03-01

    To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  6. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  7. Nuclear space power and propulsion requirements and issues

    International Nuclear Information System (INIS)

    Swerdling, M.; Isenberg, L.

    1995-01-01

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE's new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems

  8. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  9. The Livingstone Model of a Main Propulsion System

    Science.gov (United States)

    Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)

    2003-01-01

    Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.

  10. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  11. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  12. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  13. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  14. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  15. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  16. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated

  17. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  18. THE INFLUENCE OF LOWER LIMB MOVEMENT ON UPPER LIMB MOVEMENT SYMMETRY WHILE SWIMMING THE BREASTSTROKE

    OpenAIRE

    M. Jaszczak

    2011-01-01

    This study 1) examined the influence of lower limb movement on upper limb movement symmetry, 2) determined the part of the propulsion phase displaying the greatest hand movement asymmetry, 3) diagnosed the range of upper limb propulsion phase which is the most prone to the influence of the lower limbs while swimming the breaststroke. Twenty-four participants took part in two tests. Half of them performed an asymmetrical leg movement. The propulsion in the first test was generated by four limb...

  19. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  20. The Effect of Hull Biofouling on Parameters Characterising Ship Propulsion System Efficiency

    Directory of Open Access Journals (Sweden)

    Tarełko Wiesła

    2015-01-01

    Full Text Available One of most important issues concerning technical objects is the increase of their operating performance. For a ship this performance mainly depends on the efficiency of its main pro-pulsion system and the resistance generated during its motion on water. The overall ship re-sistance, in turn, mainly depends on the hull friction resistance, closely related with the pres-ence of different types of roughness on the hull surface, including underwater part biofouling. The article analyses the effect of hull biofouling on selected parameters characterising the efficiency of the ship propulsion system with adjustable propeller. For this purpose a two-year research experiment was performed on a sailing vessel during its motor navigation phases. Based on the obtained results, three groups of characteristics were worked out for different combinations of engine rotational speed and adjustable propeller pitch settings. The obtained results have revealed that the phenomenon of underwater hull biofouling affects remarkably the parameters characterising propulsion system efficiency. In particular, the development of the biofouling layer leads to significant reduction of the speed of navigation.

  1. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  2. Time-frequency distributions for propulsion-system diagnostics

    Science.gov (United States)

    Griffin, Michael E.; Tulpule, Sharayu

    1991-12-01

    The Wigner distribution and its smoothed versions, i.e., Choi-Williams and Gaussian kernels, are evaluated for propulsion system diagnostics. The approach is intended for off-line kernel design by using the ambiguity domain to select the appropriate Gaussian kernel. The features produced by the Wigner distribution and its smoothed versions correlate remarkably well with documented failure indications. The selection of the kernel on the other hand is very subjective for our unstructured data.

  3. Temporal Parameters Estimation for Wheelchair Propulsion Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Manoela Ojeda

    2014-01-01

    Full Text Available Due to lower limb paralysis, individuals with spinal cord injury (SCI rely on their upper limbs for mobility. The prevalence of upper extremity pain and injury is high among this population. We evaluated the performance of three triaxis accelerometers placed on the upper arm, wrist, and under the wheelchair, to estimate temporal parameters of wheelchair propulsion. Twenty-six participants with SCI were asked to push their wheelchair equipped with a SMARTWheel. The estimated stroke number was compared with the criterion from video observations and the estimated push frequency was compared with the criterion from the SMARTWheel. Mean absolute errors (MAE and mean absolute percentage of error (MAPE were calculated. Intraclass correlation coefficients and Bland-Altman plots were used to assess the agreement. Results showed reasonable accuracies especially using the accelerometer placed on the upper arm where the MAPE was 8.0% for stroke number and 12.9% for push frequency. The ICC was 0.994 for stroke number and 0.916 for push frequency. The wrist and seat accelerometer showed lower accuracy with a MAPE for the stroke number of 10.8% and 13.4% and ICC of 0.990 and 0.984, respectively. Results suggested that accelerometers could be an option for monitoring temporal parameters of wheelchair propulsion.

  4. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  5. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  6. A Ship Propulsion System Model for Fault-tolerant Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    This report presents a propulsion system model for a low speed marine vehicle, which can be used as a test benchmark for Fault-Tolerant Control purposes. The benchmark serves the purpose of offering realistic and challenging problems relevant in both FDI and (autonomous) supervisory control area...

  7. Probabilistic structural analysis methods for space transportation propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  8. Titan I propulsion system modeling and possible performance improvements

    Science.gov (United States)

    Giusti, Oreste

    This thesis features the Titan I propulsion systems and offers data-supported suggestions for improvements to increase performance. The original propulsion systems were modeled both graphically in CAD and via equations. Due to the limited availability of published information, it was necessary to create a more detailed, secondary set of models. Various engineering equations---pertinent to rocket engine design---were implemented in order to generate the desired extra detail. This study describes how these new models were then imported into the ESI CFD Suite. Various parameters are applied to these imported models as inputs that include, for example, bi-propellant combinations, pressure, temperatures, and mass flow rates. The results were then processed with ESI VIEW, which is visualization software. The output files were analyzed for forces in the nozzle, and various results were generated, including sea level thrust and ISP. Experimental data are provided to compare the original engine configuration models to the derivative suggested improvement models.

  9. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    International Nuclear Information System (INIS)

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  10. NASA's Electric Sail Propulsion System Investigations over the Past Three Years

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in 5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be

  11. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    Science.gov (United States)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  12. A Multi-disciplinary Tool for Space Launch Systems Propulsion Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate predictive capability of coupled fluid-structure interaction in propulsion system is crucial in the development of NASA's new Space Launch System (SLS)....

  13. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  14. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  15. THE INFLUENCE OF LOWER LIMB MOVEMENT ON UPPER LIMB MOVEMENT SYMMETRY WHILE SWIMMING THE BREASTSTROKE

    Directory of Open Access Journals (Sweden)

    M. Jaszczak

    2011-09-01

    Full Text Available This study 1 examined the influence of lower limb movement on upper limb movement symmetry, 2 determined the part of the propulsion phase displaying the greatest hand movement asymmetry, 3 diagnosed the range of upper limb propulsion phase which is the most prone to the influence of the lower limbs while swimming the breaststroke. Twenty-four participants took part in two tests. Half of them performed an asymmetrical leg movement. The propulsion in the first test was generated by four limbs while in the second one only by the upper limbs. The pressure differentials exerted by the water on the back and on the palm of the right and left hand were measured. Then, the asymmetry coefficient of the hand movement was determined. No changes in the level of the asymmetry index in participants performing correct (symmetrical lower limb movement were observed. Incorrect (asymmetrical leg motion resulted in an increase of hand asymmetry. It could be concluded that lower limb faults neutralize upper limb performance when swimming on a rectilinear path. However, most asymmetrical arm performance should be identified with the conversion of propulsion into recovery. Nevertheless, its proneness to influence improper leg performance might be expected at the beginning of arm propulsion.

  16. Computational Structures Technology for Airframes and Propulsion Systems

    International Nuclear Information System (INIS)

    Noor, A.K.; Housner, J.M.; Starnes, J.H. Jr.; Hopkins, D.A.; Chamis, C.C.

    1992-05-01

    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory

  17. Multimission nuclear electric propulsion system for outer planet exploration missions

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1981-01-01

    A 100-kW reactor power system with a specific mass of 15 to 30 kg/kW/sub e/ and an electric thrust system with a specific mass of 5 to 10 kg/kW/sub e/ can be combined into a nuclear electric propulsion system. The system can be used for outer planet missions as well as earth orbital transfer vehicle missions. 5 refs

  18. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  19. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  20. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  1. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    Science.gov (United States)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  2. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  3. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  4. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  5. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    Science.gov (United States)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  6. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  7. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  8. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  9. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  10. Conceptual Design of Electrical Propulsion System for Nuclear Operated Vessel Adventurer

    International Nuclear Information System (INIS)

    Halimi, B.; Suh, K. Y.

    2009-01-01

    A design concept of the electric propulsion system for the Nuclear Operated Vessel Adventure (NOVA) is presented. NOVA employs Battery Omnibus Reactor Integral System (BORIS), a liquid metal cooled small fast integral reactor, and Modular Optimized Brayton Integral System (MOBIS), a supercritical CO 2 (SCO 2 ) Brayton cycle as power converter to Naval Application Vessel Integral System (NAVIS)

  11. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  12. An overview of the NASA Advanced Propulsion Concepts program

    International Nuclear Information System (INIS)

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R.

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs

  13. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.

    Science.gov (United States)

    Jayaraman, Chandrasekaran; Beck, Carolyn L; Sosnoff, Jacob J

    2015-11-05

    Repetitive loading of the upper limb due to wheelchair propulsion plays a leading role in the development of shoulder pain in manual wheelchair users (mWCUs). There has been minimal inquiry on understanding wheelchair propulsion kinematics from a human movement ergonomics perspective. This investigation employs an ergonomic metric, jerk, to characterize the recovery phase kinematics of two recommended manual wheelchair propulsion patterns: semi-circular and the double loop. Further it examines if jerk is related to shoulder pain in mWCUs. Data from 22 experienced adult mWCUs was analyzed for this study (semi-circular: n=12 (pain/without-pain:6/6); double-loop: n=10 (pain/without-pain:4/6)). Participants propelled their own wheelchair fitted with SMARTWheels on a roller dynamometer at 1.1 m/s for 3 min. Kinematic and kinetic data of the upper limbs were recorded. Three dimensional absolute jerk experienced at the shoulder, elbow and wrist joint during the recovery phase of wheelchair propulsion were computed. Two-way ANOVAs were conducted with the recovery pattern type and shoulder pain as between group factors. (1) Individuals using a semi-circular pattern experienced lower jerk at their arm joints than those using a double loop pattern (Ppropulsion was able to distinguish between pattern types (semi-circular and double loop) and the presence of shoulder pain. Jerk provides novel insights into wheelchair propulsion kinematics and in the future it may be beneficial to incorporate jerk based metric into rehabilitation practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  15. Energy management and sizing of fuel cell hybrid propulsion systems

    NARCIS (Netherlands)

    Tazelaar, E.

    2013-01-01

    Our dependency on road transportation of people and goods is huge. Unfortunately, this transportation is mainly fed by fossil fuels, with as accompanying disadvantages undesired local and global emissions and politically less desired dependencies. Electric propulsion systems can help to cover the

  16. Case Study on the Unavailability of a Ship Propulsion System under Aging Effects and Maintenance

    OpenAIRE

    Tadatsugi Okazaki

    2016-01-01

    Unavailability of a ship propulsion system under aging effects and proper maintenance is estimated using GO-FLOW. GO-FLOW is an effective software tool for the unavailability analysis of complex systems. Aging effects are incorporated into GO-FLOW using a time-dependent technique and assuming a linear aging model. The results show that the aging effects and improper maintenance can potentially increase the frequency of accidents due to a malfunction of the propulsion system by a factor of three.

  17. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid

  18. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  19. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  20. A Step by Step Approach for Evaluating the Reliability of the Main Engine Lube Oil System for a Ship's Propulsion System

    Directory of Open Access Journals (Sweden)

    Mohan Anantharaman

    2014-09-01

    Full Text Available Effective and efficient maintenance is essential to ensure reliability of a ship's main propulsion system, which in turn is interdependent on the reliability of a number of associated sub- systems. A primary step in evaluating the reliability of the ship's propulsion system will be to evaluate the reliability of each of the sub- system. This paper discusses the methodology adopted to quantify reliability of one of the vital sub-system viz. the lubricating oil system, and development of a model, based on Markov analysis thereof. Having developed the model, means to improve reliability of the system should be considered. The cost of the incremental reliability should be measured to evaluate cost benefits. A maintenance plan can then be devised to achieve the higher level of reliability. Similar approach could be considered to evaluate the reliability of all other sub-systems. This will finally lead to development of a model to evaluate and improve the reliability of the main propulsion system.

  1. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  2. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  3. RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study

    Science.gov (United States)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions

  4. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.

    Science.gov (United States)

    Koontz, Alicia M; Roche, Bailey M; Collinger, Jennifer L; Cooper, Rory A; Boninger, Michael L

    2009-11-01

    To classify propulsion patterns over surfaces encountered in the natural environment during start-up and compare selected biomechanical variables between pattern types. Case series. National Veterans Wheelchair Games, Minneapolis, MN, 2005. Manual wheelchair users (N=29). Subjects pushed their wheelchairs from a resting position over high-pile carpet, over linoleum, and up a ramp with a 5 degrees incline while propulsion kinematics and kinetics were recorded with a motion capture system and an instrumented wheel. Three raters classified the first 3 strokes as 1 of 4 types on each surface: arc, semicircular (SC), single looping over propulsion (SL), and double looping over propulsion (DL). The Fisher exact test was used to assess pattern changes between strokes and surface type. A multiple analysis of variance test was used to compare peak and average resultant force and moment about the hub, average wheel velocity, stroke frequency, contact angle, and distance traveled between stroke patterns. SL was the most common pattern used during start-up propulsion (44.9%), followed by arc (35.9%), DL (14.1%), and SC (5.1%). Subjects who dropped their hands below the rim during recovery achieved faster velocities and covered greater distances (.016propulsion patterns is a difficult task that should use multiple raters. In addition, propulsion patterns change during start-up, with an arc pattern most prevalent initially. The biomechanical findings in this study agree with current clinical guidelines that recommend training users to drop the hand below the pushrim during recovery.

  5. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.

    Science.gov (United States)

    Slowik, Jonathan S; McNitt-Gray, Jill L; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-03-01

    The considerable physical demand placed on the upper extremity during manual wheelchair propulsion is distributed among individual muscles. The strategy used to distribute the workload is likely influenced by the relative force-generating capacities of individual muscles, and some strategies may be associated with a higher injury risk than others. The objective of this study was to use forward dynamics simulations of manual wheelchair propulsion to identify compensatory strategies that can be used to overcome weakness in individual muscle groups and identify specific strategies that may increase injury risk. Identifying these strategies can provide rationale for the design of targeted rehabilitation programs aimed at preventing the development of pain and injury in manual wheelchair users. Muscle-actuated forward dynamics simulations of manual wheelchair propulsion were analyzed to identify compensatory strategies in response to individual muscle group weakness using individual muscle mechanical power and stress as measures of upper extremity demand. The simulation analyses found the upper extremity to be robust to weakness in any single muscle group as the remaining groups were able to compensate and restore normal propulsion mechanics. The rotator cuff muscles experienced relatively high muscle stress levels and exhibited compensatory relationships with the deltoid muscles. These results underline the importance of strengthening the rotator cuff muscles and supporting muscles whose contributions do not increase the potential for impingement (i.e., the thoracohumeral depressors) and minimize the risk of upper extremity injury in manual wheelchair users. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    Science.gov (United States)

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

    1981-01-01

    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  7. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  8. The influence of the waterjet propulsion system on the ships' energy consumption and emissions inventories.

    Science.gov (United States)

    Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan

    2018-08-01

    In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Sensitivity Analysis of ProSEDS (Propulsive Small Expendable Deployer System) Data Communication System

    Science.gov (United States)

    Park, Nohpill; Reagan, Shawn; Franks, Greg; Jones, William G.

    1999-01-01

    This paper discusses analytical approaches to evaluating performance of Spacecraft On-Board Computing systems, thereby ultimately achieving a reliable spacecraft data communications systems. The sensitivity analysis approach of memory system on the ProSEDS (Propulsive Small Expendable Deployer System) as a part of its data communication system will be investigated. Also, general issues and possible approaches to reliable Spacecraft On-Board Interconnection Network and Processor Array will be shown. The performance issues of a spacecraft on-board computing systems such as sensitivity, throughput, delay and reliability will be introduced and discussed.

  10. The influence of speed and grade on wheelchair propulsion hand pattern.

    Science.gov (United States)

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-11-01

    The hand pattern used during manual wheelchair propulsion (i.e., full-cycle hand path) can provide insight into an individual's propulsion technique. However, previous analyses of hand patterns have been limited by their focus on a single propulsion condition and reliance on subjective qualitative characterization methods. The purpose of this study was to develop a set of objective quantitative parameters to characterize hand patterns and determine the influence of propulsion speed and grade of incline on the patterns preferred by manual wheelchair users. Kinematic and kinetic data were collected from 170 experienced manual wheelchair users on an ergometer during three conditions: level propulsion at their self-selected speed, level propulsion at their fastest comfortable speed and graded propulsion (8%) at their level self-selected speed. Hand patterns were quantified using a set of objective parameters, and differences across conditions were identified. Increased propulsion speed resulted in a shift away from under-rim hand patterns. Increased grade of incline resulted in the hand remaining near the handrim throughout the cycle. Manual wheelchair users change their hand pattern based on task-specific constraints and goals. Further work is needed to investigate how differences between hand patterns influence upper extremity demand and potentially lead to the development of overuse injuries and pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  12. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  13. Computational Investigation of a Boundary-Layer Ingesting Propulsion System for the Common Research Model

    Science.gov (United States)

    Blumenthal, Brennan T.; Elmiligui, Alaa; Geiselhart, Karl A.; Campbell, Richard L.; Maughmer, Mark D.; Schmitz, Sven

    2016-01-01

    The present paper examines potential propulsive and aerodynamic benefits of integrating a Boundary-Layer Ingestion (BLI) propulsion system into a typical commercial aircraft using the Common Research Model (CRM) geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment is used to generate engine conditions for CFD analysis. Improvements to the BLI geometry are made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method, and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2 deg for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.4% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from Boundary-Layer Ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

  14. Computational Investigation of a Boundary-Layer Ingestion Propulsion System for the Common Research Model

    Science.gov (United States)

    Blumenthal, Brennan

    2016-01-01

    This thesis will examine potential propulsive and aerodynamic benefits of integrating a boundary-layer ingestion (BLI) propulsion system with a typical commercial aircraft using the Common Research Model geometry and the NASA Tetrahedral Unstructured Software System (TetrUSS). The Numerical Propulsion System Simulation (NPSS) environment will be used to generate engine conditions for CFD analysis. Improvements to the BLI geometry will be made using the Constrained Direct Iterative Surface Curvature (CDISC) design method. Previous studies have shown reductions of up to 25% in terms of propulsive power required for cruise for other axisymmetric geometries using the BLI concept. An analysis of engine power requirements, drag, and lift coefficients using the baseline and BLI geometries coupled with the NPSS model are shown. Potential benefits of the BLI system relating to cruise propulsive power are quantified using a power balance method and a comparison to the baseline case is made. Iterations of the BLI geometric design are shown and any improvements between subsequent BLI designs presented. Simulations are conducted for a cruise flight condition of Mach 0.85 at an altitude of 38,500 feet and an angle of attack of 2deg for all geometries. A comparison between available wind tunnel data, previous computational results, and the original CRM model is presented for model verification purposes along with full results for BLI power savings. Results indicate a 14.3% reduction in engine power requirements at cruise for the BLI configuration over the baseline geometry. Minor shaping of the aft portion of the fuselage using CDISC has been shown to increase the benefit from boundary-layer ingestion further, resulting in a 15.6% reduction in power requirements for cruise as well as a drag reduction of eighteen counts over the baseline geometry.

  15. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  16. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  17. Microwave Plasma Propulsion Systems for Defensive Counter-Space

    Science.gov (United States)

    2007-09-01

    microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53

  18. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  19. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  20. Uprated OMS engine for upper stage propulsion

    Science.gov (United States)

    Boyd, William C.

    1986-01-01

    The results of a pre-development component demonstration program on the use of a gas generator-driven turbopump that increases the Space Shuttle's Orbital Maneuvering Engine (OME) operating pressure are given. Tests and analysis confirm the the capability of the concept to meet or exceed performance and life requirements. Storable propellant upper stage concepts are also discussed.

  1. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    Science.gov (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  2. Development of Propulsion Inverter Control System for High-Speed Maglev based on Long Stator Linear Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jeong-Min Jo

    2017-02-01

    Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.

  3. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  4. Distributed propulsion and future aerospace technologies

    OpenAIRE

    Ameyugo, Gregorio

    2007-01-01

    This thesis describes an Engineering Doctorate project in Distributed Propulsion carried out from 2004 to 2007 at Cranfield University. Distributed propulsion is a propulsion system arrangement that consists in spreading the engine thrust along the aircraft span. This can be accomplished by distributing a series of driven fans or the engines themselves. The aim of this project is to determine the feasibility of ...

  5. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    Science.gov (United States)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  6. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  7. Fault detection for piecewise affine systems with application to ship propulsion systems.

    Science.gov (United States)

    Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang

    2017-09-09

    In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  9. The synchronous long-stator propulsion system for TRANSRAPID; Langstator-Synchronmotorantrieb des TRANSRAPID

    Energy Technology Data Exchange (ETDEWEB)

    Henning, U [Siemens AG Verkehrstechnik, Erlangen (Germany). Geschaeftsgebiet Fahrzeuge Fernverkehr; Kamp, P G [Siemens AG, Erlangen (Germany). Projektierung und Entwicklung von Stromrichtergeraeten fuer die Bahnstromversorgung; Hochleitner, J [Siemens AG, Erlangen (Germany). Abt. Kombinationstechnik

    1996-12-31

    The synchronous long-stator motor for the maglev vehicle TRANSRAPID is a propulsion system with proven service maturity. The following paper describes the structure of the propulsion system proposed for maglev revenue service lines and how it meets the requirements for modular design, operation of several vehicles on one line, double-end feeding of power from adjacent substations, as well as for optimum maglev operation with minimum fault susceptibility. The overall concept is described and prototypes incorporating new technologies are presented for the various subsystems and components. The main focus is on the converter and control systems. (orig.) [Deutsch] Der Langstator-Synchronmotorantrieb des TRANSRAPID stellt ein einsatzreifes System dar. Die fuer Anwendungsstrecken entwickelte Struktur des Antriebssystems wird beschrieben. Mit ihr werden die Einsatzanforderungen wie modulare Gestaltung, Betrieb mehrerer Fahrzeuge auf eine Strecke, Doppelspeisung aus benachbarten Unterwerken sowie optimaler und stoerungsarmer Betrieb erfuellt. Neben der Beschreibung des Gesamtkonzeptes werden auch Prototypen fuer Teilsysteme und Komponenten auf der Basis fortschrittlicher Technologien vorgestellt. Schwerpunkte sind dabei Umrichter- und Regelungstechnik. (orig.)

  10. Simulation research on operation scheme of dissymmetrical main engine of CODOG propulsion system

    Directory of Open Access Journals (Sweden)

    HUANG Bin

    2018-02-01

    Full Text Available [Objectives] How to maintain propulsion capability in a CODOG propulsion system damage situation has important significance. [Methods] A ‘Hull-Engine-CPP-Rudder’ simulation model of a CODOG marine power plant is established on Simulink using the modularized method, and a dissymmetrical main engine urgent working mode is proposed and simulated. [Results] The results show that in the dissymmetrical working mode, two different engines cannot work simultaneously at designed capacity. However, by adjusting the pitch of the CPP, one engine can work at designed capacity and the other can work at partial load capacity; under this working mode, if high speed is demanded, the gas turbine should work at designed capacity. The CPP pitch driven by diesel should be maintained at a high value near the maximum. The maximum speed of this working mode is 84.4% of the designed speed, which is higher than the speed of the single shaft working mode driven by a gas turbine. [Conclusions] The research results of this paper can provide useful references for the design of ship propulsion systems.

  11. Advanced, Adaptive, Modular, Distributed, Generic Universal FADEC Framework for Intelligent Propulsion Control Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Each FADEC is a centralized system, with a redundant, central computer and centrally located analog signal interfacing circuitry for interfacing with sensors and actuators located throughout the propulsion system...

  12. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  13. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  14. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  15. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  16. Investigation of propulsion system for large LNG ships

    International Nuclear Information System (INIS)

    Sinha, R P; Wan Nik, Wan Mohd Norsani

    2012-01-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  17. Investigation of propulsion system for large LNG ships

    Science.gov (United States)

    Sinha, R. P.; Nik, Wan Mohd Norsani Wan

    2012-09-01

    Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

  18. Overview of solutions and analysis of the ability to evaluate the performance parameters of unmanned aerial vehicles propulsion systems

    Directory of Open Access Journals (Sweden)

    Karpiński Dominik

    2017-01-01

    Full Text Available The aim of aircraft engines development is the propulsion which is characterized by high power-to-mass ratio. Therefore, the alternative solutions that provide the required power by the low weight propulsion are sought after. The main advantage of these solutions is improvement of environmental and economic properties. This paper presents the overview of solutions and studies conducted for the unmanned aerial vehicles propulsion. For the purposes of studies a test bench was prepared. Its enables the comparison of the propulsion operating parameters taking into account changes in the values of thrust and propulsion power. The summary includes a proposal to improve the environmental indicators of propulsion systems for unmanned aerial vehicles.

  19. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  20. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  1. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Kruger, G.

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  2. Design, Fabrication, Testing and Modeling of a Vaporizing Liquid Micro-Propulsion System

    NARCIS (Netherlands)

    van Wees, T.; Hanselaar, C.A.J.; Jansen, E; Cervone, A.; Zandbergen, B.T.C.; van Zeijl, H.W.

    2016-01-01

    In the last decade, CubeSat development has shown the potential to allow for low-risk, low-cost space missions. To further improve the capabilities of CubeSats in large scale missions, a novel micro-propulsion system is being developed at Delft University of Technology. The system is based on a

  3. A Power-Efficient Propulsion Method for Magnetic Microrobots

    Directory of Open Access Journals (Sweden)

    Gioia Lucarini

    2014-07-01

    Full Text Available Current magnetic systems for microrobotic navigation consist of assemblies of electromagnets, which allow for the wireless accurate steering and propulsion of sub-millimetric bodies. However, large numbers of windings and/or high currents are needed in order to generate suitable magnetic fields and gradients. This means that magnetic navigation systems are typically cumbersome and require a lot of power, thus limiting their application fields. In this paper, we propose a novel propulsion method that is able to dramatically reduce the power demand of such systems. This propulsion method was conceived for navigation systems that achieve propulsion by pulling microrobots with magnetic gradients. We compare this power-efficient propulsion method with the traditional pulling propulsion, in the case of a microrobot swimming in a micro-structured confined liquid environment. Results show that both methods are equivalent in terms of accuracy and the velocity of the motion of the microrobots, while the new approach requires only one ninth of the power needed to generate the magnetic gradients. Substantial equivalence is demonstrated also in terms of the manoeuvrability of user-controlled microrobots along a complex path.

  4. Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System

    OpenAIRE

    Nengqi Xiao; Ruiping Zhou; Xiang Xu; Xichen Lin

    2016-01-01

    This study analyzes the characteristics of hybrid propulsion shafting and builds mathematical models and vibration equations of shafting using the lumped parameter method. Main focus is on the asymmetric double diesel propulsion shafting operation process and the impact of the phase angle and motor excitation on torsional vibration of shafting. Model result is validated by testing results conducted on double diesel propulsion shafting bench. Mathematical model and model-building methods of sh...

  5. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    Science.gov (United States)

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. National Institute for Rocket Propulsion Systems 2012 Annual Report: A Year of Progress and Challenge

    Science.gov (United States)

    Thomas, L. Dale; Doreswamy, Rajiv; Fry, Emma Kiele

    2013-01-01

    The National Institute for Rocket Propulsion Systems (NIRPS) maintains and advances U.S. leadership in all aspects of rocket propulsion for defense, civil, and commercial uses. The Institute's creation is in response to widely acknowledged concerns about the U.S. rocket propulsion base dating back more than a decade. U.S. leadership in rocket and missile propulsion is threatened by long-term industry downsizing, a shortage of new solid and liquid propulsion programs, limited ability to attract and retain fresh talent, and discretionary federal budget pressures. Numerous trade and independent studies cite erosion of this capability as a threat to national security and the U.S. economy resulting in a loss of global competitiveness for the U.S. propulsion industry. This report covers the period between May 2011 and December 2012, which includes the creation and transition to operations of NIRPS. All subsequent reports will be annual. The year 2012 has been an eventful one for NIRPS. In its first full year, the new team overcame many obstacles and explored opportunities to ensure the institute has a firm foundation for the future. NIRPS is now an active organization making contributions to the development, sustainment, and strategy of the rocket propulsion industry in the United States. This report describes the actions taken by the NIRPS team to determine the strategy, organizational structure, and goals of the Institute. It also highlights key accomplishments, collaborations with other organizations, and the strategic framework for the Institute.

  7. NASA's nuclear electric propulsion technology project

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs

  8. Web-Based Distributed Simulation of Aeronautical Propulsion System

    Science.gov (United States)

    Zheng, Desheng; Follen, Gregory J.; Pavlik, William R.; Kim, Chan M.; Liu, Xianyou; Blaser, Tammy M.; Lopez, Isaac

    2001-01-01

    An application was developed to allow users to run and view the Numerical Propulsion System Simulation (NPSS) engine simulations from web browsers. Simulations were performed on multiple INFORMATION POWER GRID (IPG) test beds. The Common Object Request Broker Architecture (CORBA) was used for brokering data exchange among machines and IPG/Globus for job scheduling and remote process invocation. Web server scripting was performed by JavaServer Pages (JSP). This application has proven to be an effective and efficient way to couple heterogeneous distributed components.

  9. LO2/LH2 propulsion for outer planet orbiter spacecraft

    Science.gov (United States)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  10. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  11. Flow Control of Liquid Metal Propellants for In-Space Electric Propulsion Systems

    Science.gov (United States)

    Bonds, Kevin W.; Polzin, Kurt A.

    2010-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path for development of high-power (140 kW per thruster), high performance (8000s I(sub sp at >70% efficiency) electric propulsion systems.

  12. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  13. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Science.gov (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  14. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  15. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  16. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  17. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  18. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  19. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    Science.gov (United States)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  20. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.D., E-mail: ydchung@suwon.ac.kr [Department of Electrical Engineering, Suwon University, Bongdang Eup, Hwaseong Si 445-743 (Korea, Republic of); Lee, C.Y. [Korea Railroad Research Institute, Woram Dong, Uiwang Si 437-757 (Korea, Republic of); Jang, J.Y. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of); Yoon, Y.S. [Department of Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul 120-749 (Korea, Republic of); Ko, T.K. [Department of Electrical Engineering, Ansan College of Technology, Choji-Dong, Ansan Si 425-792 (Korea, Republic of)

    2011-11-15

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  1. Theoretical and FEM analysis of suspension and propulsion system with HTS hybrid electromagnets in an EMS Maglev model

    International Nuclear Information System (INIS)

    Chung, Y.D.; Lee, C.Y.; Jang, J.Y.; Yoon, Y.S.; Ko, T.K.

    2011-01-01

    We examine levitation and propulsion forces of the proto-type maglev vehicle system based on 3D FEM. The levitation force increases over 15% due to AC current of the guideway. The levitation force by HTS electromagnet (EM) and AC current is larger over 30% than that of only HTS EM. We have been constructed a proto-type electromagnetic suspension (EMS) based maglev vehicle system. The maglev concept utilizes magnetic forces for noncontact suspension, guidance and propulsion. The suspension system with high temperature superconducting (HTS) hybrid electromagnet (EM) is composed of HTS coils and normal coils, which consume little power to keep large suspension gap. The magnetic forces realize to guide the vehicle, propel the vehicle along the guide-way and assist in braking action. The proto-type EMS-based Maglev model is designed to keep the suspension gap of 20 mm. This paper presents the theoretical analysis of the maglev vehicle based on the EMS model to obtain the designing parameters for levitation and propulsion forces. The magnetic field distributions of the electromagnetic forces with hybrid EM and propulsion stator coils are analyzed based on three dimension (3D) finite element method (FEM) analysis. From the simulation results, appropriately design parameters of the suspension, guidance and propulsion were obtained.

  2. Advanced supersonic propulsion study. [with emphasis on noise level reduction

    Science.gov (United States)

    Sabatella, J. A. (Editor)

    1974-01-01

    A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.

  3. DISCRETION MAGNETIQUE DES MACHINES ELECTRIQUES DE PROPULSION NAVALE

    OpenAIRE

    Froidurot , Benoît

    2002-01-01

    For about ten years, electrical machines have been commonly used in naval propulsion systems for civilian applications. This is mainly due to new magnetic materials (magnets...) and power drive electronic, which increase the performances of the machines. This kind of propulsion is planed to be implemented on military ships. However, some constraints of discretion make this propulsion require specific systems for the ship security. This study is then dedicted to the magnetic discretion of nava...

  4. 28th Joint Propulsion Conference and Exhibit

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities

  5. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  6. Analytical solution of the energy management for fuel cell hybrid propulsion systems

    NARCIS (Netherlands)

    P.P.J. van den Bosch; E. Tazelaar; Bram Veenhuizen

    2012-01-01

    The objective of an energy management strategy for fuel cell hybrid propulsion systems is to minimize the fuel needed to provide the required power demand. This minimization is defined as an optimization problem. Methods such as dynamic programming numerically solve this optimization problem.

  7. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle

    International Nuclear Information System (INIS)

    Moslemi, Ali A; Krueger, Paul S

    2010-01-01

    The effect of the velocity program and duty cycle (St L ) on the propulsive efficiency of pulsed-jet propulsion was studied experimentally on a self-propelled, pulsed-jet underwater vehicle, dubbed Robosquid due to the similarity of essential elements of its propulsion system with squid jet propulsion. Robosquid was tested for jet slug length-to-diameter ratios (L/D) in the range 2-6 and St L in the range 0.2-0.6 with jet velocity programs commanded to be triangular or trapezoidal. Digital particle image velocimetry was used for measuring the impulse and energy of jet pulses to calculate the pulsed-jet propulsive efficiency and compare it with an equivalent steady jet system. Robosquid's Reynolds number (Re) based on average vehicle velocity and vehicle diameter ranged between 1300 and 2700 for the conditions tested. The results indicated better propulsive efficiency of the trapezoidal velocity program (up to 20% higher) compared to the triangular velocity program. Also, an increase in the ratio of the pulsed-jet propulsive efficiency to the equivalent steady jet propulsive efficiency (η P /η P,ss ) was observed as St L increased and L/D decreased. For cases of short L/D and high St L , η P /η P,ss was found to be as high as 1.2, indicating better performance of pulsed jets. This result demonstrates a case where propulsion using essential elements of a biological locomotion system can outperform the traditional mechanical system equivalent in terms of efficiency. It was also found that changes in St L had a proportionately larger effect on propulsive efficiency compared to changes in L/D. A simple model is presented to explain the results in terms of the contribution of over-pressure at the nozzle exit plane associated with the formation of vortex rings with each jet pulse.

  8. Propulsion element requirements using electrical power system unscheduled power

    Science.gov (United States)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  9. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  10. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  11. A systematic review of propulsion from the flutter kick - What can we learn from the dolphin kick?

    Science.gov (United States)

    Andersen, Jordan T; Sanders, Ross H

    2018-02-12

    Propulsion, one of the most important factors in front crawl swimming performance, is generated from both the upper and lower limbs, yet little is known about the mechanisms of propulsion from the alternating movements of the lower limbs in the flutter kick (FK). The purpose of this systematic review was to review the literature relating to the mechanisms of propulsion from FK in front crawl. There was limited information about the mechanisms of propulsion in FK. Since movements of the lower limbs are similar between FK and the dolphin kick (DK), mechanisms of propulsion from DK were reviewed to better understand propulsion from FK. Recent evidence suggests that propulsion in DK is generated in conjunction with formation and shedding of vortices. Similar vortex structures have been observed in FK. Visualisation and simulation techniques, such as particle image velocimetry (PIV) and computational fluid dynamics (CFD), are non-invasive tools that can effectively model water flow without impacting swimming technique. These technologies allow researchers to estimate the acceleration of water and, consequently, the propulsive reaction forces acting on the swimmer. Future research should use these technologies to investigate propulsion from FK.

  12. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    Science.gov (United States)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  13. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  14. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  15. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  16. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical

  17. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1...

  18. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    Science.gov (United States)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  19. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    Science.gov (United States)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  20. Investigation of matter-antimatter interaction for possible propulsion applications

    Science.gov (United States)

    Morgan, D. L., Jr.

    1974-01-01

    Matter-antimatter annihilation is discussed as a means of rocket propulsion. The feasibility of different means of antimatter storage is shown to depend on how annihilation rates are affected by various circumstances. The annihilation processes are described, with emphasis on important features of atom-antiatom interatomic potential energies. A model is developed that allows approximate calculation of upper and lower bounds to the interatomic potential energy for any atom-antiatom pair. Formulae for the upper and lower bounds for atom-antiatom annihilation cross-sections are obtained and applied to the annihilation rates for each means of antimatter storage under consideration. Recommendations for further studies are presented.

  1. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Thollot, P. A.; Musial, N. T.

    1980-01-01

    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  2. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  3. Characteristics of propulsion system of the magnetic levitation vehicle named ML-100

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, S

    1975-07-01

    A running test of a vehicle suspended by a superconducting magnetic levitation system and driven by a fixed primary linear induction motor (LIM) system was carried out. The test results of the temperature rise of the reaction plate and apparent power of propulsion system are described. Experimental results agree fairly well with calculated values. The effect of appropriate location of several kinds of LIM stators corresponding to running speed pattern are presented.

  4. Modelling the Dynamics of Ships with Different Propulsion Systems for Control Purpose

    Directory of Open Access Journals (Sweden)

    Gierusz Witold

    2016-01-01

    Full Text Available Two different propulsion systems are analyzed from point of view of future control applications. The traditional one consists of a pushing single screw propeller and a blade rudder. The other system is based on pod (pods: pulling or pushing ones. The equations describing forces and moments generated in both systems, are presented. Exemplary results of a simulation in comparison to the real-time experiments for two ships are also shown.

  5. Nuclear thermal propulsion engine cost trade studies

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1993-01-01

    The NASA transportation strategy for the Mars Exploration architecture includes the use of nuclear thermal propulsion as the primary propulsion system for Mars transits. It is anticipated that the outgrowth of the NERVA/ROVER programs will be a nuclear thermal propulsion (NTP) system capable of providing the propulsion for missions to Mars. The specific impulse (Isp) for such a system is expected to be in the 870 s range. Trade studies were conducted to investigate whether or not it may be cost effective to invest in a higher performance (Isp>870 s) engine for nuclear thermal propulsion for missions to Mars. The basic cost trades revolved around the amount of mass that must be transported to low-earth orbit prior to each Mars flight and the cost to launch that mass. The mass required depended on the assumptions made for Mars missions scenarios including piloted/cargo flights, number of Mars missions, and transit time to Mars. Cost parameters included launch cost, program schedule for development and operations, and net discount rate. The results were very dependent on the assumptions that were made. Under some assumptions, higher performance engines showed cost savings in the billions of dollars; under other assumptions, the additional cost to develop higher performance engines was not justified

  6. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    Science.gov (United States)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  7. Recent Electric Propulsion Development Activities for NASA Science Missions

    Science.gov (United States)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  8. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  9. Numerical simulation of the flow around a steerable propulsion unit

    International Nuclear Information System (INIS)

    Pacuraru, F; Lungu, A; Ungureanu, C; Marcu, O

    2010-01-01

    Azimuth propulsion units have become during the last decade a more and more popular solution for all kinds of vessels. Azimuth thruster system, combining the propulsion and steering units of conventional ships replaces traditional propellers and lengthy drive shafts and rudders ensuring an excellent vessel steering. In many cases the interaction between the propeller and other components of the propulsion system strongly affects the inflow to the propeller and therefore its performance. The correct estimation of this influence is important for propulsion systems which consist of more than one element, such as pods (shaft, gondola and propeller), ducted propellers (duct, struts and propeller) or bow thrusters (ship form, tunnel, gondola and propeller). The paper proposes a numerical investigation based on RANS computation for solving the viscous flow around an azimuth thruster system to provide a detailed insight into the critical flow regions for determining the optimum inclination angle for struts, for studying the hydrodynamic interactions between various components of the system, for predicting the hydrodynamic performance of the propulsion system and to investigate regions with possible flow separations.

  10. Development and Integration of the Janus Robotic Lander: A Liquid Oxygen-Liquid Methane Propulsion System Testbed

    Science.gov (United States)

    Ponce, Raul

    Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants. The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary to exploit this advantage. At the University of Texas at El Paso (UTEP) MIRO Center for Space Exploration Technology Research (cSETR) such a vehicle is being developed. Janus is a robotic lander vehicle with the capability of vertical take-off and landing (VTOL) which integrates several LO2-LCH 4 systems that are being devised in-house. The vehicle will serve as a testbed for the parallel operation of these propulsion systems while being fed from common propellant tanks. The following work describes the efforts done at the cSETR to develop the first prototype of the vehicle as well as the plan to move forward in the design of the subsequent prototypes that will lead to a flight vehicle. In order to ensure an eventual smooth integration of the different subsystems that will form part of Janus, requirements were defined for each individual subsystem as well as the vehicle as a whole. Preliminary testing procedures and layouts have also been developed and will be discussed to detail in this text. Furthermore, the current endeavors in the design of each subsystem and the way that they interact with one another within the lander will be explained.

  11. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  12. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  13. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  14. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  15. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  16. The Enabling Use of Ion Propulsion on Dawn

    Science.gov (United States)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  17. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  18. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  19. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  20. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  1. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  2. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    Science.gov (United States)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  3. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  4. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  5. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  6. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  7. Influence of Handrim Wheelchair Propulsion Training in Adolescent Wheelchair Users

    Directory of Open Access Journals (Sweden)

    Jennifer L Dysterheft

    2015-05-01

    Full Text Available Ten full time adolescent wheelchair users (ages 13-18 completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak Resultant Force, Contact Angle, Stroke Frequency, and Velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in Contact Angle and Peak Total Force with decreased Stroke Frequency after training. During the velocity controlled trials on concrete, significant increases in Contact Angle occurred, as well as decreases in Stroke Frequency after training. Overall, the use of a training video and verbal feedback may help to improve short term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  8. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  9. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  10. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    Science.gov (United States)

    Maser, Adam Charles

    More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available

  11. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  12. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  13. A highly versatile autonomous underwater vehicle with biomechanical propulsion

    NARCIS (Netherlands)

    Simons, D.G.; Bergers, M.M.C.; Henrion, S.; Hulzenga, J.I.J.; Jutte, R.W.; Pas, W.M.G.; Van Schravendijk, M.; Vercruyssen, T.G.A.; Wilken, A.P.

    2009-01-01

    An autonomous underwater vehicle with a biomechanical propulsion system is a possible answer to the demand for small, silent sensor platforms in many fields. The design of Galatea, a bio-mimetic AUV, involves four aspects: hydrodynamic shape, the propulsion, the motion control systems and payload.

  14. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    Science.gov (United States)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  15. Commercially-driven human interplanetary propulsion systems: Rationale, concept, technology, and performance requirements

    International Nuclear Information System (INIS)

    Williams, C.H.; Borowski, S.K.

    1996-01-01

    Previous studies of human interplanetary missions are largely characterized by long trip times, limited performance capabilities, and enormous costs. Until these missions become dramatically more open-quote open-quote commercial-friendly close-quote close-quote, their funding source and rationale will be restricted to national governments and their political/scientific interests respectively. A rationale is discussed for human interplanetary space exploration predicated on the private sector. Space propulsion system requirements are identified for interplanetary transfer times of no more than a few weeks/months to and between the major outer planets. Nuclear fusion is identified as the minimum requisite space propulsion technology. A conceptual design is described and evolutionary catalyzed-DD to DHe 3 fuel cycles are proposed. Magnetic nozzles for direct thrust generation and quantifying the operational aspects of the energy exchange mechanisms between high energy reaction products and neutral propellants are identified as two of the many key supporting technologies essential to satisfying system performance requirements. Government support of focused, breakthrough technologies is recommended at funding levels appropriate to other ongoing federal research. copyright 1996 American Institute of Physics

  16. The Liquid Annular Reactor System (LARS) propulsion

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Horn, F.; Lenard, R.

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5)

  17. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  18. Integrated Reacting Fluid Dynamics and Predictive Materials Degradation Models for Propulsion System Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...

  19. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  20. Recent Advances in Airframe-Propulsion Concepts with Distributed Propulsion

    OpenAIRE

    Isikveren , A.T.; Seitz , A.; Bijewitz , J.; Hornung , M.; Mirzoyan , A.; Isyanov , A.; Godard , J.L.; Stückl , S.; Van Toor , J.

    2014-01-01

    International audience; This paper discusses design and integration associated with distributed propulsion as a means of providing motive power for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes one unique solution that integrates the fuselage wi...

  1. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  2. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    Science.gov (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  3. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    Science.gov (United States)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  4. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2010-01-01

    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  5. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  6. The need for expanded exploration of matter-antimatter annihilation for propulsion application

    Science.gov (United States)

    Massier, P. F.

    1982-01-01

    The use of matter-antimatter annihilation as a propulsion application for interstellar travel is discussed. The physical basis for the superior energy release in such a system is summarized, and the problems associated with antimatter production, collection and storage are assessed. Advances in devising a workable propulsion system are reported, and the parameters of an antimatter propulsion system are described.

  7. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  8. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  9. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  10. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  11. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  12. A development approach for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ''acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering

  13. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.

    Science.gov (United States)

    Strzała, Marek; Krężałek, Piotr; Kucia-Czyszczoń, Katarzyna; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K; Sagalara, Andrzej

    2014-01-01

    The main purpose of this study was to analyze the coordination, propulsion and non-propulsion phases in the 100 meter breaststroke race. Twenty-seven male swimmers (15.7 ± 1.98 years old) with the total body length (TBL) of 247.0 ± 10.60 [cm] performed an all-out 100 m breaststroke bout. The bouts were recorded with an underwater camera installed on a portable trolley. The swimming kinematic parameters, stroke rate (SR) and stroke length (SL), as well as the coordination indices based on propulsive or non-propulsive movement phases of the arms and legs were distinguished. Swimming speed (V100surface breast) was associated with SL (R = 0.41, p study were measured using partial correlations with controlled age. SL interplayed negatively with the limbs propulsive phase Overlap indicator (R = -0.46, p propulsion Glide indicator. The propulsion in-sweep (AP3) phase of arms and their non-propulsion partial air recovery (ARair) phase interplayed with V100surface breast (R = 0.51, p < 0.05 and 0.48 p < 0.05) respectively, displaying the importance of proper execution of this phase (AP3) and in reducing the resistance recovery phases in consecutive ones.

  14. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  15. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    Science.gov (United States)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  16. Applications of nuclear reactor power systems to electric propulsion missions.

    Science.gov (United States)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  17. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  18. Nuclear propulsion for orbital transfer

    International Nuclear Information System (INIS)

    Beale, G.A.; Lawrence, T.J.

    1989-01-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine

  19. Mission needs and system commonality for space nuclear power and propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Zuppero, A.; Redd, L.

    1993-01-01

    Nuclear power enables or significantly enhances a variety of space missions whether near-Earth, or for solar system exploration, lunar-Mars exploration and recovery of near-Earth resources. Performance optimizations for individual missions leads to a large number of power and propulsion systems to be developed. However, the realities of the budget and schedules indicates that the number of nuclear systems that will be developed are limited. One needs to seek the ''minimum requirements'' to do a job rather than the last ounce of performance, and areas of commonality. To develop a minimum number of systems to meet the overall DoD, NASA, and commercial needs, the broad spectrum of requirements has been examined along with cost drivers

  20. Legal Implications of Nuclear Propulsion for Space Objects

    Science.gov (United States)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  1. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    Science.gov (United States)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  2. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-05-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  3. The MagOrion - A propulsion system for human exploration of the outer planets

    International Nuclear Information System (INIS)

    Andrews, Jason; Andrews, Dana

    2000-01-01

    Manned exploration beyond Mars requires very high specific energy. The only potential solution under discussion is fusion propulsion. However, fusion has been ten years away for forty years. We have an available solution that combines new technology with an old concept-'Project Orion'. The proposed 'MagOrion' Propulsion System combines a magnetic sail (MagSail) with conventional small yield (0.5 to 1.0 kiloton) shaped nuclear fission devices. At denonation, roughly eighty percent of the yield appears as a highly-ionized plasma, and when detonated two kilometers behind a robust MagSail, approximately half of this plasma can be stopped and turned into thrust. A MagOrion can provide a system acceleration of one or more gravities with effective specific impulses ranging from 15,000 to 45,000 seconds. Dana Andrews and Robert Zubrin published a paper in 1997 that described the operating principles of the MagOrion. We have taken that concept through conceptual design to identify the major operational features and risks. The risks are considerable, but the potential payoff is staggering. Our proposed MagOrion will enable affordable exploration of the solar system

  4. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  5. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  6. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  7. Adaptative control of aero-acoustic instabilities. Application to propulsion systems; Controle adaptatif des instabilites aeroacoustiques. Application aux systemes de propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Mettenleiter, M.

    2000-02-15

    This work treats active adaptive control of aero-acoustic instabilities. In particular, we are interested in an application to solid propellant rockets. The study is part of the research program ASSM coordinated by CNES and ONERA and the aim is to increase the performance of the P230 segmented solid propellant boosters of the Ariane 5 rocket. The work has been carried out in collaboration with other partners of this program. The main objective of this study is the development of control algorithms, able to diminish low frequency instabilities encountered in propulsion systems. First, the instability phenomenon is analyzed in a simplified experimental setup and similarity is shown with instabilities observed in real propulsion systems. This study enables us to conceive adaptive control strategies, which have been tested on three different levels: - In a simplified dynamical simulation; - During an experimental study; - Using full numerical simulations. The three levels of application made it possible to study the behaviour of the different control strategies. We could show that the actuator signal modifies the behaviour of the system on the acoustic level. But as there is a strong interaction between the pressure fluctuations and the hydrodynamic behaviour, the flow structure is also modified by active control. This behaviour corresponds to the simplified model of the phenomenon, which has been used to define the control algorithms. The control action 'at the noise source' makes it possible to distinguish this kind of algorithms from schemes based on the anti-noise principle. After this first part, where we showed the feasibility of control, we particularly considered algorithms which can act in an unknown environment. The information about the system behaviour. which is necessary for convergence of the controller is now obtained in parallel during control. An identification off-line, used at the beginning of the research, is no longer necessary. Self

  8. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle

    2012-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.

  9. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  10. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  11. Interstellar propulsion using a pellet stream for momentum transfer

    International Nuclear Information System (INIS)

    Singer, C.E.

    1979-10-01

    A pellet-stream concept for interstellar propulsion is described. Small pellets are accelerated in the solar system and accurately guided to an interstellar probe where they are intercepted and transfer momentum. This propulsion system appears to offer orders-of-magnitude improvements in terms of engineering simplicity and power requirements over any other known feasible system for transport over interstellar distance in a time comparable to a human lifespan

  12. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  13. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  14. Green Liquid Monopropellant Thruster for In-space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and AMPAC In-space Propulsion propose to develop a unique chemical propulsion system for the next generation NASA science spacecraft and...

  15. Analysis of Engine Propeller Matching of DC Motor as a Main Propulsion

    Directory of Open Access Journals (Sweden)

    Eddy Setyo Koenhardono

    2017-12-01

    Full Text Available The development of ship always searches through the most benefits system for reducing costs of propulsion system without increase pollution. Diesel propulsion system or also known as conventional propulsion system is efficient but requires high operating costs and increase high level of marine pollution. Electrical propulsion system is using electric motors as the prime mover of the propeller. There are 2 types of electric motors that will be used for research of electric propulsion system, there are; DC motors and three-phases induction motor. As the use of DC motor as a prime mover for this electrical propulsion system, this study determines the characteristic between voltage terminal with torque and also field current with torque. It results that torque produced by the DC motor is in the same magnitude with the speed (RPM. The higher the speed have shaped the value of the torque. The input and terminal voltages adjusts all variables and results. In this study, different field voltage creates different pattern of motor envelope. Its manner to propeller curve occurs total different results. With field voltage of 50 V, the ranges of motor envelope immoveable in the point of 150% of present speed and 160%. While field voltage of 60 V serves larger ranges of motor envelope which possible to reach further than 50 V curve.

  16. Is effective force application in handrim wheelchair propulsion also efficient?

    Science.gov (United States)

    Bregman, D J J; van Drongelen, S; Veeger, H E J

    2009-01-01

    Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost, due to (1) the sub-optimal use of elbow flexors and extensors, and/or (2) the necessity of preventing of glenohumeral subluxation. Five able-bodied and 11 individuals with a spinal cord injury propelled a wheelchair while kinematics and kinetics were collected. The results were used to perform inverse dynamical simulations with input of (1) the experimentally obtained propulsion force, and (2) only the tangential component of that force. In the tangential force condition the physiological cost was over 30% higher, while the tangential propulsion force was only 75% of the total experimental force. According to model estimations, the tangential force condition led to more co-contraction around the elbow, and a higher power production around the shoulder joint. The tangential propulsion force led to a significant, but small 4% increase in necessity for the model to compensate for glenohumeral subluxation, which indicates that this is not a likely cause of the decrease in efficiency. The present findings support the hypothesis that the observed force direction in wheelchair propulsion is a compromise between efficiency and the constraints imposed by the wheelchair-user system. This implies that training should not be aimed at optimization of the propulsion force, because this may be less efficient and more straining for the musculoskeletal system.

  17. Development priorities for in-space propulsion technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  18. FY2016 Propulsion Materials Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines and Fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  19. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    Science.gov (United States)

    Kuhl, Christopher A.

    2008-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.

  20. Nanostructured Tungsten Rhenium Components for Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionizing the space propulsion industry through innovative, relatively low-cost, manufacturing techniques is extremely needed. Specifically, advancements are...

  1. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  2. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  3. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  4. The Design and Integration of a Distributed Fan Propulsion System within a Split-Wing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A baseline propulsion system has been designed as a starting point in a previous SBIR effort for this project which consists of two turboshaft engines, a generator...

  5. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    International Nuclear Information System (INIS)

    Stone, J.R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP

  6. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  7. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  8. How to build an antimatter rocket for interstellar missions - systems level considerations in designing advanced propulsion technology vehicles

    Science.gov (United States)

    Frisbee, Robert H.

    2003-01-01

    This paper discusses the general mission requirements and system technologies that would be required to implement an antimatter propulsion system where a magnetic nozzle is used to direct charged particles to produce thrust.

  9. Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Stephen R.; Seixal, Joao F.; Mauro, Stephanie L.; Lewis, Brandon L.; Jerman, Gregory A.; Calvert, Derek H.; Dankanich, John; Kamhawi, Hani; Hickman, Tyler A.; hide

    2015-01-01

    The development and testing of a 200-W iodine-fed Hall thruster propulsion system that will be flown on a 12-U CubeSat is described. The switch in propellant from more traditional xenon gas to solid iodine yields the advantage of high density, low pressure propellant storage but introduces new requirements that must be addressed in the design and operation of the propulsion system. The thruster materials have been modified from a previously-flown xenon Hall thruster to make it compatible with iodine vapor. The cathode incorporated into this design additionally requires little or no heating to initiate the discharge, reducing the power needed to start the thruster. The feed system produces iodine vapor in the propellant reservoir through sublimation and then controls the flow to the anode and cathode of the thruster using a pair of proportional flow control valves. The propellant feeding process is controlled by the power processing unit, with feedback control on the anode flow rate provided through a measure of the thruster discharge current. Thermal modeling indicates that it may be difficult to sufficiently heat the iodine if it loses contact with the propellant reservoir walls, serving to motivate future testing of that scenario to verify the modeling result and develop potential mitigation strategies. Preliminary, short-duration materials testing has thus-far indicated that several materials may be acceptable for prolonged contact with iodine vapor, motivating longer-duration testing. A propellant loading procedure is presented that aims to minimize the contaminants in the feed system and propellant reservoir. Finally, an 80-hour duration test being performed to gain experience operating the thruster over long durations and multiple restarts is discussed.

  10. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  11. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  12. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.

    Science.gov (United States)

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatiotemporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory-based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on.

  13. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    Science.gov (United States)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  14. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun (≥ 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe's energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade

  15. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  16. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  17. Power processing for electric propulsion

    Science.gov (United States)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  18. Some Thoughts About Water Analysis in Shipboard Steam Propulsion Systems for Marine Engineering Students.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    Information is presented about the problems involved in using sea water in the steam propulsion systems of large, modern ships. Discussions supply background chemical information concerning the problems of corrosion, scale buildup, and sludge production. Suggestions are given for ways to maintain a good water treatment program to effectively deal…

  19. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  20. The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft

    Science.gov (United States)

    Ko, Yan-Yee Andy

    The purpose of this study is to examine the multidisciplinary design optimization (MDO) of a distributed propulsion blended-wing-body (BWB) aircraft. The BWB is a hybrid shape resembling a flying wing, placing the payload in the inboard sections of the wing. The distributed propulsion concept involves replacing a small number of large engines with many smaller engines. The distributed propulsion concept considered here ducts part of the engine exhaust to exit out along the trailing edge of the wing. The distributed propulsion concept affects almost every aspect of the BWB design. Methods to model these effects and integrate them into an MDO framework were developed. The most important effect modeled is the impact on the propulsive efficiency. There has been conjecture that there will be an increase in propulsive efficiency when there is blowing out of the trailing edge of a wing. A mathematical formulation was derived to explain this. The formulation showed that the jet 'fills in' the wake behind the body, improving the overall aerodynamic/propulsion system, resulting in an increased propulsive efficiency. The distributed propulsion concept also replaces the conventional elevons with a vectored thrust system for longitudinal control. An extension of Spence's Jet Flap theory was developed to estimate the effects of this vectored thrust system on the aircraft longitudinal control. It was found to provide a reasonable estimate of the control capability of the aircraft. An MDO framework was developed, integrating all the distributed propulsion effects modeled. Using a gradient based optimization algorithm, the distributed propulsion BWB aircraft was optimized and compared with a similarly optimized conventional BWB design. Both designs are for an 800 passenger, 0.85 cruise Mach number and 7000 nmi mission. The MDO results found that the distributed propulsion BWB aircraft has a 4% takeoff gross weight and a 2% fuel weight. Both designs have similar planform shapes

  1. Configuration Management File Manager Developed for Numerical Propulsion System Simulation

    Science.gov (United States)

    Follen, Gregory J.

    1997-01-01

    One of the objectives of the High Performance Computing and Communication Project's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to provide a common and consistent way to manage applications, data, and engine simulations. The NPSS Configuration Management (CM) File Manager integrated with the Common Desktop Environment (CDE) window management system provides a common look and feel for the configuration management of data, applications, and engine simulations for U.S. engine companies. In addition, CM File Manager provides tools to manage a simulation. Features include managing input files, output files, textual notes, and any other material normally associated with simulation. The CM File Manager includes a generic configuration management Application Program Interface (API) that can be adapted for the configuration management repositories of any U.S. engine company.

  2. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  3. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  4. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  5. Propulsion of magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S L

    1976-05-01

    A propulsion system for magnetically levitated trains is proposed. A method of periodically energizing magnetic loops on a train moving over a periodically undulating track allows the net repulsive magnetic force to tilt forward or backward for either propulsion or braking. The principle is explained and a specific example discussed. Approximate calculations show feasibility. Problems requiring technical solutions which cannot be considered present state-of-the-art are AC losses at frequencies up to 20 Hz and mechanical fatigue properties at low temperatures. Suitable primary power could be derived from hydrogen-fueled turbines yet to be developed.

  6. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  7. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  8. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  9. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  10. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  11. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  12. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.

    Science.gov (United States)

    Bekker, Michel J; Vegter, Riemer J K; van der Scheer, Jan W; Hartog, Johanneke; de Groot, Sonja; de Vries, Wiebe; Arnet, Ursina; van der Woude, Lucas H V; Veeger, Dirkjan H E J

    2018-05-01

    Altered scapular kinematics have been associated with shoulder pain and functional limitations. To understand kinematics in persons with spinal cord injury during manual handrim wheelchair propulsion, a description of normal scapular behaviour in able-bodied persons during this specific task is a prerequisite for accurate interpretation. The primary aim of this study is to describe scapular kinematics in able-bodied persons during manual wheelchair propulsion. Sixteen able-bodied, novice wheelchair users without shoulder complaints participated in the study. Kinematic and kinetic data were collected during a standardized pose in the anatomic posture, frontal-plane arm elevation and low-intensity steady-state handrim wheelchair propulsion and upper-body Euler angles were calculated. Scapulothoracic joint orientations in a static position were 36.7° (SD 5.4°), 6.4° (SD 9.1°) and 9.1° (SD 5.7°) for respectively protraction, lateral rotation and anterior tilt. At 80° of arm elevation in the frontal plane, the respective values of 33.4° (SD 8.0°), 23.9° (SD 5.4°) and 4.1° (SD 11.3°) were found. During the push phase of manual wheelchair propulsion, the mean scapular rotations were respectively 32.7° (SD 7.1°), 7.1° (SD 9.2°) and 9.8° (SD 8.3°). The orientation of the scapula in a static pose, during arm elevation and in manual wheelchair propulsion in able-bodied participants showed similar patterns to a previous study in persons with para- and tetraplegia. These values provide a reference for the investigation of the scapular movement pattern in wheelchair-dependent persons and its relation to shoulder complex abnormalities. Copyright © 2018. Published by Elsevier Ltd.

  13. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  14. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  15. Airbreathing engine selection criteria for SSTO propulsion system

    Science.gov (United States)

    Ohkami, Yoshiaki; Maita, Masataka

    1995-02-01

    This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).

  16. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    Science.gov (United States)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  17. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  18. Fault Monitoring and Re-Configurable Control for a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh; Lootsma, T.F.

    1998-01-01

    Minor faults in ship propulsion and their associated automation systems can cause dramatic reduction on ships' ability to propel and manoeuvre, and effective means are needed to prevent that simple faults develop into severe failure. The paper analyses the control system for a propulsion plant on...

  19. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  20. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    Science.gov (United States)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  1. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  2. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  3. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  4. The USAF Electric Propulsion Program

    National Research Council Canada - National Science Library

    Spores, Ronald

    1999-01-01

    ...: Propulsion Directorate and Air Force Office of Scientific Research (AFOSR). The Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space experiments...

  5. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  6. Evolutionary use of nuclear electric propulsion

    International Nuclear Information System (INIS)

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs

  7. Advanced Propulsion Study

    National Research Council Canada - National Science Library

    Davis, Eric

    2004-01-01

    ... that show promise of leading to a major advance in Earth-to-orbit (ETO) propulsion. The study also reviewed and evaluated a select number of credible far-term breakthrough propulsion physics concepts pertaining...

  8. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  9. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  10. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — All nuclear thermal propulsion (NTP) ground testing conducted in the 1950s and 1960s during the ROVER/(Nuclear Engine Rocket Vehicle Application (NERVA) program...

  11. CubeSat High Impulse Propulsion System (CHIPS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes to perform design, fabrication, and ground test validation of a nanosat primary propulsion subsystem using non-toxic R134a propellant. Our...

  12. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  13. Sensor Fault Masking of a Ship Propulsion System

    DEFF Research Database (Denmark)

    Wu, N.E.; Thavamani, A.; Zhang, Y.

    2003-01-01

    This paper presents the results of a study on fault-tolerant control of a ship propulsion benchmark (Izadi-Zamanabadi and Blanke, 1999), which uses estimated or virtual measurements as feedback variables. The estimator operates on a selfadjustable design model so that its outputs can be made immu...

  14. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    International Nuclear Information System (INIS)

    Schnitzler, Bruce G.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse (∼900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as

  15. CubeSat High Impulse Propulsion System (CHIPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the ground test validation of a nanosat primary propulsion subsystem using non-toxic propellant with 3-axis ACS for orbit change and/or...

  16. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  17. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.

    Science.gov (United States)

    Dysterheft, Jennifer L; Rice, Ian M; Rice, Laura A

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13-18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  18. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    Science.gov (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  19. Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations

    Science.gov (United States)

    Borer, Nicholas K.; Derlaga, Joseph M.; Deere, Karen A.; Carter, Melissa B.; Viken, Sally A.; Patterson, Michael D.; Litherland, Brandon L.; Stoll, Alex M.

    2017-01-01

    NASA's X-57 "Maxwell" flight demonstrator incorporates distributed electric propulsion technologies in a design that will achieve a significant reduction in energy used in cruise flight. A substantial portion of these energy savings come from beneficial aerodynamic-propulsion interaction. Previous research has shown the benefits of particular instantiations of distributed propulsion, such as the use of wingtip-mounted cruise propellers and leading edge high-lift propellers. However, these benefits have not been reduced to a generalized design or analysis approach suitable for large-scale design exploration. This paper discusses the rapid, "design-order" toolchains developed to investigate the large, complex tradespace of candidate geometries for the X-57. Due to the lack of an appropriate, rigorous set of validation data, the results of these tools were compared to three different computational flow solvers for selected wing and propulsion geometries. The comparisons were conducted using a common input geometry, but otherwise different input grids and, when appropriate, different flow assumptions to bound the comparisons. The results of these studies showed that the X-57 distributed propulsion wing should be able to meet the as-designed performance in cruise flight, while also meeting or exceeding targets for high-lift generation in low-speed flight.

  20. Sensor Fault Masking of a Ship Propulsion System

    DEFF Research Database (Denmark)

    Wu, N. Eva; Thavamani, Shuda; Zhang, Youmin

    2005-01-01

    This paper presents the results of a study on fault-tolerant control of a ship propulsion benchmark (Izadi-Zamanabadi and Blanke, 999), which uses estimated or virtual measurements as feedback variables. The estimator operates on a self-adjustable design model so that its outputs can be made immu...

  1. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  2. Measurement Issues In Pulsed Laser Propulsion

    International Nuclear Information System (INIS)

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sasoh, Akihiro

    2010-01-01

    Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

  3. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    Science.gov (United States)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  4. The Economics of Advanced In-Space Propulsion

    Science.gov (United States)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  5. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States); School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 (United States); Damico, Carmen M. [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  6. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  7. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  8. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  9. Interstellar rendezvous missions employing fission propulsion systems

    International Nuclear Information System (INIS)

    Lenard, Roger X.; Lipinski, Ronald J.

    2000-01-01

    There has been a conventionally held nostrum that fission system specific power and energy content is insufficient to provide the requisite high accelerations and velocities to enable interstellar rendezvous missions within a reasonable fraction of a human lifetime. As a consequence, all forms of alternative mechanisms that are not yet, and may never be technologically feasible, have been proposed, including laser light sails, fusion and antimatter propulsion systems. In previous efforts, [Lenard and Lipinski, 1999] the authors developed an architecture that employs fission power to propel two different concepts: one, an unmanned probe, the other a crewed vehicle to Alpha Centauri within mission times of 47 to 60 years. The first portion of this paper discusses employing a variant of the ''Forward Resupply Runway'' utilizing fission systems to enable both high accelerations and high final velocities necessary for this type of travel. The authors argue that such an architecture, while expensive, is considerably less expensive and technologically risky than other technologically advanced concepts, and, further, provides the ability to explore near-Earth stellar systems out to distances of 8 light years or so. This enables the ability to establish independent human societies which can later expand the domain of human exploration in roughly eight light-year increments even presuming that no further physics or technology breakthroughs or advances occur. In the second portion of the paper, a technology requirement assessment is performed. The authors argue that reasonable to extensive extensions to known technology could enable this revolutionary capability

  10. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  11. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  12. Cooled Ceramic Matrix Composite Propulsion Structures Demonstrated

    Science.gov (United States)

    Jaskowiak, Martha H.; Dickens, Kevin W.

    2005-01-01

    NASA's Next Generation Launch Technology (NGLT) Program has successfully demonstrated cooled ceramic matrix composite (CMC) technology in a scramjet engine test. This demonstration represented the world s largest cooled nonmetallic matrix composite panel fabricated for a scramjet engine and the first cooled nonmetallic composite to be tested in a scramjet facility. Lightweight, high-temperature, actively cooled structures have been identified as a key technology for enabling reliable and low-cost space access. Tradeoff studies have shown this to be the case for a variety of launch platforms, including rockets and hypersonic cruise vehicles. Actively cooled carbon and CMC structures may meet high-performance goals at significantly lower weight, while improving safety by operating with a higher margin between the design temperature and material upper-use temperature. Studies have shown that using actively cooled CMCs can reduce the weight of the cooled flow-path component from 4.5 to 1.6 lb/sq ft and the weight of the propulsion system s cooled surface area by more than 50 percent. This weight savings enables advanced concepts, increased payload, and increased range. The ability of the cooled CMC flow-path components to operate over 1000 F hotter than the state-of-the-art metallic concept adds system design flexibility to space-access vehicle concepts. Other potential system-level benefits include smaller fuel pumps, lower part count, lower cost, and increased operating margin.

  13. Low-Intensity Wheelchair Training in Inactive People with Long-Term Spinal Cord Injury: A Randomized Controlled Trial on Propulsion Technique.

    Science.gov (United States)

    van der Scheer, Jan W; de Groot, Sonja; Vegter, Riemer J K; Hartog, Johanneke; Tepper, Marga; Slootman, Hans; Veeger, DirkJan H E J; van der Woude, Lucas H V

    2015-11-01

    The objective of this study was to investigate the effects of a low-intensity wheelchair training on propulsion technique in inactive people with long-term spinal cord injury. Participants in this multicenter nonblinded randomized controlled trial were inactive manual wheelchair users with spinal cord injury for at least 10 yrs (N = 29), allocated to exercise (n = 14) or no exercise. The 16-wk training consisted of wheelchair treadmill propulsion at 30%-40% heart rate reserve or equivalent in rate of perceived exertion, twice a week, 30 mins per session. Propulsion technique was assessed at baseline as well as after 8, 16, and 42 wks during two submaximal treadmill-exercise blocks using a measurement wheel attached to a participant's own wheelchair. Changes over time between the groups were analyzed using Mann-Whitney U tests on difference scores (P propulsion technique were not found in this group. Perhaps, substantial effects require a higher intensity or frequency. Investigating whether more effective and feasible interventions exist might help reduce the population's risk of upper-body joint damage during daily wheelchair propulsion.

  14. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  15. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  16. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  17. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  18. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  19. Solar Electric Propulsion Technology Development for Electric Propulsion

    Science.gov (United States)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  20. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    Science.gov (United States)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  1. Solar Sail Propulsion Technology at NASA

    Science.gov (United States)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  2. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  3. Effect of workload setting on propulsion technique in handrim wheelchair propulsion

    NARCIS (Netherlands)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, DirkJan (H E. J); van der Woude, Lucas H. V.

    Objective: To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Method: Twelve able-bodied men participated in this study. External forces were measured

  4. Challenges and Experiences with Electric Propulsion Transit Buses in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Gifford, M.

    2003-11-01

    Document provides background for transit agencies and fleets that are considering electric propulsion technologies. It tells them what to expect and plan for when implementing vehicles with electric propulsion systems.

  5. An Overview of the CNES Propulsion Program for Spacecraft

    Science.gov (United States)

    Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.

    2004-10-01

    This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.

  6. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  7. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  8. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  9. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    International Nuclear Information System (INIS)

    Bordallo, C.R.; Moreno, E.; Brey, J.J.; Garcia, C.; Sarmiento, B.; Castro, A.

    2004-01-01

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  10. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, C.R.; Moreno, E.; Brey, J.J.; Garcia, C.; Sarmiento, B.; Castro, A. [Hynergreen Technologies, S.A., Seville (Spain)

    2004-07-01

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  11. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  12. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  13. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  14. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  15. RHETT2/EPDM Hall Thruster Propulsion System Electromagnetic Compatibility Evaluation

    Science.gov (United States)

    Sarmiento, Charles J.; Sankovic, John M.; Freitas, Joseph; Lynn, Peter R.

    1997-01-01

    Electromagnetic compatibility measurements were obtained as part of the Electric Propulsion Demonstration Module (EPDM) flight qualification program. Tests were conducted on a Hall thruster system operating at a nominal 66O W discharge power. Measurements of conducted and radiated susceptibility and emissions were obtained and referenced to MEL-STD-461 C. The power processor showed some conducted susceptibility below 4 kHz for the magnet current and discharge voltage. Radiated susceptibility testing yielded a null result. Conducted emissions showed slight violations of the specified limit for MIL-461C CE03. Radiated emissions exceeded the RE02 standard at low frequencies, below 300 MHz, by up to 40 dB RV/m/MHz.

  16. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  17. System for cooling the upper wall of a nuclear reactor vessel

    International Nuclear Information System (INIS)

    Pailla, Henri; Schaller, Karl; Vidard, Michel.

    1974-01-01

    A system for cooling the upper wall of the main vessel of a fast neutron reactor is described. This vessel is suspended from an upper shield by the upper wall. It includes coils carrying a coolant which are immersed in an intermediate liquid bathing the wall and contained in a tank integral with the vessel. At least one of the two cooling and intermediate liquids is a liquid metal. The main vessel is contained in a safety vessel, the space between the main and safety vessels is occluded in its upper part by an insulating shield placed under the tank. There is a liquid metal seal between the upper wall and the upper shield under the tank. This system has been specially designed for sodium cooled fast neutron reactors [fr

  18. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy...

  19. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  20. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions