WorldWideScience

Sample records for proposed treatment plan

  1. Proposed Site Treatment Plan (PSTP). STP reference document

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare a plan describing the development of treatment capacities and technologies for treating mixed waste (hazardous/radioactive waste). DOE decided to prepare its site treatment plan in a three phased approach. The first phase, called the Conceptual Site Treatment Plan (CSTP), was issued in October 1993. At the Savannah River Site (SRS) the CSTP described mixed waste streams generated at SRS and listed treatment scenarios for each waste stream utilizing an onsite, offsite DOE, and offsite or onsite commercial or vendor treatment option. The CSTP is followed by the Draft Site Treatment Plan (DSTP), due to be issued in August 1994. The DSTP, the current activity., will narrow the options discussed in the CSTP to a preferred treatment option, if possible, and will include waste streams proposed to be shipped to SRS from other DOE facilities as well as waste streams SRS may send offsite for treatment. The SRS DSTP process has been designed to address treatment options for each of the site's mixed waste streams. The SRS Proposed Site Treatment Plan (PSTP) is due to be issued in February 1995. The compliance order would be derived from the PSTP

  2. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    International Nuclear Information System (INIS)

    1995-01-01

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals

  3. Proposed site treatment plan (PSTP) Volumes I ampersand II ampersand reference document, Revision 3

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.

    1995-01-01

    The Federal Facility Compliance Act requires the Department of Energy to undertake a national effort to develop Site Treatment Plans for each of its sites generating or storing mixed waste. Mixed waste contains both a hazardous waste subject to the Resource Conservation and Recovery Act and radioactive material subject to the Atomic Energy Act of 1954. The Site Treatment Plan for the Savannah River Site proposes how SRS will treat mixed waste that is now stored on the site and mixed waste that Will be generated in the future. Also, the Site Treatment Plan identifies Savannah River Site mixed wastes that other Department of Energy facilities could treat and mixed waste from other facilities that the Savannah River Site could treat. The Site Treatment Plan has been approved by the State of South Carolina. The Department of Energy Will enter into a consent order with the State of South Carolina by October 6, 1995. The consent order will contain enforceable commitments to treat mixed waste

  4. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    International Nuclear Information System (INIS)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-01-01

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site's preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised

  5. Explicit optimization of plan quality measures in intensity-modulated radiation therapy treatment planning.

    Science.gov (United States)

    Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn

    2017-06-01

    To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.

  6. Crown and crown-root fractures: an evaluation of the treatment plans for management proposed by 154 specialists in restorative dentistry.

    Science.gov (United States)

    de Castro, Mara Antonio Monteiro; Poi, Wilson Roberto; de Castro, José Carlos Monteiro; Panzarini, Sônia Regina; Sonoda, Celso Koogi; Trevisan, Carolina Lunardelli; Luvizuto, Eloá Rodrigues

    2010-06-01

    Traumatic tooth injuries involve function and aesthetics and cause damage that range from minimal enamel loss to complex fractures involving the pulp tissue and even loss of the tooth crown. Technical knowledge and clinical experience are essential to establish an accurate diagnosis and provide a rational treatment. The purpose of this study was to evaluate the knowledge of Restorative Dentistry specialists about the management of crown and crown-root fractures based on treatment plans proposed by these professionals for these cases. A descriptive questionnaire was mailed to 245 Restorative Dentistry specialists with questions referring to their professional profile and the treatment plans they would propose for the management of crown and crow-root fractures resulting from dental trauma. One hundred and fifty-four questionnaires were returned properly filled. The data were subjected to descriptive statistics and the chi-square test was used to determine the frequency and the level of the significance among the variables. The analysis of data showed that in spite of having a specialist title, all interviewees had great difficulty in planning the treatments. As much as 42.8% of the participants were unable to treat all types of dental trauma. Complicated and uncomplicated crown-root fractures posed the greatest difficulties for the dentists to establish adequate treatment plans because these fractures require multidisciplinary knowledge and approach for a correct case planning and prognosis.

  7. Inverse planning and class solutions for brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Trnkova, P.

    2010-01-01

    Brachytherapy or interventional radiooncology is a method of radiation therapy. It is a method, where a small encapsulated radioactive source is placed near to / in the tumour and therefore delivers high doses directly to the target volume. Organs at risk (OARs) are spared due to the inverse square dose fall-off. In the past years there was a slight stagnation in the development of techniques for brachytherapy treatment. While external beam radiotherapy became more and more sophisticated, in brachytherapy traditional methods have been still used. Recently, 3D imaging was considered also as the modality for brachytherapy and more precise brachytherapy could expand. Nowadays, an image guided brachytherapy is state-of-art in many centres. Integration of imaging methods lead to the dose distribution individually tailored for each patient. Treatment plan optimization is mostly performed manually as an adaptation of a standard loading pattern. Recently, inverse planning approaches have been introduced into brachytherapy. The aim of this doctoral thesis was to analyze inverse planning and to develop concepts how to integrate inverse planning into cervical cancer brachytherapy. First part of the thesis analyzes the Hybrid Inverse treatment Planning and Optimization (HIPO) algorithm and proposes a workflow how to safely work with this algorithm. The problem of inverse planning generally is that only the dose and volume parameters are taken into account and spatial dose distribution is neglected. This fact can lead to unwanted high dose regions in a normal tissue. A unique implementation of HIPO into the treatment planning system using additional features enabled to create treatment plans similar to the plans resulting from manual optimization and to shape the high dose regions inside the CTV. In the second part the HIPO algorithm is compared to the Inverse Planning Simulated Annealing (IPSA) algorithm. IPSA is implemented into the commercial treatment planning system. It

  8. Feature-based plan adaptation for fast treatment planning in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Chen Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and ‘gold standard’. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose. (paper)

  9. Proposed Hydro-Quebec development plan, 1993: Proposal

    International Nuclear Information System (INIS)

    1992-01-01

    The Quebec government now requires Hydro-Quebec to submit a development plan every three years instead of annually, in order to permit more in-depth studies and a broader consultation with interested parties. In the first of such three-year plans, a series of plan proposals is presented which was developed after a year of consultation with various groups on four fundamental matters: energy efficiency, means of generation, electro-intensive industries, and electricity exports. Options for meeting future demand at Hydro-Quebec are assessed, including the construction of new generation and transmission facilities, rehabilitation of existing facilities, improving electrical energy efficiency, and conservation strategies. These options are considered while applying the principle of sustainable development that respects the environment. Hydroelectricity will continue to be emphasized as the main source of generation since hydroelectric facilities offer distinct advantages in terms of costs, environmental impacts, and economic spinoffs. The proposed plan also presents objectives and strategies for improving the quality of service and internal operations. Financial forecasts for Hydro-Quebec are proposed which take into account the forecast changes in the utility's cost and revenue factors and its self-financing requirements. 5 figs., 15 tabs

  10. Technical Note: Improving the VMERGE treatment planning algorithm for rotational radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gaddy, Melissa R., E-mail: mrgaddy@ncsu.edu; Papp, Dávid, E-mail: dpapp@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205 (United States)

    2016-07-15

    Purpose: The authors revisit the VMERGE treatment planning algorithm by Craft et al. [“Multicriteria VMAT optimization,” Med. Phys. 39, 686–696 (2012)] for arc therapy planning and propose two changes to the method that are aimed at improving the achieved trade-off between treatment time and plan quality at little additional planning time cost, while retaining other desirable properties of the original algorithm. Methods: The original VMERGE algorithm first computes an “ideal,” high quality but also highly time consuming treatment plan that irradiates the patient from all possible angles in a fine angular grid with a highly modulated beam and then makes this plan deliverable within practical treatment time by an iterative fluence map merging and sequencing algorithm. We propose two changes to this method. First, we regularize the ideal plan obtained in the first step by adding an explicit constraint on treatment time. Second, we propose a different merging criterion that comprises of identifying and merging adjacent maps whose merging results in the least degradation of radiation dose. Results: The effect of both suggested modifications is evaluated individually and jointly on clinical prostate and paraspinal cases. Details of the two cases are reported. Conclusions: In the authors’ computational study they found that both proposed modifications, especially the regularization, yield noticeably improved treatment plans for the same treatment times than what can be obtained using the original VMERGE method. The resulting plans match the quality of 20-beam step-and-shoot IMRT plans with a delivery time of approximately 2 min.

  11. An Approach for Practical Multiobjective IMRT Treatment Planning

    International Nuclear Information System (INIS)

    Craft, David; Halabi, Tarek; Shih, Helen A.; Bortfeld, Thomas

    2007-01-01

    Purpose: To introduce and demonstrate a practical multiobjective treatment planning procedure for intensity-modulated radiation therapy (IMRT) planning. Methods and Materials: The creation of a database of Pareto optimal treatment plans proceeds in two steps. The first step solves an optimization problem that finds a single treatment plan which is close to a set of clinical aspirations. This plan provides an example of what is feasible, and is then used to determine mutually satisfiable hard constraints for the subsequent generation of the plan database. All optimizations are done using linear programming. Results: The two-step procedure is applied to a brain, a prostate, and a lung case. The plan databases created allow for the selection of a final treatment plan based on the observed tradeoffs between the various organs involved. Conclusions: The proposed method reduces the human iteration time common in IMRT treatment planning. Additionally, the database of plans, when properly viewed, allows the decision maker to make an informed final plan selection

  12. When does treatment plan optimization require inverse planning?

    International Nuclear Information System (INIS)

    Sherouse, George W.

    1995-01-01

    Increasing maturity of image-based computer-aided design of three-dimensional conformal radiotherapy has recently sparked a great deal of work in the area of treatment plan optimization. Optimization of a conformal photon beam treatment plan is that exercise through which a set of intensity-modulated static beams or arcs is specified such that, when the plan is executed, 1) a region of homogeneous dose is produced in the patient with a shape which geometrically conforms (within a specified tolerance) to the three-dimensional shape of a designated target volume and 2) acceptably low incidental dose is delivered to non-target tissues. Interest in conformal radiotherapy arise from a fundamental assumption that there is significant value to be gained from aggressive customization of the treatment for each individual patient In our efforts to design optimal treatments, however, it is important to remember that, given the biological and economic realities of clinical radiotherapy, mathematical optimization of dose distribution metrics with respect to some minimal constraint set is not a necessary or even sufficient condition for design of a clinically optimal treatment. There is wide variation in the complexity of the clinical situations encountered in practice and there are a number of non-physical criteria to be considered in planning. There is also a complementary variety of computational and engineering means for achieving optimization. To date, the scientific dialogue regarding these techniques has concentrated on development of solutions to worst-case scenarios, largely in the absence of consideration of appropriate matching of solution complexity to problem complexity. It is the aim of this presentation to propose a provisional stratification of treatment planning problems, stratified by relative complexity, and to identify a corresponding stratification of necessary treatment planning techniques. It is asserted that the subset of clinical radiotherapy cases for

  13. Closure plan for the proposed Millennium Project

    International Nuclear Information System (INIS)

    Tuttle, S.; Sisson, R.

    1999-01-01

    A $2.2 billion expansion of the current oil sands operation has been proposed by Suncor Energy Inc. The expansion would more than double the productive capacity of the present facility. As part of the application for this expansion, called Project Millennium, a comprehensive closure plan has been developed and filed by the Corporation. The Plan includes a systematic evaluation of the area to be developed, a description of the development activities planned, and the goals and objectives of the Corporation in re-establishing the landforms and ecosystems concurrently with running the operation. The Plan envisages surface contouring as early as practicable during the mine development, soil reconstruction, and re-establishment of vegetation, surface drainage and wetlands. The Corporation undertakes to monitor the performance of the reclaimed areas based on landform performance, the impact of chemical constituents on the landscape and ecosystem sustainability. An annual monitoring report assessing herbaceous vegetation growth, major species composition, tree and shrub survival and growth rate, groundwater conditions, amount of precipitation, the utility of constructed wetlands for treatment of reclamation area seepage and runoff waters, and wildlife population changes, will be prepared annually. A future research program associated with the Reclamation and Closure Plan will also examine the effectiveness of the reclamation drainage system as fish habitat, and the potential of the proposed end-pit lake to provide a viable aquatic ecosystem. 8 refs., 2 figs

  14. Teaching Treatment Planning.

    Science.gov (United States)

    Seligman, Linda

    1993-01-01

    Describes approach to teaching treatment planning that author has used successfully in both seminars and graduate courses. Clarifies nature and importance of systematic treatment planning, then describes context in which treatment planning seems more effectively taught, and concludes with step-by-step plan for teaching treatment planning.…

  15. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    Song, Ting; Zhou, Linghong; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Jiang, Steve B; Gu, Xuejun

    2015-01-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  16. Fast treatment plan modification with an over-relaxed Cimmino algorithm

    International Nuclear Information System (INIS)

    Wu Chuan; Jeraj, Robert; Lu Weiguo; Mackie, Thomas R.

    2004-01-01

    A method to quickly modify a treatment plan in adaptive radiotherapy was proposed and studied. The method is based on a Cimmino-type algorithm in linear programming. The fast convergence speed is achieved by over-relaxing the algorithm relaxation parameter from its sufficient convergence range of (0, 2) to (0, ∞). The algorithm parameters are selected so that the over-relaxed Cimmino (ORC) algorithm can effectively approximate an unconstrained re-optimization process in adaptive radiotherapy. To demonstrate the effectiveness and flexibility of the proposed method in adaptive radiotherapy, two scenarios with different organ motion/deformation of one nasopharyngeal case were presented with comparisons made between this method and the re-optimization method. In both scenarios, the ORC algorithm modified treatment plans have dose distributions that are similar to those given by the re-optimized treatment plans. It takes us using the ORC algorithm to finish a treatment plan modification at least three times faster than the re-optimization procedure compared

  17. Draft Site Treatment Plan (DSTP), Volumes I and II

    International Nuclear Information System (INIS)

    D'Amelio, J.

    1994-01-01

    Site Treatment Plans (STP) are required for facilities at which the DOE generates or stores mixed waste. This Draft Site Treatment Plan (DSTP) the second step in a three-phase process, identifies the currently preferred options for treating mixed waste at the Savannah River Site (SRS) or for developing treatment technologies where technologies do not exist or need modification. The DSTP reflects site-specific preferred options, developed with the state's input and based on existing available information. To the extent possible, the DSTP identifies specific treatment facilities for treating the mixed waste and proposes schedules. Where the selection of specific treatment facilities is not possible, schedules for alternative activities such as waste characterization and technology assessment are provided. All schedule and cost information presented is preliminary and is subject to change. The DSTP is comprised of two volumes: this Compliance Plan Volume and the Background Volume. This Compliance Plan Volume proposes overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) of RCRA and procedures for converting the target dates into milestones to be enforced under the Order. The more detailed discussion of the options contained in the Background Volume is provided for informational purposes only

  18. Treatment plan modification using voxel-based weighting factors/dose prescription

    International Nuclear Information System (INIS)

    Wu Chuan; Olivera, Gustavo H; Jeraj, Robert; Keller, Harry; Mackie, Thomas R

    2003-01-01

    Under various clinical situations, it is desirable to modify the original treatment plan to better suit the clinical goals. In this work, a method to help physicians modify treatment plans based on their clinical preferences is proposed. The method uses a weighted quadratic dose objective function. The commonly used organ-/ROI-based weighting factors are expanded to a set of voxel-based weighting factors in order to obtain greater flexibility in treatment plan modification. Two different but equivalent modification schemes based on Rustem's quadratic programming algorithms -modification of a weighting matrix and modification of prescribed doses - are presented. Case studies demonstrated the effectiveness of the two methods with regard to their capability to fine-tune treatment plans

  19. Dose prescription and treatment planning based on FMISO-PET hypoxia

    International Nuclear Information System (INIS)

    Toma-Dasu, Iuliana; Antonovic, Laura; Uhrdin, Johan; Dasu, Alexandru; Nuyts, Sandra; Dirix, Piet; Haustermans, Karin; Brahme, Anders

    2012-01-01

    Purpose. The study presents the implementation of a novel method for incorporating hypoxia information from PET-CT imaging into treatment planning and estimates the efficiency of various optimization approaches. Its focuses on the feasibility of optimizing treatment plans based on the non-linear conversion of PET hypoxia images into radiosensitivity maps from the uptake properties of the tracers used. Material and methods. PET hypoxia images of seven head-and-neck cancer patients were used to determine optimal dose distributions needed to counteract the radiation resistance associated with tumor hypoxia assuming various scenarios regarding the evolution of the hypoxic compartment during the treatment. A research planning system for advanced studies has been used to optimize IMRT plans based on hypoxia information from patient PET images. These resulting plans were compared in terms of target coverage for the same fulfilled constraints regarding the organs at risk. Results. The results of a planning study indicated the clinical feasibility of the proposed method for treatment planning based on PET hypoxia. Antihypoxic strategies would lead to small improvements in all the patients, but higher effects are expected for the fraction of patients with hypoxic tumors. For these, individualization of the treatment based on hypoxia PET imaging could lead to improved treatment outcome while creating the premises for limiting the irradiation of the surrounding normal tissues. Conclusions. The proposed approach offers the possibility of improved treatment results as it takes into consideration the heterogeneity and the dynamics of the hypoxic regions. It also provides early identification of the clinical cases that might benefit from dose escalation as well as the cases that could benefit from other counter-hypoxic measures

  20. Hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Lagendijk, J.J.W.

    2000-01-01

    The development of hyperthermia, the treatment of tumours with elevated temperatures in the range of 40-44 deg. C with treatment times over 30 min, greatly benefits from the development of hyperthermia treatment planning. This review briefly describes the state of the art in hyperthermia technology, followed by an overview of the developments in hyperthermia treatment planning. It particularly highlights the significant problems encountered with heating realistic tissue volumes and shows how treatment planning can help in designing better heating technology. Hyperthermia treatment planning will ultimately provide information about the actual temperature distributions obtained and thus the tumour control probabilities to be expected. This will improve our understanding of the present clinical results of thermoradiotherapy and thermochemotherapy, and will greatly help both in optimizing clinical heating technology and in designing optimal clinical trials. (author)

  1. Automatic planning of head and neck treatment plans

    DEFF Research Database (Denmark)

    Hazell, Irene; Bzdusek, Karl; Kumar, Prashant

    2016-01-01

    radiation dose planning (dosimetrist) and potentially improve the overall plan quality. This study evaluates the performance of the Auto-Planning module that has recently become clinically available in the Pinnacle3 radiation therapy treatment planning system. Twenty-six clinically delivered head and neck...... as the previously delivered clinical plans. For all patients, the Auto-Planning tool produced clinically acceptable head and neck treatment plans without any manual intervention, except for the initial target and OAR delineations. The main benefit of the method is the likely improvement in the overall treatment......Treatment planning is time-consuming and the outcome depends on the person performing the optimization. A system that automates treatment planning could potentially reduce the manual time required for optimization and could also pro-vide a method to reduce the variation between persons performing...

  2. Conventional radiotherapy treatments (direct planning) of head and neck with photon X10 planning system (cms) and Siemens Primus accelerator: proposed protocol planning, difficulties encountered, tricks practical and possible amendments to the class solution

    International Nuclear Information System (INIS)

    Saez, F.; Benito, M. A.; Saez, M.

    2011-01-01

    In this paper we propose a protocol for the systematic planning process for a planner and an Accelerator XiO Primus. This protocol includes the creation of ancillary volumes for better dosimetric evaluation and design fields. Are some practical tips and cases arise in which you can change the Class Solution home. We compare this treatment with 10 turns without turning table with other tables. Finally, we show the advantages of this method from the radiobiological point of view to the bone, the main body of this type of risk treatments.

  3. A new plan-scoring method using normal tissue complication probability for personalized treatment plan decisions in prostate cancer

    Science.gov (United States)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie; Chang, Kyung Hwan

    2018-01-01

    The aim of this study was to derive a new plan-scoring index using normal tissue complication probabilities to verify different plans in the selection of personalized treatment. Plans for 12 patients treated with tomotherapy were used to compare scoring for ranking. Dosimetric and biological indexes were analyzed for the plans for a clearly distinguishable group ( n = 7) and a similar group ( n = 12), using treatment plan verification software that we developed. The quality factor ( QF) of our support software for treatment decisions was consistent with the final treatment plan for the clearly distinguishable group (average QF = 1.202, 100% match rate, n = 7) and the similar group (average QF = 1.058, 33% match rate, n = 12). Therefore, we propose a normal tissue complication probability (NTCP) based on the plan scoring index for verification of different plans for personalized treatment-plan selection. Scoring using the new QF showed a 100% match rate (average NTCP QF = 1.0420). The NTCP-based new QF scoring method was adequate for obtaining biological verification quality and organ risk saving using the treatment-planning decision-support software we developed for prostate cancer.

  4. Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and Reference Document

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1994-12-22

    The Compliance Plan Volume provides overall schedules with target dates for achieving compliance with the land disposal restrictions (LDR) and contains procedures to establish milestones to be enforced under the Order. Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume and is provided for informational purposes only.

  5. Prescribing and evaluating target dose in dose-painting treatment plans

    DEFF Research Database (Denmark)

    Håkansson, Katrin; Specht, Lena; Aznar, Marianne C

    2014-01-01

    BACKGROUND: Assessment of target dose conformity in multi-dose-level treatment plans is challenging due to inevitable over/underdosage at the border zone between dose levels. Here, we evaluate different target dose prescription planning aims and approaches to evaluate the relative merit of such p......-painting and multi-dose-level plans. The tool can be useful for quality assurance of multi-center trials, and for visualizing the development of treatment planning in routine clinical practice....... of such plans. A quality volume histogram (QVH) tool for history-based evaluation is proposed. MATERIAL AND METHODS: Twenty head and neck cancer dose-painting plans with five prescription levels were evaluated, as well as clinically delivered simultaneous integrated boost (SIB) plans from 2010 and 2012. The QVH...

  6. Ecological planning proposal for Kruger National Park

    Science.gov (United States)

    van Riet, W. F.; Cooks, J.

    1990-05-01

    This article discusses an application of the ecological planning model proposed by Van Riet and Cooks. The various steps outlined in this model have been applied to Kruger National Park in South Africa. The natural features of Kruger National Park, which form the basis of such an ecological planning exercise and from which the various land use categories, values, and zoning classes can be determined, are discussed in detail. The suitability of each of the various features is analyzed and a final zoning proposal for Kruger National Park is suggested. Furthermore a method for selecting a site for a new camp is illustrated by referring to the site for the new Mopane rest camp which is now under construction in the Kruger National Park. The conclusion is reached that the proposed ecological planning model can be used successfully in planning conservation areas such as Kruger National Park and for the selection of the most desirable sites for the establishment of new rest camps. Its suitability as a practical model in such planning exercises is proven by the fact that the siting proposals of two new camps based on this model have been accepted by the National Parks Board, the controlling body of Kruger National Park.

  7. Interactively exploring optimized treatment plans

    International Nuclear Information System (INIS)

    Rosen, Isaac; Liu, H. Helen; Childress, Nathan; Liao Zhongxing

    2005-01-01

    Purpose: A new paradigm for treatment planning is proposed that embodies the concept of interactively exploring the space of optimized plans. In this approach, treatment planning ignores the details of individual plans and instead presents the physician with clinical summaries of sets of solutions to well-defined clinical goals in which every solution has been optimized in advance by computer algorithms. Methods and materials: Before interactive planning, sets of optimized plans are created for a variety of treatment delivery options and critical structure dose-volume constraints. Then, the dose-volume parameters of the optimized plans are fit to linear functions. These linear functions are used to show in real time how the target dose-volume histogram (DVH) changes as the DVHs of the critical structures are changed interactively. A bitmap of the space of optimized plans is used to restrict the feasible solutions. The physician selects the critical structure dose-volume constraints that give the desired dose to the planning target volume (PTV) and then those constraints are used to create the corresponding optimized plan. Results: The method is demonstrated using prototype software, Treatment Plan Explorer (TPEx), and a clinical example of a patient with a tumor in the right lung. For this example, the delivery options included 4 open beams, 12 open beams, 4 wedged beams, and 12 wedged beams. Beam directions and relative weights were optimized for a range of critical structure dose-volume constraints for the lungs and esophagus. Cord dose was restricted to 45 Gy. Using the interactive interface, the physician explored how the tumor dose changed as critical structure dose-volume constraints were tightened or relaxed and selected the best compromise for each delivery option. The corresponding treatment plans were calculated and compared with the linear parameterization presented to the physician in TPEx. The linear fits were best for the maximum PTV dose and worst

  8. In Vivo Diode Dosimetry for Imrt Treatments Generated by Pinnacle Treatment Planning System

    International Nuclear Information System (INIS)

    Alaei, Parham; Higgins, Patrick D.; Gerbi, Bruce J.

    2009-01-01

    Dose verification using diodes has been proposed and used for intensity modulated radiation therapy (IMRT) treatments. We have previously evaluated diode response for IMRT deliveries planned with the Eclipse/Helios treatment planning system. The Pinnacle treatment planning system generates plans that are delivered in a different fashion than Eclipse. Whereas the Eclipse-generated segments are delivered in organized progression from one side of each field to the other, Pinnacle-generated segments are delivered in a much more randomized fashion to different areas within the field. This makes diode measurements at a point more challenging because the diode may be exposed fully or partially to multiple small segments during one single field's treatment as opposed to being exposed to very few segments scanning across the diode during an Eclipse-generated delivery. We have evaluated in vivo dosimetry for Pinnacle-generated IMRT plans and characterized the response of the diode to various size segments on phantom. We present results of patient measurements on approximately 300 fields, which show that 76% of measurements agree to within 10% of the treatment-plan generated calculated doses. Of the other 24%, about 11% are within 15% of the calculated dose. Comparison of these with phantom measurements indicates that many of the discrepancies are due to diode positioning on patients and increased diode response at short source-to-surface distances (SSDs), with the remainder attributable to other factors such as segment size and partial irradiation of the diode

  9. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning.

    Science.gov (United States)

    Liu, Shi; Wu, Yu; Wooten, H Omar; Green, Olga; Archer, Brent; Li, Harold; Yang, Deshan

    2016-03-08

    A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image-guided radiation therapy (MR-IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam-on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected dose rate. To predict the remain-ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of

  10. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites at the 100-HR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this operable unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that historically received radioactive liquid waste discharges that pose a potential threat to human health and the environment. This proposed plan is being issued by the Washington State Department of Ecology (Ecology), the lead regulatory agency; the US Environmental Protection Agency (EPA), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. Ecology, EPA, and DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Program.'' The proposed plan is intended to be a fact sheet for public review that (1) briefly describes the remedial alternatives analyzed; (2) proposes a preferred alternative; (3) summarizes the information relied upon to recommend the preferred alternative; and (4) provides a basis for an interim action record of decision (ROD). The preferred alternative presented in this proposed plan is removal, treatment (as appropriate), and disposal of contaminated soil and associated structures. Treatment will be conducted if there is cost benefit

  11. Computerized radiation treatment planning

    International Nuclear Information System (INIS)

    Laarse, R. van der.

    1981-01-01

    Following a general introduction, a chain consisting of three computer programs which has been developed for treatment planning of external beam radiotherapy without manual intervention is described. New score functions used for determination of optimal incidence directions are presented and the calculation of the position of the isocentre for each optimum combination of incidence directions is explained. A description of how a set of applicators, covering fields with dimensions of 4 to 20 cm, for the 6 to 20 MeV electron beams of a MEL SL75-20 linear accelerator was developed, is given. A computer program for three dimensional electron beam treatment planning is presented. A microprocessor based treatment planning system for the Selectron remote controlled afterloading system for intracavitary radiotherapy is described. The main differences in treatment planning procedures for external beam therapy with neutrons instead of photons is discussed. A microprocessor based densitometer for plotting isodensity lines in film dosimetry is described. A computer program for dose planning of brachytherapy is presented. Finally a general discussion about the different aspects of computerized treatment planning as presented in this thesis is given. (Auth.)

  12. 300 Area waste acid treatment system closure plan. Revision 1

    International Nuclear Information System (INIS)

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan

  13. 300 Area waste acid treatment system closure plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  14. 3D treatment planning systems.

    Science.gov (United States)

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  15. Automatic liver contouring for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Li, Dengwang; Kapp, Daniel S; Xing, Lei; Liu, Li

    2015-01-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  16. A method of computerized evaluation of CT based treatment plans in external radiotherapy

    International Nuclear Information System (INIS)

    Heufelder, J.; Zink, K.; Scholz, M.; Kramer, K.D.; Welker, K.

    2003-01-01

    Selection of an optimal treatment plan requires the comparison of dose distributions and dose-volume histograms (DVH) of all plan variants calculated for the patient. Each treatment plan consists generally of 30 to 40 CT slices, making the comparison difficult and time consuming. The present study proposes an objective index that takes into account both physical and biological criteria for the evaluation of the dose distribution. The DHV-based evaluation index can be calculated according to the following four criteria: ICRU conformity (review of the differences between the dose in the planning target volume and the ICRU recommendations); mean dose and dose homogeneity of the planning target volume; the product of tumour complication probability (TCP) and normal tissue complication probability (NTCP); and finally a criterion that takes into account the dose load of non-segmented tissue portions within the CT slice. The application of the objective index is demonstrated for two different clinical cases (esophagus and breast carcinoma). During the evaluation period, the objective index showed a good correlation between the doctor's decision and the proposed objective index. Thus, the objective index is suitable for a computer-based evaluation of treatment plans. (orig.) [de

  17. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    Science.gov (United States)

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  18. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-01-01

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the

  19. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  20. Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Bortfeld, Thomas; Martin, Benjamin C.; Soukup, Martin

    2009-01-01

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be very sensitive to setup errors and range uncertainties. If these errors are not accounted for during treatment planning, the dose distribution realized in the patient may by strongly degraded compared to the planned dose distribution. The authors implemented the probabilistic approach to incorporate uncertainties directly into the optimization of an intensity modulated treatment plan. Following this approach, the dose distribution depends on a set of random variables which parameterize the uncertainty, as does the objective function used to optimize the treatment plan. The authors optimize the expected value of the objective function. They investigate IMPT treatment planning regarding range uncertainties and setup errors. They demonstrate that incorporating these uncertainties into the optimization yields qualitatively different treatment plans compared to conventional plans which do not account for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More robust treatment plans are obtained by redistributing dose among different beam directions. This can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor setup errors.

  1. Nevada Test Site Site Treatment Plan. Revision 2

    International Nuclear Information System (INIS)

    1996-03-01

    Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada's input. The options and schedules reflect a ''bottoms-up'' approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions

  2. Treatment planning optimization for linear accelerator radiosurgery

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.

    1998-01-01

    Purpose: Linear accelerator radiosurgery uses multiple arcs delivered through circular collimators to produce a nominally spherical dose distribution. Production of dose distributions that conform to irregular lesions or conformally avoid critical neural structures requires a detailed understanding of the available treatment planning parameters. Methods and Materials: Treatment planning parameters that may be manipulated within a single isocenter to provide conformal avoidance and dose conformation to ellipsoidal lesions include differential arc weighting and gantry start/stop angles. More irregular lesions require the use of multiple isocenters. Iterative manipulation of treatment planning variables can be difficult and computationally expensive, especially if the effects of these manipulations are not well defined. Effects of treatment parameter manipulation are explained and illustrated. This is followed by description of the University of Florida Stereotactic Radiosurgery Treatment Planning Algorithm. This algorithm organizes the manipulations into a practical approach for radiosurgery treatment planning. Results: Iterative treatment planning parameters may be efficiently manipulated to achieve optimal treatment plans by following the University of Florida Treatment Planning Algorithm. The ability to produce conformal stereotactic treatment plans using the algorithm is demonstrated for a variety of clinical presentations. Conclusion: The standard dose distribution produced in linear accelerator radiosurgery is spherical, but manipulation of available treatment planning parameters may result in optimal dose conformation. The University of Florida Treatment Planning Algorithm organizes available treatment parameters to efficiently produce conformal radiosurgery treatment plans

  3. Concept for individualized patient allocation: ReCompare—remote comparison of particle and photon treatment plans

    International Nuclear Information System (INIS)

    Lühr, Armin; Baumann, Michael; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang

    2014-01-01

    Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility

  4. Computer-aided beam arrangement based on similar cases in radiation treatment-planning databases for stereotactic lung radiation therapy

    International Nuclear Information System (INIS)

    Magome, Taiki; Shioyama, Yoshiyuki; Arimura, Hidetaka

    2013-01-01

    The purpose of this study was to develop a computer-aided method for determination of beam arrangements based on similar cases in a radiotherapy treatment-planning database for stereotactic lung radiation therapy. Similar-case-based beam arrangements were automatically determined based on the following two steps. First, the five most similar cases were searched, based on geometrical features related to the location, size and shape of the planning target volume, lung and spinal cord. Second, five beam arrangements of an objective case were automatically determined by registering five similar cases with the objective case, with respect to lung regions, by means of a linear registration technique. For evaluation of the beam arrangements five treatment plans were manually created by applying the beam arrangements determined in the second step to the objective case. The most usable beam arrangement was selected by sorting the five treatment plans based on eight plan evaluation indices, including the D95, mean lung dose and spinal cord maximum dose. We applied the proposed method to 10 test cases, by using an RTP database of 81 cases with lung cancer, and compared the eight plan evaluation indices between the original treatment plan and the corresponding most usable similar-case-based treatment plan. As a result, the proposed method may provide usable beam arrangements, which have no statistically significant differences from the original beam arrangements (P>0.05) in terms of the eight plan evaluation indices. Therefore, the proposed method could be employed as an educational tool for less experienced treatment planners. (author)

  5. Evaluation of a commercial biologically based IMRT treatment planning system

    International Nuclear Information System (INIS)

    Semenenko, Vladimir A.; Reitz, Bodo; Day, Ellen; Qi, X. Sharon; Miften, Moyed; Li, X. Allen

    2008-01-01

    A new inverse treatment planning system (TPS) for external beam radiation therapy with high energy photons is commercially available that utilizes both dose-volume-based cost functions and a selection of cost functions which are based on biological models. The purpose of this work is to evaluate quality of intensity-modulated radiation therapy (IMRT) plans resulting from the use of biological cost functions in comparison to plans designed using a traditional TPS employing dose-volume-based optimization. Treatment planning was performed independently at two institutions. For six cancer patients, including head and neck (one case from each institution), prostate, brain, liver, and rectal cases, segmental multileaf collimator IMRT plans were designed using biological cost functions and compared with clinically used dose-based plans for the same patients. Dose-volume histograms and dosimetric indices, such as minimum, maximum, and mean dose, were extracted and compared between the two types of treatment plans. Comparisons of the generalized equivalent uniform dose (EUD), a previously proposed plan quality index (fEUD), target conformity and heterogeneity indices, and the number of segments and monitor units were also performed. The most prominent feature of the biologically based plans was better sparing of organs at risk (OARs). When all plans from both institutions were combined, the biologically based plans resulted in smaller EUD values for 26 out of 33 OARs by an average of 5.6 Gy (range 0.24 to 15 Gy). Owing to more efficient beam segmentation and leaf sequencing tools implemented in the biologically based TPS compared to the dose-based TPS, an estimated treatment delivery time was shorter in most (five out of six) cases with some plans showing up to 50% reduction. The biologically based plans were generally characterized by a smaller conformity index, but greater heterogeneity index compared to the dose-based plans. Overall, compared to plans based on dose

  6. Real-time interactive treatment planning

    International Nuclear Information System (INIS)

    Otto, Karl

    2014-01-01

    The goal of this work is to develop an interactive treatment planning platform that permits real-time manipulation of dose distributions including DVHs and other dose metrics. The hypothesis underlying the approach proposed here is that the process of evaluating potential dose distribution options and deciding on the best clinical trade-offs may be separated from the derivation of the actual delivery parameters used for the patient’s treatment. For this purpose a novel algorithm for deriving an Achievable Dose Estimate (ADE) was developed. The ADE algorithm is computationally efficient so as to update dose distributions in effectively real-time while accurately incorporating the limits of what can be achieved in practice. The resulting system is a software environment for interactive real-time manipulation of dose that permits the clinician to rapidly develop a fully customized 3D dose distribution. Graphical navigation of dose distributions is achieved by a sophisticated method of identifying contributing fluence elements, modifying those elements and re-computing the entire dose distribution. 3D dose distributions are calculated in ∼2–20 ms. Including graphics processing overhead, clinicians may visually interact with the dose distribution (e.g. ‘drag’ a DVH) and display updates of the dose distribution at a rate of more than 20 times per second. Preliminary testing on various sites shows that interactive planning may be completed in ∼1–5 min, depending on the complexity of the case (number of targets and OARs). Final DVHs are derived through a separate plan optimization step using a conventional VMAT planning system and were shown to be achievable within 2% and 4% in high and low dose regions respectively. With real-time interactive planning trade-offs between Target(s) and OARs may be evaluated efficiently providing a better understanding of the dosimetric options available to each patient in static or adaptive RT. (paper)

  7. Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated Pareto-optimal treatment plans.

    Science.gov (United States)

    Wang, Yibing; Breedveld, Sebastiaan; Heijmen, Ben; Petit, Steven F

    2016-06-07

    IMRT planning with commercial Treatment Planning Systems (TPSs) is a trial-and-error process. Consequently, the quality of treatment plans may not be consistent among patients, planners and institutions. Recently, different plan quality assurance (QA) models have been proposed, that could flag and guide improvement of suboptimal treatment plans. However, the performance of these models was validated using plans that were created using the conventional trail-and-error treatment planning process. Consequently, it is challenging to assess and compare quantitatively the accuracy of different treatment planning QA models. Therefore, we created a golden standard dataset of consistently planned Pareto-optimal IMRT plans for 115 prostate patients. Next, the dataset was used to assess the performance of a treatment planning QA model that uses the overlap volume histogram (OVH). 115 prostate IMRT plans were fully automatically planned using our in-house developed TPS Erasmus-iCycle. An existing OVH model was trained on the plans of 58 of the patients. Next it was applied to predict DVHs of the rectum, bladder and anus of the remaining 57 patients. The predictions were compared with the achieved values of the golden standard plans for the rectum D mean, V 65, and V 75, and D mean of the anus and the bladder. For the rectum, the prediction errors (predicted-achieved) were only  -0.2  ±  0.9 Gy (mean  ±  1 SD) for D mean,-1.0  ±  1.6% for V 65, and  -0.4  ±  1.1% for V 75. For D mean of the anus and the bladder, the prediction error was 0.1  ±  1.6 Gy and 4.8  ±  4.1 Gy, respectively. Increasing the training cohort to 114 patients only led to minor improvements. A dataset of consistently planned Pareto-optimal prostate IMRT plans was generated. This dataset can be used to train new, and validate and compare existing treatment planning QA models, and has been made publicly available. The OVH model was highly accurate

  8. Statistical control process to compare and rank treatment plans in radiation oncology: impact of heterogeneity correction on treatment planning in lung cancer.

    Science.gov (United States)

    Chaikh, Abdulhamid; Balosso, Jacques

    2016-12-01

    This study proposes a statistical process to compare different treatment plans issued from different irradiation techniques or different treatment phases. This approach aims to provide arguments for discussion about the impact on clinical results of any condition able to significantly alter dosimetric or ballistic related data. The principles of the statistical investigation are presented in the framework of a clinical example based on 40 fields of radiotherapy for lung cancers. Two treatment plans were generated for each patient making a change of dose distribution due to variation of lung density correction. The data from 2D gamma index (γ) including the pixels having γ≤1 were used to determine the capability index (Cp) and the acceptability index (Cpk) of the process. To measure the strength of the relationship between the γ passing rates and the Cp and Cpk indices, the Spearman's rank non-parametric test was used to calculate P values. The comparison between reference and tested plans showed that 95% of pixels have γ≤1 with criteria (6%, 6 mm). The values of the Cp and Cpk indices were lower than one showing a significant dose difference. The data showed a strong correlation between γ passing rates and the indices with P>0.8. The statistical analysis using Cp and Cpk, show the significance of dose differences resulting from two plans in radiotherapy. These indices can be used for adaptive radiotherapy to measure the difference between initial plan and daily delivered plan. The significant changes of dose distribution could raise the question about the continuity to treat the patient with the initial plan or the need for adjustments.

  9. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  10. A new column-generation-based algorithm for VMAT treatment plan optimization

    International Nuclear Information System (INIS)

    Peng Fei; Epelman, Marina A; Romeijn, H Edwin; Jia Xun; Gu Xuejun; Jiang, Steve B

    2012-01-01

    We study the treatment plan optimization problem for volumetric modulated arc therapy (VMAT). We propose a new column-generation-based algorithm that takes into account bounds on the gantry speed and dose rate, as well as an upper bound on the rate of change of the gantry speed, in addition to MLC constraints. The algorithm iteratively adds one aperture at each control point along the treatment arc. In each iteration, a restricted problem optimizing intensities at previously selected apertures is solved, and its solution is used to formulate a pricing problem, which selects an aperture at another control point that is compatible with previously selected apertures and leads to the largest rate of improvement in the objective function value of the restricted problem. Once a complete set of apertures is obtained, their intensities are optimized and the gantry speeds and dose rates are adjusted to minimize treatment time while satisfying all machine restrictions. Comparisons of treatment plans obtained by our algorithm to idealized IMRT plans of 177 beams on five clinical prostate cancer cases demonstrate high quality with respect to clinical dose–volume criteria. For all cases, our algorithm yields treatment plans that can be delivered in around 2 min. Implementation on a graphic processing unit enables us to finish the optimization of a VMAT plan in 25–55 s. (paper)

  11. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  12. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Fortunati, Valerio; Niessen, Wiro J; Veenland, Jifke F; Van Walsum, Theo; Verhaart, René F; Paulides, Margarethus M

    2015-01-01

    A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck.Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available.The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used.Using the proposed approach we improved the performance of the approach previously presented for H and N hyperthermia treatment planning, making the method suitable for clinical application. (paper)

  13. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning

    Science.gov (United States)

    Fortunati, Valerio; Verhaart, René F.; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; van Walsum, Theo

    2015-08-01

    A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck. Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available. The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used. Using the proposed approach we improved the performance of the approach previously presented for H&N hyperthermia treatment planning, making the method suitable for clinical application.

  14. Assessment of the proposed decontamination and waste treatment facility at LLNL

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1987-01-01

    To provide a centralized decontamination and waste treatment facility (DWTF) at LLNL, the construction of a new installation has been planned. Objectives for this new facility were to replace obsolete, structurally and environmentally sub-marginal liquid and solid waste process facilities and decontamination facility and to bring these facilities into compliance with existing federal, state and local regulations as well as DOE orders. In a previous study, SAIC conducted a preliminary review and evaluation of existing facilities at LLNL and cost effectiveness of the proposed DWTF. This document reports on a detailed review of specific aspects of the proposed DWTF

  15. Guaranteed epsilon-optimal treatment plans with the minimum number of beams for stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Yarmand, Hamed; Winey, Brian; Craft, David

    2013-01-01

    Stereotactic body radiation therapy (SBRT) is characterized by delivering a high amount of dose in a short period of time. In SBRT the dose is delivered using open fields (e.g., beam’s-eye-view) known as ‘apertures’. Mathematical methods can be used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to surrounding organs at risk (OARs) minimal. Two important elements of a treatment plan are quality and delivery time. Quality of a plan is measured based on the target coverage and dose to OARs. Delivery time heavily depends on the number of beams used in the plan as the setup times for different beam directions constitute a large portion of the delivery time. Therefore the ideal plan, in which all potential beams can be used, will be associated with a long impractical delivery time. We use the dose to OARs in the ideal plan to find the plan with the minimum number of beams which is guaranteed to be epsilon-optimal (i.e., a predetermined maximum deviation from the ideal plan is guaranteed). Since the treatment plan optimization is inherently a multi-criteria-optimization problem, the planner can navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing epsilon-optimality. We use mixed integer programming (MIP) for optimization. To reduce the computation time for the resultant MIP, we use two heuristics: a beam elimination scheme and a family of heuristic cuts, known as ‘neighbor cuts’, based on the concept of ‘adjacent beams’. We show the effectiveness of the proposed technique on two clinical cases, a liver and a lung case. Based on our technique we propose an algorithm for fast generation of epsilon-optimal plans. (paper)

  16. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  17. Action plan for energy efficiency 2003-2006. A Working Group Proposal

    International Nuclear Information System (INIS)

    2003-02-01

    The updating of the Action Plan for Energy Efficiency is closely related to the need to further intensify measures for promoting energy conservation that was highlighted in the debate in Parliament on the National Climate Strategy and building of a new nuclear power plant. The Working Group with responsibility for the preparation of the updating has made an assessment of the implementation and impact of the previous Action Plan for Energy Efficiency and sought to come up with new measures and ways of increasing the effect of the actions in the previous action plan. The main instruments presented in the updated action plan are developing new technologies, economic instruments, energy conservation agreements, laws and regulations and information and training. The action plan comprises proposals for increasing the budget for energy subsidies for companies and bodies and finding new formulas for the funding of energy saving investments. Further, the aid for the renovation of buildings is proposed to be enhanced. More effort is also needed as concerns disseminating information on energy saving. The development of new technologies requires that the funding from the National Technology Agency (Tekes) for energy efficiency is kept at least at the level of 1999. An implementation of the measures proposed would require a contribution from the state amounting to about E 80 million per year. The system of Energy Conservation Agreements is proposed to be further extended and developed. The agreements could to a larger extent than before cover research and product development processes and processes for purchasing of goods and services. The Working Group proposes further examination of the possibility of imposing binding targets and applying sanctions. Energy taxation is proposed to be developed further in order to promote energy saving and co- generation with the impact of the future Directive on emission allowance trading in mind. New research and development projects are

  18. ORGANIZATION AND PLANNING IN CHILDREN WITH ADHD: EVALUATION AND PROPOSAL OF A STIMULATION PROGRAM

    Directory of Open Access Journals (Sweden)

    Josefina Rubiales

    2011-12-01

    Full Text Available The Attention Deficit Hyperactivity Disorder (ADHD is a neurobiological disorder of a complex and heterogeneous origin characterized by a persistent pattern of inattention, hyperactivity and / or impulsivity. Is one of the most common neurobehavioral disorders in childhood and adolescence, and one of the main reasons for consultation because of difficulties in school performance, behavior problems, difficulties of living at home and with peers, involvement in self-esteem and aggressiveness. The primary deficit is associated with executive dysfunction, among which is the organization and planning. The aim of this study was to compare the performance in organization and planning of children with and without a diagnosis of ADHD and submit a stimulation proposal according to their needs. MATERIALS AND METHODS: The clinical sample comprised 16 children diagnosed with ADHD and the control sample of 32 children without a diagnosis, in both cases 8 to 14 years old and from the city of Mar del Plata (Argentina. The instruments used to evaluate the organization and planning has been the subtest Torres of Mexico Child Neuropsychological Battery (ENI, and cubes subtests Construction, Completion and Management Object Test Story Weschler Intelligence for children and adolescents. The proposed treatment includes 8 sessions of stimulation. RESULTS AND CONCLUSIONS: Children with ADHD have greater difficulty in planning and organizational skills than the children of the control sample, from which it establishes a estimulation proposal, whose originality and advantage is accentuated in the ecological validity the process.

  19. MO-B-BRB-00: Optimizing the Treatment Planning Process

    International Nuclear Information System (INIS)

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  20. MO-B-BRB-00: Optimizing the Treatment Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  1. Improving treatment planning accuracy through multimodality imaging

    International Nuclear Information System (INIS)

    Sailer, Scott L.; Rosenman, Julian G.; Soltys, Mitchel; Cullip, Tim J.; Chen, Jun

    1996-01-01

    Purpose: In clinical practice, physicians are constantly comparing multiple images taken at various times during the patient's treatment course. One goal of such a comparison is to accurately define the gross tumor volume (GTV). The introduction of three-dimensional treatment planning has greatly enhanced the ability to define the GTV, but there are times when the GTV is not visible on the treatment-planning computed tomography (CT) scan. We have modified our treatment-planning software to allow for interactive display of multiple, registered images that enhance the physician's ability to accurately determine the GTV. Methods and Materials: Images are registered using interactive tools developed at the University of North Carolina at Chapel Hill (UNC). Automated methods are also available. Images registered with the treatment-planning CT scan are digitized from film. After a physician has approved the registration, the registered images are made available to the treatment-planning software. Structures and volumes of interest are contoured on all images. In the beam's eye view, wire loop representations of these structures can be visualized from all image types simultaneously. Each registered image can be seamlessly viewed during the treatment-planning process, and all contours from all image types can be seen on any registered image. A beam may, therefore, be designed based on any contour. Results: Nineteen patients have been planned and treated using multimodality imaging from November 1993 through August 1994. All registered images were digitized from film, and many were from outside institutions. Brain has been the most common site (12), but the techniques of registration and image display have also been used for the thorax (4), abdomen (2), and extremity (1). The registered image has been an magnetic resonance (MR) scan in 15 cases and a diagnostic CT scan in 5 cases. In one case, sequential MRs, one before treatment and another after 30 Gy, were used to plan

  2. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning

    International Nuclear Information System (INIS)

    Nwankwo, Obioma; Mekdash, Hana; Sihono, Dwi Seno Kuncoro; Wenz, Frederik; Glatting, Gerhard

    2015-01-01

    A knowledge-based radiation therapy (KBRT) treatment planning algorithm was recently developed. The purpose of this work is to investigate how plans that are generated with the objective KBRT approach compare to those that rely on the judgment of the experienced planner. Thirty volumetric modulated arc therapy plans were randomly selected from a database of prostate plans that were generated by experienced planners (expert plans). The anatomical data (CT scan and delineation of organs) of these patients and the KBRT algorithm were given to a novice with no prior treatment planning experience. The inexperienced planner used the knowledge-based algorithm to predict the dose that the OARs receive based on their proximity to the treated volume. The population-based OAR constraints were changed to the predicted doses. A KBRT plan was subsequently generated. The KBRT and expert plans were compared for the achieved target coverage and OAR sparing. The target coverages were compared using the Uniformity Index (UI), while 5 dose-volume points (D 10 , D 30, D 50 , D 70 and D 90 ) were used to compare the OARs (bladder and rectum) doses. Wilcoxon matched-pairs signed rank test was used to check for significant differences (p < 0.05) between both datasets. The KBRT and expert plans achieved mean UI values of 1.10 ± 0.03 and 1.10 ± 0.04, respectively. The Wilcoxon test showed no statistically significant difference between both results. The D 90 , D 70, D 50 , D 30 and D 10 values of the two planning strategies, and the Wilcoxon test results suggests that the KBRT plans achieved a statistically significant lower bladder dose (at D 30 ), while the expert plans achieved a statistically significant lower rectal dose (at D 10 and D 30 ). The results of this study show that the KBRT treatment planning approach is a promising method to objectively incorporate patient anatomical variations in radiotherapy treatment planning

  3. Proposed Plan for an amendment to the Environmental Restoration Disposal Facility Record of Decision, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-07-01

    The U.S. Environmental Protection Agency, the Washington State Department of Ecology, and the U.S. Department of Energy (Tri- Parties) are proposing an amendment to the Environmental Restoration Disposal Facility Record of Decision (ERDF ROD). EPA is the lead regulatory agency for the ERDF Project. This Proposed Plan includes two elements intended to promote Hanford Site cleanup activities by broadening utilization and operation of ERDF as follows: (1) Construct the planned Phase II of ERDF using the current disposal cell design and (2) enable centralized treatment of remediation waste at ERDF prior to disposal, as appropriate

  4. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  5. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  6. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  7. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  8. Numbers of Beauty: An Innovative Aesthetic Analysis for Orthognathic Surgery Treatment Planning.

    Science.gov (United States)

    Marianetti, Tito Matteo; Gasparini, Giulio; Midulla, Giulia; Grippaudo, Cristina; Deli, Roberto; Cervelli, Daniele; Pelo, Sandro; Moro, Alessandro

    2016-01-01

    The aim of this study was to validate a new aesthetic analysis and establish the sagittal position of the maxilla on an ideal group of reference. We want to demonstrate the usefulness of these findings in the treatment planning of patients undergoing orthognathic surgery. We took a reference group of 81 Italian women participating in a national beauty contest in 2011 on which we performed Arnett's soft tissues cephalometric analysis and our new "Vertical Planning Line" analysis. We used the ideal values to elaborate the surgical treatment planning of a second group of 60 consecutive female patients affected by skeletal class III malocclusion. Finally we compared both pre- and postoperative pictures with the reference values of the ideal group. The ideal group of reference does not perfectly fit in Arnett's proposed norms. From the descriptive statistical comparison of the patients' values before and after orthognathic surgery with the reference values we observed how all parameters considered got closer to the ideal population. We consider our "Vertical Planning Line" a useful help for orthodontist and surgeon in the treatment planning of patients with skeletal malocclusions, in combination with the clinical facial examination and the classical cephalometric analysis of bone structures.

  9. Normalisation: ROI optimal treatment planning - SNDH pattern

    International Nuclear Information System (INIS)

    Shilvat, D.V.; Bhandari, Virendra; Tamane, Chandrashekhar; Pangam, Suresh

    2001-01-01

    Dose precision maximally to the target / ROI (Region of Interest), taking care of tolerance dose of normal tissue is the aim of ideal treatment planning. This goal is achieved with advanced modalities such as, micro MLC, simulator and 3-dimensional treatment planning system. But SNDH PATTERN uses minimum available resources as, ALCYON II Telecobalt unit, CT Scan, MULTIDATA 2-dimensional treatment planning system to their maximum utility and reaches to the required precision, same as that with advance modalities. Among the number of parameters used, 'NORMALISATION TO THE ROI' will achieve the aim of the treatment planning effectively. This is dealing with an example of canal of esophagus modified treatment planning based on SNDH pattern. Results are attractive and self explanatory. By implementing SNDH pattern, the QUALITY INDEX of treatment plan will reach to greater than 90%, with substantial reduction in dose to the vital organs. Aim is to utilize the minimum available resources efficiently to achieve highest possible precision for delivering homogenous dose to ROI while taking care of tolerance dose to vital organs

  10. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  11. Incorporating model parameter uncertainty into inverse treatment planning

    International Nuclear Information System (INIS)

    Lian Jun; Xing Lei

    2004-01-01

    Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made possible by using a statistical analysis-based frameset developed by our group. In this formalism, the uncertainties of model parameters, such as the parameter a that describes tissue-specific effect in the equivalent uniform dose (EUD) model, are expressed by probability density function and are included in the dose optimization process. We found that the final solution strongly depends on distribution functions of the model parameters. Considering that currently available models for computing biological effects of radiation are simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the uncertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT treatment

  12. A research-oriented treatment planning program system

    International Nuclear Information System (INIS)

    Kalet, I.J.; Jacky, J.P.

    1982-01-01

    The function of a treatment planning program is to graphically simulate radiation dose distributions from proposed radiation therapy treatments. While many such programs are available which provide this much-needed service, none addresses the question of how to intercompare calculation and display techniques. This paper describes a program system designed for support of research efforts, particularly development and testing of new calculation algorithms. The system emphasizes a modular flexible structure, enabling programs to be developed somewhat as interchangeable parts. Thus multiple variants of a calculation algorithm can be compared without undue software overhead or additional data management. Unusual features of the system include extensive use of command procedures, logical names and a structured language (PASCAL). These features are described along with other implementation details. Obstacles, limitations and future applications are also discussed. (Auth.)

  13. Treatment Planning for Ion Beam Therapy

    Science.gov (United States)

    Jäkel, Oliver

    The special aspects of treatment planning for ion beams are outlined in this chapter, starting with positioning and immobilization of the patient, describing imaging and segmentation, definition of treatment parameters, dose calculation and optimization, and, finally, plan assessment, verification, and quality assurance.

  14. Completion of treatment planning

    International Nuclear Information System (INIS)

    Lief, Eugene

    2008-01-01

    The outline of the lecture included the following topics: entering prescription; plan printout; print and transfer DDR; segment BEV; export to R and V; physician approval; and second check. Considerable attention, analysis and discussion. The summary is as follows: Treatment planning completion is a very responsible process which requires maximum attention; Should be independently checked by the planner, physicist, radiation oncologist and a therapist; Should not be done in a last minute rush; Proper communication between team members; Properly set procedure should prevent propagation of an error by one individual to the treatment: the error should be caught by somebody else. (P.A.)

  15. Clinical physics for charged particle treatment planning

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Pitluck, S.; Lyman, J.T.

    1981-01-01

    The installation of a computerized tomography (CT) scanner which can be used with the patient in an upright position is described. This technique will enhance precise location of tumor position relative to critical structures for accurate charged particle dose delivery during fixed horizontal beam radiotherapy. Pixel-by-pixel treatment planning programs have been developed to calculate the dose distribution from multi-port charged particle beams. The plan includes CT scans, data interpretation, and dose calculations. The treatment planning computer is discussed. Treatment planning for irradiation of ocular melanomas is described

  16. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning.

    Science.gov (United States)

    Good, David; Lo, Joseph; Lee, W Robert; Wu, Q Jackie; Yin, Fang-Fang; Das, Shiva K

    2013-09-01

    Intensity modulated radiation therapy (IMRT) treatment planning can have wide variation among different treatment centers. We propose a system to leverage the IMRT planning experience of larger institutions to automatically create high-quality plans for outside clinics. We explore feasibility by generating plans for patient datasets from an outside institution by adapting plans from our institution. A knowledge database was created from 132 IMRT treatment plans for prostate cancer at our institution. The outside institution, a community hospital, provided the datasets for 55 prostate cancer cases, including their original treatment plans. For each "query" case from the outside institution, a similar "match" case was identified in the knowledge database, and the match case's plan parameters were then adapted and optimized to the query case by use of a semiautomated approach that required no expert planning knowledge. The plans generated with this knowledge-based approach were compared with the original treatment plans at several dose cutpoints. Compared with the original plan, the knowledge-based plan had a significantly more homogeneous dose to the planning target volume and a significantly lower maximum dose. The volumes of the rectum, bladder, and femoral heads above all cutpoints were nominally lower for the knowledge-based plan; the reductions were significantly lower for the rectum. In 40% of cases, the knowledge-based plan had overall superior (lower) dose-volume histograms for rectum and bladder; in 54% of cases, the comparison was equivocal; in 6% of cases, the knowledge-based plan was inferior for both bladder and rectum. Knowledge-based planning was superior or equivalent to the original plan in 95% of cases. The knowledge-based approach shows promise for homogenizing plan quality by transferring planning expertise from more experienced to less experienced institutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Assessment of PlanIQ Feasibility DVH for head and neck treatment planning.

    Science.gov (United States)

    Fried, David V; Chera, Bhishamjit S; Das, Shiva K

    2017-09-01

    Designing a radiation plan that optimally delivers both target coverage and normal tissue sparing is challenging. There are limited tools to determine what is dosimetrically achievable and frequently the experience of the planner/physician is relied upon to make these determinations. PlanIQ software provides a tool that uses target and organ at risk (OAR) geometry to indicate the difficulty of achieving different points for organ dose-volume histograms (DVH). We hypothesized that PlanIQ Feasibility DVH may aid planners in reducing dose to OARs. Clinically delivered head and neck treatments (clinical plan) were re-planned (re-plan) putting high emphasis on maximally sparing the contralateral parotid gland, contralateral submandibular gland, and larynx while maintaining routine clinical dosimetric objectives. The planner was blinded to the results of the clinically delivered plan as well as the Feasibility DVHs from PlanIQ. The re-plan treatments were designed using 3-arc VMAT in Raystation (RaySearch Laboratories, Sweden). The planner was then given the results from the PlanIQ Feasibility DVH analysis and developed an additional plan incorporating this information using 4-arc VMAT (IQ plan). The DVHs across the three treatment plans were compared with what was deemed "impossible" by PlanIQ's Feasibility DVH (Impossible DVH). The impossible DVH (red) is defined as the DVH generated using the minimal dose that any voxel outside the targets must receive given 100% target coverage. The re-plans performed blinded to PlanIQ Feasibilty DVH achieved superior sparing of aforementioned OARs compared to the clinically delivered plans and resulted in discrepancies from the impossible DVHs by an average of 200-700 cGy. Using the PlanIQ Feasibility DVH led to additionalOAR sparing compared to both the re-plans and clinical plans and reduced the discrepancies from the impossible DVHs to an average of approximately 100 cGy. The dose reduction from clinical to re-plan and re-plan to

  18. Photodynamic therapy in neurosurgery: a proof of concept of treatment planning system

    Science.gov (United States)

    Dupont, C.; Reyns, N.; Mordon, S.; Vermandel, M.

    2017-02-01

    Glioblastoma (GBM) is the most common primary brain tumor. PhotoDynamic Therapy (PDT) appears as an interesting research field to improve GBM treatment. Nevertheless, PDT cannot fit into the current therapeutic modalities according to several reasons: the lack of reliable and reproducible therapy schemes (devices, light delivery system), the lack of consensus on a photosensitizer and the absence of randomized and controlled multicenter clinical trial. The main objective of this study is to bring a common support for PDT planning. Here, we describe a proof of concept of Treatment Planning System (TPS) dedicated to interstitial PDT for GBM treatment. The TPS was developed with the integrated development environment C++ Builder XE8 and the environment ArtiMED, developed in our laboratory. This software enables stereotactic registration of DICOM images, light sources insertion and an accelerated CUDA GPU dosimetry modeling. Although, Monte-Carlo is more robust to describe light diffusion in biological tissue, analytical model accelerated by GPU remains relevant for dose preview or fast reverse planning processes. Finally, this preliminary work proposes a new tool to plan interstitial or intraoperative PDT treatment and might be included in the design of future clinical trials in order to deliver PDT straightforwardly and homogenously in investigator centers.

  19. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning

    International Nuclear Information System (INIS)

    Zarepisheh, Masoud; Li, Nan; Long, Troy; Romeijn, H. Edwin; Tian, Zhen; Jia, Xun; Jiang, Steve B.

    2014-01-01

    Purpose: To develop a novel algorithm that incorporates prior treatment knowledge into intensity modulated radiation therapy optimization to facilitate automatic treatment planning and adaptive radiotherapy (ART) replanning. Methods: The algorithm automatically creates a treatment plan guided by the DVH curves of a reference plan that contains information on the clinician-approved dose-volume trade-offs among different targets/organs and among different portions of a DVH curve for an organ. In ART, the reference plan is the initial plan for the same patient, while for automatic treatment planning the reference plan is selected from a library of clinically approved and delivered plans of previously treated patients with similar medical conditions and geometry. The proposed algorithm employs a voxel-based optimization model and navigates the large voxel-based Pareto surface. The voxel weights are iteratively adjusted to approach a plan that is similar to the reference plan in terms of the DVHs. If the reference plan is feasible but not Pareto optimal, the algorithm generates a Pareto optimal plan with the DVHs better than the reference ones. If the reference plan is too restricting for the new geometry, the algorithm generates a Pareto plan with DVHs close to the reference ones. In both cases, the new plans have similar DVH trade-offs as the reference plans. Results: The algorithm was tested using three patient cases and found to be able to automatically adjust the voxel-weighting factors in order to generate a Pareto plan with similar DVH trade-offs as the reference plan. The algorithm has also been implemented on a GPU for high efficiency. Conclusions: A novel prior-knowledge-based optimization algorithm has been developed that automatically adjust the voxel weights and generate a clinical optimal plan at high efficiency. It is found that the new algorithm can significantly improve the plan quality and planning efficiency in ART replanning and automatic treatment

  20. Integrating fuel treatment into ecosystem management: A proposed project planning process

    Science.gov (United States)

    Keith D. Stockmann; Kevin D. Hyde; J. Greg Jones; Dan R. Loeffler; Robin P. Silverstein

    2010-01-01

    Concern over increased wildland fire threats on public lands throughout the western United States makes fuel reduction activities the primary driver of many management projects. This single-issue focus recalls a management planning process practiced frequently in recent decades - a least-harm approach where the primary objective is first addressed and then plans are...

  1. Numbers of Beauty: An Innovative Aesthetic Analysis for Orthognathic Surgery Treatment Planning

    Directory of Open Access Journals (Sweden)

    Tito Matteo Marianetti

    2016-01-01

    Full Text Available The aim of this study was to validate a new aesthetic analysis and establish the sagittal position of the maxilla on an ideal group of reference. We want to demonstrate the usefulness of these findings in the treatment planning of patients undergoing orthognathic surgery. We took a reference group of 81 Italian women participating in a national beauty contest in 2011 on which we performed Arnett’s soft tissues cephalometric analysis and our new “Vertical Planning Line” analysis. We used the ideal values to elaborate the surgical treatment planning of a second group of 60 consecutive female patients affected by skeletal class III malocclusion. Finally we compared both pre- and postoperative pictures with the reference values of the ideal group. The ideal group of reference does not perfectly fit in Arnett’s proposed norms. From the descriptive statistical comparison of the patients’ values before and after orthognathic surgery with the reference values we observed how all parameters considered got closer to the ideal population. We consider our “Vertical Planning Line” a useful help for orthodontist and surgeon in the treatment planning of patients with skeletal malocclusions, in combination with the clinical facial examination and the classical cephalometric analysis of bone structures.

  2. 78 FR 35951 - Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water...

    Science.gov (United States)

    2013-06-14

    ...] Proposed Low-Effect Habitat Conservation Plan for the City of Santa Cruz Graham Hill Water Treatment Plant... grasshopper (Trimerotropis infantilis), and will address associated impacts and conservation measures for the... lawful activities associated with the operation and maintenance of the existing Graham Hill Water...

  3. SU-F-T-617: Remotely Pre-Planned Stereotactic Ablative Radiation Therapy: Validation of Treatment Plan Quality

    International Nuclear Information System (INIS)

    Juang, T; Bush, K; Loo, B; Gensheimer, M

    2016-01-01

    Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT; a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging generated

  4. Shared Decision-Making in Youth Mental Health Care: Using the Evidence to Plan Treatments Collaboratively.

    Science.gov (United States)

    Langer, David A; Jensen-Doss, Amanda

    2016-12-02

    The shared decision-making (SDM) model is one in which providers and consumers of health care come together as collaborators in determining the course of care. The model is especially relevant to youth mental health care, when planning a treatment frequently entails coordinating both youth and parent perspectives, preferences, and goals. The present article first provides the historical context of the SDM model and the rationale for increasing our field's use of SDM when planning psychosocial treatments for youth and families. Having established the potential utility of SDM, the article then discusses how to apply the SDM model to treatment planning for youth psychotherapy, proposing a set of steps consistent with the model and considerations when conducting SDM with youth and families.

  5. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    International Nuclear Information System (INIS)

    Yarmand, H; Winey, B; Craft, D

    2014-01-01

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  6. SU-F-BRD-08: Guaranteed Epsilon-Optimal Treatment Plans with Minimum Number of Beams for SBRT Using RayStation

    Energy Technology Data Exchange (ETDEWEB)

    Yarmand, H; Winey, B; Craft, D [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Purpose: To efficiently find quality-guaranteed treatment plans with the minimum number of beams for stereotactic body radiation therapy using RayStation. Methods: For a pre-specified pool of candidate beams we use RayStation (a treatment planning software for clinical use) to identify the deliverable plan which uses all the beams with the minimum dose to organs at risk (OARs) and dose to the tumor and other structures in specified ranges. Then use the dose matrix information for the generated apertures from RayStation to solve a linear program to find the ideal plan with the same objective and constraints allowing use of all beams. Finally we solve a mixed integer programming formulation of the beam angle optimization problem (BAO) with the objective of minimizing the number of beams while remaining in a predetermined epsilon-optimality of the ideal plan with respect to the dose to OARs. Since the treatment plan optimization is a multicriteria optimization problem, the planner can exploit the multicriteria optimization capability of RayStation to navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing quality. For the numerical experiments two liver cases and one lung case with 33 non-coplanar beams are considered. Results: The ideal plan uses an impractically large number of beams. The proposed technique reduces the number of beams to the range of practical application (5 to 9 beams) while remaining in the epsilon-optimal range of 1% to 5% optimality gap. Conclusion: The proposed method can be integrated into a general algorithm for fast navigation of the ideal dose distribution Pareto surface and finding the treatment plan with the minimum number of beams, which corresponds to the delivery time, in epsilon-optimality range of the desired ideal plan. The project was supported by the Federal Share of program income

  7. Knowledge-based treatment planning and its potential role in the transition between treatment planning systems.

    Science.gov (United States)

    Masi, Kathryn; Archer, Paul; Jackson, William; Sun, Yilun; Schipper, Matthew; Hamstra, Daniel; Matuszak, Martha

    2017-11-22

    Commissioning a new treatment planning system (TPS) involves many time-consuming tasks. We investigated the role that knowledge-based planning (KBP) can play in aiding a clinic's transition to a new TPS. Sixty clinically treated prostate/prostate bed intensity-modulated radiation therapy (IMRT) plans were exported from an in-house TPS and were used to create a KBP model in a newly implemented commercial application. To determine the benefit that KBP may have in a TPS transition, the model was tested on 2 groups of patients. Group 1 consisted of the first 10 prostate/prostate bed patients treated in the commercial TPS after the transition from the in-house TPS. Group 2 consisted of 10 patients planned in the commercial TPS after 8 months of clinical use. The KBP-generated plan was compared with the clinically used plan in terms of plan quality (ability to meet planning objectives and overall dose metrics) and planning efficiency (time required to generate clinically acceptable plans). The KBP-generated plans provided a significantly improved target coverage (p = 0.01) compared with the clinically used plans for Group 1, but yielded plans of comparable target coverage to the clinically used plans for Group 2. For the organs at risk, the KBP-generated plans produced lower doses, on average, for every normal-tissue objective except for the maximum dose to 0.1 cc of rectum. The time needed for the KBP-generated plans ranged from 6 to 15 minutes compared to 30 to 150 and 15 to 60 minutes for manual planning in Groups 1 and 2, respectively. KBP is a promising tool to aid in the transition to a new TPS. Our study indicates that high-quality treatment plans could have been generated in the newly implemented TPS more efficiently compared with not using KBP. Even after 8 months of the clinical use, KBP still showed an increase in plan quality and planning efficiency compared with manual planning. Copyright © 2017 American Association of Medical Dosimetrists. Published

  8. Evaluation tests of treatment planning systems concerning 3D dose calculation

    International Nuclear Information System (INIS)

    Simonian-Sauve, M.; Smart, C.

    1998-01-01

    The development of irradiation techniques in radiotherapy shows a clear tendency towards the systematic use of three-dimensional (3D) information. Great efforts are being made to set up 3D conformal radiotherapy. Consequently, in the aim of greater coherence and accuracy, 'the dosimetric tool' must also meet the requirements of 3D radiotherapy, as it plays a role in the treatment chain. To know if the treatment planning system is a '3D', '2D', or even '1D' system, one should not be satisfied with reading the technical documentation and the program algorithm description not entirely trust the constructor's assertions. It is essential to clearly and precisely evaluate the possibilities of the treatment planning system. Even if it is proved not to satisfy perfectly all the tests which would qualify it as a real 3D calculation system, the study of the test results helps to give clear explanations of the dosimetric results. Two series of test cases are proposed. The first series allows us to understand in which conditions the treatment planning system takes into account the scatter influence in a volume. The second series is designed to inform us about the capacity of the dose calculation algorithm when the medium encloses non-homogeneities. These test cases do not constitute an exhaustive 'check-list' able to tackle completely the question of 3D calculation. They are submitted as examples and should be considered as an evaluation methodology for the software implanted in the treatment planning system. (authors)

  9. 3-D conformal radiation therapy - Part I: Treatment planning

    International Nuclear Information System (INIS)

    Burman, Chandra M.; Mageras, Gikas S.

    1997-01-01

    Objective: In this presentation we will look into the basic components of 3-dimensional conformal treatment planning, and will discuss planning for some selected sites. We will also review some current and future trends in 3-D treatment planning. External beam radiation therapy is one of the arms of cancer treatment. In the recent years 3-D conformal therapy had significant impact on the practice of external beam radiation therapy. Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to the surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-D treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. In this course we will give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some current and future trends in 3-D treatment planning, such as field shaping with multileaf collimation, computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into treatment planning process

  10. A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment

    International Nuclear Information System (INIS)

    Fu Weihua; Yang Yong; Yue, Ning J; Heron, Dwight E; Huq, M Saiful

    2009-01-01

    The purpose of this work is to develop an online plan modification technique to compensate for the interfractional anatomic changes for prostate cancer intensity-modulated radiation therapy (IMRT) treatment based on daily cone beam CT (CBCT) images. In this proposed technique, pre-treatment CBCT images are acquired after the patient is set up on the treatment couch using an in-room laser with the guidance of the setup skin marks. Instead of moving the couch to rigidly align the target or re-planning using the CBCT images, we modify the original IMRT plan to account for the interfractional target motion and deformation based on the daily CBCT image feedback. The multileaf collimator (MLC) leaf positions for each subfield are automatically adjusted in the proposed algorithm based on the position and shape changes of target projection in the beam's eye view (BEV). Three typical prostate cases were adopted to evaluate the proposed technique, and the results were compared with those obtained with bony-structure-based rigid translation correction, prostate-based correction and CBCT-based re-planning strategies. The study revealed that the proposed modification technique is superior to the bony-structure-based and prostate-based correction techniques, especially when interfractional target deformation exists. Its dosimetric performance is closer to that of the re-planned strategy, but with much higher efficiency, indicating that the introduced online CBCT-guided plan modification technique may be an efficient and practical method to compensate for the interfractional target position and shape changes for prostate IMRT.

  11. Optimal partial-arcs in VMAT treatment planning

    International Nuclear Information System (INIS)

    Wala, Jeremiah; Salari, Ehsan; Chen Wei; Craft, David

    2012-01-01

    We present a method for improving the delivery efficiency of VMAT by extending the recently published VMAT treatment planning algorithm vmerge to automatically generate optimal partial-arc plans. A high-quality initial plan is created by solving a convex multicriteria optimization problem using 180 equi-spaced beams. This initial plan is used to form a set of dose constraints, and a set of partial-arc plans is created by searching the space of all possible partial-arc plans that satisfy these constraints. For each partial-arc, an iterative fluence map merging and sequencing algorithm (vmerge) is used to improve the delivery efficiency. Merging continues as long as the dose quality is maintained above a user-defined threshold. The final plan is selected as the partial-arc with the lowest treatment time. The complete algorithm is called pmerge. Partial-arc plans are created using pmerge for a lung, liver and prostate case, with final treatment times of 127, 245 and 147 s. Treatment times using full arcs with vmerge are 211, 357 and 178 s. The mean doses to the critical structures for the vmerge and pmerge plans are kept within 5% of those in the initial plan, and the target volume covered by the prescription isodose is maintained above 98% for the pmerge and vmerge plans. Additionally, we find that the angular distribution of fluence in the initial plans is predictive of the start and end angles of the optimal partial-arc. We conclude that VMAT delivery efficiency can be improved by employing partial-arcs without compromising dose quality, and that partial-arcs are most applicable to cases with non-centralized targets. (paper)

  12. Improving treatment plan evaluation with automation

    Science.gov (United States)

    Covington, Elizabeth L.; Chen, Xiaoping; Younge, Kelly C.; Lee, Choonik; Matuszak, Martha M.; Kessler, Marc L.; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M.; Filpansick, Stephanie E.

    2016-01-01

    The goal of this work is to evaluate the effectiveness of Plan‐Checker Tool (PCT) which was created to improve first‐time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the physics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33 checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was successfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. PACS number(s): 87.55.‐x, 87.55.N‐, 87.55.Qr, 87.55.tm, 89.20.Bb PMID:27929478

  13. SU-E-T-173: Clinical Comparison of Treatment Plans and Fallback Plans for Machine Downtime

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Cancer Therapy and Research Center, San Antonio, TX (United States); Papanikolaou, P [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States); Stathakis, S [Cancer Therapy and Research Center, San Antonio, TX (United States)

    2015-06-15

    Purpose: The purpose of this study was to determine the clinical effectiveness and dosimetric quality of fallback planning in relation to machine downtime. Methods: Plans for a Varian Novalis TX were mimicked, and fallback plans using an Elekta VersaHD machine were generated using a dual arc template. Plans for thirty (n=30) patients of various treatment sites optimized and calculated using RayStation treatment planning system. For each plan, a fall back plan was created and compared to the original plan. A dosimetric evaluation was conducted using the homogeneity index, conformity index, as well as DVH analysis to determine the quality of the fallback plan on a different treatment machine. Fallback plans were optimized for 60 iterations using the imported dose constraints from the original plan DVH to give fallback plans enough opportunity to achieve the dose objectives. Results: The average conformity index and homogeneity index for the NovalisTX plans were 0.76 and 10.3, respectively, while fallback plan values were 0.73 and 11.4. (Homogeneity =1 and conformity=0 for ideal plan) The values to various organs at risk were lower in the fallback plans as compared to the imported plans across most organs at risk. Isodose difference comparisons between plans were also compared and the average dose difference across all plans was 0.12%. Conclusion: The clinical impact of fallback planning is an important aspect to effective treatment of patients. With the complexity of LINACS increasing every year, an option to continue treating during machine downtime remains an essential tool in streamlined treatment execution. Fallback planning allows the clinic to continue to run efficiently should a treatment machine become offline due to maintenance or repair without degrading the quality of the plan all while reducing strain on members of the radiation oncology team.

  14. Review of 3D image data calibration for heterogeneity correction in proton therapy treatment planning

    International Nuclear Information System (INIS)

    Zhu, Jiahua; Penfold, Scott N.

    2016-01-01

    Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.

  15. Review of 3D image data calibration for heterogeneity correction in proton therapy treatment planning.

    Science.gov (United States)

    Zhu, Jiahua; Penfold, Scott N

    2016-06-01

    Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.

  16. Advantages of three-dimensional treatment planning in radiation therapy

    International Nuclear Information System (INIS)

    Attalla, E.M.; ELSAyed, A.A.; ElGantiry, M.; ElTahher, Z.

    2003-01-01

    This study was designed to demonstrate the feasibility of three-dimensional (3-D) treatment planning in-patients maxilla, breast, bladder, and lung tumors to explore its potential therapeutic advantage over the traditional dimensional (2-D) approach in these diseases. Conventional two-dimensional (2-D) treatment planning was compared to three-dimensional (3-D) treatment planning. In five selected disease sites, plans calculated with both types of treatment planning were compared. The (3-D) treatment planning system used in this work TMS version 5.1 B from helax AB is based on a monte Carlo-based pencil beam model. The other treatment planning system (2-D 0, introduced in this study was the multi data treatment planning system version 2.35. For the volumes of interest; quality of dose distribution concerning homogeneity in the target volume and the isodose distribution in organs at risk, was discussed. Qualitative and quantitative comparisons between the two planning systems were made using dose volume histograms (DVH's) . For comparisons of dose distributions in real-patient cases, differences ranged from 0.8% to 6.4% for 6 MV, while in case of 18 MV photon, it ranged from 1,8% to 6.5% and was within -+3 standard deviations for the dose between the two planning systems.Dose volume histogram (DVH) shows volume reduction of the radiation-related organs at risk 3-D planning

  17. Standardization of prostate brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Ove, Roger; Wallner, Kent; Badiozamani, Kas; Korjsseon, Tammy; Sutlief, Steven

    2001-01-01

    Purpose: Whereas custom-designed plans are the norm for prostate brachytherapy, the relationship between linear prostate dimensions and volume calls into question the routine need for customized treatment planning. With the goal of streamlining the treatment-planning process, we have compared the treatment margins (TMs) achieved with one standard plan applied to patients with a wide range of prostate volumes. Methods and Materials: Preimplant transrectal ultrasound (TRUS) images of 50 unselected University of Washington patients with T1-T2 cancer and a prostate volume between 20 cc and 50 cc were studied. Patients were arbitrarily grouped into categories of 20-30 cc, 30-40 cc, and 40-50 cc. A standard 19-needle plan was devised for patients in the 30- to 40-cc range, using an arbitrary minimum margin of 5 mm around the gross tumor volume (GTV), making use of inverse planning technology to achieve 100% coverage of the target volume with accentuation of dose at the periphery and sparing of the central region. The idealized plan was applied to each patient's TRUS study. The distances (TMs) between the prostatic edge (GTV) and treated volume (TV) were determined perpendicular to the prostatic margin. Results: Averaged over the entire patient group, the ratio of thickness to width was 1.4, whereas the ratio of length to width was 1.3. These values were fairly constant over the range of volumes, emphasizing that the prostate retains its general shape as volume increases. The idealized standard plan was overlaid on the ultrasound images of the 17 patients in the 30- to 40-cc group and the V100, the percentage of target volume receiving 100% or more of the prescription dose, was 98% or greater for 15 of the 17 patients. The lateral and posterior TMs fell within a narrow range, most being within 2 mm of the idealized 5-mm TM. To estimate whether a 10-cc volume-interval stratification was reasonable, the standard plan generated from the 30- to 40-cc prostate model was

  18. Improvements in patient treatment planning systems

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Nigg, D.W.; Atkinson, C.A.; Babcock, R.; Evans, J.

    1995-01-01

    The Boron Neutron Capture Therapy, Radiation treatment planning environment (BNCT-Rtpe) software system is used to develop treatment planning information. In typical use BNCT-Rtpe consists of three main components: (1) Semi-automated geometric modeling of objects (brain, target, eyes, sinus) derived from MRI, CT, and other medical imaging modalities, (2) Dose computations for these geometric models with rtt-MC, the INEL Monte Carlo radiation transport computer code, and (3) Dose contouring overlaid on medical images as well as generation of other dose displays. We continue to develop a planning system based on three-dimensional image-based reconstructions using Bspline surfaces. Even though this software is in an experimental state, it has been applied for large animal research and for an isolated case of treatment for a human glioma. Radiation transport is based on Monte Carlo, however there will be implementations of faster methods (e.g. diffusion theory) in the future. The important thing for treatment planning is the output which must convey, to the radiologist, the deposition of dose to healthy and target tissue. Many edits are available such that one can obtain contours registered to medical image, dose/volume histograms and most information required for treatment planning and response assessment. Recent work has been to make the process more automatic and easier to use. The interface, now implemented for contouring and reconstruction, utilizes the Xwindowing system and the MOTIF graphical users interface for effective interaction with the planner. Much work still remains before the tool can be applied in a routine clinical setting

  19. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  20. Sodium-Bearing Waste Treatment, Applied Technology Plan

    International Nuclear Information System (INIS)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-01-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology

  1. Sodium-Bearing Waste Treatment, Applied Technology Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  2. The evolution of brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Rivard, Mark J.; Venselaar, Jack L. M.; Beaulieu, Luc

    2009-01-01

    Brachytherapy is a mature treatment modality that has benefited from technological advances. Treatment planning has advanced from simple lookup tables to complex, computer-based dose-calculation algorithms. The current approach is based on the AAPM TG-43 formalism with recent advances in acquiring single-source dose distributions. However, this formalism has clinically relevant limitations for calculating patient dose. Dose-calculation algorithms are being developed based on Monte Carlo methods, collapsed cone, and solving the linear Boltzmann transport equation. In addition to improved dose-calculation tools, planning systems and brachytherapy treatment planning will account for material heterogeneities, scatter conditions, radiobiology, and image guidance. The AAPM, ESTRO, and other professional societies are working to coordinate clinical integration of these advancements. This Vision 20/20 article provides insight into these endeavors.

  3. Clinical treatment planning in gynecologic cancer

    International Nuclear Information System (INIS)

    Brady, L.W.; Markoe, A.M.; Micaily, B.; Damsker, J.I.; Karlsson, U.L.; Amendola, B.E.

    1987-01-01

    Treatment planning in gynecologic cancer is a complicated and difficult procedure. It requires an adequate preoperative assessment of the true extent of the patient's disease process and oftentimes this can be achieved not only by conventional studies but must employ surgical exploratory techniques in order to truly define the extent of the disease. However, with contemporary sophisticated treatment planning techniques that are now available in most contemporary departments of radiation oncology, radiation therapy is reemerging as an important and major treatment technique in the management of patients with gynecologic cancer

  4. MO-B-BRB-01: Optimize Treatment Planning Process in Clinical Environment

    International Nuclear Information System (INIS)

    Feng, W.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  5. MO-B-BRB-01: Optimize Treatment Planning Process in Clinical Environment

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W. [New York Presbyterian Hospital (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  6. 77 FR 16862 - Proposed Information Collection Request; Training, Training Plans, and Records

    Science.gov (United States)

    2012-03-22

    ...; Training, Training Plans, and Records AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request... proposed extension of the information collection related to training, training plans, and records at these.... Agency: Mine Safety and Health Administration. Title: Part 46--Training, Training Plans, and Records. OMB...

  7. Cost-Effective Fuel Treatment Planning

    Science.gov (United States)

    Kreitler, J.; Thompson, M.; Vaillant, N.

    2014-12-01

    The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those

  8. Application programming in C# environment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning.

    Science.gov (United States)

    Wang, Henry; Xing, Lei

    2016-11-08

    An autopilot scheme of volumetric-modulated arc therapy (VMAT)/intensity-modulated radiation therapy (IMRT) planning with the guidance of prior knowl-edge is established with recorded interactions between a planner and a commercial treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines. The TPS used in this study is a Windows-based Eclipse system. The interactions of our application program with Eclipse TPS are realized through a series of subrou-tines obtained by prerecording the mouse clicks or keyboard strokes of a planner in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection process is developed as a specific example of the proposed "scripting" method. The autopiloted planning is navigated by a decision function constructed with a reference plan that has the same prescription and similar anatomy with the case at hand. The calculation proceeds by alternating between the Eclipse optimization and the outer-loop optimization independent of the Eclipse. In the C# program, the dosimetric characteristics of a reference treatment plan are used to assess and modify the Eclipse planning parameters and to guide the search for a clinically sensible treatment plan. The approach is applied to plan a head and neck (HN) VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of application programming method in C# environment with recorded interactions of planner-TPS. The process mimics a planner's planning process and automatically provides clinically sensible treatment plans that would otherwise require a large amount of manual trial and error of a planner. The proposed technique enables us to harness a commercial TPS by application programming via the use of recorded human computer interactions and provides an effective tool to greatly facilitate the treatment planning process. © 2016 The Authors.

  9. Applications of NTCP calculations to treatment planning

    International Nuclear Information System (INIS)

    Kutcher, G.J.

    1995-01-01

    A fundamental step in the treatment decision process is the evaluation of a treatment plan. Most often treatment plans are judged by tradition using guidelines like target homogeneity and maximum dose to non-target tissues. While such judgments implicitly assume a relationship between dose distribution parameters and patient response, the judgment process is essentially supported by clinical outcomes from previous treatments. With the development of conformal therapy, new and unusual dose distributions and escalated doses are possible, while the clinical consequences are unknown. this situation has instigated attempts to place plan evaluation on a more systematic platform. One such endeavor has centered around attempts to calculate normal tissue complication probability (NTCP) and its sibling, tumor control probability (TCP). This lecture will be composed of two parts. The first will begin with a review of two categories of NTCP models: (1) an 'empirical' approach, based upon a power-law relationship between partial organ tolerance and irradiated volume, and histogram reduction to account for inhomogeneous irradiation: (2) a 'statistical' approach in which local responses are combined according to the underlying tissue architecture. Since both rely upon clinical data - often of limited and questionable validity - we will review some examples from the clinical and biological literature. The second part of the lecture will review clinical applications of biological-index based models: ranking competing treatment plans; design of dose escalation protocols; optimization of treatment plans with intensity modulation. We will also demonstrate how biological indices can be used to derive dose-volume histograms which account for treatment uncertainty

  10. PyCMSXiO: an external interface to script treatment plans for the Elekta® CMS XiO treatment planning system

    Science.gov (United States)

    Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary

    2014-03-01

    Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community.

  11. PyCMSXiO: an external interface to script treatment plans for the Elekta® CMS XiO treatment planning system

    International Nuclear Information System (INIS)

    Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary

    2014-01-01

    Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community.

  12. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    International Nuclear Information System (INIS)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-01-01

    target was increased by 0.13 and 0.04, respectively. The maximum dose to the skin was reduced by 56 and 28 cGy, respectively, per fraction. Also, the maximum dose to the ribs was reduced by 104 and 96 cGy, respectively, per fraction. The mean dose to the ipsilateral and contralateral breasts and lungs were also slightly reduced by the IMBT plan. The limitations of IMBT are the longer planning and delivery time. The IMBT plan took around 2 h to optimize, while the isotropic plan optimization could reach the global minimum within 5 min. The delivery time for the IMBT plan is typically four to six times longer than the corresponding isotropic plan. Conclusions: In this study, a dosimetry method for IMBT sources was proposed and an inverse treatment planning system prototype for IMBT was developed. The improvement of plan quality by 3D IMBT was demonstrated using ten APBI case studies. Faster computers and higher output of the source can further reduce plan optimization and delivery time, respectively.

  13. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    isotropic plans. The conformity index for the target was increased by 0.13 and 0.04, respectively. The maximum dose to the skin was reduced by 56 and 28 cGy, respectively, per fraction. Also, the maximum dose to the ribs was reduced by 104 and 96 cGy, respectively, per fraction. The mean dose to the ipsilateral and contralateral breasts and lungs were also slightly reduced by the IMBT plan. The limitations of IMBT are the longer planning and delivery time. The IMBT plan took around 2 h to optimize, while the isotropic plan optimization could reach the global minimum within 5 min. The delivery time for the IMBT plan is typically four to six times longer than the corresponding isotropic plan. Conclusions: In this study, a dosimetry method for IMBT sources was proposed and an inverse treatment planning system prototype for IMBT was developed. The improvement of plan quality by 3D IMBT was demonstrated using ten APBI case studies. Faster computers and higher output of the source can further reduce plan optimization and delivery time, respectively.

  14. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    Science.gov (United States)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    .04, respectively. The maximum dose to the skin was reduced by 56 and 28 cGy, respectively, per fraction. Also, the maximum dose to the ribs was reduced by 104 and 96 cGy, respectively, per fraction. The mean dose to the ipsilateral and contralateral breasts and lungs were also slightly reduced by the IMBT plan. The limitations of IMBT are the longer planning and delivery time. The IMBT plan took around 2 h to optimize, while the isotropic plan optimization could reach the global minimum within 5 min. The delivery time for the IMBT plan is typically four to six times longer than the corresponding isotropic plan. In this study, a dosimetry method for IMBT sources was proposed and an inverse treatment planning system prototype for IMBT was developed. The improvement of plan quality by 3D IMBT was demonstrated using ten APBI case studies. Faster computers and higher output of the source can further reduce plan optimization and delivery time, respectively.

  15. Forward treatment planning techniques to reduce the normalization effect in Gamma Knife radiosurgery.

    Science.gov (United States)

    Cheng, Hao-Wen; Lo, Wei-Lun; Kuo, Chun-Yuan; Su, Yu-Kai; Tsai, Jo-Ting; Lin, Jia-Wei; Wang, Yu-Jen; Pan, David Hung-Chi

    2017-11-01

    In Gamma Knife forward treatment planning, normalization effect may be observed when multiple shots are used for treating large lesions. This effect can reduce the proportion of coverage of high-value isodose lines within targets. The aim of this study was to evaluate the performance of forward treatment planning techniques using the Leksell Gamma Knife for the normalization effect reduction. We adjusted the shot positions and weightings to optimize the dose distribution and reduce the overlap of high-value isodose lines from each shot, thereby mitigating the normalization effect during treatment planning. The new collimation system, Leksell Gamma Knife Perfexion, which contains eight movable sectors, provides an additional means to reduce the normalization effect by using composite shots. We propose different techniques in forward treatment planning that can reduce the normalization effect. Reducing the normalization effect increases the coverage proportion of higher isodose lines within targets, making the high-dose region within targets more uniform and increasing the mean dose to targets. Because of the increase in the mean dose to the target after reducing the normalization effect, we can set the prescribed marginal dose at a higher isodose level and reduce the maximum dose, thereby lowering the risk of complications. © 2017 Shuang Ho Hospital-Taipei Medical University. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Fuzzy logic guided inverse treatment planning

    International Nuclear Information System (INIS)

    Yan Hui; Yin Fangfang; Guan Huaiqun; Kim, Jae Ho

    2003-01-01

    A fuzzy logic technique was applied to optimize the weighting factors in the objective function of an inverse treatment planning system for intensity-modulated radiation therapy (IMRT). Based on this technique, the optimization of weighting factors is guided by the fuzzy rules while the intensity spectrum is optimized by a fast-monotonic-descent method. The resultant fuzzy logic guided inverse planning system is capable of finding the optimal combination of weighting factors for different anatomical structures involved in treatment planning. This system was tested using one simulated (but clinically relevant) case and one clinical case. The results indicate that the optimal balance between the target dose and the critical organ dose is achieved by a refined combination of weighting factors. With the help of fuzzy inference, the efficiency and effectiveness of inverse planning for IMRT are substantially improved

  17. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.

    1986-01-01

    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  18. MO-G-304-04: Generating Well-Dispersed Representations of the Pareto Front for Multi-Criteria Optimization in Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kirlik, G; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates well-dispersed representation of the Pareto front for radiation treatment planning. Methods: Different algorithms have been proposed and implemented in commercial planning software to generate MCO plans for external-beam radiation therapy. These algorithms consider convex optimization problems. We propose a grid-based algorithm to generate well-dispersed treatment plans over Pareto front. Our method is able to handle nonconvexity in the problem to deal with dose-volume objectives/constraints, biological objectives, such as equivalent uniform dose (EUD), tumor control probability (TCP), normal tissue complication probability (NTCP), etc. In addition, our algorithm is able to provide single MCO plan when clinicians are targeting narrow bounds of objectives for patients. In this situation, usually none of the generated plans were within the bounds and a solution is difficult to identify via manual navigation. We use the subproblem formulation utilized in the grid-based algorithm to obtain a plan within the specified bounds. The subproblem aims to generate a solution that maps into the rectangle defined by the bounds. If such a solution does not exist, it generates the solution closest to the rectangle. We tested our method with 10 locally advanced head and neck cancer cases. Results: 8 objectives were used including 3 different objectives for primary target volume, high-risk and low-risk target volumes, and 5 objectives for each of the organs-at-risk (OARs) (two parotids, spinal cord, brain stem and oral cavity). Given tight bounds, uniform dose was achieved for all targets while as much as 26% improvement was achieved in OAR sparing comparing to clinical plans without MCO and previously proposed MCO method. Conclusion: Our method is able to obtain well-dispersed treatment plans to attain better approximation for convex and nonconvex Pareto fronts. Single treatment plan can

  19. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  20. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark [Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Oelfke, Uwe [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, United Kingdom and Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany)

    2015-05-15

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  1. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    International Nuclear Information System (INIS)

    Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  2. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  3. Therapeutic treatment plan optimization with probability density-based dose prescription

    International Nuclear Information System (INIS)

    Lian Jun; Cotrutz, Cristian; Xing Lei

    2003-01-01

    The dose optimization in inverse planning is realized under the guidance of an objective function. The prescription doses in a conventional approach are usually rigid values, defining in most instances an ill-conditioned optimization problem. In this work, we propose a more general dose optimization scheme based on a statistical formalism [Xing et al., Med. Phys. 21, 2348-2358 (1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function, which describes the user's preference over other doses in case the most desired dose is not attainable. The variation range of the prescription dose and the shape of the preference function are predesigned by the user based on prior clinical experience. Consequently, during the iterative optimization process, the prescription dose is allowed to deviate, with a certain preference level, from the most desired dose. By not restricting the prescription dose to a fixed value, the optimization problem becomes less ill-defined. The conventional inverse planning algorithm represents a special case of the new formalism. An iterative dose optimization algorithm is used to optimize the system. The performance of the proposed technique is systematically studied using a hypothetical C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the final dose distribution can be manipulated flexibly by tuning the shape of the preference function and that using a preference function can lead to optimized dose distributions in accordance with the planner's specification. The proposed framework offers an effective mechanism to formalize the planner's priorities over different possible clinical scenarios and incorporate them into dose optimization. The enhanced control over the final plan may greatly facilitate the IMRT treatment planning process

  4. New transmission planning methodology for requesting proposals for wind generation

    Science.gov (United States)

    Isaacs, Andrew L.

    The increasing interest in renewable energy technologies during the last decade has caused conventional transmission and generation expansion planning methodologies to be strained and in some cases abandoned. This is due both to the quantity of generator interconnection requests and the constraints imposed by deregulated energy industry structures. One technique used to control the influx of renewable generation while maintaining competitive principles is a Request for Proposals (RFP). However, lack of transmission planning due to a disconnection between generation and transmission owners, difficulty in identifying viable projects, and high risk for proponents stand as obstacles to the goals of an RFP. This research proposes a procedure which minimizes the effect of these obstacles; meeting the purchaser requirements for low price and combining conventional planning concepts with feedback from competitive structures. The general features of the method include definition of generation limits and study area, expansion plan design, transmission cost evaluation, optimal selection of requested generation levels, and final selection of successful proponents. The method is shown to be effective in creating an RFP where proponents are well-informed and provided with cost certainty to reduce bid price, buyers are able to determine end costs of their energy, and good expansion planning principles are maintained. A case study using a real system in New Mexico demonstrates these concepts.

  5. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  6. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  7. Volume visualization in radiation treatment planning.

    Science.gov (United States)

    Pelizzari, C A; Chen, G T

    2000-12-01

    Radiation treatment planning (RTP), historically an image-intensive discipline and one of the first areas in which 3D information from imaging was clinically applied, has become even more critically dependent on accurate 3D definition of target and non-target structures in recent years with the advent of conformal radiation therapy. In addition to the interactive display of wireframe or shaded surface models of anatomic objects, proposed radiation beams, beam modifying devices, and calculated dose distributions, recently significant use has been made of direct visualization of relevant anatomy from image data. Dedicated systems are commercially available for the purpose of geometrically optimizing beam placement, implementing in virtual reality the functionality of standard radiation therapy simulators. Such "CT simulation" systems rely heavily on 3D visualization and on reprojection of image data to produce simulated radiographs for comparison with either diagnostic-quality radiographs made on a simulator or megavoltage images made using the therapeutic beams themselves. Although calculation and analysis of dose distributions is an important component of radiation treatment design, geometric targeting with optimization based on 3D anatomic information is frequently performed as a separate step independent of dose calculations.

  8. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    International Nuclear Information System (INIS)

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE's preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public's role in helping DOE and the EPA to make the final decision on a remedy

  9. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  10. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  11. Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm

    International Nuclear Information System (INIS)

    Kim, Dae Sup; Yoon, In Ha; Lee, Woo Seok; Baek, Geum Mun

    2012-01-01

    Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, 30x30x30 cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. In this study, do not judge the rightness of the dose

  12. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.

    1989-01-01

    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  13. Proposed plan for remedial action at the chemical plant area of the Weldon Spring site

    International Nuclear Information System (INIS)

    1992-11-01

    This proposed plan addresses the management of contaminated material at the chemical plant area of the Weldon Spring site and nearby properties in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry, both of which are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced at the chemical plant in the 1940s, and uranium and thorium materials were processed in the 1950s and 1960s. Various liquid, sludge, and solid wastes were disposed of at the Chemical plant area and in the quarry during that time. The Weldon Spring site is listed on the National Priorities List (NPL) of the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The proposed plan is organized as follows: Chapter 2 presents the history and setting of the Weldon Spring site and briefly describes the contaminated material at the chemical plant area. Chapter 3 defines the scope of the remedial action and its role in the Weldon Spring Site Remedial Action Project. Chapter 4 summarizes the risks associated with possible exposures to site contaminants in the absence of remedial action and identifies proposed cleanup levels for soil. Chapter 5 briefly describes the final alternatives considered for the remedial action. Chapter 6 summarizes the evaluation of final alternatives for managing the contaminated material, identifies the currently preferred alternative, and discusses a possible contingency remedy to provide treatment flexibility. Chapter 7 presents the community's role in this action. Chapter 8 is a list of the references cited in this proposed plan

  14. Current calibration, treatment, and treatment planning techniques among institutions participating in the Children's Oncology Group

    International Nuclear Information System (INIS)

    Urie, Marcia; FitzGerald, T.J.; Followill, David; Laurie, Fran; Marcus, Robert; Michalski, Jeff

    2003-01-01

    Purpose: To report current technology implementation, radiation therapy physics and treatment planning practices, and results of treatment planning exercises among 261 institutions belonging to the Children's Oncology Group (COG). Methods and Materials: The Radiation Therapy Committee of the newly formed COG mandated that each institution demonstrate basic physics and treatment planning abilities by satisfactorily completing a questionnaire and four treatment planning exercises designed by the Quality Assurance Review Center. The planning cases are (1) a maxillary sinus target volume (for two-dimensional planning), (2) a Hodgkin's disease mantle field (for irregular-field and off-axis dose calculations), (3) a central axis blocked case, and (4) a craniospinal irradiation case. The questionnaire and treatment plans were submitted (as of 1/30/02) by 243 institutions and completed satisfactorily by 233. Data from this questionnaire and analyses of the treatment plans with monitor unit calculations are presented. Results: Of the 243 clinics responding, 54% use multileaf collimators routinely, 94% use asymmetric jaws routinely, and 13% use dynamic wedges. Nearly all institutions calibrate their linear accelerators following American Association of Physicists in Medicine protocols, currently 16% with TG-51 and 81% with TG-21 protocol. Treatment planning systems are relied on very heavily for all calculations, including monitor units. Techniques and results of each of the treatment planning exercises are presented. Conclusions: Together, these data provide a unique compilation of current (2001) radiation therapy practices in institutions treating pediatric patients. Overall, the COG facilities have the equipment and the personnel to perform high-quality radiation therapy. With ongoing quality assurance review, radiation therapy compliance with COG protocols should be high

  15. Implementation of BNCT treatment planning procedures

    International Nuclear Information System (INIS)

    Capala, J.; Ma, R.; Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.

    2001-01-01

    Estimation of radiation doses delivered during boron neutron capture therapy (BNCT) requires combining data on spatial distribution of both the thermal neutron fluence and the 10 B concentration, as well as the relative biological effectiveness of various radiation dose components in the tumor and normal tissues. Using the treatment planning system created at Idaho National Engineering and Environmental Laboratory and the procedures we had developed for clinical trials, we were able to optimize the treatment position, safely deliver the prescribed BNCT doses, and carry out retrospective analyses and reviews. In this paper we describe the BNCT treatment planning process and its implementation in the ongoing dose escalation trials at Brookhaven National Laboratory. (author)

  16. Proposed business plan for energy efficiency in Brazil

    International Nuclear Information System (INIS)

    De Oliveira, Lilian Silva; Shayani, Rafael Amaral; De Oliveira, Marco Aurelio Gonçalves

    2013-01-01

    The Brazilian Ministry of Mines and Energy published the National Energy and Efficiency Plan, which calls for electricity savings of 10% by 2030. At first sight, the projected goal does not seem too ambitious, but this figure is nearly eighteen times the known historical savings for the country. Adjustments need to be made to the current energy efficiency business plan. This article suggests what should be changed in order to make the program more attractive and effective. These include changes on its organizational structure, legislation, verification of results and transparency. The new plan aims to eliminate some existing barriers and introduce new mechanisms that should help the country meet its future goals. - Highlights: • Brazil's successful efficiency program was presented, including the government's goal to increase the savings 25 times until 2030. • To achieve this huge goal, the national energy efficiency program needs a new approach, including new institutional arrangements. • These arrangements proposals are the useful contribution from this paper

  17. Proposals for enhancing tactical planning in grocery retailing with S&OP

    DEFF Research Database (Denmark)

    Dreyer, Heidi Carin; Kiil, Kasper; Dukovska-Popovska, Iskra

    2018-01-01

    Purpose-The purpose of this paper is to explore tactical planning in grocery retailing and propose how process and integration mechanisms from sales and operations planning (S&OP) can enhance retail tactical planning.Design/methodology/approach-This work follows an explorative design with case...... studies from the grocery retailing industry in Finland, Norway, and the UK.Findings-The tactical planning process focuses on demand management and securing product availability from suppliers in order to reach sales targets. Less attention is directed toward balancing supply and demand or toward providing...... a single plan to guide company operations. Planning appeared to be functionally oriented with limited coordination between functional plans, but it did include external integration that improved forecast accuracy.Research limitations/implications-The study involves grocery retailer cases with variable...

  18. Automation of radiation treatment planning. Evaluation of head and neck cancer patient plans created by the Pinnacle"3 scripting and Auto-Planning functions

    International Nuclear Information System (INIS)

    Speer, Stefan; Weiss, Alexander; Bert, Christoph; Klein, Andreas; Kober, Lukas; Yohannes, Indra

    2017-01-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle"3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced. (orig.) [de

  19. Automation of radiation treatment planning : Evaluation of head and neck cancer patient plans created by the Pinnacle3 scripting and Auto-Planning functions.

    Science.gov (United States)

    Speer, Stefan; Klein, Andreas; Kober, Lukas; Weiss, Alexander; Yohannes, Indra; Bert, Christoph

    2017-08-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle 3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced.

  20. 77 FR 42462 - Hawaii State Plan for Occupational Safety and Health; Proposed Modification of 18(e) Plan Approval

    Science.gov (United States)

    2012-07-19

    ... DEPARTMENT OF LABOR Occupational Safety and Health Administration 29 CFR Part 1952 [Docket ID. OSHA 2012-0029] RIN 1218-AC78 Hawaii State Plan for Occupational Safety and Health; Proposed Modification of 18(e) Plan Approval AGENCY: Occupational Safety and Health Administration (OSHA), Department of...

  1. 15 CFR 310.8 - Proposed plan for Federal participation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Proposed plan for Federal participation. 310.8 Section 310.8 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS OFFICIAL U.S...

  2. IMRT treatment plans and functional planning with functional lung imaging from 4D-CT for thoracic cancer patients

    Directory of Open Access Journals (Sweden)

    Huang Tzung-Chi

    2013-01-01

    Full Text Available Abstract Background and purpose Currently, the inhomogeneity of the pulmonary function is not considered when treatment plans are generated in thoracic cancer radiotherapy. This study evaluates the dose of treatment plans on highly-functional volumes and performs functional treatment planning by incorporation of ventilation data from 4D-CT. Materials and methods Eleven patients were included in this retrospective study. Ventilation was calculated using 4D-CT. Two treatment plans were generated for each case, the first one without the incorporation of the ventilation and the second with it. The dose of the first plans was overlapped with the ventilation and analyzed. Highly-functional regions were avoided in the second treatment plans. Results For small targets in the first plans (PTV  Conclusion Radiation treatments affect functional lung more seriously in large tumor cases. With compromise of dose to other critical organs, functional treatment planning to reduce dose in highly-functional lung volumes can be achieved

  3. Development planning and appropriate technology: a dilemma and a proposal

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, G.

    1981-03-01

    This paper examines the present system of project paper preparation and project planning used by the US Agency for International Development and many donor agencies. Three approaches for meeting the evident weaknesses of the system - a holistic approach to the planning problem, an operant-conditioning approach to implementation, and a process approach to planning and implementation - are presented and critiqued. On the basis of the critique, an approach grounded in a search for an approximately appropriate technology is supported; and a proposal for an appropriate-technology evaluation system which would analyze alternative technologies, deliver information to the field level, supply needed information on technologies and implementation, constrain donor planners, reduce lag time, incorporate evaluations into future planning, and reduce dependence upon planners is presented. 66 references.

  4. Clinical treatment planning optimization by Powell's method for gamma unit treatment system

    International Nuclear Information System (INIS)

    Yan Yulong; Shu Huazhong; Bao Xudong; Luo Limin; Bai Yi

    1997-01-01

    Purpose: This article presents a new optimization method for stereotactic radiosurgery treatment planning for gamma unit treatment system. Methods and Materials: The gamma unit has been utilized in stereotactic radiosurgery for about 30 years, but the usual procedure for a physician-physicist team to design a treatment plan is a trial-and-error approach. Isodose curves are viewed on two-dimensional computed tomography (CT) or magnetic resonance (MR) image planes, which is not only time consuming but also seldom achieves the optimal treatment plan, especially when the isocenter weights are regarded. We developed a treatment-planning system on a computer workstation in which Powell's optimization method is realized. The optimization process starts with the initial parameters (the number of iso centers as well as corresponding 3D iso centers' coordinates, collimator sizes, and weight factors) roughly determined by the physician-physicist team. The objective function can be changed to consider protection of sensitive tissues. Results: We use the plan parameters given by a well-trained physician-physicist team, or ones that the author give roughly as the initial parameters for the optimization procedure. Dosimetric results of optimization show a better high dose-volume conformation to the target volume compared to the doctor's plan. Conclusion: This method converges quickly and is not sensitive to the initial parameters. It achieves an excellent conformation of the estimated isodose curves with the contours of the target volume. If the initial parameters are varied, there will be a little difference in parameters' configuration, but the dosimetric results proved almost to be the same

  5. CT treatment planning of the liver

    International Nuclear Information System (INIS)

    Lim, M.

    1988-01-01

    The article deals with CT treatment planning of the liver to maximize the dose to the liver but minimize the dose to the right kidney, spinal cord, and bowels. (The left kidney is out of the field due to the oblique angles of the fields.) This is achieved by right kidney shielding reconstruction from multislice CT treatment planning and by the oblique angles of the fields. Without CT, it is not possible to utilize oblique fields to cover the liver. With conventional AP-PA fields, not only is the whole liver treated but also most of the right kidney, half of the left kidney, bowels and spinal cord. Tolerance dose to the kidneys is exceeded if adequate dose is delivered to the liver. Some new computer algorithms display a bird's eye view of the shielding but this paper presents for the first time, a technique for actual shielding reconstruction from multislice CT treatment planning for use by the radiation oncologist when shielding blocks are drawn on the simulator films

  6. Nevada Test Site, site treatment plan 1999 annual update

    International Nuclear Information System (INIS)

    1999-03-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFC Act) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFC Act Consent Order (CO) dated March 6, 1996, and revised June 15, 1998. The FFC Act CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  7. 76 FR 75556 - Notice of Availability of the Proposed Resource Management Plan and Final Environmental Impact...

    Science.gov (United States)

    2011-12-02

    ...] Notice of Availability of the Proposed Resource Management Plan and Final Environmental Impact Statement for the Taos Field Office, New Mexico AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...) has prepared the Proposed Resource Management Plan/Final Environmental Impact Statement (Proposed RMP...

  8. A fast inverse treatment planning strategy facilitating optimized catheter selection in image-guided high-dose-rate interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A

    2017-12-01

    Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the

  9. MINERVA - a multi-modal radiation treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Wemple, C.A. E-mail: cew@enel.gov; Wessol, D.E.; Nigg, D.W.; Cogliati, J.J.; Milvich, M.L.; Frederickson, C.; Perkins, M.; Harkin, G.J

    2004-11-01

    Researchers at the Idaho National Engineering and Environmental Laboratory and Montana State University have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system. This system can be used for planning and analyzing several radiotherapy modalities, either singly or combined, using common modality independent image and geometry construction and dose reporting and guiding. It employs an integrated, lightweight plugin architecture to accommodate multi-modal treatment planning using standard interface components. The MINERVA design also facilitates the future integration of improved planning technologies. The code is being developed with the Java Virtual Machine for interoperability. A full computation path has been established for molecular targeted radiotherapy treatment planning, with the associated transport plugin developed by researchers at the Lawrence Livermore National Laboratory. Development of the neutron transport plugin module is proceeding rapidly, with completion expected later this year. Future development efforts will include development of deformable registration methods, improved segmentation methods for patient model definition, and three-dimensional visualization of the patient images, geometry, and dose data. Transport and source plugins will be created for additional treatment modalities, including brachytherapy, external beam proton radiotherapy, and the EGSnrc/BEAMnrc codes for external beam photon and electron radiotherapy.

  10. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  11. Optimization of rotational radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Tulovsky, Vladimir; Ringor, Michael; Papiez, Lech

    1995-01-01

    Purpose: Rotational therapy treatment planning for rotationally symmetric geometry of tumor and healthy tissue provides an important example of testing various approaches to optimizing dose distributions for therapeutic x-ray irradiations. In this article, dose distribution optimization is formulated as a variational problem. This problem is solved analytically and numerically. Methods and Materials: The classical Lagrange method is used to derive equations and inequalities that give necessary conditions for minimizing the mean-square deviation between the ideal dose distribution and the achievable dose distribution. The solution of the resulting integral equation with Cauchy kernel is used to derive analytical formulas for the minimizing irradiation intensity function. Results: The solutions are evaluated numerically and the graphs of the minimizing intensity functions and the corresponding dose distributions are presented. Conclusions: The optimal solutions obtained using the mean-square criterion lead to significant underdosage in some areas of the tumor volume. Possible solutions to this shortcoming are investigated and medically more appropriate criteria for optimization are proposed for future investigations

  12. Science-based strategic planning for hazardous fuel treatment.

    Science.gov (United States)

    D.L. Peterson; M.C. Johnson

    2007-01-01

    A scientific foundation coupled with technical support is needed to develop long-term strategic plans for fuel and vegetation treatments on public lands. These plans are developed at several spatial scales and are typically a component of fire management plans and other types of resource management plans. Such plans need to be compatible with national, regional, and...

  13. Consensus Treatment Plans for New-Onset Systemic Juvenile Idiopathic Arthritis

    Science.gov (United States)

    DeWitt, Esi Morgan; Kimura, Yukiko; Beukelman, Timothy; Nigrovic, Peter A.; Onel, Karen; Prahalad, Sampath; Schneider, Rayfel; Stoll, Matthew L.; Angeles-Han, Sheila; Milojevic, Diana; Schikler, Kenneth N.; Vehe, Richard K.; Weiss, Jennifer E.; Weiss, Pamela; Ilowite, Norman T.; Wallace, Carol A.

    2012-01-01

    Objective There is wide variation in therapeutic approaches to systemic juvenile idiopathic arthritis (sJIA) among North American rheumatologists. Understanding the comparative effectiveness of the diverse therapeutic options available for treatment of sJIA can result in better health outcomes. The Childhood Arthritis and Rheumatology Research Alliance (CARRA) developed consensus treatment plans and standardized assessment schedules for use in clinical practice to facilitate such studies. Methods Case-based surveys were administered to CARRA members to identify prevailing treatments for new-onset sJIA. A 2-day consensus conference in April 2010 employed modified nominal group technique to formulate preliminary treatment plans and determine important data elements for collection. Follow-up surveys were employed to refine the plans and assess clinical acceptability. Results The initial case-based survey identified significant variability among current treatment approaches for new onset sJIA, underscoring the utility of standardized plans to evaluate comparative effectiveness. We developed four consensus treatment plans for the first 9 months of therapy, as well as case definitions and clinical and laboratory monitoring schedules. The four treatment regimens included glucocorticoids only, or therapy with methotrexate, anakinra or tocilizumab, with or without glucocorticoids. This approach was approved by >78% of CARRA membership. Conclusion Four standardized treatment plans were developed for new-onset sJIA. Coupled with data collection at defined intervals, use of these treatment plans will create the opportunity to evaluate comparative effectiveness in an observational setting to optimize initial management of sJIA. PMID:22290637

  14. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT

    International Nuclear Information System (INIS)

    Chen, Lili; Price, Robert A.; Wang Lu; Li Jinsheng; Qin Lihong; McNeeley, Shawn; Ma, C.-M. Charlie; Freedman, Gary M.; Pollack, Alan

    2004-01-01

    Purpose: Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT. Methods and materials: A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans. Results: Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose

  15. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  16. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  17. Method of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Hodes, L.

    1976-01-01

    A technique of radiation therapy treatment planning designed to allow the assignment of dosage limits directly to chosen points in the computer-displayed cross-section of the patient. These dosage limits are used as constraints in a linear programming attempt to solve for beam strengths, minimizing integral dosage. If a feasible plan exists, the optimized plan will be displayed for approval as an isodose pattern. If there is no feasible plan, the operator/therapist can designate some of the point dosage constraints as ''relaxed.'' Linear programming will then optimize for minimum deviation at the relaxed points. This process can be iterated and new points selected until an acceptable plan is realized. In this manner the plan is optimized for uniformity as well as overall low dosage. 6 claims, 6 drawing figures

  18. Treatment planning systems

    International Nuclear Information System (INIS)

    Fontenla, D.P.

    2008-01-01

    All aspects of treatment planning in radiotherapy are discussed in detail. Included are, among others, machine data and their acquisition, photon dose calculations and tests thereof, criteria of acceptability, sources of uncertainties, from 2D to 3D and from 3D to IMRT, dosimetric measurements for RTP validation, frequency of QA tests and suggested tolerances for TPS, time and staff requirements, model based segmentation, multi-dimensional radiotherapy (MD C RT), and biological IMRT process. (P.A.)

  19. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    International Nuclear Information System (INIS)

    Na, Y; Kapp, D; Kim, Y; Xing, L; Suh, T

    2014-01-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  20. SU-D-BRD-01: Cloud-Based Radiation Treatment Planning: Performance Evaluation of Dose Calculation and Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y; Kapp, D; Kim, Y; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To report the first experience on the development of a cloud-based treatment planning system and investigate the performance improvement of dose calculation and treatment plan optimization of the cloud computing platform. Methods: A cloud computing-based radiation treatment planning system (cc-TPS) was developed for clinical treatment planning. Three de-identified clinical head and neck, lung, and prostate cases were used to evaluate the cloud computing platform. The de-identified clinical data were encrypted with 256-bit Advanced Encryption Standard (AES) algorithm. VMAT and IMRT plans were generated for the three de-identified clinical cases to determine the quality of the treatment plans and computational efficiency. All plans generated from the cc-TPS were compared to those obtained with the PC-based TPS (pc-TPS). The performance evaluation of the cc-TPS was quantified as the speedup factors for Monte Carlo (MC) dose calculations and large-scale plan optimizations, as well as the performance ratios (PRs) of the amount of performance improvement compared to the pc-TPS. Results: Speedup factors were improved up to 14.0-fold dependent on the clinical cases and plan types. The computation times for VMAT and IMRT plans with the cc-TPS were reduced by 91.1% and 89.4%, respectively, on average of the clinical cases compared to those with pc-TPS. The PRs were mostly better for VMAT plans (1.0 ≤ PRs ≤ 10.6 for the head and neck case, 1.2 ≤ PRs ≤ 13.3 for lung case, and 1.0 ≤ PRs ≤ 10.3 for prostate cancer cases) than for IMRT plans. The isodose curves of plans on both cc-TPS and pc-TPS were identical for each of the clinical cases. Conclusion: A cloud-based treatment planning has been setup and our results demonstrate the computation efficiency of treatment planning with the cc-TPS can be dramatically improved while maintaining the same plan quality to that obtained with the pc-TPS. This work was supported in part by the National Cancer Institute (1

  1. Conversion of helical tomotherapy plans to step-and-shoot IMRT plans--Pareto front evaluation of plans from a new treatment planning system.

    Science.gov (United States)

    Petersson, Kristoffer; Ceberg, Crister; Engström, Per; Benedek, Hunor; Nilsson, Per; Knöös, Tommy

    2011-06-01

    The resulting plans from a new type of treatment planning system called SharePlan have been studied. This software allows for the conversion of treatment plans generated in a TomoTherapy system for helical delivery, into plans deliverable on C-arm linear accelerators (linacs), which is of particular interest for clinics with a single TomoTherapy unit. The purpose of this work was to evaluate and compare the plans generated in the SharePlan system with the original TomoTherapy plans and with plans produced in our clinical treatment planning system for intensity-modulated radiation therapy (IMRT) on C-arm linacs. In addition, we have analyzed how the agreement between SharePlan and TomoTherapy plans depends on the number of beams and the total number of segments used in the optimization. Optimized plans were generated for three prostate and three head-and-neck (H&N) cases in the TomoTherapy system, and in our clinical treatment planning systems (TPS) used for IMRT planning with step-and-shoot delivery. The TomoTherapy plans were converted into step-and-shoot IMRT plans in SharePlan. For each case, a large number of Pareto optimal plans were created to compare plans generated in SharePlan with plans generated in the Tomotherapy system and in the clinical TPS. In addition, plans were generated in SharePlan for the three head-and-neck cases to evaluate how the plan quality varied with the number of beams used. Plans were also generated with different number of beams and segments for other patient cases. This allowed for an evaluation of how to minimize the number of required segments in the converted IMRT plans without compromising the agreement between them and the original TomoTherapy plans. The plans made in SharePlan were as good as or better than plans from our clinical system, but they were not as good as the original TomoTherapy plans. This was true for both the head-and-neck and the prostate cases, although the differences between the plans for the latter were

  2. Patient geometry-driven information retrieval for IMRT treatment plan quality control

    International Nuclear Information System (INIS)

    Wu Binbin; Ricchetti, Francesco; Sanguineti, Giuseppe; Kazhdan, Misha; Simari, Patricio; Chuang Ming; Taylor, Russell; Jacques, Robert; McNutt, Todd

    2009-01-01

    Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D 50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as

  3. Treatment planning systems for high precision radiotherapy

    International Nuclear Information System (INIS)

    Deshpande, D.D.

    2008-01-01

    Computerized Treatment Planning System (TPS) play an important role in radiotherapy with the intent to maximize tumor control and minimize normal tissue complications. Treatment planning during earlier days was generally carried out through the manual summations of standard isodose charts on to patient body contours that were generated by direct tracing or lead wire representation, and relied heavily on the careful choices of beam weights and wedging. Since then there had been tremendous advances in field of Radiation Oncology in last few decades. The linear accelerators had evolved from MLC's to IGRT, the techniques like 3DCRT, IMRT has become almost routine affair. The simulation has seen transition from simple 2D film/fluoroscopy localization to CT Simulator with added development in PET, PET- CT and MR imaging. The Networking and advances in computer technology has made it possible to direct transfer of Images, contours to the treatment planning systems

  4. Treatment planning for a small animal using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.

    2007-01-01

    The development of a small animal model for radiotherapy research requires a complete setup of customized imaging equipment, irradiators, and planning software that matches the sizes of the subjects. The purpose of this study is to develop and demonstrate the use of a flexible in-house research environment for treatment planning on small animals. The software package, called DOSCTP, provides a user-friendly platform for DICOM computed tomography-based Monte Carlo dose calculation using the EGSnrcMP-based DOSXYZnrc code. Validation of the treatment planning was performed by comparing the dose distributions for simple photon beam geometries calculated through the Pinnacle3 treatment planning system and measurements. A treatment plan for a mouse based on a CT image set by a 360-deg photon arc is demonstrated. It is shown that it is possible to create 3D conformal treatment plans for small animals with consideration of inhomogeneities using small photon beam field sizes in the diameter range of 0.5-5 cm, with conformal dose covering the target volume while sparing the surrounding critical tissue. It is also found that Monte Carlo simulation is suitable to carry out treatment planning dose calculation for small animal anatomy with voxel size about one order of magnitude smaller than that of the human

  5. Automated treatment planning engine for prostate seed implant brachytherapy

    International Nuclear Information System (INIS)

    Yu Yan; Zhang, J.B.Y.; Brasacchio, Ralph A.; Okunieff, Paul G.; Rubens, Deborah J.; Strang, John G.; Soni, Arvind; Messing, Edward M.

    1999-01-01

    Purpose: To develop a computer-intelligent planning engine for automated treatment planning and optimization of ultrasound- and template-guided prostate seed implants. Methods and Materials: The genetic algorithm was modified to reflect the 2D nature of the implantation template. A multi-objective decision scheme was used to rank competing solutions, taking into account dose uniformity and conformity to the planning target volume (PTV), dose-sparing of the urethra and the rectum, and the sensitivity of the resulting dosimetry to seed misplacement. Optimized treatment plans were evaluated using selected dosimetric quantifiers, dose-volume histogram (DVH), and sensitivity analysis based on simulated seed placement errors. These dosimetric planning components were integrated into the Prostate Implant Planning Engine for Radiotherapy (PIPER). Results: PIPER has been used to produce a variety of plans for prostate seed implants. In general, maximization of the minimum peripheral dose (mPD) for given implanted total source strength tended to produce peripherally weighted seed patterns. Minimization of the urethral dose further reduced the loading in the central region of the PTV. Isodose conformity to the PTV was achieved when the set of objectives did not reflect seed positioning uncertainties; the corresponding optimal plan generally required fewer seeds and higher source strength per seed compared to the manual planning experience. When seed placement uncertainties were introduced into the set of treatment planning objectives, the optimal plan tended to reach a compromise between the preplanned outcome and the likelihood of retaining the preferred outcome after implantation. The reduction in the volatility of such seed configurations optimized under uncertainty was verified by sensitivity studies. Conclusion: An automated treatment planning engine incorporating real-time sensitivity analysis was found to be a useful tool in dosimetric planning for prostate

  6. IMRT treatment planning-A comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group

    International Nuclear Information System (INIS)

    Bohsung, Joerg; Gillis, Sofie; Arrans, Rafael; Bakai, Annemarie; De Wagter, Carlos; Knoeoes, Tommy; Mijnheer, Ben J.; Paiusco, Marta; Perrin, Bruce A.; Welleweerd, Hans; Williams, Peter

    2005-01-01

    Background and purpose: The purpose of this work was a comparison of realistic IMRT plans based on the same CT-image data set and a common predefined set of dose objectives for the planning target volume and the organs at risk. This work was part of the larger European QUASIMODO IMRT verification project. Materials and methods: Eleven IMRT plans were produced by nine different European groups, each applying a representative set of clinically used IMRT treatment planning systems. The plans produced were to be deliverable in a clinically acceptable treatment time with the local technical equipment. All plans were characterized using a set of different quality measures such as dose-volume histograms, number of monitor units and treatment time. Results: Only one plan was able to fulfil all dose objectives strictly; six plans failed some of the objectives but were still considered to be clinically acceptable; four plans were not able to reach the objectives. Additional quality scores such as the number of monitor units and treatment time showed large variations, which mainly depend on the delivery technique. Conclusion: The presented planning study showed that with nearly all presently available IMRT planning and delivery systems comparable dose distributions could be achieved if the planning goals are clearly defined in advance

  7. A novel implementation of mARC treatment for non-dedicated planning systems using converted IMRT plans

    International Nuclear Information System (INIS)

    Dzierma, Yvonne; Nuesken, Frank; Licht, Norbert; Ruebe, Christian

    2013-01-01

    The modulated arc (mARC) technique has recently been introduced by Siemens as an analogue to VMAT treatment. However, up to now only one certified treatment planning system supports mARC planning. We therefore present a conversion algorithm capable of converting IMRT plans created by any treatment planning system into mARC plans, with the hope of expanding the availability of mARC to a larger range of clinical users and researchers. As additional advantages, our implementation offers improved functionality for planning hybrid arcs and provides an equivalent step-and-shoot plan for each mARC plan, which can be used as a back-up concept in institutions where only one linac is equipped with mARC. We present a feasibility study to outline a practical implementation of mARC plan conversion using Philips Pinnacle and Prowess Panther. We present examples for three different kinds of prostate and head-and-neck plans, for 6 MV and flattening-filter-free (FFF) 7 MV photon energies, which are dosimetrically verified. It is generally more difficult to create good quality IMRT plans in Pinnacle using a large number of beams and few segments. We present different ways of optimization as examples. By careful choosing the beam and segment arrangement and inversion objectives, we achieve plan qualities similar to our usual IMRT plans. The conversion of the plans to mARC format yields functional plans, which can be irradiated without incidences. Absolute dosimetric verification of both the step-and-shoot and mARC plans by point dose measurements showed deviations below 5% local dose, mARC plans deviated from step-and-shoot plans by no more than 1%. The agreement between GafChromic film measurements of planar dose before and after mARC conversion is excellent. The comparison of the 3D dose distribution measured by PTW Octavius 729 2D-Array with the step-and-shoot plans and with the TPS is well above the pass criteria of 90% of the points falling within 5% local dose and 3 mm distance

  8. Generating AN Optimum Treatment Plan for External Beam Radiation Therapy.

    Science.gov (United States)

    Kabus, Irwin

    1990-01-01

    The application of linear programming to the generation of an optimum external beam radiation treatment plan is investigated. MPSX, an IBM linear programming software package was used. All data originated from the CAT scan of an actual patient who was treated for a pancreatic malignant tumor before this study began. An examination of several alternatives for representing the cross section of the patient showed that it was sufficient to use a set of strategically placed points in the vital organs and tumor and a grid of points spaced about one half inch apart for the healthy tissue. Optimum treatment plans were generated from objective functions representing various treatment philosophies. The optimum plans were based on allowing for 216 external radiation beams which accounted for wedges of any size. A beam reduction scheme then reduced the number of beams in the optimum plan to a number of beams small enough for implementation. Regardless of the objective function, the linear programming treatment plan preserved about 95% of the patient's right kidney vs. 59% for the plan the hospital actually administered to the patient. The clinician, on the case, found most of the linear programming treatment plans to be superior to the hospital plan. An investigation was made, using parametric linear programming, concerning any possible benefits derived from generating treatment plans based on objective functions made up of convex combinations of two objective functions, however, this proved to have only limited value. This study also found, through dual variable analysis, that there was no benefit gained from relaxing some of the constraints on the healthy regions of the anatomy. This conclusion was supported by the clinician. Finally several schemes were found that, under certain conditions, can further reduce the number of beams in the final linear programming treatment plan.

  9. Planning of emergency medical treatment in nuclear power plant

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1989-01-01

    Medical staffs and health physicists have shown deep concerning at the emergency plans of nuclear power plants after the TMI nuclear accident. The most important and basic countermeasure for accidents was preparing appropriate and concrete organization and plans for treatment. We have planed emergency medical treatment for radiation workers in a nuclear power plant institute. The emergency medical treatment at institute consisted of two stages, that is on-site emergency treatment at facility medical service. In first step of planning in each stage, we selected and treatment at facility medical service. In first step of planning in each stage, we selected and analyzed all possible accidents in the institute and discussed on practical treatments for some possible accidents. The manuals of concrete procedure of emergency treatment for some accidents were prepared following discussion and facilities and equipment for medical treatment and decontamination were provided. All workers in the institute had periodical training and drilling of on-site emergency treatment and mastered technique of first aid. Decontamination and operation rooms were provided in the facillity medical service. The main functions at the facility medical service have been carried out by industrial nurses. Industrial nurses have been in close co-operation with radiation safety officers and medical doctors in regional hospital. (author)

  10. A project proposal for the implementation of Intensity Modulated Radiation Therapy (IMRT) for treatment of tumors of the central nervous system (CNS)

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Chon Rivas, Ivon; Ascension Ibarra, Yudy; Yanez Lopez, Yaima; Rodriguez Zayas, Michel; Diaz Moreno, Rogelio

    2009-01-01

    Radiotherapy, together with the surgery, one of the essential therapeutic tools in the treatment of CNS tumors. The use of radiation, can be severe sequelae affecting quality of life of the patient, organs at risk receiving high dose and advanced technique of IMRT treatment planning and allows treatments shaped fields, especially when the target of radiation is irregular, with fewer side effects by limiting the dose in the tumor tissues and organs at risk and to allow us to increase the doses in the tumor .. So we decided to develop a protocol for the implementation of IMRT, taking into account that we have the appropriate equipment, trained staff to develop this technique. The main objective of this proposal is to allow us to establish the parameters necessary to perform IMRT, and then escalate the dose of radiation to the tumor, with reduced toxicity to healthy tissues. Inclusion criteria. It included 6 patients with histological diagnosis of CNS tumors, specifically astrocytomas grade II, III and IV, glioblastoma multiforme, where radiation is the main treatment, or associated with surgery. It excludes patients who have previously received radiation therapy or are unable to receive treatment without having movements that do not suffer another debilitating disease and to sign informed consent. Be held position and will be used as masks thermo deformed stun, then planning CT performed in all cases. Be designed later volumes (GTV, CTV and PTV, and OR, as established by the ICRU reports 52 and 60, the IAEA), will define the dose, and restrictions on healthy tissue technique is defined treatment according proposed objectives in the planning system. Once approved, is made conventional simulation, verification of the treatment plan on your computer with web plates and implementation of treatment in 1220 of INOR LINAC. Be made patient-specific quality controls and verification of DRR plan once a week for each patient treated. Monitoring will be conducted weekly during

  11. 76 FR 47154 - Proposed Information Collection; Comment Request; California Signage Plan: Evaluation of...

    Science.gov (United States)

    2011-08-04

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; California Signage Plan: Evaluation of Interpretive Signs AGENCY: National... This request is for a regular submission (new collection). The California Signage Plan is an organized...

  12. SU-G-BRC-02: A Novel Multi-Criteria Optimization Approach to Generate Deliverable Intensity-Modulated Radiation Therapy (IMRT) Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kirlik, G; D’Souza, W; Zhang, H [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates treatment plans with deliverable apertures using column generation. Methods: We demonstrate our method with 10 locally advanced head-and-neck cancer cases retrospectively. In our MCO formulation, we defined an objective function for each structure in the treatment volume. This resulted in 9 objective functions, including 3 distinct objectives for primary target volume, high-risk and low-risk target volumes, 5 objectives for each of the organs-at-risk (OARs) (two parotid glands, spinal cord, brain stem and oral cavity), and one for the non-target non-OAR normal tissue. Conditional value-at-risk (CVaR) constraints were utilized to ensure at least certain fraction of the target volumes receiving the prescription doses. To directly generate deliverable plans, column generation algorithm was embedded within our MCO approach for aperture shape generation. Final dose distributions for all plans were generated using a Monte Carlo kernel-superposition dose calculation. We compared the MCO plans with the clinical plans, which were created by clinicians. Results: At least 95% target coverage was achieved by both MCO plans and clinical plans. However, the average conformity indices of clinical plans and the MCO plans were 1.95 and 1.35, respectively (31% reduction, p<0.01). Compared to the conventional clinical plan, the proposed MCO method achieved average reductions in left parotid mean dose of 5% (p=0.06), right parotid mean dose of 18% (p<0.01), oral cavity mean dose of 21% (p=0.03), spinal cord maximum dose of 20% (p<0.01), brain stem maximum dose of 61% (p<0.01), and normal tissue maximum dose of 5% (p<0.01), respectively. Conclusion: We demonstrated that the proposed MCO method was able to obtain deliverable IMRT treatment plans while achieving significant improvements in dosimetric plan quality.

  13. TU-H-209-00: Planning and Delivering HDR APBI Treatments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Learnings Objectives: Although brachytherapy is the oldest form of radiation therapy, the rapid advancement of the methods of dose calculation, treatment planning and treatment delivery pushes us to keep updating our knowledge and experience to new procedures all the time. Our purpose is to present the newest applicators used in Accelerated Partial Breast Irradiation (APBI) and the techniques of using them for a maximum effective treatment. Our objective will be to get the user familiar with the Savi, Contura and ML Mammosite from the detailed description and measurements to cavity eval and choice or size, to acceptance tests and use of each. At the end of the session the attendants will be able to assist at the scanning of the patient for the first treatment, decide on the proper localization and immobilization devices, import the scans in the treatment planning system, perform the structure segmentation, reconstruct the catheters and develop a treatment plan using inverse planning (IPSA) or volume optimization. The attendant should be able to evaluate the quality of a treatment plan according to the ABS protocols and B39 after this session. Our goal is that all the attendants to gain knowledge of all the quality assurance procedures required to be performed prior to a treatment, at the beginning of a treatment day, weekly, monthly and annualy on the remote afterloader, the treatment planning system and the secondary check system. We will provide tips for a consistent treatment delivery of the 10 fractions in a BID (twice daily) regimen.

  14. 78 FR 5830 - Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations...

    Science.gov (United States)

    2013-01-28

    ...-FXES11120800000F2-123-F2] Draft Environmental Assessment and Proposed Habitat Conservation Plan for the Interim Operations of PacifiCorp's Klamath Hydroelectric Project on the Klamath River, Klamath County, OR, and... environmental assessment and proposed habitat conservation plan; request for comment. SUMMARY: We, the U.S. Fish...

  15. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  16. Radiobiologically based treatment plan evaluation for prostate seed implants

    Directory of Open Access Journals (Sweden)

    Sotirios Stathakis

    2011-07-01

    Full Text Available Purpose: Accurate prostate low dose-rate brachytherapy treatment plan evaluation is important for future care decisions. Presently, an evaluation is based on dosimetric quantifiers for the tumor and organs at risk. However, these do not account for effects of varying dose-rate, tumor repopulation and other biological effects. In this work, incorporation of the biological response is used to obtain more clinically relevant treatment plan evaluation.Material and methods: Eleven patients were evaluated. Each patient received a 145 Gy implant. Iodine-125 seeds were used and the treatment plans were created on the Prowess system. Based on CT images the post-implant plan was created. In the post-plan, the tumor, urethra, bladder and rectum were contoured. The biologically effective dose was used to determine the tumor control probability and the normal tissue complication probabilities for the urethra, bladder, rectum and surrounding tissue. Results: The average tumor control probability and complication probabilities for the urethra, bladder, rectum and surrounding tissue were 99%, 29%, 0%, 12% and 6%, respectively. These measures provide a simpler means for evaluation and since they include radiobiological factors, they provide more reliable estimation of the treatment outcome. Conclusions: The goal of this work was to create more clinically relevant prostate seed-implant evaluation by incorporating radiobiological measures. This resulted in a simpler descriptor of treatment plan quality and was consistent with patient outcomes.

  17. SU-D-BRD-04: The Impact of Automatic Radiation Therapy Plan Checks in Treatment Planning

    International Nuclear Information System (INIS)

    Gopan, O; Yang, F; Ford, E

    2015-01-01

    Purpose: The physics plan check verifies various aspects of a treatment plan after dosimetrists have finished creating the plan. Some errors in the plan which are caught by the physics check could be caught earlier in the departmental workflow. The purpose of this project was to evaluate a plan checking script that can be run within the treatment planning system (TPS) by the dosimetrists prior to plan approval and export to the record and verify system. Methods: A script was created in the Pinnacle TPS to automatically check 15 aspects of a plan for clinical practice conformity. The script outputs a list of checks which the plan has passed and a list of checks which the plan has failed so that appropriate adjustments can be made. For this study, the script was run on a total of 108 plans: IMRT (46/108), VMAT (35/108) and SBRT (27/108). Results: Of the plans checked by the script, 77/108 (71%) failed at least one of the fifteen checks. IMRT plans resulted in more failed checks (91%) than VMAT (51%) or SBRT (63%), due to the high failure rate of an IMRT-specific check, which checks that no IMRT segment < 5 MU. The dose grid size and couch removal checks caught errors in 10% and 14% of all plans – errors that ultimately may have resulted in harm to the patient. Conclusion: Approximately three-fourths of the plans being examined contain errors that could be caught by dosimetrists running an automated script embedded in the TPS. The results of this study will improve the departmental workflow by cutting down on the number of plans that, due to these types of errors, necessitate re-planning and re-approval of plans, increase dosimetrist and physician workload and, in urgent cases, inconvenience patients by causing treatment delays

  18. Image registration: An essential part of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Rosenman, Julian G.; Miller, Elizabeth P.; Tracton, Gregg; Cullip, Tim J.

    1998-01-01

    Purpose: We believe that a three-dimensional (3D) registration of nonplanning (diagnostic) imaging data with the planning computed tomography (CT) offers a substantial improvement in tumor target identification for many radiation therapy patients. The purpose of this article is to review and discuss our experience to date. Methods and Materials: We reviewed the charts and treatment planning records of all patients that underwent 3D radiation treatment planning in our department from June 1994 to December 1995, to learn which patients had image registration performed and why it was thought they would benefit from this approach. We also measured how much error would have been introduced into the target definition if the nonplanning imaging data had not been available and only the planning CT had been used. Results: Between June 1994 and December 1995, 106 of 246 (43%) of patients undergoing 3D treatment planning had image registration. Four reasons for performing registration were identified. First, some tumor volumes have better definition on magnetic resonance imaging (MRI) than on CT. Second, a properly contrasted diagnostic CT sometimes can show the tumor target better than can the planning CT. Third, the diagnostic CT or MR may have been preoperative, with the postoperative planning CT no longer showing the tumor. Fourth, the patient may have undergone cytoreductive chemotherapy so that the postchemotherapy planning CT no longer showed the original tumor volume. In patients in whom the planning CT did not show the tumor volume well an analysis was done to determine how the treatment plan was changed with the addition of a better tumor-defining nonplanning CT or MR. We have found that the use of this additional imaging modality changed the tumor location in the treatment plan at least 1.5 cm for half of the patients, and up to 3.0 cm for ((1)/(4)) of the patients. Conclusions: Multimodality and/or sequential imaging can substantially aid in better tumor

  19. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  20. CMS proposes prioritizing patient preferences, linking patients to follow-up care in discharge planning process.

    Science.gov (United States)

    2016-03-01

    Hospital providers voice concerns about a proposed rule by the Centers for Medicare and Medicaid Services (CMS) that would require providers to devote more resources to discharge planning. The rule would apply to inpatients as well as emergency patients requiring comprehensive discharge plans as opposed to discharge instructions. CMS states that the rule would ensure the prioritization of patient preferences and goals in the discharge planning process, and also would prevent avoidable complications and readmissions. However, hospital and emergency medicine leaders worry that community resources are not yet in place to facilitate the links and follow-up required in the proposed rule, and that the costs associated with implementation would be prohibitive. The proposed rule would apply to acute care hospitals, EDs, long-term care facilities, inpatient rehabilitation centers, and home health agencies. Regardless of the setting, though, CMS is driving home the message that patient preferences should be given more weight during the discharge planning process. Under the rule, hospitals or EDs would need to develop a patient-centered discharge plan within 24 hours of admission or registration, and complete the plan prior to discharge or transfer to another facility. Under the rule, emergency physicians would determine which patients require a comprehensive discharge plan. Both the American Hospital Association and the American College of Emergency Physicians worry that hospitals will have to take on more staff, invest in training, and make changes to their electronic medical record systems to implement the provisions in the proposed rule.

  1. A simple planning technique of craniospinal irradiation in the eclipse treatment planning system

    Directory of Open Access Journals (Sweden)

    Hemalatha Athiyaman

    2014-01-01

    Full Text Available A new planning method for Craniospinal Irradiation by Eclipse treatment planning system using Field alignment, Field-in-Field technique was developed. Advantage of this planning method was also studied retrospectively for previously treated five patients of medulloblastoma with variable spine length. Plan consists of half beam blocked parallel opposed cranium, and a single posterior cervicospine field was created by sharing the same isocenter, which obviates divergence matching. Further, a single symmetrical field was created to treat remaining Lumbosacral spine. Matching between a inferior diverging edge of cervicospine field and superior diverging edge of a Lumbosacral field was done using the field alignment option. ′Field alignment′ is specific option in the Eclipse Treatment Planning System, which automatically matches the field edge divergence as per field alignment rule. Multiple segments were applied in both the spine field to manage with hot and cold spots created by varying depth of spinal cord. Plan becomes fully computerized using this field alignment option and multiple segments. Plan evaluation and calculated mean modified Homogeneity Index (1.04 and 0.1 ensured that dose to target volume is homogeneous and critical organ doses were within tolerance. Dose variation at the spinal field junction was verified using ionization chamber array (I′MatriXX for matched, overlapped and gap junction spine fields; the delivered dose distribution confirmed the ideal clinical match, over exposure and under exposure at the junction, respectively. This method is simple to plan, executable in Record and Verify mode and can be adopted for various length of spinal cord with only two isocenter in shorter treatment time.

  2. A dose-volume histogram based decision-support system for dosimetric comparison of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Alfonso, J. C. L.; Herrero, M. A.; Núñez, L.

    2015-01-01

    The choice of any radiotherapy treatment plan is usually made after the evaluation of a few preliminary isodose distributions obtained from different beam configurations. Despite considerable advances in planning techniques, such final decision remains a challenging task that would greatly benefit from efficient and reliable assessment tools. For any dosimetric plan considered, data on dose-volume histograms supplied by treatment planning systems are used to provide estimates on planning target coverage as well as on sparing of organs at risk and the remaining healthy tissue. These partial metrics are then combined into a dose distribution index (DDI), which provides a unified, easy-to-read score for each competing radiotherapy plan. To assess the performance of the proposed scoring system, DDI figures for fifty brain cancer patients were retrospectively evaluated. Patients were divided in three groups depending on tumor location and malignancy. For each patient, three tentative plans were designed and recorded during planning, one of which was eventually selected for treatment. We thus were able to compare the plans with better DDI scores and those actually delivered. When planning target coverage and organs at risk sparing are considered as equally important, the tentative plan with the highest DDI score is shown to coincide with that actually delivered in 32 of the 50 patients considered. In 15 (respectively 3) of the remaining 18 cases, the plan with highest DDI value still coincides with that actually selected, provided that organs at risk sparing is given higher priority (respectively, lower priority) than target coverage. DDI provides a straightforward and non-subjective tool for dosimetric comparison of tentative radiotherapy plans. In particular, DDI readily quantifies differences among competing plans with similar-looking dose-volume histograms and can be easily implemented for any tumor type and localization, irrespective of the planning system and

  3. Development of independent MU/treatment time verification algorithm for non-IMRT treatment planning: A clinical experience

    Science.gov (United States)

    Tatli, Hamza; Yucel, Derya; Yilmaz, Sercan; Fayda, Merdan

    2018-02-01

    The aim of this study is to develop an algorithm for independent MU/treatment time (TT) verification for non-IMRT treatment plans, as a part of QA program to ensure treatment delivery accuracy. Two radiotherapy delivery units and their treatment planning systems (TPS) were commissioned in Liv Hospital Radiation Medicine Center, Tbilisi, Georgia. Beam data were collected according to vendors' collection guidelines, and AAPM reports recommendations, and processed by Microsoft Excel during in-house algorithm development. The algorithm is designed and optimized for calculating SSD and SAD treatment plans, based on AAPM TG114 dose calculation recommendations, coded and embedded in MS Excel spreadsheet, as a preliminary verification algorithm (VA). Treatment verification plans were created by TPSs based on IAEA TRS 430 recommendations, also calculated by VA, and point measurements were collected by solid water phantom, and compared. Study showed that, in-house VA can be used for non-IMRT plans MU/TT verifications.

  4. Automated radiotherapy treatment plan integrity verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Moore, Kevin L. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri 63110 (United States)

    2012-03-15

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  5. Automated radiotherapy treatment plan integrity verification

    International Nuclear Information System (INIS)

    Yang Deshan; Moore, Kevin L.

    2012-01-01

    Purpose: In our clinic, physicists spend from 15 to 60 min to verify the physical and dosimetric integrity of radiotherapy plans before presentation to radiation oncology physicians for approval. The purpose of this study was to design and implement a framework to automate as many elements of this quality control (QC) step as possible. Methods: A comprehensive computer application was developed to carry out a majority of these verification tasks in the Philips PINNACLE treatment planning system (TPS). This QC tool functions based on both PINNACLE scripting elements and PERL sub-routines. The core of this technique is the method of dynamic scripting, which involves a PERL programming module that is flexible and powerful for treatment plan data handling. Run-time plan data are collected, saved into temporary files, and analyzed against standard values and predefined logical rules. The results were summarized in a hypertext markup language (HTML) report that is displayed to the user. Results: This tool has been in clinical use for over a year. The occurrence frequency of technical problems, which would cause delays and suboptimal plans, has been reduced since clinical implementation. Conclusions: In addition to drastically reducing the set of human-driven logical comparisons, this QC tool also accomplished some tasks that are otherwise either quite laborious or impractical for humans to verify, e.g., identifying conflicts amongst IMRT optimization objectives.

  6. Estimation of second primary cancers risk based on the treatment planning system

    International Nuclear Information System (INIS)

    Jin Chufeng; Sun Guangyao; Liu Hui; Zheng Huaqing; Cheng Mengyun; Li Gui; Wu Yican; FDS Team

    2011-01-01

    Estimates of second primary cancers risk after radiotherapy has become increasingly important for comparative treatment planning. A new method based on the treatment planning system to estimate the risk of second primary cancers was introduced in this paper. Using the Advanced/Accurate Radiotherapy Treatment System(ARTS), a treatment planning system developed by the FDS team,the risk of second primary cancer was estimated over two treatment plans for a patient with pancreatic cancer. Based on the second primary cancer risk, the two plans were compared. It was found that,kidney and gall-bladder had higher risk to develop second primary cancer. A better plan was chosen by the analysis of second primary cancer risk. The results showed that this risk estimation method we developed could be used to evaluate treatment plans. (authors)

  7. The Environmental Advisory Service (EASe): a decision support system for comprehensive screening of local land-use development proposals and comparative evaluation of proposed land-use plans

    OpenAIRE

    K P White; A P Sage; F A Rodammer; C T Peters

    1985-01-01

    The Environmental Advisory Service (EASe) is a decision support system which can provide assistance to local planning agencies in selecting land-development alternatives or in formulating land-use plans. EASe offers a comprehensive and consistent procedure for rating either a development proposal or a proposed plan. This procedure is based upon qualitative assessments of the impact of developments or plans on the natural environment, zoning and land use. public and private services, transport...

  8. Proposal of Constraints Analysis Method Based on Network Model for Task Planning

    Science.gov (United States)

    Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro

    Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.

  9. Development of Consensus Treatment Plans for Juvenile Localized Scleroderma

    Science.gov (United States)

    Li, Suzanne C.; Torok, Kathryn S.; Pope, Elena; Dedeoglu, Fatma; Hong, Sandy; Jacobe, Heidi T.; Rabinovich, C. Egla; Laxer, Ronald M.; Higgins, Gloria C.; Ferguson, Polly J.; Lasky, Andrew; Baszis, Kevin; Becker, Mara; Campillo, Sarah; Cartwright, Victoria; Cidon, Michael; Inman, Christi J; Jerath, Rita; O'Neil, Kathleen M.; Vora, Sheetal; Zeft, Andrew; Wallace, Carol A.; Ilowite, Norman T.; Fuhlbrigge, Robert C

    2013-01-01

    Objective To develop standardized treatment plans, clinical assessments, and response criteria for active, moderate to high severity juvenile localized scleroderma (jLS). Background jLS is a chronic inflammatory skin disorder associated with substantial morbidity and disability. Although a wide range of therapeutic strategies have been reported in the literature, a lack of agreement on treatment specifics and accepted methods for clinical assessment of have made it difficult to compare approaches and identify optimal therapy. Methods A core group of pediatric rheumatologists, dermatologists and a lay advisor was engaged by the Childhood Arthritis and Rheumatology Research Alliance (CARRA) to develop standardized treatment plans and assessment parameters for jLS using consensus methods/nominal group techniques. Recommendations were validated in two face-to-face conferences with a larger group of practitioners with expertise in jLS and with the full membership of CARRA, which encompasses the majority of pediatric rheumatologists in the U.S and Canada. Results Consensus was achieved on standardized treatment plans that reflect the prevailing treatment practices of CARRA members. Standardized clinical assessment methods and provisional treatment response criteria were also developed. Greater than 90% of pediatric rheumatologists responding to a survey (67% of CARRA membership) affirmed the final recommendations and agreed to utilize these consensus plans to treat patients with jLS. Conclusions Using consensus methodology, we have developed standardized treatment plans and assessment methods for jLS. The high level of support among pediatric rheumatologists will support future comparative effectiveness studies and enable the development of evidence-based guidelines for the treatment of jLS. PMID:22505322

  10. Inverse treatment planning based on MRI for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Citrin, Deborah; Ning, Holly; Guion, Peter; Li Guang; Susil, Robert C.; Miller, Robert W.; Lessard, Etienne; Pouliot, Jean; Xie Huchen; Capala, Jacek; Coleman, C. Norman; Camphausen, Kevin; Menard, Cynthia

    2005-01-01

    Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer. Methods and materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy. Treatment planning MRI scans were systematically evaluated to derive a class solution for inverse planning constraints that would reproducibly result in acceptable target and normal tissue dosimetry. Results: We verified the spatial integrity of MRI for treatment planning. MRI anatomic evaluation revealed no significant displacement of the prostate in the left lateral decubitus position, a mean distance of 14.47 mm from the prostatic apex to the penile bulb, and clear demarcation of the neurovascular bundles on postcontrast imaging. Derivation of a class solution for inverse planning constraints resulted in a mean target volume receiving 100% of the prescribed dose of 95.69%, while maintaining a rectal volume receiving 75% of the prescribed dose of <5% (mean 1.36%) and urethral volume receiving 125% of the prescribed dose of <2% (mean 0.54%). Conclusion: Systematic evaluation of image spatial integrity, delineation uncertainty, and inverse planning constraints in our procedure reduced uncertainty in planning and treatment

  11. The Trimeric Model: A New Model of Periodontal Treatment Planning

    Science.gov (United States)

    Tarakji, Bassel

    2014-01-01

    Treatment of periodontal disease is a complex and multidisciplinary procedure, requiring periodontal, surgical, restorative, and orthodontic treatment modalities. Several authors attempted to formulate models for periodontal treatment that orders the treatment steps in a logical and easy to remember manner. In this article, we discuss two models of periodontal treatment planning from two of the most well-known textbook in the specialty of periodontics internationally. Then modify them to arrive at a new model of periodontal treatment planning, The Trimeric Model. Adding restorative and orthodontic interrelationships with periodontal treatment allows us to expand this model into the Extended Trimeric Model of periodontal treatment planning. These models will provide a logical framework and a clear order of the treatment of periodontal disease for general practitioners and periodontists alike. PMID:25177662

  12. Assessing the quality of conformal treatment planning: a new tool for quantitative comparison

    International Nuclear Information System (INIS)

    Menhel, J; Levin, D; Alezra, D; Symon, Z; Pfeffer, R

    2006-01-01

    We develop a novel radiotherapy plan comparison index, critical organ scoring index (COSI), which is a measure of both target coverage and critical organ overdose. COSI is defined as COSI = 1 - (V(OAR) >tol /TC), where V(OAR) >tol is the fraction of volume of organ at risk receiving more than tolerance dose, and TC is the target coverage, V T,PI /V T , where V T,PI is the target volume receiving at a least prescription dose and V T is the total target volume. COSI approaches unity when the critical structure is completely spared and the target coverage is unity. We propose a two-dimensional, graphical representation of COSI versus conformity index (CI), where CI is a measure of a normal tissue overdose. We show that this 2D representation is a reliable, visual quantitative tool for evaluating competing plans. We generate COSI-CI plots for three sites: head and neck, cavernous sinus, and pancreas, and evaluate competing non-coplanar 3D and IMRT treatment plans. For all three sites this novel 2D representation assisted the physician in choosing the optimal plan, both in terms of target coverage and in terms of critical organ sparing. We verified each choice by analysing individual DVHs and isodose lines. Comparing our results to the widely used conformation number, we found that in all cases where there were discrepancies in the choice of the best treatment plan, the COSI-CI choice was considered the correct one, in several cases indicating that a non-coplanar 3D plan was superior to the IMRT plans. The choice of plan was quick, simple and accurate using the new graphical representation

  13. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    International Nuclear Information System (INIS)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G.; Loo, Billy W.; Hårdemark, Björn; Hynning, Elin

    2015-01-01

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  14. Process-based project proposal risk management

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2016-12-01

    Full Text Available We all are aware of the organizational omnipresence. Projects within the organizations are ubiquitous too. Projects achieve their goals successfully if they are planned, scheduled, controlled and implemented well. The project lifecycle of initiating, planning, scheduling, controlling and implementing are very well-planned by project managers and the organizations. Successful projects have well-developed risk management plans to deal with situations impacting projects. Like any other organisation, a university does try to access funds for different purposes too. For such organisations, running a project is not the issue, rather getting a project proposal approved to fund a project is the key. Project proposal processing is done by the nodal office in every organisation. Usually, these nodal offices help in administration and submission of a project proposal for accessing funds. Seldom are these nodal project offices within the organizations facilitate a project proposal approval by proactively reaching out to the project managers. And as project managers prepare project proposals, little or no attention is made to prepare a project proposal risk plan so as to maximise project acquisition. Risk plans are submitted while preparing proposals but these risk plans cater to a requirement to address actual projects upon approval. Hence, a risk management plan for project proposal is either missing or very little effort is made to treat the risks inherent in project acquisition. This paper is an integral attempt to highlight the importance of risk treatment for project proposal stage as an extremely important step to preparing the risk management plan made for projects corresponding to their lifecycle phases. Several tools and techniques have been proposed in the paper to help and guide either the project owner (proposer or the main organisational unit responsible for project management. Development of tools and techniques to further enhance project

  15. Conformal three dimensional radiotherapy treatment planning in Lund

    International Nuclear Information System (INIS)

    Knoos, T.; Nilsson, P.; Anders, A.

    1995-01-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam's eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam's eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment

  16. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    International Nuclear Information System (INIS)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J; Keranen, W

    2015-01-01

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827

  17. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    Energy Technology Data Exchange (ETDEWEB)

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J [University of Michigan Hospital and Health System, Ann Arbor, MI (United States); Keranen, W [Varian Medical Systems, Palo Alto, CA (United States)

    2015-06-15

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.

  18. Proposed plan for the K-Area Bingham Pump Outage Pit (643-1G)

    International Nuclear Information System (INIS)

    Palmer, E.

    1997-06-01

    This Proposed Plan is issued by the U.S. Department of Energy (DOE), which functions as the lead agency for SRS remedial activities, and with concurrence by the U.S. Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The purpose of this Proposed Plan is to describe the preferred remedial alternative for addressing the K-Area Bingham Pump Outage Pit (643-1G) (K BPOP) located at the Savannah River Site (SRS) in Aiken, South Carolina and to solicit public comments on the preferred alternative

  19. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.

    Science.gov (United States)

    Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei

    2013-09-21

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  20. Toward a web-based real-time radiation treatment planning system in a cloud computing environment

    International Nuclear Information System (INIS)

    Na, Yong Hum; Kapp, Daniel S; Xing, Lei; Suh, Tae-Suk

    2013-01-01

    To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm 2 ) from the Varian TrueBeam TM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are

  1. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    Energy Technology Data Exchange (ETDEWEB)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor [Gamma Knife Unit, Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029 (India)

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  2. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    International Nuclear Information System (INIS)

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-01-01

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film

  3. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs

    International Nuclear Information System (INIS)

    Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Jia, Xun; Jiang, Steve; Zhou, Linghong

    2013-01-01

    Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose–volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30

  4. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    Science.gov (United States)

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined

  5. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  6. SU-F-T-37: Dosimetric Evaluation of Planned Versus Decay Corrected Treatment Plans for the Treatment of Tandem-Based Cervical HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, M [Texas Oncology, PA, Fort Worth, TX (United States); Shobhit University, Meerut, Uttar Pradesh (India); Manjhi, J; Rai, D [Shobhit University, Meerut, Uttar Pradesh (India); Kehwar, T [Pinnacle Health Cancer Center, Mechanicsburg, PA (United States); Barker, J; Heintz, B; Shide, K [Texas Oncology, PA, Fort Worth, TX (United States)

    2016-06-15

    Purpose: This study evaluated dosimetric parameters for actual treatment plans versus decay corrected treatment plans for cervical HDR brachytherapy. Methods: 125 plans of 25 patients, who received 5 fractions of HDR brachytherapy, were evaluated in this study. Dose was prescribed to point A (ICRU-38) and High risk clinical tumor volume (HR-CTV) and organs at risk (OAR) were, retrospectively, delineated on original CT images by treating physician. First HDR plan was considered as reference plan and decay correction was applied to calculate treatment time for subsequent fractions, and was applied, retrospectively, to determine point A, HR-CTV D90, and rectum and bladder doses. Results: The differences between mean point A reference doses and the point A doses of the plans computed using decay times were found to be 1.05%±0.74% (−2.26% to 3.26%) for second fraction; −0.25%±0.84% (−3.03% to 3.29%) for third fraction; 0.04%±0.70% (−2.68% to 2.56%) for fourth fraction and 0.30%±0.81% (−3.93% to 2.67%) for fifth fraction. Overall mean point A dose difference, for all fractions, was 0.29%±0.38% (within ± 5%). Mean rectum and bladder dose differences were calculated to be −3.46%±0.12% and −2.47%±0.09%, for points, respectively, and −1.72%±0.09% and −0.96%±0.06%, for D2cc, respectively. HR-CTV D90 mean dose difference was found to be −1.67% ± 0.11%. There was no statistically significant difference between the reference planned point A doses and that calculated using decay time to the subsequent fractions (p<0.05). Conclusion: This study reveals that a decay corrected treatment will provide comparable dosimetric results and can be utilized for subsequent fractions of cervical HDR brachytherapy instead of actual treatment planning. This approach will increase efficiency, decrease workload, reduce patient observation time between applicator insertion and treatment delivery. This would be particularly useful for institutions with limited

  7. Towards biology-oriented treatment planning in hadrontherapy

    Czech Academy of Sciences Publication Activity Database

    Kundrát, Pavel

    2006-01-01

    Roč. 122, 1-4 (2006), s. 480-482 ISSN 0144-8420 R&D Projects: GA ČR GA202/05/2728 Institutional research plan: CEZ:AV0Z10100502 Keywords : treatment planning * hadron radiotherapy Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.446, year: 2006

  8. Conventional treatment planning optimization using simulated annealing

    International Nuclear Information System (INIS)

    Morrill, S.M.; Langer, M.; Lane, R.G.

    1995-01-01

    Purpose: Simulated annealing (SA) allows for the implementation of realistic biological and clinical cost functions into treatment plan optimization. However, a drawback to the clinical implementation of SA optimization is that large numbers of beams appear in the final solution, some with insignificant weights, preventing the delivery of these optimized plans using conventional (limited to a few coplanar beams) radiation therapy. A preliminary study suggested two promising algorithms for restricting the number of beam weights. The purpose of this investigation was to compare these two algorithms using our current SA algorithm with the aim of producing a algorithm to allow clinically useful radiation therapy treatment planning optimization. Method: Our current SA algorithm, Variable Stepsize Generalized Simulated Annealing (VSGSA) was modified with two algorithms to restrict the number of beam weights in the final solution. The first algorithm selected combinations of a fixed number of beams from the complete solution space at each iterative step of the optimization process. The second reduced the allowed number of beams by a factor of two at periodic steps during the optimization process until only the specified number of beams remained. Results of optimization of beam weights and angles using these algorithms were compared using a standard cadre of abdominal cases. The solution space was defined as a set of 36 custom-shaped open and wedged-filtered fields at 10 deg. increments with a target constant target volume margin of 1.2 cm. For each case a clinically-accepted cost function, minimum tumor dose was maximized subject to a set of normal tissue binary dose-volume constraints. For this study, the optimized plan was restricted to four (4) fields suitable for delivery with conventional therapy equipment. Results: The table gives the mean value of the minimum target dose obtained for each algorithm averaged over 5 different runs and the comparable manual treatment

  9. MO-B-BRB-02: Maintain the Quality of Treatment Planning for Time-Constraint Cases

    International Nuclear Information System (INIS)

    Chang, J.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  10. MO-B-BRB-02: Maintain the Quality of Treatment Planning for Time-Constraint Cases

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J. [New York Weill Cornell Medical Ctr (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  11. Treatment planning with ion beams

    International Nuclear Information System (INIS)

    Foss, M.H.

    1985-01-01

    Ions have higher linear energy transfer (LET) near the end of their range and lower LET away from the end of their range. Mixing radiations of different LET complicates treatment planning because radiation kills cells in two statistically independent ways. In some cases, cells are killed by a single-particle, which causes a linear decrease in log survival at low dosage. When the linear decrease is subtracted from the log survival curve, the remaining curve has zero slope at zero dosage. This curve is the log survival curve for cells that are killed only by two or more particles. These two mechanisms are statistically independent. To calculate survival, these two kinds of doses must be accumulated separately. The effect of each accumulated dosage must be read from its survival curve, and the logarithms of the two effects added to get the log survival. Treatment plans for doses of protons, He 3 ions, and He 4 ions suggest that these ions will be useful therapeutic modalities

  12. Comparison of step and shoot IMRT treatment plans generated by three inverse treatment planning systems; Comparacion de tratamientos de IMRT estatica generados por tres sistemas de planificacion inversa

    Energy Technology Data Exchange (ETDEWEB)

    Perez Moreno, J. M.; Zucca Aparicio, D.; Fernandez leton, P.; Garcia Ruiz-Zorrilla, J.; Minambres Moro, A.

    2011-07-01

    One of the most important issues of intensity modulated radiation therapy (IMRT) treatments using the step-and-shoot technique is the number of segments and monitor units (MU) for treatment delivery. These parameters depend heavily on the inverse optimization module of the treatment planning system (TPS) used. Three commercial treatment planning systems: CMS XiO, iPlan and Prowess Panther have been evaluated. With each of them we have generated a treatment plan for the same group of patients, corresponding to clinical cases. Dosimetric results, MU calculated and number of segments were compared. Prowess treatment planning system generates plans with a number of segments significantly lower than other systems, while MU are less than a half. It implies important reductions in leakage radiation and delivery time. Degradation in the final dose calculation of dose is very small, because it directly optimizes positions of multileaf collimator (MLC). (Author) 13 refs.

  13. Proposed plan for interim remedial measures at the 100-HR-1 Operable Unit, Hanford Site, Richland, Washington. Draft A

    International Nuclear Information System (INIS)

    1994-09-01

    This proposed plan introduces the interim remedial measures for addressing contaminated soil at the 100-HR-1 Operable Unit, located at the Hanford Site. In addition, this plan includes a summary of other alternatives analyzed and considered for the 100-HR-1 Operable Unit. The EPA, DOE, and Washington State Dept. of Ecology believe that a combination of removal, treatment, and disposal technologies, where appropriate, would significantly reduce the potential threats to human health and the environment at the 100-HR-1 Operable Unit high-priority waste sites. The remedial actions described in this proposed plan are designed to minimize human health and ecological risks and ensure that additional contaminants originating from these waste sites are not transported to the groundwater. The 100-HR-1 Operable Unit contains the retention basin for the H reactor cooling system, process effluent trenches, the Pluto crib which received an estimated 260 gallons of radioactive liquid waste, process effluent pipelines, and solid waste sites used for the burial of decontaminated and decommissioned equipment from other facilities. Potential health threats would be from the isotopes of cesium, cobalt, europium, plutonium, and strontium, and from chromium, arsenic, lead, and chysene

  14. Computational Dosimetry and Treatment Planning Considerations for Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Nigg, David Waler

    2003-01-01

    Specialized treatment planning software systems are generally required for neutron capture therapy (NCT) research and clinical applications. The standard simplifying approximations that work well for treatment planning computations in the case of many other modalities are usually not appropriate for application to neutron transport. One generally must obtain an explicit three-dimensional numerical solution of the governing transport equation, with energy-dependent neutron scattering completely taken into account. Treatment planning systems that have been successfully introduced for NCT applications over the past 15 years rely on the Monte Carlo stochastic simulation method for the necessary computations, primarily because of the geometric complexity of human anatomy. However, historically, there has also been interest in the application of deterministic methods, and there have been some practical developments in this area. Most recently, interest has turned toward the creation of treatment planning software that is not limited to any specific therapy modality, with NCT as only one of several applications. A key issue with NCT treatment planning has to do with boron quantification, and whether improved information concerning the spatial biodistribution of boron can be effectively used to improve the treatment planning process. Validation and benchmarking of computations for NCT are also of current developmental interest. Various institutions have their own procedures, but standard validation models are not yet in wide use

  15. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    International Nuclear Information System (INIS)

    Lee, Taewoo; Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl 2 distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  16. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T; Nilsson, P [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  17. Integration of second cancer risk calculations in a radiotherapy treatment planning system

    International Nuclear Information System (INIS)

    Hartmann, M; Schneider, U

    2014-01-01

    Second cancer risk in patients, in particular in children, who were treated with radiotherapy is an important side effect. It should be minimized by selecting an appropriate treatment plan for the patient. The objectives of this study were to integrate a risk model for radiation induced cancer into a treatment planning system which allows to judge different treatment plans with regard to second cancer induction and to quantify the potential reduction in predicted risk. A model for radiation induced cancer including fractionation effects which is valid for doses in the radiotherapy range was integrated into a treatment planning system. From the three-dimensional (3D) dose distribution the 3D-risk equivalent dose (RED) was calculated on an organ specific basis. In addition to RED further risk coefficients like OED (organ equivalent dose), EAR (excess absolute risk) and LAR (lifetime attributable risk) are computed. A risk model for radiation induced cancer was successfully integrated in a treatment planning system. Several risk coefficients can be viewed and used to obtain critical situations were a plan can be optimised. Risk-volume-histograms and organ specific risks were calculated for different treatment plans and were used in combination with NTCP estimates for plan evaluation. It is concluded that the integration of second cancer risk estimates in a commercial treatment planning system is feasible. It can be used in addition to NTCP modelling for optimising treatment plans which result in the lowest possible second cancer risk for a patient.

  18. Plug pattern optimization for gamma knife radiosurgery treatment planning

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Wu, Jackie; Dean, David; Xing Lei; Xue Jinyue; Maciunas, Robert; Sibata, Claudio

    2003-01-01

    Purpose: To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. Method and Materials: We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the number of shots and isocenter location, size, and weight of each shot. Then we create a plug quality score system that checks the dose contribution to the volume of interest by each plug in the treatment plan. A positive score implies that the corresponding source could be open to improve tumor coverage, whereas a negative score means the source could be blocked for the purpose of sparing normal and critical structures. The plug pattern is then optimized via the GESA algorithm that is integrated with this score system. Weight and position of each shot are also tuned in this procedure. Results: An acoustic tumor case is used to evaluate our algorithm. Compared to the treatment plan generated without plug patterns, adding an optimized plug pattern into the treatment planning process boosts tumor coverage index from 95.1% to 97.2%, reduces RTOG conformity index from 1.279 to 1.167, lowers Paddick's index from 1.34 to 1.20, and trims the critical structure receiving more than 30% maximum dose from 16 mm 3 to 6 mm 3 . Conclusions: Automated GESA-based plug pattern optimization of gamma knife radiosurgery frees the treatment planning team from the manual forward planning procedure and provides an optimal treatment plan

  19. Treatment planning for SBRT using automated field delivery: A case study

    International Nuclear Information System (INIS)

    Ritter, Timothy A.; Owen, Dawn; Brooks, Cassandra M.; Stenmark, Matthew H.

    2015-01-01

    Stereotactic body radiation therapy (SBRT) treatment planning and delivery can be accomplished using a variety of techniques that achieve highly conformal dose distributions. Herein, we describe a template-based automated treatment field approach that enables rapid delivery of more than 20 coplanar fields. A case study is presented to demonstrate how modest adaptations to traditional SBRT planning can be implemented to take clinical advantage of this technology. Treatment was planned for a left-sided lung lesion adjacent to the chest wall using 25 coplanar treatment fields spaced at 11° intervals. The plan spares the contralateral lung and is in compliance with the conformality standards set forth in Radiation Therapy and Oncology Group protocol 0915, and the dose tolerances found in the report of the American Association of Physicists in Medicine Task Group 101. Using a standard template, treatment planning was accomplished in less than 20 minutes, and each 10 Gy fraction was delivered in approximately 5.4 minutes. For those centers equipped with linear accelerators capable of automated treatment field delivery, the use of more than 20 coplanar fields is a viable SBRT planning approach and yields excellent conformality and quality combined with rapid planning and treatment delivery. Although the case study discusses a laterally located lung lesion, this technique can be applied to centrally located tumors with similar results

  20. Incorporating organ movements in IMRT treatment planning for prostate cancer: Minimizing uncertainties in the inverse planning process

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Oelfke, Uwe

    2005-01-01

    We investigate an off-line strategy to incorporate inter fraction organ movements in IMRT treatment planning. Nowadays, imaging modalities located in the treatment room allow for several CT scans of a patient during the course of treatment. These multiple CT scans can be used to estimate a probability distribution of possible patient geometries. This probability distribution can subsequently be used to calculate the expectation value of the delivered dose distribution. In order to incorporate organ movements into the treatment planning process, it was suggested that inverse planning could be based on that probability distribution of patient geometries instead of a single snapshot. However, it was shown that a straightforward optimization of the expectation value of the dose may be insufficient since the expected dose distribution is related to several uncertainties: first, this probability distribution has to be estimated from only a few images. And second, the distribution is only sparsely sampled over the treatment course due to a finite number of fractions. In order to obtain a robust treatment plan these uncertainties should be considered and minimized in the inverse planning process. In the current paper, we calculate a 3D variance distribution in addition to the expectation value of the dose distribution which are simultaniously optimized. The variance is used as a surrogate to quantify the associated risks of a treatment plan. The feasibility of this approach is demonstrated for clinical data of prostate patients. Different scenarios of dose expectation values and corresponding variances are discussed

  1. Nevada Test Site site treatment plan. Final annual update. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFCAct Consent Order (CO) dated March 6, 1996. The FFCAct CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  2. Proposed plan for interim remedial measures at the 100-KR-1 Operable Unit. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This proposed plan identifies the preferred alternative for interim remedial measures for remedial action of radioactive liquid waste disposal sites that include contaminated soils and structures at the 100-KR-1 Operable Unit, located at the Hanford Site. It also summarizes other remedial alternatives evaluated for interim remedial measures in this Operable Unit. The intent of interim remedial measures is to speed up actions to address contaminated areas that pose potential threats to human health and the environment. This proposed plan is being issued by the US Environmental Protection Agency (EPA), the lead regulatory agency; the Washington State Department of Ecology (Ecology), the support regulatory agency; and the US Department of Energy (DOE), the responsible agency. The EPA, Ecology, and the DOE are issuing this proposed plan as part of their public participation responsibilities under Section 117(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as the ''Superfund Law.'' This proposed plan is intended to be a fact sheet for public review which briefly describes the remedial alternatives analyzed, identifies a preferred alternative, and summarizes the information relied upon to recommend the preferred alternative

  3. Bedfordshire County Structure Plan. Proposed alterations -Public participation statement. Policy 97: Nuclear waste

    International Nuclear Information System (INIS)

    1984-01-01

    The document describes steps taken, in accord with the Town and Country Planning Act 1971, by Bedfordshire County Council, submitting proposed Alterations to the County Structure Plan to the Secretary of State for the Environment. When approving the submission the Council decided to add an additional Alteration dealing with nuclear waste: as this had not been the subject of public consultation the Council decided to seek the public's views on the proposal before submitting the Alteration. The arrangements for consultation and a list of persons and organizations consulted are given, together with the arrangements for considering comments. (U.K.)

  4. SU-E-J-70: Feasibility Study of Dynamic Arc and IMRT Treatment Plans Utilizing Vero Treatment Unit and IPlan Planning Computer for SRS/FSRT Brain Cancer Patients

    International Nuclear Information System (INIS)

    Huh, S; Lee, S; Dagan, R; Malyapa, R; Mendenhall, N; Mendenhall, W; Ho, M; Hough, D; Yam, M; Li, Z

    2014-01-01

    Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm with a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets

  5. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  6. Volumetric Modulated Arc Therapy (VMAT) Treatment Planning for Superficial Tumors

    International Nuclear Information System (INIS)

    Zacarias, Albert S.; Brown, Mellonie F.; Mills, Michael D.

    2010-01-01

    The physician's planning objective is often a uniform dose distribution throughout the planning target volume (PTV), including superficial PTVs on or near the surface of a patient's body. Varian's Eclipse treatment planning system uses a progressive resolution optimizer (PRO), version 8.2.23, for RapidArc dynamic multileaf collimator volumetric modulated arc therapy planning. Because the PRO is a fast optimizer, optimization convergence errors (OCEs) produce dose nonuniformity in the superficial area of the PTV. We present a postsurgical cranial case demonstrating the recursive method our clinic uses to produce RapidArc treatment plans. The initial RapidArc treatment plan generated using one 360 o arc resulted in substantial dose nonuniformity in the superficial section of the PTV. We demonstrate the use of multiple arcs to produce improved dose uniformity in this region. We also compare the results of this superficial dose compensation method to the results of a recursive method of dose correction that we developed in-house to correct optimization convergence errors in static intensity-modulated radiation therapy treatment plans. The results show that up to 4 arcs may be necessary to provide uniform dose to the surface of the PTV with the current version of the PRO.

  7. Compass model-based quality assurance for stereotactic VMAT treatment plans.

    Science.gov (United States)

    Valve, Assi; Keyriläinen, Jani; Kulmala, Jarmo

    2017-12-01

    To use Compass as a model-based quality assurance (QA) tool for stereotactic body radiation therapy (SBRT) and stereotactic radiation therapy (SRT) volumetric modulated arc therapy (VMAT) treatment plans calculated with Eclipse treatment planning system (TPS). Twenty clinical stereotactic VMAT SBRT and SRT treatment plans were blindly selected for evaluation. Those plans included four different treatment sites: prostate, brain, lung and body. The plans were evaluated against dose-volume histogram (DVH) parameters and 2D and 3D gamma analysis. The dose calculated with Eclipse treatment planning system (TPS) was compared to Compass calculated dose (CCD) and Compass reconstructed dose (CRD). The maximum differences in mean dose of planning target volume (PTV) were 2.7 ± 1.0% between AAA and Acuros XB calculation algorithm TPS dose, -7.6 ± 3.5% between Eclipse TPS dose and CCD dose and -5.9 ± 3.7% between Eclipse TPS dose and CRD dose for both Eclipse calculation algorithms, respectively. 2D gamma analysis was not able to identify all the cases that 3D gamma analysis specified for further verification. Compass is suitable for QA of SBRT and SRT treatment plans. However, the QA process should include wide set of DVH-based dose parameters and 3D gamma analysis should be the preferred method when performing clinical patient QA. The results suggest that the Compass should not be used for smaller field sizes than 3 × 3 cm 2 or the beam model should be adjusted separately for both small (FS ≤ 3 cm) and large (FS > 3 cm) field sizes. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. MO-C-BRF-01: Pediatric Treatment Planning I: Overview of Planning Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A [Childrens Hospital of LA, Los Angeles, CA (United States); Hua, C [St. Jude Childrens Research Hospital, Memphis, TN (United States)

    2014-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child's brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. This fact has important implications for the choice of delivery techniques, especially when considering IMRT. For bilateral retinoblastoma for example, an irradiated child has a 50% chance of developing a second cancer by age 50. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa, neuroblastoma, requiring focal

  9. [Endodontically treated teeth. Success--failure. Endorestorative treatment plan].

    Science.gov (United States)

    Zabalegui, B

    1990-01-01

    More and more often the general dentist is finding the presence of endodontically treated teeth during his treatment planning procedure. He has to ask himself if the endo-treated tooth functions and will continue to function function successfully, when deciding which final endo-restorative procedure to apply. For this reason the dentist or the endodontist with whom he works should clinically evaluate these teeth, establish a diagnostic criteria of their success or failure and a treatment plan according to the prognosis. The purpose of this article is to offer an organized clinical view of the steps to follow when evaluating an endodontically treated tooth and how to establish a final endo-restorative plan.

  10. Preservation of information about the repository for spent nuclear fuels - proposal for action plan

    International Nuclear Information System (INIS)

    Bowen-Schrire, Monica; Eckerhall, Daniel; Jander, Hans; Waniewska, Katarina

    2008-10-01

    This report is a proposal for an action plan with the ultimate aim of ensuring that information about the repository for spent nuclear fuel can be preserved and transferred for future generations. The purpose of the proposal for an action plan is to present ideas on tangible measures and guidelines for information preservation and transfer, in the short and long term. The report deals with a number of aspects relating to information preservation as well as risks that can lead to the loss of important information. The proposal for an action plan is based on reasoning about these subjects. The main emphasis is on measures that need to be implemented in the near future to ensure that successive and direct information transfer is handled in a suitable manner. It is suggested that the following measures should be implemented within a five-year period: - Designate a person responsible for information preservation. - Work out guidelines for information preservation and transfer. - Form a network with other organizations in Sweden. - Initiate a dialogue with other countries, especially USA and France. - Participate in seminars, conferences and workgroups on an international level within the IAEA and NEA. In a longer time perspective the following measures should also be implemented: - Implement guidelines for information preservation and transfer. - Document the archiving system. - Establish a communication plan. - Archive information about the repository. - Keep the action plan up to date

  11. Clinical evaluation of treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Emery, E W [Radiotherapy Department, University College Hospital, London (United Kingdom)

    1966-06-15

    Since the start of radiotherapy, the aim of all radiotherapists has been to treat as many patients who suffer with malignant tumours as possible, so as to give an effective curative dose to the whole tumour, at the same time, doing as little damage as possible to normal tissues. Until 1945, damage to the skin was usually the limiting factor. Since the war, with the rapid development of more powerful X-ray machines and sources of irradiation, we have had at our disposal much more penetrating radiation, allowing us to give effective tumour doses, with little or no damage to the skin. However, with higher tumour doses, there is more likelihood of damage to structures in proximity to the tumour - i.e. bone, nerves, muscle, liver, kidney etc. This has focussed the interest of all radiologists on the need for careful planning, and physicists have worked out with great care the differential absorptions of X-rays on differing tissue, i. e. bone, muscle, fat etc., so that very accurate and correct treatment planning can now be undertaken. This entails a great deal of accurate and complicated work and has had to be done by our physicist colleagues, who may take hours or days to work out a complicated treatment plan. The acceptance of the plan as being the most suitable for a patient is governed by these factors: (a) The dose must be given to the whole tumour area; (b) The nearby structures, i. e. nerves, bowel, kidney etc. must not receive a dose which may cause serious damage; (c) All parts of the tumour must have an effective dose; (d) The integral dose must be such that the patient is not unduly upset. All these factors vary from patient to patient, and thus each plan has to be considered in conjunction with each individual patient so that, although patients have similar tumours, what may be an optimal plan for one may not be for another. Also clinicians themselves vary in their opinions on the size of tumour, general condition of the patient, and the amount of damage

  12. Collision detection and avoidance during treatment planning

    International Nuclear Information System (INIS)

    Humm, John L.; Pizzuto, Domenico; Fleischman, Eric; Mohan, Radhe

    1995-01-01

    Purpose: To develop computer software that assists the planner avoid potential gantry collisions with the patient or patient support assembly during the treatment planning process. Methods and Materials: The approach uses a simulation of the therapy room with a scale model of the treatment machine. Because the dimensions of the machine and patient are known, one can calculate a priori whether any desired therapy field is possible or will result in a collision. To assist the planner, we have developed a graphical interface enabling the accurate visualization of each treatment field configuration with a 'room's eye view' treatment planning window. This enables the planner to be aware of, and alleviate any potential collision hazards. To circumvent blind spots in the graphic representation, an analytical software module precomputes whether each update of the gantry or turntable position is safe. Results: If a collision is detected, the module alerts the planner and suggests collision evasive actions such as either an extended distance treatment or the gantry angle of closest approach. Conclusions: The model enables the planner to experiment with unconventional noncoplanar treatment fields, and immediately test their feasibility

  13. Optimization of Gamma Knife treatment planning via guided evolutionary simulated annealing

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Dean, David; Metzger, Andrew; Sibata, Claudio

    2001-01-01

    We present a method for generating optimized Gamma Knife trade mark sign (Elekta, Stockholm, Sweden) radiosurgery treatment plans. This semiautomatic method produces a highly conformal shot packing plan for the irradiation of an intracranial tumor. We simulate optimal treatment planning criteria with a probability function that is linked to every voxel in a volumetric (MR or CT) region of interest. This sigmoidal P + parameter models the requirement of conformality (i.e., tumor ablation and normal tissue sparing). After determination of initial radiosurgery treatment parameters, a guided evolutionary simulated annealing (GESA) algorithm is used to find the optimal size, position, and weight for each shot. The three-dimensional GESA algorithm searches the shot parameter space more thoroughly than is possible during manual shot packing and provides one plan that is suitable to the treatment criteria of the attending neurosurgeon and radiation oncologist. The result is a more conformal plan, which also reduces redundancy, and saves treatment administration time

  14. The role of Cobalt-60 source in Intensity Modulated Radiation Therapy: From modeling finite sources to treatment planning and conformal dose delivery

    Science.gov (United States)

    Dhanesar, Sandeep Kaur

    Cobalt-60 (Co-60) units played an integral role in radiation therapy from the mid-1950s to the 1970s. Although they continue to be used to treat cancer in some parts of the world, their role has been significantly reduced due to the invention of medical linear accelerators. A number of groups have indicated a strong potential for Co-60 units in modern radiation therapy. The Medical Physics group at the Cancer Center of the Southeastern Ontario and Queen's University has shown the feasibility of Intensity Modulated Radiation Therapy (IMRT) via simple conformal treatment planning and dose delivery using a Co-60 unit. In this thesis, initial Co-60 tomotherapy planning investigations on simple uniform phantoms are extended to actual clinical cases based on patient CT data. The planning is based on radiation dose data from a clinical Co-60 unit fitted with a multileaf collimator (MLC) and modeled in the EGSnrc Monte Carlo system. An in house treatment planning program is used to calculate IMRT dose distributions. Conformal delivery in a single slice on a uniform phantom based on sequentially delivered pencil beams is verified by Gafchromic film. Volumetric dose distributions for Co-60 serial tomotherapy are then generated for typical clinical sites that had been treated at our clinic by conventional 6MV IMRT using Varian Eclipse treatment plans. The Co-60 treatment plans are compared with the clinical IMRT plans using conventional matrices such as dose volume histograms (DVH). Dose delivery based on simultaneously opened MLC leaves is also explored and a novel MLC segmentation method is proposed. In order to increase efficiency of dose calculations, a novel convolution based fluence model for treatment planning is also proposed. The ion chamber measurements showed that the Monte Carlo modeling of the beam data under the MIMiC MLC is accurate. The film measurements from the uniform phantom irradiations confirm that IMRT plans from our in-house treatment planning system

  15. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    International Nuclear Information System (INIS)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE's mixed waste

  16. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Tables 8.1 and 8.2, Appendices A, B, C

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE`s mixed waste.

  17. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  18. Radiotherapy treatment planning linear-quadratic radiobiology

    CERN Document Server

    Chapman, J Donald

    2015-01-01

    Understand Quantitative Radiobiology from a Radiation Biophysics PerspectiveIn the field of radiobiology, the linear-quadratic (LQ) equation has become the standard for defining radiation-induced cell killing. Radiotherapy Treatment Planning: Linear-Quadratic Radiobiology describes tumor cell inactivation from a radiation physics perspective and offers appropriate LQ parameters for modeling tumor and normal tissue responses.Explore the Latest Cell Killing Numbers for Defining Iso-Effective Cancer TreatmentsThe book compil

  19. Evaluation and scoring of radiotherapy treatment plans using an artificial neural network

    International Nuclear Information System (INIS)

    Willoughby, Twyla R.; Starkschall, George; Janjan, Nora A.; Rosen, Isaac I.

    1996-01-01

    Purpose: The objective of this work was to demonstrate the feasibility of using an artificial neural network to predict the clinical evaluation of radiotherapy treatment plans. Methods and Materials: Approximately 150 treatment plans were developed for 16 patients who received external-beam radiotherapy for soft-tissue sarcomas of the lower extremity. Plans were assigned a figure of merit by a radiation oncologist using a five-point rating scale. Plan scoring was performed by a single physician to ensure consistency in rating. Dose-volume information extracted from a training set of 511 treatment plans on 14 patients was correlated to the physician-generated figure of merit using an artificial neural network. The neural network was tested with a test set of 19 treatment plans on two patients whose plans were not used in the training of the neural net. Results: Physician scoring of treatment plans was consistent to within one point on the rating scale 88% of the time. The neural net reproduced the physician scores in the training set to within one point approximately 90% of the time. It reproduced the physician scores in the test set to within one point approximately 83% of the time. Conclusions: An artificial neural network can be trained to generate a score for a treatment plan that can be correlated to a clinically-based figure of merit. The accuracy of the neural net in scoring plans compares well with the reproducibility of the clinical scoring. The system of radiotherapy treatment plan evaluation using an artificial neural network demonstrates promise as a method for generating a clinically relevant figure of merit

  20. 75 FR 2161 - Proposed Extension of Information Collection; Comment Request; Employee Benefit Plan Claims...

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF LABOR Employee Benefits Security Administration Proposed Extension of Information Collection; Comment Request; Employee Benefit Plan Claims Procedures Under ERISA AGENCY: Employee Benefits... Employee Benefits Security Administration (EBSA) is soliciting comments on a proposed extension of the...

  1. An investigation into positron emission tomography contouring methods across two treatment planning systems

    International Nuclear Information System (INIS)

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-01-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems

  2. Proposed energy conservation contingency plan: emergency restrictions on advertising lighting. Authorities, need, rationale, and operation

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The emergency restrictions on advertising lighting proposed in Energy Conservation Contingency Plan No. 5 of 1977 are presented. A statement is given on the need for rationale and operation of the Contingency Plan.

  3. MO-B-BRB-03: Systems Engineering Tools for Treatment Planning Process Optimization in Radiation Medicine

    International Nuclear Information System (INIS)

    Kapur, A.

    2015-01-01

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  4. MO-B-BRB-03: Systems Engineering Tools for Treatment Planning Process Optimization in Radiation Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, A. [Long Island Jewish Medical Center (United States)

    2015-06-15

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequential events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi

  5. A study of the plan dosimetric evaluation on the rectal cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Hak; An, Beom Seok; Kim, Dae Il; Lee, Yang Hoon; Lee, Je Hee [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-12-15

    In order to minimize the dose of femoral head as an appropriate treatment plan for rectal cancer radiation therapy, we compare and evaluate the usefulness of 3-field 3D conformal radiation therapy(below 3fCRT), which is a universal treatment method, and 5-field 3D conformal radiation therapy(below 5fCRT), and Volumetric Modulated Arc Therapy (VMAT). The 10 cases of rectal cancer that treated with 21EX were enrolled. Those cases were planned by Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28) and AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). 3fCRT and 5fCRT plan has 0 degrees, 270 degrees, 90 degrees and 0 degrees, 95 degrees, 45 degrees, 315 degrees, 265 degrees gantry angle, respectively. VMAT plan parameters consisted of 15MV coplanar 360 degrees 1 arac. Treatment prescription was employed delivering 54Gy to recum in 30 fractions. To minimize the dose difference that shows up randomly on optimizing, VMAT plans were optimized and calculated twice, and normalized to the target V100%=95%. The indexes of evaluation are D of Both femoral head and aceta fossa, total MU, H.I.(Homogeneity index) and C.I.(Conformity index) of the PTV. All VMAT plans were verified by gamma test with portal dosimetry using EPID. D of Rt. femoral head was 53.08 Gy, 50.27 Gy, and 30.92 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. D of Rt. aceta fossa was 54.86 Gy, 52.40 Gy, 30.37 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. The maximum dose of both femoral head and aceta fossa was higher in the order of 3fCRT, 5fCRT, and VMAT treatment plan. C.I. showed the lowest VMAT treatment plan with an average of 1.64, 1.48, and 0.99 in the order of 3fCRT, 5fCRT, and VMAT treatment plan. There was no significant difference on H

  6. Proposed standby gasoline rationing plan: public comments

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Under the proposed plan, DOE would allocate ration rights (rights to purchase gasoline) to owners of registered vehicles. All vehicles in a given class would receive the same entitlement. Essential services would receive supplemental allotments of ration rights as pririty firms. Once every 3 months, ration checks would be mailed out to all vehicle registrants, allotting them a certain amount of ration rights. These checks would then be cashed at Coupon Issuance Points, where the bearer would receive ration coupons to be used at gasoline stations. Large users of gasoline could deposit their allotment checks in accounts at ration banks. Coupons or checks would be freely exchangeable in a white market. A certain percentage of the gasoline supply would be set aside in reserve for use in national emergencies. When the plan was published in the Federal Register, public comments were requested. DOE also solicited comments from private citizens, public interest groups, business and industry, state and local governments. A total of 1126 responses were reveived and these are analyzed in this paper. The second part of the report describes how the comments were classified, and gives a statistical breakdown of the major responses. The last section is a discussion and analysis of theissue raised by commenting agencies, firms, associations, and individuals. (MCW)

  7. Orthodontic treatment plan changed by 3D images

    International Nuclear Information System (INIS)

    Yordanova, G.; Stanimirov, P.

    2014-01-01

    Clinical application of CBCT is most often enforced in dental phenomenon of impacted teeth, hyperodontia, transposition, ankyloses or root resorption and other pathologies in the maxillofacial area. The goal, we put ourselves, is to show how the information from 3D images changes the protocol of the orthodontic treatment. The material, we presented six our clinical cases and the change in the plan of the treatment, which has used after analyzing the information carried on the three planes of CBCT. These cases are casuistic in the orthodontic practice and require individual approach to each of them during their analysis and decision taken. The discussion made by us is in line with reveal of the impacted teeth, where we need to evaluate their vertical depth and mediodistal ratios with the bond structures. At patients with hyperodontia, the assessment is of outmost importance to decide which of the teeth to be extracted and which one to be arranged into the dental arch. The conclusion we make is that diagnostic information is essential for decisions about treatment plan. The exact graphs will lead to better treatment plan and more predictable results. (authors) Key words: CBCT. IMPACTED CANINES. HYPERODONTIA. TRANSPOSITION

  8. 78 FR 17224 - Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan...

    Science.gov (United States)

    2013-03-20

    ... sizable portion of South Puget Sound Prairie habitat is located in the urban-rural interface and in the...-FF01E00000] Environmental Impact Statement; Proposed South Puget Sound Prairie Habitat Conservation Plan... permit application would be associated the South Puget Sound Prairie Habitat Conservation Plan (Prairie...

  9. Imaging modalities in radiation treatment planning of brain tumors

    International Nuclear Information System (INIS)

    Georgiev, D.

    2009-01-01

    The radiation therapy is a standard treatment after surgery for most of malignant and some of benignant brain tumors. The restriction in acquiring local tumor control is an inability in realization of high dose without causing radiation necrosis in irradiated area and sparing normal tissues. The development of imaging modalities during the last years is responsible for better treatment results and lower early and late toxicity. Essential is the role of image methods not only in the diagnosis and also in the precise anatomical (during last years also functional) localisation, spreading of the tumor, treatment planning process and the effects of the treatment. Target delineation is one of the great geometrical uncertainties in the treatment planning process. Early studies on the use of CT in treatment planning documented that tumor coverage without CT was clearly inadequate in 20% of the patients and marginal in another 27 %. The image fusion of CT, MBI and PET and also the use of contrast materia helps to get over those restrictions. The use of contrast material enhances the signal in 10 % of the patients with glioblastoma multiform and in a higher percentage of the patients with low-grade gliomas

  10. The mantle cells lymphoma: a proposed treatment

    International Nuclear Information System (INIS)

    Chavez Martinez, Marlene Elizabeth

    2012-01-01

    A literature review was performed on mantle cells lymphoma in the therapeutic schemes. The literature that has been used is published in journals of medicine specializing in hematology, oncology, radiation therapy, molecular biology and internal medicine. The literature review was performed to propose a scheme of treatment according to Costa Rica. Epigenetic alterations have been revealed in patients with mantle lymphoma on current researches. The mantle lymphoma pathology has been described in various forms of clinical and histological presentation, stressing the importance of detailing the different methods and diagnostic reports. Working groups have proposed and developed various chemotherapy regimens and concluded that CHOP alone is without effect in mantle cell lymphoma unlike R-hyper-CVAD, CHOP / DHAP, high-dose Ara-C. Researchers have tried to develop new treatments based vaccines, use of modified viruses, specific monoclonal antibodies. The classic treatment has been triple intrathecal therapy. The central nervous system has been one of the most momentous sites of mantle cell lymphoma infiltration because poorer patient prognosis [es

  11. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.; Wheeler, F.J.; Albright, C.; Cohen, M.; Frandsen, M.; Harkin, G.; Rossmeier, M.

    1999-01-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinical trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT rtpe system upon general release

  12. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  13. Basic considerations in simulated treatment planning for the Stanford Medical Pion Generator (SMPG)

    International Nuclear Information System (INIS)

    Pistenma, D.A.; Li, G.C.; Bagshaw, M.A.

    1977-01-01

    Recent interest in charged heavy particle irradiation is based upon expected improved local tumor control rates because of the greater precision in dose localization and the increased biological effectiveness of the high linear energy transfer ionization of particle beams in their stopping regions (Bragg peaks). A novel 60 beam cylindrical geometry pion spectrometer designed for a hospital-based pion therapy facility has been constructed at Stanford. In conjunction with the development and testing of the SMPG a program of simulated treatment planning is being conducted. This paper presents basic considerations in treatment planning for pions and other charged heavy particles. It also presents the status of simulated treatment planning calculations for the SMPG including a discussion of the principle of irradiation of hypothetical tumor volumes illustrated by examples of simplified treatment plans incorporating tissue density inhomogeneity corrections. Also presented are considerations for realistic simulated treatment planning calculations using computerized tomographic scan cross sections of actual patients and a conceptual plan for an integrated treatment planning and patient treatment system for the SMPG

  14. MO-D-BRB-01: Pediatric Treatment Planning I: Overview of Planning Strategies and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Olch, A. [Childrens Hospital of LA (United States)

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  15. Computerized three-dimensional treatment planning system utilizing interactive colour graphics

    Energy Technology Data Exchange (ETDEWEB)

    McShan, D L; Silverman, A; Lanza, D M; Reinstein, L E; Glicksman, A S [Rhode Island Hospital (US). Dept. of Radiation Oncology

    1979-06-01

    A new computerized radiation treatment planning system has been developed to aid in three-dimensional treatment planning. Using interactive colour graphics in conjunction with a PDP 11/45 computer, the system can take multiple transverse contours and construct a perspective display of the treatment region showing organ surfaces as well as cross-sectional contours. With interactively selected orientations, the display allows easy perception of the relative positioning of the treatment volume and the neighbouring anatomy. For external beam treatment planning, interactive computer simulation is used to select diaphragm sizes which best conform to the target area while avoiding sensitive structures. Dose calculations for the selected beams are carried out on multiple transverse planes. The calculational planes and surfaces are displayed in perspective with radiation dosage displayed in an interactively manipulated colour display. Altogether the system provides an easy assessment of the volume to be irradiated, interactive selection of optimal arrangements of treatment fields and a means of visualizing and evaluating the resulting dose distributions.

  16. 2: Local area networks as a multiprocessor treatment planning system

    International Nuclear Information System (INIS)

    Neblett, D.L.; Hogan, S.E.

    1987-01-01

    The creation of a local area network (LAN) of interconnected computers provides an environment of multi computer processors that adds a new dimension to treatment planning. A LAN system provides the opportunity to have two or more computers working on the plan in parallel. With high speed interprocessor transfer, events such as the time consuming task of correcting several individual beams for contours and inhomogeneities can be performed simultaneously; thus, effectively creating a parallel multiprocessor treatment planning system

  17. WE-G-16A-01: Evolution of Radiation Treatment Planning

    International Nuclear Information System (INIS)

    Rothenberg, L; Mohan, R; Van Dyk, J; Fraass, B; Bortfeld, T

    2014-01-01

    Welcome and Introduction - Lawrence N. Rothenberg This symposium is one a continuing series of presentations at AAPM Annual Meetings on the historical aspects of medical physics, radiology, and radiation oncology that have been organized by the AAPM History Committee. Information on previous presentations including “Early Developments in Teletherapy” (Indianapolis 2013), “Historical Aspects of Cross-Sectional Imaging” (Charlotte 2012), “Historical Aspects of Brachytherapy” (Vancouver 2011), “50 Years of Women in Medical Physics” (Houston 2008), and “Roentgen's Early Investigations” (Minneapolis 2007) can be found in the Education Section of the AAPM Website. The Austin 2014 History Symposium will be on “Evolution of Radiation Treatment Planning.” Overview - Radhe Mohan Treatment planning is one of the most critical components in the chain of radiation therapy of cancers. Treatment plans of today contain a wide variety of sophisticated information conveying the potential clinical effectiveness of the designed treatment to practitioners. Examples of such information include dose distributions superimposed on three- or even four-dimensional anatomic images; dose volume histograms, dose, dose-volume and dose-response indices for anatomic structures of interest; etc. These data are used for evaluating treatment plans and for making treatment decisions. The current state-of-the-art has evolved from the 1940s era when the dose to the tumor and normal tissues was estimated approximately by manual means. However, the symposium will cover the history of the field from the late-1950's, when computers were first introduced for treatment planning, to the present state involving the use of high performance computing and advanced multi-dimensional anatomic, functional and biological imaging, focusing only on external beam treatment planning. The symposium will start with a general overview of the treatment planning process including imaging

  18. WE-G-16A-01: Evolution of Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, L [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States); Van Dyk, J [Western University, London, ON (United Kingdom); Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Bortfeld, T [Massachusetts General Hospital, Boston, MA (United States)

    2014-06-15

    Welcome and Introduction - Lawrence N. Rothenberg This symposium is one a continuing series of presentations at AAPM Annual Meetings on the historical aspects of medical physics, radiology, and radiation oncology that have been organized by the AAPM History Committee. Information on previous presentations including “Early Developments in Teletherapy” (Indianapolis 2013), “Historical Aspects of Cross-Sectional Imaging” (Charlotte 2012), “Historical Aspects of Brachytherapy” (Vancouver 2011), “50 Years of Women in Medical Physics” (Houston 2008), and “Roentgen's Early Investigations” (Minneapolis 2007) can be found in the Education Section of the AAPM Website. The Austin 2014 History Symposium will be on “Evolution of Radiation Treatment Planning.” Overview - Radhe Mohan Treatment planning is one of the most critical components in the chain of radiation therapy of cancers. Treatment plans of today contain a wide variety of sophisticated information conveying the potential clinical effectiveness of the designed treatment to practitioners. Examples of such information include dose distributions superimposed on three- or even four-dimensional anatomic images; dose volume histograms, dose, dose-volume and dose-response indices for anatomic structures of interest; etc. These data are used for evaluating treatment plans and for making treatment decisions. The current state-of-the-art has evolved from the 1940s era when the dose to the tumor and normal tissues was estimated approximately by manual means. However, the symposium will cover the history of the field from the late-1950's, when computers were first introduced for treatment planning, to the present state involving the use of high performance computing and advanced multi-dimensional anatomic, functional and biological imaging, focusing only on external beam treatment planning. The symposium will start with a general overview of the treatment planning process including imaging

  19. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Alexander, A; DeBlois, F; Stroian, G; Al-Yahya, K; Heath, E; Seuntjens, J

    2007-01-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM R T, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  20. Audit of an automated checklist for quality control of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Breen, Stephen L.; Zhang Beibei

    2010-01-01

    Purpose: To assess the effect of adding an automated checklist to the treatment planning process for head and neck intensity-modulated radiotherapy. Methods: Plans produced within our treatment planning system were evaluated at the planners' discretion with an automated checklist of more than twenty planning parameters. Plans were rated as accepted or rejected for treatment, during regular review by radiation oncologists and physicists as part of our quality control program. The rates of errors and their types were characterised prior to the implementation of the checklist and with the checklist. Results: Without the checklist, 5.9% of plans were rejected; the use of the checklist reduced the rejection rate to 3.1%. The checklist was used for 64.7% of plans. Pareto analysis of the causes of rejection showed that the checklist reduced the number of causes of rejections from twelve to seven. Conclusions: The use of an automated checklist has reduced the need for reworking of treatment plans. With the use of the checklist, most rejections were due to errors in prescription or inadequate dose distributions. Use of the checklist by planners must be increased to maximise improvements in planning efficiency.

  1. Application of super-omni wedge concept to conformal radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Dai Jianrong; Fu Weihua; Hu Yimin

    2004-01-01

    Objective: To describe a method which can optimize beam weight, wedge angle, and wedge orientation simultaneously by combining the super-omni wedge (SOW) concept with the function of beam weight optimization provided by a commercial treatment planning system. Methods: A five-step procedure including: Step 1. To set up four 60 degree nominal wedged beams for each beam direction with the wedge orientations of 'LEFT', 'IN', 'RIGHT', 'OUT', respectively; Step 2. To define an optimization request, including an optimization goal and constraints. Authors use CMS Focus treatment planning system which allows us to choose 'maximize target dose' or 'minimize critical structure dose' as the optimization goal, and to set minimum target dose, maximum target dose, and maximum average dose of critical structures as constraints. Then the optimization process was launched as step 3; Step 4. To evaluate the plan using isodose distributions and dose-volume histograms. If acceptable, go to Step 5. Otherwise, go back to Step 2 to modify optimization constraints; and Step 5. Transform the SOW beams into the beams of omni wedge so as to reduce the number of to-be-delivered beams. Results: This procedure was found being able to demonstrate successfully in two clinical cases: an esophageal carcinoma and a brain tumor. Compared with manually designed plan, the optimized plan showed better dose homogeneity in the targets and better sparing of the critical structures. Conclusions: This method described is able to optimize beam weights while working with a treatment planning system. Not only does it improve treatment plans' quality, but also shorten the treatment planning process

  2. Automatic treatment planning implementation using a database of previously treated patients

    International Nuclear Information System (INIS)

    Moore, J A; Evans, K; Yang, W; Herman, J; McNutt, T

    2014-01-01

    Purpose: Using a database of prior treated patients, it is possible to predict the dose to critical structures for future patients. Automatic treatment planning speeds the planning process by generating a good initial plan from predicted dose values. Methods: A SQL relational database of previously approved treatment plans is populated via an automated export from Pinnacle 3 . This script outputs dose and machine information and selected Regions of Interests as well as its associated Dose-Volume Histogram (DVH) and Overlap Volume Histograms (OVHs) with respect to the target structures. Toxicity information is exported from Mosaiq and added to the database for each patient. The SQL query is designed to ask the system for the lowest achievable dose for a specified region of interest (ROI) for each patient with a given volume of that ROI being as close or closer to the target than the current patient. Results: The additional time needed to calculate OVHs is approximately 1.5 minutes for a typical patient. Database lookup of planning objectives takes approximately 4 seconds. The combined additional time is less than that of a typical single plan optimization (2.5 mins). Conclusions: An automatic treatment planning interface has been successfully used by dosimetrists to quickly produce a number of SBRT pancreas treatment plans. The database can be used to compare dose to individual structures with the toxicity experienced and predict toxicities before planning for future patients.

  3. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  4. Effects of spot parameters in pencil beam scanning treatment planning.

    Science.gov (United States)

    Kraan, Aafke Christine; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2018-01-01

    Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility. Our study could help as a guideline to make the trade-off between treatment quality and time in existing PBS centers and in future systems. We created plans for seven patients and a phantom, with different tumor sites and volumes, and compared the effect of small-, medium-, and large-spot widths (σ = 2.5, 5, and 10 mm) and interspot distances (1σ, 1.5σ, and 1.75σ) on dose, spot charge, and treatment time. Moreover, we quantified how postplanning charge threshold cuts affect plan quality and the total number of spots to deliver, for different spot widths and interspot distances. We show the effect of a minimum charge (or MU) cutoff value for a given proton delivery system. Spot size had a strong influence on dose: larger spots resulted in more protons delivered outside the target region. We observed dose differences of 2-13 Gy (RBE) between 2.5 mm and 10 mm spots, where the amount of extra dose was due to dose penumbra around the target region. Interspot distance had little influence on dose quality for our patient group. Both parameters strongly influence spot charge in the plans and thus the possible impact of postplanning charge threshold cuts. If such charge thresholds are not included in the treatment planning system (TPS), it is important that the practitioner validates that a given combination of lower charge threshold, interspot spacing, and spot size does not result in a plan degradation. Low average spot charge occurs for small spots, small interspot

  5. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    DEFF Research Database (Denmark)

    Arabi, H.; Koutsouvelis, N.; Rouzaud, M.

    2016-01-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial t......-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning. © 2016 Institute of Physics and Engineering in Medicine.......Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial...... the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas...

  6. Evaluation of a commercial automatic treatment planning system for prostate cancers.

    Science.gov (United States)

    Nawa, Kanabu; Haga, Akihiro; Nomoto, Akihiro; Sarmiento, Raniel A; Shiraishi, Kenshiro; Yamashita, Hideomi; Nakagawa, Keiichi

    2017-01-01

    Recent developments in Radiation Oncology treatment planning have led to the development of software packages that facilitate automated intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) planning. Such solutions include site-specific modules, plan library methods, and algorithm-based methods. In this study, the plan quality for prostate cancer generated by the Auto-Planning module of the Pinnacle 3 radiation therapy treatment planning system (v9.10, Fitchburg, WI) is retrospectively evaluated. The Auto-Planning module of Pinnacle 3 uses a progressive optimization algorithm. Twenty-three prostate cancer cases, which had previously been planned and treated without lymph node irradiation, were replanned using the Auto-Planning module. Dose distributions were statistically compared with those of manual planning by the paired t-test at 5% significance level. Auto-Planning was performed without any manual intervention. Planning target volume (PTV) dose and dose to rectum were comparable between Auto-Planning and manual planning. The former, however, significantly reduced the dose to the bladder and femurs. Regression analysis was performed to examine the correlation between volume overlap between bladder and PTV divided by the total bladder volume and resultant V70. The findings showed that manual planning typically exhibits a logistic way for dose constraint, whereas Auto-Planning shows a more linear tendency. By calculating the Akaike information criterion (AIC) to validate the statistical model, a reduction of interoperator variation in Auto-Planning was shown. We showed that, for prostate cancer, the Auto-Planning module provided plans that are better than or comparable with those of manual planning. By comparing our results with those previously reported for head and neck cancer treatment, we recommend the homogeneous plan quality generated by the Auto-Planning module, which exhibits less dependence on anatomic complexity

  7. Quantification of the influence of the choice of the algorithm and planning system on the calculation of a treatment plan

    International Nuclear Information System (INIS)

    Moral, F. del; Ramos, A.; Salgado, M.; Andrade, B; Munoz, V.

    2010-01-01

    In this work an analysis of the influence of the choice of the algorithm or planning system, on the calculus of the same treatment plan is introduced. For this purpose specific software has been developed for comparing plans of a series of IMRT cases of prostate and head and neck cancer calculated using the convolution, superposition and fast superposition algorithms implemented in the XiO 4.40 planning system (CMS). It has also been used for the comparison of the same treatment plan for lung pathology calculated in XiO with the mentioned algorithms, and calculated in the Plan 4.1 planning system (Brainlab) using its pencil beam algorithm. Differences in dose among the treatment plans have been quantified using a set of metrics. The recommendation for the dosimetrist of a careful choice of the algorithm has been numerically confirmed. (Author).

  8. Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan

    International Nuclear Information System (INIS)

    PRIGNANO, A.L.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure

  9. Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning.

    Science.gov (United States)

    Petrovic, Sanja; Khussainova, Gulmira; Jagannathan, Rupa

    2016-03-01

    Radiotherapy treatment planning aims at delivering a sufficient radiation dose to cancerous tumour cells while sparing healthy organs in the tumour-surrounding area. It is a time-consuming trial-and-error process that requires the expertise of a group of medical experts including oncologists and medical physicists and can take from 2 to 3h to a few days. Our objective is to improve the performance of our previously built case-based reasoning (CBR) system for brain tumour radiotherapy treatment planning. In this system, a treatment plan for a new patient is retrieved from a case base containing patient cases treated in the past and their treatment plans. However, this system does not perform any adaptation, which is needed to account for any difference between the new and retrieved cases. Generally, the adaptation phase is considered to be intrinsically knowledge-intensive and domain-dependent. Therefore, an adaptation often requires a large amount of domain-specific knowledge, which can be difficult to acquire and often is not readily available. In this study, we investigate approaches to adaptation that do not require much domain knowledge, referred to as knowledge-light adaptation. We developed two adaptation approaches: adaptation based on machine-learning tools and adaptation-guided retrieval. They were used to adapt the beam number and beam angles suggested in the retrieved case. Two machine-learning tools, neural networks and naive Bayes classifier, were used in the adaptation to learn how the difference in attribute values between the retrieved and new cases affects the output of these two cases. The adaptation-guided retrieval takes into consideration not only the similarity between the new and retrieved cases, but also how to adapt the retrieved case. The research was carried out in collaboration with medical physicists at the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. All experiments were performed using real-world brain cancer

  10. Automation of radiation treatment planning. Evaluation of head and neck cancer patient plans created by the Pinnacle{sup 3} scripting and Auto-Planning functions

    Energy Technology Data Exchange (ETDEWEB)

    Speer, Stefan; Weiss, Alexander; Bert, Christoph [Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Department of Radiation Oncology, Erlangen (Germany); Klein, Andreas [EKS Engineering GmbH, Fuerth (Germany); Kober, Lukas [Strahlentherapie Tauber-Franken, Bad Mergentheim (Germany); Yohannes, Indra [Rinecker Proton Therapy Center, Munich (Germany)

    2017-08-15

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle{sup 3} treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced. (orig.) [German] Intensitaetsmodulierte Strahlentherapie (IMRT) hat sich als Standard durchgesetzt. Mit IMRT oder volumenmodulierter Arc-Therapie (VMAT) lassen sich

  11. Automation and Intensity Modulated Radiation Therapy for Individualized High-Quality Tangent Breast Treatment Plans

    International Nuclear Information System (INIS)

    Purdie, Thomas G.; Dinniwell, Robert E.; Fyles, Anthony; Sharpe, Michael B.

    2014-01-01

    Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented

  12. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    International Nuclear Information System (INIS)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H

    2016-01-01

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose

  13. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, E; Mabhouti, H; Cebe, M; Codel, G; Pacaci, P; Serin, E; Kucuk, N; Kucukmorkoc, E; Doyuran, M; Canoglu, D; Altinok, A; Acar, H; Caglar Ozkok, H [Medipol University, Istanbul, Istanbul (Turkey)

    2016-06-15

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target were also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.

  14. Fact Sheet: Supplemental Proposal: State Plans to Address Emissions during Startup, Shutdown and Malfunction (SSM)

    Science.gov (United States)

    On September 5, 2014, EPA proposed a rule supplementing and revising its February 2013 proposal to ensure states have plans in place that require industrial facilities across the country to follow air pollution rules during SSM operations.

  15. WE-H-BRC-06: A Unified Machine-Learning Based Probabilistic Model for Automated Anomaly Detection in the Treatment Plan Data

    International Nuclear Information System (INIS)

    Chang, X; Liu, S; Kalet, A; Yang, D

    2016-01-01

    Purpose: The purpose of this work was to investigate the ability of a machine-learning based probabilistic approach to detect radiotherapy treatment plan anomalies given initial disease classes information. Methods In total we obtained 1112 unique treatment plans with five plan parameters and disease information from a Mosaiq treatment management system database for use in the study. The plan parameters include prescription dose, fractions, fields, modality and techniques. The disease information includes disease site, and T, M and N disease stages. A Bayesian network method was employed to model the probabilistic relationships between tumor disease information, plan parameters and an anomaly flag. A Bayesian learning method with Dirichlet prior was useed to learn the joint probabilities between dependent variables in error-free plan data and data with artificially induced anomalies. In the study, we randomly sampled data with anomaly in a specified anomaly space.We tested the approach with three groups of plan anomalies – improper concurrence of values of all five plan parameters and values of any two out of five parameters, and all single plan parameter value anomalies. Totally, 16 types of plan anomalies were covered by the study. For each type, we trained an individual Bayesian network. Results: We found that the true positive rate (recall) and positive predictive value (precision) to detect concurrence anomalies of five plan parameters in new patient cases were 94.45±0.26% and 93.76±0.39% respectively. To detect other 15 types of plan anomalies, the average recall and precision were 93.61±2.57% and 93.78±3.54% respectively. The computation time to detect the plan anomaly of each type in a new plan is ∼0.08 seconds. Conclusion: The proposed method for treatment plan anomaly detection was found effective in the initial tests. The results suggest that this type of models could be applied to develop plan anomaly detection tools to assist manual and

  16. WE-H-BRC-06: A Unified Machine-Learning Based Probabilistic Model for Automated Anomaly Detection in the Treatment Plan Data

    Energy Technology Data Exchange (ETDEWEB)

    Chang, X; Liu, S [Washington University in St. Louis, St. Louis, MO (United States); Kalet, A [University of Washington Medical Center, Seattle, WA (United States); Yang, D [Washington University in St Louis, St Louis, MO (United States)

    2016-06-15

    Purpose: The purpose of this work was to investigate the ability of a machine-learning based probabilistic approach to detect radiotherapy treatment plan anomalies given initial disease classes information. Methods In total we obtained 1112 unique treatment plans with five plan parameters and disease information from a Mosaiq treatment management system database for use in the study. The plan parameters include prescription dose, fractions, fields, modality and techniques. The disease information includes disease site, and T, M and N disease stages. A Bayesian network method was employed to model the probabilistic relationships between tumor disease information, plan parameters and an anomaly flag. A Bayesian learning method with Dirichlet prior was useed to learn the joint probabilities between dependent variables in error-free plan data and data with artificially induced anomalies. In the study, we randomly sampled data with anomaly in a specified anomaly space.We tested the approach with three groups of plan anomalies – improper concurrence of values of all five plan parameters and values of any two out of five parameters, and all single plan parameter value anomalies. Totally, 16 types of plan anomalies were covered by the study. For each type, we trained an individual Bayesian network. Results: We found that the true positive rate (recall) and positive predictive value (precision) to detect concurrence anomalies of five plan parameters in new patient cases were 94.45±0.26% and 93.76±0.39% respectively. To detect other 15 types of plan anomalies, the average recall and precision were 93.61±2.57% and 93.78±3.54% respectively. The computation time to detect the plan anomaly of each type in a new plan is ∼0.08 seconds. Conclusion: The proposed method for treatment plan anomaly detection was found effective in the initial tests. The results suggest that this type of models could be applied to develop plan anomaly detection tools to assist manual and

  17. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  18. Virtual reality image applications for treatment planning in prosthodontic dentistry.

    Science.gov (United States)

    Ogawa, Takumi; Ikawa, Tomoko; Shigeta, Yuko; Kasama, Shintaro; Ando, Eriko; Fukushima, Shunji; Hattori, Asaki; Suzuki, Naoki

    2011-01-01

    For successful occlusal reconstruction, the prosthodontists must take several points into consideration, such as those involving issues with functional and morphological findings and aesthetics. They then must unify this information into a coherent treatment plan. In this present study we focused on prosthodontic treatment and investigated how treatment planning and simulation could be applied to two cases. The personal occlusion condition can be reproduced on the virtual articulator in VR space. In addition, various simulations can be performed that involve prosthetesis design.

  19. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  20. Multi-institutional comparison of simulated treatment delivery errors in ssIMRT, manually planned VMAT and autoplan-VMAT plans for nasopharyngeal radiotherapy

    DEFF Research Database (Denmark)

    Pogson, Elise M; Aruguman, Sankar; Hansen, Christian R

    2017-01-01

    PURPOSE: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation...... Therapy (mp-ssIMRT)). METHODS: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced...

  1. 3D Computer aided treatment planning in endodontics.

    Science.gov (United States)

    van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor

    2016-02-01

    Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.

  2. Electron Density Calibration for Radiotherapy Treatment Planning

    International Nuclear Information System (INIS)

    Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Ruiz-Trejo, C.; Celis-Lopez, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, A.

    2006-01-01

    Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density (ρe) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a large range of ρe to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head

  3. Orthognathic Surgery: Planning and treatment with illustration on six cases

    International Nuclear Information System (INIS)

    AiRuhaimi, K; Nwoku, A. L; Shaikh, H. S

    1991-01-01

    Almost all conferences for plastic and maxillofacial surgery discuss reports on several methods of orthognathic surgery, planning, success results, and complications of the different procedures carried out to correct patient's soft and hard tissues frontal profiles and occlusal discrepancies. Various principles are involved in the diagnosis and treatment of facial deformities. However, the most important consideration, after all, is the final accepted aesthetic and functional requirements and stability of the moved segments. The objective of this paper is to give the basic principles of treatment planning for correcting facial discrepancies, surgical approach to different cases, and the methods to increase stability of the moved segments. Six cases are included to illustrate the different aspects of treatment planning, surgical management, and stabilization methods. (author)

  4. MINERVA: A multi-modality plug-in-based radiation therapy treatment planning system

    International Nuclear Information System (INIS)

    Wemple, C. A.; Wessol, D. E.; Nigg, D. W.; Cogliati, J. J.; Milvich, M.; Fredrickson, C. M.; Perkins, M.; Harkin, G. J.; Hartmann-Siantar, C. L.; Lehmann, J.; Flickinger, T.; Pletcher, D.; Yuan, A.; DeNardo, G. L.

    2005-01-01

    Researchers at the INEEL, MSU, LLNL and UCD have undertaken development of MINERVA, a patient-centric, multi-modal, radiation treatment planning system, which can be used for planning and analysing several radiotherapy modalities, either singly or combined, using common treatment planning tools. It employs an integrated, lightweight plug-in architecture to accommodate multi-modal treatment planning using standard interface components. The design also facilitates the future integration of improved planning technologies. The code is being developed with the Java programming language for inter-operability. The MINERVA design includes the image processing, model definition and data analysis modules with a central module to coordinate communication and data transfer. Dose calculation is performed by source and transport plug-in modules, which communicate either directly through the database or through MINERVA's openly published, extensible markup language (XML)-based application programmer's interface (API). All internal data are managed by a database management system and can be exported to other applications or new installations through the API data formats. A full computation path has been established for molecular-targeted radiotherapy treatment planning, with additional treatment modalities presently under development. (authors)

  5. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nicolae, Alexandru [Department of Physics, Ryerson University, Toronto, Ontario (Canada); Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Morton, Gerard; Chung, Hans; Loblaw, Andrew [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Jain, Suneil; Mitchell, Darren [Department of Clinical Oncology, The Northern Ireland Cancer Centre, Belfast City Hospital, Antrim, Northern Ireland (United Kingdom); Lu, Lin [Department of Radiation Therapy, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Helou, Joelle; Al-Hanaqta, Motasem [Department of Radiation Oncology, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Heath, Emily [Department of Physics, Carleton University, Ottawa, Ontario (Canada); Ravi, Ananth, E-mail: ananth.ravi@sunnybrook.ca [Department of Medical Physics, Odette Cancer Center, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2017-03-15

    Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the training database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created

  6. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Nicolae, Alexandru; Morton, Gerard; Chung, Hans; Loblaw, Andrew; Jain, Suneil; Mitchell, Darren; Lu, Lin; Helou, Joelle; Al-Hanaqta, Motasem; Heath, Emily; Ravi, Ananth

    2017-01-01

    Purpose: This work presents the application of a machine learning (ML) algorithm to automatically generate high-quality, prostate low-dose-rate (LDR) brachytherapy treatment plans. The ML algorithm can mimic characteristics of preoperative treatment plans deemed clinically acceptable by brachytherapists. The planning efficiency, dosimetry, and quality (as assessed by experts) of preoperative plans generated with an ML planning approach was retrospectively evaluated in this study. Methods and Materials: Preimplantation and postimplantation treatment plans were extracted from 100 high-quality LDR treatments and stored within a training database. The ML training algorithm matches similar features from a new LDR case to those within the training database to rapidly obtain an initial seed distribution; plans were then further fine-tuned using stochastic optimization. Preimplantation treatment plans generated by the ML algorithm were compared with brachytherapist (BT) treatment plans in terms of planning time (Wilcoxon rank sum, α = 0.05) and dosimetry (1-way analysis of variance, α = 0.05). Qualitative preimplantation plan quality was evaluated by expert LDR radiation oncologists using a Likert scale questionnaire. Results: The average planning time for the ML approach was 0.84 ± 0.57 minutes, compared with 17.88 ± 8.76 minutes for the expert planner (P=.020). Preimplantation plans were dosimetrically equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans (P=.002), although the difference was not clinically significant. Respondents ranked the ML-generated plans as equivalent to expert BT treatment plans in terms of target coverage, normal tissue avoidance, implant confidence, and the need for plan modifications. Respondents had difficulty differentiating between plans generated by a human or those generated by the ML algorithm. Conclusions: Prostate LDR preimplantation treatment plans that have equivalent quality to plans created

  7. Physical treatment planning by several approaches

    International Nuclear Information System (INIS)

    Burger, G.; Morhart, A.; Wittmann, A.

    1985-01-01

    Neutron isodose planning may be performed by commercial treatment planning systems for photons, providing that certain modifications are applied. All geometry-related corrections such as for nonregular surfaces and oblique incidence remain unchanged. The main modifications concern the tissue-air-ratio, containing essentially the attenuation correction function. We have as a first step applied this modified commercial system to a few regular exposure situations in a homogenious water phantom and compared the generated isodose charts with those derived by direct Monte Carlo calculations of the neutron transport for the corresponding fields. As expected the commercial methods do not incorporate the necessary corrections for the change of scatter conditions in case of oblique incidence or wedged fields. For this reason we developed another approach, based upon the numerical superposition of dose matrices for pencil beams. These matrices were again Monte Carlo calculated. From it build-up functions can be derived by partial radial integration. The isodose charts generated by superposition of pencil beam dose distributions agree much better with directly Monte Carlo calculated ones, than those from the commercial treatment planning system. Based upon these results the method was finally applied to real patients cross sections, as derived from CT or MR-tomography. In the latter case one can even perform a pixelwise attenuation correction, if spin density images are available

  8. Registration and planning of radiotherapy and proton therapy treatment

    International Nuclear Information System (INIS)

    Bausse, Jerome

    2010-01-01

    Within the frame of an update and renewal project, the Orsay Proton Therapy Centre of the Curie Institute (IPCO) renews its software used for the treatment of patients by proton therapy, a radiotherapy technique which uses proton beams. High energies used in these treatments and the precision provided by proton particle characteristics require a more precise patient positioning than conventional radiotherapy: proton therapy requires a precision of about a millimetre. Thus, markers are placed on the skull which are generally well accepted by patients, but are a problem in the case of paediatric treatment, notably for the youngest children whose skull is still growing. The first objective of this research is thus to use only intrinsic information from X-ray images used when positioning the patient. A second objective is to make the new software (TPS Isogray) perfectly compatible with IPCO requirements by maintaining the strengths of the previous TPS (Treatment Planning System) and being prepared to the implementation of a new installation. After a presentation of the context and state of the art in radiotherapy and patient positioning, the author proposes an overview of 2D registration methods, presents a new method for 2x2D registration, and addresses the problem of 3D registration. Then, after a presentation of proton therapy, the author addresses different specific issues and aspects: the compensator (simulation, calculation, and tests), dose calculation, the 'Pencil-Beam' algorithm, tests, and introduced improvements [fr

  9. Proposal of a nuclear cycle research and development plan in Tokai works. The roadmap from LWR cycle to FBR cycle

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Abe, Tomoyuki; Kashimura, Takuo; Nagai, Toshihisa; Maeda, Seichiro; Yamaguchi, Toshiya; Kuroki, Ryoichiro

    2003-07-01

    The Generation-II Project Task Force Team has investigated a research and development plan of a future nuclear fuel cycle in Tokai works for about three months from December 19, 2002. First we have discussed about the present condition of Japanese nuclear fuel cycle and have recognized it as the following. The relation of the technology between the LWR-cycle and the FBR-cycle is not clear. MOX Fuel Use in Light Water Reactors is important to establish technology of the FBR fuel cycle. Radioactive waste disposal issue is urgent. Next we have proposed the three basic policies on R and D plan of nuclear fuel cycle in consideration of the F.S. on FBR-cycle. Establishment and advancement of 'the tough nuclear fuel cycle'. Early establishment of the FBR cycle technology to be able to supply energy stably for long-term. Establishment of the radioactive waste treatment and disposal technology, and optimization of nuclear fuel cycle technology from the viewpoint of radioactive waste. And we have proposed the Japanese technical holder system to integrate all LWR and FBR cycle technology. (author)

  10. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    International Nuclear Information System (INIS)

    Bernard, E.A.

    1995-01-01

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX sm , Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE's mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM's Office of Technology Development, has funded this work

  11. Pre-optimization of radiotherapy treatment planning: an artificial neural network classification aided technique

    International Nuclear Information System (INIS)

    Hosseini-Ashrafi, M.E.; Bagherebadian, H.; Yahaqi, E.

    1999-01-01

    A method has been developed which, by using the geometric information from treatment sample cases, selects from a given data set an initial treatment plan as a step for treatment plan optimization. The method uses an artificial neural network (ANN) classification technique to select a best matching plan from the 'optimized' ANN database. Separate back-propagation ANN classifiers were trained using 50, 60 and 77 examples for three groups of treatment case classes (up to 21 examples from each class were used). The performance of the classifiers in selecting the correct treatment class was tested using the leave-one-out method; the networks were optimized with respect their architecture. For the three groups used in this study, successful classification fractions of 0.83, 0.98 and 0.93 were achieved by the optimized ANN classifiers. The automated response of the ANN may be used to arrive at a pre-plan where many treatment parameters may be identified and therefore a significant reduction in the steps required to arrive at the optimum plan may be achieved. Treatment planning 'experience' and also results from lengthy calculations may be used for training the ANN. (author)

  12. Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestions for planning strategies

    Directory of Open Access Journals (Sweden)

    Schmitt Daniela

    2017-09-01

    Full Text Available To evaluate the possible range of application of the new InCise2 MLC for the CyberKnife M6 system in brain radiosurgery, a plan comparison was made for 10 brain metastases sized between 1.5 and 9cm3 in 10 patients treated in a single fraction each. The target volumes consist of a PTV derived by expanding the GTV by 1mm and were chosen to have diversity in the cohort regarding regularity of shape, location and the structures needed to be blocked for beam transmission in the vicinity. For each case, two treatment plans were optimized: one using the MLC and one using the IRIS-collimator providing variable circular fields. Plan re-quirements were: dose prescription to the 70% isodose line (18 or 20Gy, 100% GTV coverage, ≥98% PTV coverage, undisturbed central high dose region (95% of maximum dose and a conformity index as low as possible. Plan com-parison parameters were: conformity index (CI, high-dose gradient index (GIH, low-dose gradient index (GIL, total number of monitor units (MU and expected treatment time (TT. For all cases, clinically acceptable plans could be gen-erated with the following results (mean±SD for CI, GIH, GIL, MU and TT, respectively for the MLC plans: 1.09±0.03, 2.77±0.26, 2.61±0.08, 4514±830MU and 27±5min and for the IRIS plans: 1.05±0.01, 3.00±0.35, 2.46±0.08, 8557±1335MU and 42±7min. In summary, the MLC plans were on average less conformal and had a shallower dose gradient in the low dose region, but a steeper dose gradient in the high dose region. This is accompanied by a smaller vol-ume receiving 10Gy. A plan by plan comparison shows that usage of the MLC can spare about one half of the MUs and one third of treatment time. From these experiences and results suggestions for MLC planning strategy can be de-duced.

  13. Influence of planning time and treatment complexity on radiation therapy errors.

    Science.gov (United States)

    Gensheimer, Michael F; Zeng, Jing; Carlson, Joshua; Spady, Phil; Jordan, Loucille; Kane, Gabrielle; Ford, Eric C

    2016-01-01

    Radiation treatment planning is a complex process with potential for error. We hypothesized that shorter time from simulation to treatment would result in rushed work and higher incidence of errors. We examined treatment planning factors predictive for near-miss events. Treatments delivered from March 2012 through October 2014 were analyzed. Near-miss events were prospectively recorded and coded for severity on a 0 to 4 scale; only grade 3-4 (potentially severe/critical) events were studied in this report. For 4 treatment types (3-dimensional conformal, intensity modulated radiation therapy, stereotactic body radiation therapy [SBRT], neutron), logistic regression was performed to test influence of treatment planning time and clinical variables on near-miss events. There were 2257 treatment courses during the study period, with 322 grade 3-4 near-miss events. SBRT treatments had more frequent events than the other 3 treatment types (18% vs 11%, P = .04). For the 3-dimensional conformal group (1354 treatments), univariate analysis showed several factors predictive of near-miss events: longer time from simulation to first treatment (P = .01), treatment of primary site versus metastasis (P < .001), longer treatment course (P < .001), and pediatric versus adult patient (P = .002). However, on multivariate regression only pediatric versus adult patient remained predictive of events (P = 0.02). For the intensity modulated radiation therapy, SBRT, and neutron groups, time between simulation and first treatment was not found to be predictive of near-miss events on univariate or multivariate regression. When controlling for treatment technique and other clinical factors, there was no relationship between time spent in radiation treatment planning and near-miss events. SBRT and pediatric treatments were more error-prone, indicating that clinical and technical complexity of treatments should be taken into account when targeting safety interventions. Copyright © 2015 American

  14. WE-D-BRB-02: Proton Treatment Planning and Beam Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Pankuch, M. [Northwestern Medicine Proton Center (United States)

    2016-06-15

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. It introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.

  15. Proposal to increase the drug adherence in a brazilian health unit

    Directory of Open Access Journals (Sweden)

    Ariane Garrocho de Faria

    2016-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-0221.2016v13n24p174 The aim of this work was to use a Strategic Planning tool to check for problems and propose strategic activities that increases the drug treatment adherence in a UBS of Minas Gerais. This study was developed from May to October 2015 using Strategic Planning divided in four stages: explanatory, normative, strategic and tactical situational. Resulting actions were defined in order to increase the drug treatment adherence and reduce unnecessary spending. Thus, the importance of the method was perceived, been able to meet the views of participants need and direct discussions to achieve the proposed goals. In conclusion, the method evidenced the awareness of the participants and the shared responsibility for patients as well as the planning official. It is expected following the implementation of the proposed actions, achieving success in relation to the drug treatment adherence.

  16. Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy.

    Science.gov (United States)

    Wahl, Niklas; Hennig, Philipp; Wieser, Hans-Peter; Bangert, Mark

    2018-04-01

    We show that it is possible to explicitly incorporate fractionation effects into closed-form probabilistic treatment plan analysis and optimization for intensity-modulated proton therapy with analytical probabilistic modeling (APM). We study the impact of different fractionation schemes on the dosimetric uncertainty induced by random and systematic sources of range and setup uncertainty for treatment plans that were optimized with and without consideration of the number of treatment fractions. The APM framework is capable of handling arbitrarily correlated uncertainty models including systematic and random errors in the context of fractionation. On this basis, we construct an analytical dose variance computation pipeline that explicitly considers the number of treatment fractions for uncertainty quantitation and minimization during treatment planning. We evaluate the variance computation model in comparison to random sampling of 100 treatments for conventional and probabilistic treatment plans under different fractionation schemes (1, 5, 30 fractions) for an intracranial, a paraspinal and a prostate case. The impact of neglecting the fractionation scheme during treatment planning is investigated by applying treatment plans that were generated with probabilistic optimization for 1 fraction in a higher number of fractions and comparing them to the probabilistic plans optimized under explicit consideration of the number of fractions. APM enables the construction of an analytical variance computation model for dose uncertainty considering fractionation at negligible computational overhead. It is computationally feasible (a) to simultaneously perform a robustness analysis for all possible fraction numbers and (b) to perform a probabilistic treatment plan optimization for a specific fraction number. The incorporation of fractionation assumptions for robustness analysis exposes a dose to uncertainty trade-off, i.e., the dose in the organs at risk is increased for a

  17. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    Science.gov (United States)

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  18. Comparison of various online IGRT strategies: The benefits of online treatment plan re-optimization

    International Nuclear Information System (INIS)

    Schulze, Derek; Liang, Jian; Yan, Di; Zhang Tiezhi

    2009-01-01

    Purpose: To compare the dosimetric differences of various online IGRT strategies and to predict potential benefits of online re-optimization techniques in prostate cancer radiation treatments. Materials and methods: Nine prostate patients were recruited in this study. Each patient has one treatment planning CT images and 10-treatment day CT images. Five different online IGRT strategies were evaluated which include 3D conformal with bone alignment, 3D conformal re-planning via aperture changes, intensity modulated radiation treatment (IMRT) with bone alignment, IMRT with target alignment and IMRT daily re-optimization. Treatment planning and virtual treatment delivery were performed. The delivered doses were obtained using in-house deformable dose mapping software. The results were analyzed using equivalent uniform dose (EUD). Results: With the same margin, rectum and bladder doses in IMRT plans were about 10% and 5% less than those in CRT plans, respectively. Rectum and bladder doses were reduced as much as 20% if motion margin is reduced by 1 cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual delivered dose with treatment plan predication. The therapeutic ratio can be improved by 14% and 25% for rectum and bladder, respectively, if IMRT online re-planning is employed compared to the IMRT bone alignment approach. The improvement of target alignment approach is similar with 11% and 21% dose reduction to rectum and bladder, respectively. However, underdosing in seminal vesicles was observed on certain patients. Conclusions: Online treatment plan re-optimization may significantly improve therapeutic ratio in prostate cancer treatments mostly due to the reduction of PTV margin. However, for low risk patient with only prostate involved, online target alignment IMRT treatment would achieve similar results as online re-planning. For all IGRT approaches, the delivered organ-at-risk doses may be

  19. Records needed for orthodontic diagnosis and treatment planning: a systematic review.

    Directory of Open Access Journals (Sweden)

    Robine J Rischen

    Full Text Available BACKGROUND: Traditionally, dental models, facial and intra-oral photographs and a set of two-dimensional radiographs are used for orthodontic diagnosis and treatment planning. As evidence is lacking, the discussion is ongoing which specific records are needed for the process of making an orthodontic treatment plan. OBJECTIVE: To estimate the contribution and importance of different diagnostic records for making an orthodontic diagnosis and treatment plan. DATA SOURCES: An electronic search in PubMed (1948-July 2012, EMBASE Excerpta Medica (1980-July 2012, CINAHL (1982-July 2012, Web of Science (1945-July 2012, Scopus (1996-July 2012, and Cochrane Library (1993-July 2012 was performed. Additionally, a hand search of the reference lists of included studies was performed to identify potentially eligible studies. There was no language restriction. STUDY SELECTION: The patient, intervention, comparator, outcome (pico question formulated for this study was as follows: for patients who need orthodontic treatment (P, will the use of record set X (I compared with record set Y (C change the treatment plan (O? Only primary publications were included. DATA EXTRACTION: Independent extraction of data and quality assessment was performed by two observers. RESULTS: Of the 1041 publications retrieved, 17 met the inclusion criteria. Of these, 4 studies were of high quality. Because of the limited number of high quality studies and the differences in study designs, patient characteristics, and reference standard or index test, a meta-analysis was not possible. CONCLUSION: Cephalograms are not routinely needed for orthodontic treatment planning in Class II malocclusions, digital models can be used to replace plaster casts, and cone-beam computed tomography radiographs can be indicated for impacted canines. Based on the findings of this review, the minimum record set required for orthodontic diagnosis and treatment planning could not be defined. SYSTEMATIC REVIEW

  20. [Application of digital design of orthodontic-prosthodontic multidisciplinary treatment plan in esthetic rehabilitation of anterior teeth].

    Science.gov (United States)

    Liu, Y S; Li, Z; Zhao, Y J; Ye, H Q; Zhou, Y Q; Hu, W J; Liu, Y S; Xun, C L; Zhou, Y S

    2018-02-18

    To develop a digital workflow of orthodontic-prosthodontic multidisciplinary treatment plan which can be applied in complicated anterior teeth esthetic rehabilitation, in order to enhance the efficiency of communication between dentists and patients, and improve the predictability of treatment outcome. Twenty patients with the potential needs of orthodontic-prosthodontic multidisciplinary treatment to solve their complicated esthetic problems in anterior teeth were recruited in this study. Digital models of patients' both dental arches and soft tissues were captured using intra oral scanner. Direct prosthodontic (DP) treatment plan and orthodontic-prosthodontic (OP) treatment plan were carried out for each patient. For DP treatment plans, digital wax-up models were directly designed on original digital models using prosthodontic design system. For OP treatment plans, virtual-setups were performed using orthodontic analyze system according to orthodontic and esthetic criteria and imported to prosthodontic design system to finalize the digital wax-up models. These two treatment plans were shown to the patients and demonstrated elaborately. Each patient rated two treatment plans using visual analogue scales and the medians of scores of two treatment plans were analyzed using signed Wilcoxon test. Having taken into consideration various related factors, including time, costs of treatment, each patient chose a specific treatment plan. For the patients chose DP treatment plans, digital wax-up models were exported and printed into resin diagnostic models which would be utilized in the prosthodontic treatment process. For the patients chose OP treatment plans, virtual-setups were used to fabricate aligners or indirect bonding templates and digital wax-up models were also exported and printed into resin diagnostic models for prosthodontic treatment after orthodontic treatment completed. The medians of scores of DP treatment plan and OP treatment plan were calculated and

  1. A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Grevillot, L; Freud, N; Sarrut, D [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, Lyon (France); Bertrand, D; Dessy, F, E-mail: loic.grevillot@creatis.insa-lyon.fr [IBA, B-1348, Louvain-la Neuve (Belgium)

    2011-08-21

    This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.

  2. Multi-centre audit of VMAT planning and pre-treatment verification.

    Science.gov (United States)

    Jurado-Bruggeman, Diego; Hernández, Victor; Sáez, Jordi; Navarro, David; Pino, Francisco; Martínez, Tatiana; Alayrach, Maria-Elena; Ailleres, Norbert; Melero, Alejandro; Jornet, Núria

    2017-08-01

    We performed a multi-centre intercomparison of VMAT dose planning and pre-treatment verification. The aims were to analyse the dose plans in terms of dosimetric quality and deliverability, and to validate whether in-house pre-treatment verification results agreed with those of an external audit. The nine participating centres encompassed different machines, equipment, and methodologies. Two mock cases (prostate and head and neck) were planned using one and two arcs. A plan quality index was defined to compare the plans and different complexity indices were calculated to check their deliverability. We compared gamma index pass rates using the centre's equipment and methodology to those of an external audit (global 3D gamma, absolute dose differences, 10% of maximum dose threshold). Log-file analysis was performed to look for delivery errors. All centres fulfilled the dosimetric goals but plan quality and delivery complexity were heterogeneous and uncorrelated, depending on the manufacturer and the planner's methodology. Pre-treatment verifications results were within tolerance in all cases for gamma 3%-3mm evaluation. Nevertheless, differences between the external audit and in-house measurements arose due to different equipment or methodology, especially for 2%-2mm criteria with differences up to 20%. No correlation was found between complexity indices and verification results amongst centres. All plans fulfilled dosimetric constraints, but plan quality and complexity did not correlate and were strongly dependent on the planner and the vendor. In-house measurements cannot completely replace external audits for credentialing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A quality assurance index for brachytherapy treatment plan verification

    International Nuclear Information System (INIS)

    Simpson, J.B.; Clarke, J.P.

    2000-01-01

    A method is described which provides an independent verification of a brachytherapy treatment plan. The method is applicable to any common geometric configuration and utilises a simple equation derived from a common form of nonlinear regression. The basis for the index value is the relationship between the treatment time, prescribed dose, source strength and plan geometry. This relationship may be described mathematically as: Total Treatment Time ∝ Prescribed Dose/Source Strength x (a geometric term) with the geometric term incorporating three geometric components, namely the distance from source positions to points of dose normalisation (d), the total length of the dwell positions (L), and the number of source trains or catheters (N). A general equation of the form GF = k (d) -α (L) -β (N) -y is used to describe the plan geometry, where GF is what we have termed the geometric factor, k is a constant of proportionality and the exponents are derived from the non-linear regression process. The resulting index is simple to calculate prior to patient treatment and sensitive enough to identify significant error whilst being robust enough to allow for a normal degree of geometric distortion

  4. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    International Nuclear Information System (INIS)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-01-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: 'conservative' IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; 'radical' IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. 'Conservative' IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. 'Radical' plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning

  5. SU-E-T-213: Comparison of Treatment Efficiency of Gamma Knife SRS Plans for Brain Metastases with Different Planning Methods

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [East Carolina Univ, Greenville, NC (United States); Huang, Z [East Carolina University, Greenville, NC (United States); Lo, S [Case Western Reserve University, Cleveland, OH (United States); Mayr, N; Yuh, W [University of Washington, Seattle, WA (United States)

    2015-06-15

    Purpose: To improve Gamma Knife SRS treatment efficiency for brain metastases and compare the differences of treatment time and radiobiological effects between two different planning methods of automatic filling and manual placement of shots with inverse planning. Methods: T1-weighted MRI images with gadolinium contrast from five patients with a single brain metastatic-lesion were used in this retrospective study. Among them, two were from primary breast cancer, two from primary melanoma cancer and one from primary prostate cancer. For each patient, two plans were generated in Leksell GammaPlan10.1.1 for radiosurgical treatment with a Leksell GammaKnife Perfexion machine: one with automatic filling, automatic sector configuration and inverse optimization (Method1); and the other with manual placement of shots, manual setup of collimator sizes, manual setup of sector blocking and inverse optimization (Method2). Dosimetric quality of the plans was evaluated with parameters of Coverage, Selectivity, Gradient-Index and DVH. Beam-on Time, Number-of-Shots and Tumor Control Probability(TCP) were compared for the two plans while keeping their dosimetric quality very similar. Relative reduction of Beam-on Time and Number-of-Shots were calculated as the ratios among the two plans and used for quantitative analysis. Results: With very similar dosimetric and radiobiological plan quality, plans created with Method 2 had significantly reduced treatment time. Relative reduction of Beam-on Time ranged from 20% to 51 % (median:29%,p=0.001), and reduction of Number-of-Shots ranged from 5% to 67% (median:40%,p=0.0002), respectively. Time of plan creation for Method1 and Method2 was similar, approximately 20 minutes, excluding the time for tumor delineation. TCP calculated for the tumors from differential DVHs did not show significant difference between the two plans (p=0.35). Conclusion: The method of manual setup combined with inverse optimization in LGP for treatment of brain

  6. SU-E-T-213: Comparison of Treatment Efficiency of Gamma Knife SRS Plans for Brain Metastases with Different Planning Methods

    International Nuclear Information System (INIS)

    Feng, Y; Huang, Z; Lo, S; Mayr, N; Yuh, W

    2015-01-01

    Purpose: To improve Gamma Knife SRS treatment efficiency for brain metastases and compare the differences of treatment time and radiobiological effects between two different planning methods of automatic filling and manual placement of shots with inverse planning. Methods: T1-weighted MRI images with gadolinium contrast from five patients with a single brain metastatic-lesion were used in this retrospective study. Among them, two were from primary breast cancer, two from primary melanoma cancer and one from primary prostate cancer. For each patient, two plans were generated in Leksell GammaPlan10.1.1 for radiosurgical treatment with a Leksell GammaKnife Perfexion machine: one with automatic filling, automatic sector configuration and inverse optimization (Method1); and the other with manual placement of shots, manual setup of collimator sizes, manual setup of sector blocking and inverse optimization (Method2). Dosimetric quality of the plans was evaluated with parameters of Coverage, Selectivity, Gradient-Index and DVH. Beam-on Time, Number-of-Shots and Tumor Control Probability(TCP) were compared for the two plans while keeping their dosimetric quality very similar. Relative reduction of Beam-on Time and Number-of-Shots were calculated as the ratios among the two plans and used for quantitative analysis. Results: With very similar dosimetric and radiobiological plan quality, plans created with Method 2 had significantly reduced treatment time. Relative reduction of Beam-on Time ranged from 20% to 51 % (median:29%,p=0.001), and reduction of Number-of-Shots ranged from 5% to 67% (median:40%,p=0.0002), respectively. Time of plan creation for Method1 and Method2 was similar, approximately 20 minutes, excluding the time for tumor delineation. TCP calculated for the tumors from differential DVHs did not show significant difference between the two plans (p=0.35). Conclusion: The method of manual setup combined with inverse optimization in LGP for treatment of brain

  7. Proposed plan for critical experiments supporting thorium fuel cycle development

    International Nuclear Information System (INIS)

    Gore, B.F.

    1978-09-01

    A preliminary plan is proposed for critical experiments to provide data needed for the recycle of thorium based nuclear fuels. The sequence of experimentation starts with well moderated solutions followed by highly concentrated low moderated solutions. It then progresses through lattices moderated by water, by water plus soluble poisons, and by fissile solutions, to solutions poisoned by raschig rings and soluble poisons. Final experiments would treat lattices moderated by poisoned fissile solution, and arrays of stored fissile units

  8. Proposed rulemaking to risk-inform special treatment requirements

    International Nuclear Information System (INIS)

    Reed, Timothy A.; McKenna, Eileen M.

    2003-01-01

    This paper presents the status of Nuclear Regulatory Commission (NRC) rulemaking efforts to risk-inform special treatment requirements that reside in Title 10 of the Code of Federal Regulations, 10 CFR Part 21, Part 50, and Part 100. The staff has prepared a proposed rulemaking to add a new section to 10 CFR Part 50 to provide an alternative set of requirements for treatment of structures, systems and components (SSCs), using a risk-informed categorization process to determine safety significance of the SSCs. These requirements can be voluntarily adopted by light-water reactor licensees and applicants. The proposed rule is based upon extensive interactions with stakeholders (including consideration of public comments on draft rule language made available on the NRC rulemaking web site), experience with pilot plants, and guidance development activities. The NRC staff expects that stakeholder input provided in response to the proposed rule issuance will be valuable and support the efforts to issue the final rule. (author)

  9. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

    International Nuclear Information System (INIS)

    Prabhakar, R.; Julka, P.K.; Rath, G.K.

    2008-01-01

    The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D 2 ) and 98% (D 9 8) of the target volume, volume receiving greater than 107% of the prescribed dose (V>107%), volume receiving less than 95% of the prescribed dose (V 2 , V>107% and CI for more of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.

  10. Evaluation of a software module for adaptive treatment planning and re-irradiation.

    Science.gov (United States)

    Richter, Anne; Weick, Stefan; Krieger, Thomas; Exner, Florian; Kellner, Sonja; Polat, Bülent; Flentje, Michael

    2017-12-28

    The aim of this work is to validate the Dynamic Planning Module in terms of usability and acceptance in the treatment planning workflow. The Dynamic Planning Module was used for decision making whether a plan adaptation was necessary within one course of radiation therapy. The Module was also used for patients scheduled for re-irradiation to estimate the dose in the pretreated region and calculate the accumulated dose to critical organs at risk. During one year, 370 patients were scheduled for plan adaptation or re-irradiation. All patient cases were classified according to their treated body region. For a sub-group of 20 patients treated with RT for lung cancer, the dosimetric effect of plan adaptation during the main treatment course was evaluated in detail. Changes in tumor volume, frequency of re-planning and the time interval between treatment start and plan adaptation were assessed. The Dynamic Planning Tool was used in 20% of treated patients per year for both approaches nearly equally (42% plan adaptation and 58% re-irradiation). Most cases were assessed for the thoracic body region (51%) followed by pelvis (21%) and head and neck cases (10%). The sub-group evaluation showed that unintended plan adaptation was performed in 38% of the scheduled cases. A median time span between first day of treatment and necessity of adaptation of 17 days (range 4-35 days) was observed. PTV changed by 12 ± 12% on average (maximum change 42%). PTV decreased in 18 of 20 cases due to tumor shrinkage and increased in 2 of 20 cases. Re-planning resulted in a reduction of the mean lung dose of the ipsilateral side in 15 of 20 cases. The experience of one year showed high acceptance of the Dynamic Planning Module in our department for both physicians and medical physicists. The re-planning can potentially reduce the accumulated dose to the organs at risk and ensure a better target volume coverage. In the re-irradiation situation, the Dynamic Planning Tool was used to

  11. 78 FR 38070 - 30-Day Notice of Proposed Information Collection: Affirmative Fair Housing Marketing (AFHM) Plan

    Science.gov (United States)

    2013-06-25

    ... Information Collection: Affirmative Fair Housing Marketing (AFHM) Plan AGENCY: Office of the Chief Information Officer, HUD. ACTION: Notice. SUMMARY: HUD has submitted the proposed information collection requirement... Title of Information Collection: Affirmative Fair Housing Marketing (AFHM) Plan. OMB Approval Number...

  12. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    Science.gov (United States)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  13. Radiation treatment planning techniques for lymphoma of the stomach

    International Nuclear Information System (INIS)

    Della Biancia, Cesar; Hunt, Margie; Furhang, Eli; Wu, Elisa; Yahalom, Joachim

    2005-01-01

    Purpose: Involved-field radiation therapy of the stomach is often used in the curative treatment of gastric lymphoma. Yet, the optimal technique to irradiate the stomach with minimal morbidity has not been well established. This study was designed to evaluate treatment planning alternatives for stomach irradiation, including intensity-modulated radiation therapy (IMRT), to determine which approach resulted in improved dose distribution and to identify patient-specific anatomic factors that might influence a treatment planning choice. Methods and Materials: Fifteen patients with lymphoma of the stomach (14 mucosa-associated lymphoid tissue lymphomas and 1 diffuse large B-cell lymphoma) were categorized into 3 types, depending on the geometric relationship between the planning target volume (PTV) and kidneys. AP/PA and 3D conformal radiation therapy (3DCRT) plans were generated for each patient. IMRT was planned for 4 patients with challenging geometric relationship between the PTV and the kidneys to determine whether it was advantageous to use IMRT. Results: For type I patients (no overlap between PTV and kidneys), there was essentially no benefit from using 3DCRT over AP/PA. However, for patients with PTVs in close proximity to the kidneys (type II) or with high degree of overlap (type III), the 4-field 3DCRT plans were superior, reducing the kidney V 15Gy by approximately 90% for type II and 50% for type III patients. For type III, the use of a 3DCRT plan rather than an AP/PA plan decreased the V 15Gy by approximately 65% for the right kidney and 45% for the left kidney. In the selected cases, IMRT led to a further decrease in left kidney dose as well as in mean liver dose. Conclusions: The geometric relationship between the target and kidneys has a significant impact on the selection of the optimum beam arrangement. Using 4-field 3DCRT markedly decreases the kidney dose. The addition of IMRT led to further incremental improvements in the left kidney and liver

  14. Considerations for using data envelopment analysis for the assessment of radiotherapy treatment plan quality.

    Science.gov (United States)

    Simpson, John; Raith, Andrea; Rouse, Paul; Ehrgott, Matthias

    2017-10-09

    Purpose The operations research method of data envelopment analysis (DEA) shows promise for assessing radiotherapy treatment plan quality. The purpose of this paper is to consider the technical requirements for using DEA for plan assessment. Design/methodology/approach In total, 41 prostate treatment plans were retrospectively analysed using the DEA method. The authors investigate the impact of DEA weight restrictions with reference to the ability to differentiate plan performance at a level of clinical significance. Patient geometry influences plan quality and the authors compare differing approaches for managing patient geometry within the DEA method. Findings The input-oriented DEA method is the method of choice when performing plan analysis using the key undesirable plan metrics as the DEA inputs. When considering multiple inputs, it is necessary to constrain the DEA input weights in order to identify potential plan improvements at a level of clinical significance. All tested approaches for the consideration of patient geometry yielded consistent results. Research limitations/implications This work is based on prostate plans and individual recommendations would therefore need to be validated for other treatment sites. Notwithstanding, the method that requires both optimised DEA weights according to clinical significance and appropriate accounting for patient geometric factors is universally applicable. Practical implications DEA can potentially be used during treatment plan development to guide the planning process or alternatively used retrospectively for treatment plan quality audit. Social implications DEA is independent of the planning system platform and therefore has the potential to be used for multi-institutional quality audit. Originality/value To the authors' knowledge, this is the first published examination of the optimal approach in the use of DEA for radiotherapy treatment plan assessment.

  15. 78 FR 4505 - Options Price Reporting Authority; Notice of Filing of Proposed Amendment to the Plan for...

    Science.gov (United States)

    2013-01-22

    ... Options Last Sale Reports and Quotation Information To Amend Section 3.5 of the OPRA Plan January 15, 2013... of Consolidated Options Last Sale Reports and Quotation Information (``OPRA Plan'').\\3\\ The proposed....opradata.com . The OPRA Plan provides for the collection and dissemination of last sale and quotation...

  16. BrachyTPS -Interactive point kernel code package for brachytherapy treatment planning of gynaecological cancers

    International Nuclear Information System (INIS)

    Thilagam, L.; Subbaiah, K.V.

    2008-01-01

    Brachytherapy treatment planning systems (TPS) are always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in Intracavitary brachytherapy (ICBT) applicators. Most of the commercially available brachytherapy TPS softwares estimate the absorbed dose at a point, only taking care of the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. So the doses estimated by them are not much accurate under realistic clinical conditions. In this regard, interactive point kernel rode (BrachyTPS) has been developed to perform independent dose calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. As primary input data, the code takes patients' planning data including the source specifications, dwell positions, dwell times and it computes the doses at reference points by dose point kernel formalisms, with multi-layer shield build-up factors accounting for the contributions from scattered radiation. In addition to performing dose distribution calculations, this code package is capable of displaying an isodose distribution curve into the patient anatomy images. The primary aim of this study is to validate the developed point kernel code integrated with treatment planning systems against the other tools which are available in the market. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, Board of Radiation Isotope and Technology (BRIT) made low dose rate (LDR) applicator, Fletcher Green type LDR applicator and Fletcher Williamson high dose rate (HDR) applicator were studied to test the accuracy of the software

  17. SU-E-T-151: Breathing Synchronized Delivery (BSD) Planning for RapicArc Treatment

    International Nuclear Information System (INIS)

    Lu, W; Chen, M; Jiang, S

    2015-01-01

    Purpose: To propose a workflow for breathing synchronized delivery (BSD) planning for RapicArc treatment. Methods: The workflow includes three stages: screening/simulation, planning, and delivery. In the screening/simulation stage, a 4D CT with the corresponding breathing pattern is acquired for each of the selected patients, who are able to follow their own breathing pattern. In the planning stage, one breathing phase is chosen as the reference, and contours are delineated on the reference image. Deformation maps to other phases are performed along with contour propagation. Based on the control points of the initial 3D plan for the reference phase and the respiration trace, the correlation with respiration phases, the leaf sequence and gantry angles is determined. The beamlet matrices are calculated with the corresponding breathing phase and deformed to the reference phase. Using the 4D dose evaluation tool and the original 3D plan DVHs criteria, the leaf sequence is further optimized to meet the planning objectives and the machine constraints. In the delivery stage, the patients are instructed to follow the programmed breathing patterns of their own, and all other parts are the same as the conventional Rapid-Arc delivery. Results: Our plan analysis is based on comparison of the 3D plan with a static target (SD), 3D plan with motion delivery (MD), and the BSD plan. Cyclic motion of range 0 cm to 3 cm was simulated for phantoms and lung CT. The gain of the BSD plan over MD is significant and concordant for both simulation and lung 4DCT, indicating the benefits of 4D planning. Conclusion: Our study shows that the BSD plan can approach the SD plan quality. However, such BSD scheme relies on the patient being able to follow the same breathing curve that is used in the planning stage during radiation delivery. Funded by Varian Medical Systems

  18. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation

    International Nuclear Information System (INIS)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-01-01

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments. (paper)

  19. Treatment planning for laser-accelerated very-high energy electrons

    International Nuclear Information System (INIS)

    Fuchs, T; Szymanowski, H; Oelfke, U; Glinec, Y; Rechatin, C; Faure, J; Malka, V

    2009-01-01

    In recent experiments, quasi-monoenergetic and well-collimated very-high energy electron (VHEE) beams were obtained by laser-plasma accelerators. We investigate their potential use for radiation therapy. Monte Carlo simulations are used to study the influence of the experimental characteristics such as beam energy, energy spread and initial angular distribution on the dose distributions. It is found that magnetic focusing of the electron beam improves the lateral penumbra. The dosimetric properties of the laser-accelerated VHEE beams are implemented in our inverse treatment planning system for intensity-modulated treatments. The influence of the beam characteristics on the quality of a prostate treatment plan is evaluated. In comparison to a clinically approved 6 MV IMRT photon plan, a better target coverage is achieved. The quality of the sparing of organs at risk is found to be dependent on the depth. The bladder and rectum are better protected due to the sharp lateral penumbra at low depths, whereas the femoral heads receive a larger dose because of the large scattering amplitude at larger depths.

  20. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    International Nuclear Information System (INIS)

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff's review of Atlas Corporation's proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs

  1. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  2. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  3. SU-F-J-105: Towards a Novel Treatment Planning Pipeline Delivering Pareto- Optimal Plans While Enabling Inter- and Intrafraction Plan Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Kontaxis, C; Bol, G; Lagendijk, J; Raaymakers, B [University Medical Center Utrecht, Utrecht (Netherlands); Breedveld, S; Sharfo, A; Heijmen, B [Erasmus University Medical Center Rotterdam, Rotterdam (Netherlands)

    2016-06-15

    Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certain percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan

  4. SU-F-J-105: Towards a Novel Treatment Planning Pipeline Delivering Pareto- Optimal Plans While Enabling Inter- and Intrafraction Plan Adaptation

    International Nuclear Information System (INIS)

    Kontaxis, C; Bol, G; Lagendijk, J; Raaymakers, B; Breedveld, S; Sharfo, A; Heijmen, B

    2016-01-01

    Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certain percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan

  5. 77 FR 23747 - Notice of Availability of the Proposed John Day Basin Resource Management Plan and Final...

    Science.gov (United States)

    2012-04-20

    ... Management Plan (RMP)/Final Environmental Impact Statement (EIS) for the John Day Basin planning area and by... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLORP0000.16100000.DQ0000 LXSS053H0000 HAG10-0234] Notice of Availability of the Proposed John Day Basin Resource Management Plan and Final...

  6. Optimization of tomotherapy treatment planning for patients with bilateral hip prostheses.

    Science.gov (United States)

    Chapman, David; Smith, Shaun; Barnett, Rob; Bauman, Glenn; Yartsev, Slav

    2014-02-04

    To determine the effect of different imaging options and the most efficient imaging strategy for treatment planning of patients with hip prostheses. The planning kilovoltage CT (kVCT) and daily megavoltage CT (MVCT) studies for three prostate cancer patients with bilateral hip prostheses were used for creating hybrid kVCT/MVCT image sets. Treatment plans were created for kVCT images alone, hybrid kVCT/MVCT images, and MVCT images alone using the same dose prescription and planning parameters. The resulting dose volume histograms were compared. The orthopedic metal artifact reduction (O-MAR) reconstruction tool for kVCT images and different MVCT options were investigated with a water tank fit with double hip prostheses. Treatment plans were created for all imaging options and calculated dose was compared with the one measured by a pin-point ion chamber. On average for three patients, the D35% for the bladder was 8% higher in plans based on MVCT images and 7% higher in plans based on hybrid images, compared to the plans based on kVCT images alone. Likewise, the D35% for the rectum was 3% higher than the kVCT based plan for both hybrid and MVCT plans. The average difference in planned D99% in the PTV compared to kVCT plans was 0.9% and 0.1% for MVCT and hybrid plans, respectively. For the water tank with hip prostheses phantom, the kVCT plan with O-MAR correction applied showed better agreement between the measured and calculated dose than the original image set, with a difference of -1.9% compared to 3.3%. The measured doses for the MVCT plans were lower than the calculated dose due to image size limitations. The best agreement was for the kVCT/MVCT hybrid plans with the difference between calculated and measured dose around 1%. MVCT image provides better visualization of patient anatomy and hybrid kVCT/MVCT study enables more accurate calculations using updated MVCT relative electron density calibration.

  7. Optimization of tomotherapy treatment planning for patients with bilateral hip prostheses

    International Nuclear Information System (INIS)

    Chapman, David; Smith, Shaun; Barnett, Rob; Bauman, Glenn; Yartsev, Slav

    2014-01-01

    To determine the effect of different imaging options and the most efficient imaging strategy for treatment planning of patients with hip prostheses. The planning kilovoltage CT (kVCT) and daily megavoltage CT (MVCT) studies for three prostate cancer patients with bilateral hip prostheses were used for creating hybrid kVCT/MVCT image sets. Treatment plans were created for kVCT images alone, hybrid kVCT/MVCT images, and MVCT images alone using the same dose prescription and planning parameters. The resulting dose volume histograms were compared. The orthopedic metal artifact reduction (O-MAR) reconstruction tool for kVCT images and different MVCT options were investigated with a water tank fit with double hip prostheses. Treatment plans were created for all imaging options and calculated dose was compared with the one measured by a pin-point ion chamber. On average for three patients, the D 35% for the bladder was 8% higher in plans based on MVCT images and 7% higher in plans based on hybrid images, compared to the plans based on kVCT images alone. Likewise, the D 35% for the rectum was 3% higher than the kVCT based plan for both hybrid and MVCT plans. The average difference in planned D99% in the PTV compared to kVCT plans was 0.9% and 0.1% for MVCT and hybrid plans, respectively. For the water tank with hip prostheses phantom, the kVCT plan with O-MAR correction applied showed better agreement between the measured and calculated dose than the original image set, with a difference of -1.9% compared to 3.3%. The measured doses for the MVCT plans were lower than the calculated dose due to image size limitations. The best agreement was for the kVCT/MVCT hybrid plans with the difference between calculated and measured dose around 1%. MVCT image provides better visualization of patient anatomy and hybrid kVCT/MVCT study enables more accurate calculations using updated MVCT relative electron density calibration

  8. [Treatment strategy and planning for pilon fractures].

    Science.gov (United States)

    Mittlmeier, Thomas; Wichelhaus, Alice

    2017-08-01

    Pilon fractures are mainly severe and prognostically serious injuries with a high rate of relevant soft tissue involvement. The adequate decision making and choice of treatment in the early phase of trauma are of paramount importance for the final outcome. This essentially encompasses the management of the soft tissue damage, the surgical planning and the differentiated selection of procedures. Most concepts of staged treatment nowadays offer a wide range of options which are integrated into expert-based algorithms. The aim of the present analysis was to display the strategy variations for the treatment of pilon fractures taking into account the advantages and disadvantages of the corresponding treatment concepts. A staged procedure including primary closed reduction employing ligamentotaxis and fixation of the joints of the hindfoot via tibiocalcaneal metatarsal fixation offers a safe basis for consecutive imaging and the selection of specific approaches for definitive reconstruction. A simultaneous reconstruction and fixation of the fibula during the primary intervention are generally not recommended in order to avoid any limitations for subsequent reconstructive procedures. A time frame for definitive reconstruction covers a period of up to 3 weeks after trauma and allows a detailed planning considering the individual dynamics of the soft tissue situation and any logistic requirements. For the choice of the definitive treatment concept a wide range of procedures and implants are available. There are also valid concepts for primary treatment of defined fracture constellations while primary arthrodesis represents a solution in cases of major destruction of the joint surface. Knowledge of the multiple procedural variations for pilon fracture treatment creates the basis to optimize the treatment modalities and to take into account individual parameters of the fracture.

  9. Clinical Significance: a Therapeutic Approach Topsychological Assessment in Treatment Planning

    Directory of Open Access Journals (Sweden)

    Afolabi Olusegun Emmanuel

    2015-06-01

    Full Text Available Psychological assessment has long been reported as a key component of clinical psychology. This paper examines the complexities surrounding the clinical significance of therapeutic approach to treatment planning. To achieve this objective, the paper searched and used the PsycINFO and PubMed databases and the reference sections of chapters and journal articles to analysed, 1 a strong basis for the usage of therapeutic approach to psychological assessment in treatment plans, 2 explained the conceptual meaning of clinical significant change in therapeutic assessment, 3 answered some of the questions regarding practicability and the clinical significance of therapeutic approach to treatment plans, particularly during or before treatment, 4 linked therapeutic assessment to change in clients’ clinical impression, functioning and therapeutic needs 5 analysed the empirically documenting clinically significant change in therapeutic assessment. Finally, the study suggested that though therapeutic assessment is not sufficient for the systematic study of psychotherapy outcome and process, it is still consistent with both the layman and professional expectations regarding treatment outcome and also provides a precise method for classifying clients as ‘changed’ or ‘unchanged’ on the basis of clinical significance criteria.

  10. A semiautomatic tool for prostate segmentation in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Schulz, Jörn; Skrøvseth, Stein Olav; Tømmerås, Veronika Kristine; Marienhagen, Kirsten; Godtliebsen, Fred

    2014-01-01

    Delineation of the target volume is a time-consuming task in radiotherapy treatment planning, yet essential for a successful treatment of cancers such as prostate cancer. To facilitate the delineation procedure, the paper proposes an intuitive approach for 3D modeling of the prostate by slice-wise best fitting ellipses. The proposed estimate is initialized by the definition of a few control points in a new patient. The method is not restricted to particular image modalities but assumes a smooth shape with elliptic cross sections of the object. A training data set of 23 patients was used to calculate a prior shape model. The mean shape model was evaluated based on the manual contour of 10 test patients. The patient records of training and test data are based on axial T1-weighted 3D fast-field echo (FFE) sequences. The manual contours were considered as the reference model. Volume overlap (Vo), accuracy (Ac) (both ratio, range 0-1, optimal value 1) and Hausdorff distance (HD) (mm, optimal value 0) were calculated as evaluation parameters. The median and median absolute deviation (MAD) between manual delineation and deformed mean best fitting ellipses (MBFE) was Vo (0.9 ± 0.02), Ac (0.81 ± 0.03) and HD (4.05 ± 1.3)mm and between manual delineation and best fitting ellipses (BFE) was Vo (0.96 ± 0.01), Ac (0.92 ± 0.01) and HD (1.6 ± 0.27)mm. Additional results show a moderate improvement of the MBFE results after Monte Carlo Markov Chain (MCMC) method. The results emphasize the potential of the proposed method of modeling the prostate by best fitting ellipses. It shows the robustness and reproducibility of the model. A small sample test on 8 patients suggest possible time saving using the model

  11. Sustainability assessment: a tool for planning for sustainability as a desired outcome for a proposed development

    CSIR Research Space (South Africa)

    Haywood, L

    2009-08-01

    Full Text Available This paper presents a theoretical framework for planning for sustainability for any proposed development project. The objective of this framework is to foster and preserve the social ecological system in which the proposed development project...

  12. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Science.gov (United States)

    2013-06-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... direct final rulemaking, Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators...

  13. Clinical treatment planning for subjects undergoing boron neutron capture therapy at Harvard-MIT

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Palmer, M.R.; Buse, P.M.

    2001-01-01

    Treatment planning is a crucial component of the Harvard-MIT boron neutron capture therapy (BNCT) clinical trials. Treatment planning can be divided into five stages: (1) pre-planning, based on CT and MRI scans obtained when the subject arrives at the hospital and on assumed boron-10 distribution parameters; (2) subject set-up, or simulation, in the MITR-II medical therapy room to determine the boundary conditions for possible set-up configurations; (3) re-planning, following the subject simulation; (4) final localization of the subject in the medical therapy room for BNCT; and (5) final post facto recalculation of the doses delivered based on firm knowledge of the blood boron-10 concentration profiles and the neutron flux histories from precise online monitoring. The computer-assisted treatment planning is done using a specially written BNCT treatment planning code called MacNCTPLAN. The code uses the Los Alamos National Laboratory's Monte Carlo n-particle radiation transport code MCNPv.4b as the dose calculation engine and advanced anatomical model simulation based on an automatic evaluation of CT scan data. Results are displayed as isodose contours and dose-volume histograms, the latter correlated precisely with corresponding anatomical CT or MRI image planes. Examples of typical treatment planning scenarios will be presented. (author)

  14. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, E.A. [Sandia National Labs., Germantown, MD (United States)

    1995-12-31

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX{sup sm}, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE`s mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM`s Office of Technology Development, has funded this work.

  15. Interim remedial measures proposed plan for the 200-ZP-1 Operable Unit, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Parker, D.L.

    1993-12-01

    The purpose of this interim remedial measures (IRM) proposed plan is to present and solicit public comments on the IRM planned for the 200-ZP-1 Operable Unit at the Hanford Site in Washington state. The 200-ZP-1 is one of two operable units that envelop the groundwater beneath the 200 West Area of the Hanford Site

  16. Treatment planning for multicatheter interstitial brachytherapy of breast cancer – from Paris system to anatomy-based inverse planning

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2017-02-01

    Full Text Available In the last decades, treatment planning for multicatheter interstitial breast brachytherapy has evolved considerably from fluoroscopy-based 2D to anatomy-based 3D planning. To plan the right positions of the catheters, ultrasound or computed tomography (CT imaging can be used, but the treatment plan is always based on postimplant CT images. With CT imaging, the 3D target volume can be defined more precisely and delineation of the organs at risk volumes is also possible. Consequently, parameters calculated from dose-volume histogram can be used for quantitative plan evaluation. The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods (manual, geometrical, on dose points, graphical are available to shape the dose distribution to the target volume, and these influence dose homogeneities to different extent. Currently, inverse optimization algorithms offer new possibilities to improve dose distributions further considering the requirements for dose coverage, dose homogeneity, and dose to organs at risk simultaneously and automatically. In this article, the evolvement of treatment planning for interstitial breast implants is reviewed, different forward optimization methods are discussed, and dose-volume parameters used for quantitative plan evaluation are described. Finally, some questions of the inverse optimization method are investigated and initial experiences of the authors are presented.

  17. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  18. Application of a dummy eye shield for electron treatment planning

    International Nuclear Information System (INIS)

    Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik

    2013-01-01

    Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by -19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. (author)

  19. TU-G-210-00: Treatment Planning Strategies, Modeling, Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Modeling can play a vital role in predicting, optimizing and analyzing the results of therapeutic ultrasound treatments. Simulating the propagating acoustic beam in various targeted regions of the body allows for the prediction of the resulting power deposition and temperature profiles. In this session we will apply various modeling approaches to breast, abdominal organ and brain treatments. Of particular interest is the effectiveness of procedures for correcting for phase aberrations caused by intervening irregular tissues, such as the skull in transcranial applications or inhomogeneous breast tissues. Also described are methods to compensate for motion in targeted abdominal organs such as the liver or kidney. Douglas Christensen – Modeling for Breast and Brain HIFU Treatment Planning Tobias Preusser – TRANS-FUSIMO – An Integrative Approach to Model-Based Treatment Planning of Liver FUS Tobias Preusser – TRANS-FUSIMO – An Integrative Approach to Model-Based Treatment Planning of Liver FUS Learning Objectives: Understand the role of acoustic beam modeling for predicting the effectiveness of therapeutic ultrasound treatments. Apply acoustic modeling to specific breast, liver, kidney and transcranial anatomies. Determine how to obtain appropriate acoustic modeling parameters from clinical images. Understand the separate role of absorption and scattering in energy delivery to tissues. See how organ motion can be compensated for in ultrasound therapies. Compare simulated data with clinical temperature measurements in transcranial applications. Supported by NIH R01 HL172787 and R01 EB013433 (DC); EU Seventh Framework Programme (FP7/2007-2013) under 270186 (FUSIMO) and 611889 (TRANS-FUSIMO)(TP); and P01 CA159992, GE, FUSF and InSightec (UV)

  20. TU-G-210-00: Treatment Planning Strategies, Modeling, Control

    International Nuclear Information System (INIS)

    2015-01-01

    Modeling can play a vital role in predicting, optimizing and analyzing the results of therapeutic ultrasound treatments. Simulating the propagating acoustic beam in various targeted regions of the body allows for the prediction of the resulting power deposition and temperature profiles. In this session we will apply various modeling approaches to breast, abdominal organ and brain treatments. Of particular interest is the effectiveness of procedures for correcting for phase aberrations caused by intervening irregular tissues, such as the skull in transcranial applications or inhomogeneous breast tissues. Also described are methods to compensate for motion in targeted abdominal organs such as the liver or kidney. Douglas Christensen – Modeling for Breast and Brain HIFU Treatment Planning Tobias Preusser – TRANS-FUSIMO – An Integrative Approach to Model-Based Treatment Planning of Liver FUS Tobias Preusser – TRANS-FUSIMO – An Integrative Approach to Model-Based Treatment Planning of Liver FUS Learning Objectives: Understand the role of acoustic beam modeling for predicting the effectiveness of therapeutic ultrasound treatments. Apply acoustic modeling to specific breast, liver, kidney and transcranial anatomies. Determine how to obtain appropriate acoustic modeling parameters from clinical images. Understand the separate role of absorption and scattering in energy delivery to tissues. See how organ motion can be compensated for in ultrasound therapies. Compare simulated data with clinical temperature measurements in transcranial applications. Supported by NIH R01 HL172787 and R01 EB013433 (DC); EU Seventh Framework Programme (FP7/2007-2013) under 270186 (FUSIMO) and 611889 (TRANS-FUSIMO)(TP); and P01 CA159992, GE, FUSF and InSightec (UV)

  1. SU-F-T-440: The Feasibility Research of Checking Cervical Cancer IMRT Pre- Treatment Dose Verification by Automated Treatment Planning Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Yin, Y; Lin, X [Shandong Cancer Hospital and Institute, China, Jinan, Shandong (China)

    2016-06-15

    Purpose: To assess the preliminary feasibility of automated treatment planning verification system in cervical cancer IMRT pre-treatment dose verification. Methods: The study selected randomly clinical IMRT treatment planning data for twenty patients with cervical cancer, all IMRT plans were divided into 7 fields to meet the dosimetric goals using a commercial treatment planning system(PianncleVersion 9.2and the EclipseVersion 13.5). The plans were exported to the Mobius 3D (M3D)server percentage differences of volume of a region of interest (ROI) and dose calculation of target region and organ at risk were evaluated, in order to validate the accuracy automated treatment planning verification system. Results: The difference of volume for Pinnacle to M3D was less than results for Eclipse to M3D in ROI, the biggest difference was 0.22± 0.69%, 3.5±1.89% for Pinnacle and Eclipse respectively. M3D showed slightly better agreement in dose of target and organ at risk compared with TPS. But after recalculating plans by M3D, dose difference for Pinnacle was less than Eclipse on average, results were within 3%. Conclusion: The method of utilizing the automated treatment planning system to validate the accuracy of plans is convenientbut the scope of differences still need more clinical patient cases to determine. At present, it should be used as a secondary check tool to improve safety in the clinical treatment planning.

  2. Independent verification of monitor unit calculation for radiation treatment planning system.

    Science.gov (United States)

    Chen, Li; Chen, Li-Xin; Huang, Shao-Min; Sun, Wen-Zhao; Sun, Hong-Qiang; Deng, Xiao-Wu

    2010-02-01

    To ensure the accuracy of dose calculation for radiation treatment plans is an important part of quality assurance (QA) procedures for radiotherapy. This study evaluated the Monitor Units (MU) calculation accuracy of a third-party QA software and a 3-dimensional treatment planning system (3D TPS), to investigate the feasibility and reliability of independent verification for radiation treatment planning. Test plans in a homogenous phantom were designed with 3-D TPS, according to the International Atomic Energy Agency (IAEA) Technical Report No. 430, including open, blocked, wedge, and multileaf collimator (MLC) fields. Test plans were delivered and measured in the phantom. The delivered doses were input to the QA software and the independent calculated MUs were compared with delivery. All test plans were verified with independent calculation and phantom measurements separately, and the differences of the two kinds of verification were then compared. The deviation of the independent calculation to the measurements was (0.1 +/- 0.9)%, the biggest difference fell onto the plans that used block and wedge fields (2.0%). The mean MU difference between the TPS and the QA software was (0.6 +/- 1.0)%, ranging from -0.8% to 2.8%. The deviation in dose of the TPS calculation compared to the measurements was (-0.2 +/- 1.7)%, ranging from -3.9% to 2.9%. MU accuracy of the third-party QA software is clinically acceptable. Similar results were achieved with the independent calculations and the phantom measurements for all test plans. The tested independent calculation software can be used as an efficient tool for TPS plan verification.

  3. 78 FR 12347 - Notice of Availability of the Proposed Resource Management Plan and Final Environmental Impact...

    Science.gov (United States)

    2013-02-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWYR05000 L16100000.DQ0000 LXSS04 K0000] Notice of Availability of the Proposed Resource Management Plan and Final Environmental Impact Statement for the Lander Field Office Planning Area, WY AGENCY: Bureau of Land Management, Interior. ACTION...

  4. 78 FR 13379 - Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations

    Science.gov (United States)

    2013-02-27

    ...] Wrangell-St. Elias National Park and Preserve, Alaska; Proposed Mining Plan of Operations AGENCY: National...) unpatented placer claims within Wrangell-St. Elias National Park and Preserve. Public Availability: This plan...: Wrangell-St. Elias National Park and Preserve Headquarters, Mile 106.8 Richardson Highway, Post Office Box...

  5. Novel hyperthermia applicator system allows adaptive treatment planning: Preliminary clinical results in tumour-bearing animals.

    Science.gov (United States)

    Dressel, S; Gosselin, M-C; Capstick, M H; Carrasco, E; Weyland, M S; Scheidegger, S; Neufeld, E; Kuster, N; Bodis, S; Rohrer Bley, C

    2017-09-11

    Hyperthermia (HT) as an adjuvant to radiation therapy (RT) is a multimodality treatment method to enhance therapeutic efficacy in different tumours. High demands are placed on the hardware and treatment planning software to guarantee adequately planned and applied HT treatments. The aim of this prospective study was to determine the effectiveness and safety of the novel HT system in tumour-bearing dogs and cats in terms of local response and toxicity as well as to compare planned with actual achieved data during heating. A novel applicator with a flexible number of elements and integrated closed-loop temperature feedback control system, and a tool for patient-specific treatment planning were used in a combined thermoradiotherapy protocol. Good agreement between predictions from planning and clinical outcome was found in 7 of 8 cases. Effective HT treatments were planned and verified with the novel system and provided improved quality of life in all but 1 patient. This individualized treatment planning and controlled heat exposure allows adaptive, flexible and safe HT treatments in palliatively treated animal patients. © 2017 John Wiley & Sons Ltd.

  6. Deliverable navigation for multicriteria IMRT treatment planning by combining shared and individual apertures

    International Nuclear Information System (INIS)

    Fredriksson, Albin; Bokrantz, Rasmus

    2013-01-01

    We consider the problem of deliverable Pareto surface navigation for step-and-shoot intensity-modulated radiation therapy. This problem amounts to calculation of a collection of treatment plans with the property that convex combinations of plans are directly deliverable. Previous methods for deliverable navigation impose restrictions on the number of apertures of the individual plans, or require that all treatment plans have identical apertures. We introduce simultaneous direct step-and-shoot optimization of multiple plans subject to constraints that some of the apertures must be identical across all plans. This method generalizes previous methods for deliverable navigation to allow for treatment plans with some apertures from a collective pool and some apertures that are individual. The method can also be used as a post-processing step to previous methods for deliverable navigation in order to improve upon their plans. By applying the method to subsets of plans in the collection representing the Pareto set, we show how it can enable convergence toward the unrestricted (non-navigable) Pareto set where all apertures are individual. (paper)

  7. Recommendations for the commissioning and use of a radiotherapy treatment planning system (TPS). S.F.P.M. report nr 27, December 1, 2010

    International Nuclear Information System (INIS)

    Rosenwald, Jean Claude; Bonvalet, Laurent; Mazurier, Jocelyne; Metayer, Christine; Beaudre, Anne; Garcia, Robin; Ruchaud, Romain; Dedieu, Veronique; Bramoulle, Celine; Caselles, Olivier; Lacaze, Brigitte; Mazurier, Jocelyne

    2010-01-01

    This report aims at bringing risks related to the use of Treatment Planning Systems (TPS) to the attention of French medical physicists, and to provide them with practical, precise and updated recommendations related to new legal requirements on commissioning and use of a new planning system. It addresses TPS used in external radiation therapy. It is based on various international (IAEA, ESTRO, AAPM, and so on) and national recommendations, and proposes some rules of good practices for the implementation of a quality insurance policy as well as for the procurement and implementation of a new planning system, as for the performance follow-up of an already installed system. The authors address the following issues: risks associated with the use of a TPS, organisational aspects, dose calculation algorithms and required precision, TPS acceptance, adjustment and tests, periodic controls, treatment plan verification procedures

  8. MO-F-CAMPUS-T-05: SQL Database Queries to Determine Treatment Planning Resource Usage

    International Nuclear Information System (INIS)

    Fox, C; Gladstone, D

    2015-01-01

    Purpose: A radiation oncology clinic’s treatment capacity is traditionally thought to be limited by the number of machines in the clinic. As the number of fractions per course decrease and the number of adaptive plans increase, the question of how many treatment plans a clinic can plan becomes increasingly important. This work seeks to lay the ground work for assessing treatment planning resource usage. Methods: Care path templates were created using the Aria 11 care path interface. Care path tasks included key steps in the treatment planning process from the completion of CT simulation through the first radiation treatment. SQL Server Management Studio was used to run SQL queries to extract task completion time stamps along with care path template information and diagnosis codes from the Aria database. 6 months of planning cycles were evaluated. Elapsed time was evaluated in terms of work hours within Monday – Friday, 7am to 5pm. Results: For the 195 validated treatment planning cycles, the average time for planning and MD review was 22.8 hours. Of those cases 33 were categorized as urgent. The average planning time for urgent plans was 5 hours. A strong correlation between diagnosis code and range of elapsed planning time was as well as between elapsed time and select diagnosis codes was observed. It was also observed that tasks were more likely to be completed on the date due than the time that they were due. Follow-up confirmed that most users did not look at the due time. Conclusion: Evaluation of elapsed planning time and other tasks suggest that care paths should be adjusted to allow for different contouring and planning times for certain diagnosis codes and urgent cases. Additional clinic training around task due times vs dates or a structuring of care paths around due dates is also needed

  9. MO-F-CAMPUS-T-05: SQL Database Queries to Determine Treatment Planning Resource Usage

    Energy Technology Data Exchange (ETDEWEB)

    Fox, C; Gladstone, D [Dartmouth Hitchcock-Medical Center, Hanover, NH (United States)

    2015-06-15

    Purpose: A radiation oncology clinic’s treatment capacity is traditionally thought to be limited by the number of machines in the clinic. As the number of fractions per course decrease and the number of adaptive plans increase, the question of how many treatment plans a clinic can plan becomes increasingly important. This work seeks to lay the ground work for assessing treatment planning resource usage. Methods: Care path templates were created using the Aria 11 care path interface. Care path tasks included key steps in the treatment planning process from the completion of CT simulation through the first radiation treatment. SQL Server Management Studio was used to run SQL queries to extract task completion time stamps along with care path template information and diagnosis codes from the Aria database. 6 months of planning cycles were evaluated. Elapsed time was evaluated in terms of work hours within Monday – Friday, 7am to 5pm. Results: For the 195 validated treatment planning cycles, the average time for planning and MD review was 22.8 hours. Of those cases 33 were categorized as urgent. The average planning time for urgent plans was 5 hours. A strong correlation between diagnosis code and range of elapsed planning time was as well as between elapsed time and select diagnosis codes was observed. It was also observed that tasks were more likely to be completed on the date due than the time that they were due. Follow-up confirmed that most users did not look at the due time. Conclusion: Evaluation of elapsed planning time and other tasks suggest that care paths should be adjusted to allow for different contouring and planning times for certain diagnosis codes and urgent cases. Additional clinic training around task due times vs dates or a structuring of care paths around due dates is also needed.

  10. Proposed research and development plan for mixed low-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    O`Holleran, T.O.; Feng, X.; Kalb, P. [and others

    1996-12-01

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  11. Proposed research and development plan for mixed low-level waste forms

    International Nuclear Information System (INIS)

    O'Holleran, T.O.; Feng, X.; Kalb, P.

    1996-12-01

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy's mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department's MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW

  12. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120 Heidelberg, Germany, and German Consortium for Translational Cancer Research (DKTK), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Schlegel, Wolfgang [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom); Nill, Simeon [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2014-08-15

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  13. Independent calculation of dose distributions for helical tomotherapy using a conventional treatment planning system

    International Nuclear Information System (INIS)

    Klüter, Sebastian; Schubert, Kai; Lissner, Steffen; Sterzing, Florian; Oetzel, Dieter; Debus, Jürgen; Schlegel, Wolfgang; Oelfke, Uwe; Nill, Simeon

    2014-01-01

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatment field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local

  14. Epilepsy Treatment Simplified through Mobile Ketogenic Diet Planning.

    Science.gov (United States)

    Li, Hanzhou; Jauregui, Jeffrey L; Fenton, Cagla; Chee, Claire M; Bergqvist, A G Christina

    2014-07-01

    The Ketogenic Diet (KD) is an effective, alternative treatment for refractory epilepsy. This high fat, low protein and carbohydrate diet mimics the metabolic and hormonal changes that are associated with fasting. To maximize the effectiveness of the KD, each meal is precisely planned, calculated, and weighed to within 0.1 gram for the average three-year duration of treatment. Managing the KD is time-consuming and may deter caretakers and patients from pursuing or continuing this treatment. Thus, we investigated methods of planning KD faster and making the process more portable through mobile applications. Nutritional data was gathered from the United States Department of Agriculture (USDA) Nutrient Database. User selected foods are converted into linear equations with n variables and three constraints: prescribed fat content, prescribed protein content, and prescribed carbohydrate content. Techniques are applied to derive the solutions to the underdetermined system depending on the number of foods chosen. The method was implemented on an iOS device and tested with varieties of foods and different number of foods selected. With each case, the application's constructed meal plan was within 95% precision of the KD requirements. In this study, we attempt to reduce the time needed to calculate a meal by automating the computation of the KD via a linear algebra model. We improve upon previous KD calculators by offering optimal suggestions and incorporating the USDA database. We believe this mobile application will help make the KD and other dietary treatment preparations less time consuming and more convenient.

  15. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    Science.gov (United States)

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  16. MO-D-BRB-02: Pediatric Treatment Planning II: Applications of Proton Beams for Pediatric Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C. [St. Jude Childrens Research Hospital (United States)

    2015-06-15

    Most Medical Physicists working in radiotherapy departments see few pediatric patients. This is because, fortunately, children get cancer at a rate nearly 100 times lower than adults. Children have not smoked, abused alcohol, or been exposed to environmental carcinogens for decades, and of course, have not fallen victim to the aging process. Children get very different cancers than adults. Breast or prostate cancers, typical in adults, are rarely seen in children but instead a variety of tumors occur in children that are rarely seen in adults; examples are germinomas, ependymomas and primitive neuroectodermal tumors, which require treatment of the child’s brain or neuroblastoma, requiring treatment in the abdomen. The treatment of children with cancer using radiation therapy is one of the most challenging planning and delivery problems facing the physicist. This is because bones, brain, breast tissue, and other organs are more sensitive to radiation in children than in adults. Because most therapy departments treat mostly adults, when the rare 8 year-old patient comes to the department for treatment, the physicist may not understand the clinical issues of his disease which drive the planning and delivery decisions. Additionally, children are more prone than adults to developing secondary cancers after radiation. For bilateral retinoblastoma for example, an irradiated child has a 40% chance of developing a second cancer by age 50. The dosimetric tradeoffs made during the planning process are complex and require careful consideration for children treated with radiotherapy. In the first presentation, an overview of childhood cancers and their corresponding treatment techniques will be given. These can be some of the most complex treatments that are delivered in the radiation therapy department. These cancers include leukemia treated with total body irradiation, medulloblastoma, treated with craniospinal irradiation plus a conformal boost to the posterior fossa

  17. Treatment planning for heavy ion radiotherapy: calculation and optimization of biologically effective dose

    International Nuclear Information System (INIS)

    Kraemer, M.; Scholz, M.

    2000-09-01

    We describe a novel approach to treatment planning for heavy ion radiotherapy based on the local effect model (LEM) which allows to calculate the biologically effective dose not only for the target region but for the entire irradiation volume. LEM is ideally suited to be used as an integral part of treatment planning code systems for active dose shaping devices like the GSI raster scan system. Thus, it has been incorporated into our standard treatment planning system for ion therapy (TRiP). Single intensity modulated fields can be optimized with respect to homogeneous biologically effective dose. The relative biological effectiveness (RBE) is calculated separately for each voxel of the patient CT. Our radiobiologically oriented code system is in use since 1995 for the planning of irradiation experiments with cell cultures and animals such as rats and minipigs. Since 1997 it is in regular and successful use for patient treatment planning. (orig.)

  18. Development of reference problems for neutron capture therapy treatment planning systems

    International Nuclear Information System (INIS)

    Albritton, J.R.; Kiger, W.S. III

    2006-01-01

    Currently, 5 different treatment planning systems (TPSs) are or have been used in clinical trials of Neutron Capture Therapy (NCT): MacNCTPlan, NCTPlan, BNCT Rtpe, SERA, and JCDS. This paper describes work performed to comprehensively test and compare 4 of these NCT treatment planning systems in order to facilitate the pooling of patient data from the different clinical sites for analysis of the clinical results as well as to provide an important quality assurance tool for existing and future TPSs. Two different phantoms were used to evaluate the planning systems: the modified Snyder head phantom and a large water-filled box, similar to that used in the International Dosimetry Exchange for NCT. The comparison of the resulting dose profile, isodose contours, and dose volume histograms to reference calculations performed with the Monte Carlo radiation transport code MCNP5 yielded many interesting differences. Each of the planning systems deviated from the reference calculations, with the newer systems (i.e., SERA and NCTPlan) most often yielding better agreement than their predecessors (i.e., BNCT Rtpe and MacNCTPlan). The combination of simple phantoms and sources with more complicated and realistic planning conditions has produced a well-rounded and useful suite of test problems for NCT treatment planning system analysis. (author)

  19. Upright 3D Treatment Planning Using a Vertical CT

    International Nuclear Information System (INIS)

    Shah, Anand P.; Strauss, Jonathan B.; Kirk, Michael C.; Chen, Sea S.; Kroc, Thomas K.; Zusag, Thomas W.

    2009-01-01

    In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields

  20. Supply chain planning with sustainability considerations: an integrative framework

    DEFF Research Database (Denmark)

    Wang, Yang; Akkerman, Renzo; Birkved, Morten

    2011-01-01

    This paper proposes a modelling framework for combining supply chain planning and sustainability assessment, illustrating how sustainability assessments of logistic activities can be improved by supply chain planning input, and supply chain planning can in turn make use of the results from sustai...... produced on industrial scale, studying several important planning decisions like temperature treatments and choice of packaging materials.......This paper proposes a modelling framework for combining supply chain planning and sustainability assessment, illustrating how sustainability assessments of logistic activities can be improved by supply chain planning input, and supply chain planning can in turn make use of the results from...

  1. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  2. Quality assurance in dosimetry and treatment planning

    International Nuclear Information System (INIS)

    Cunningham, J.R.

    1984-01-01

    The considerations of tissue response to radiation absorbed dose suggest a need for an accuracy of +/-5% in its delivery. This is very demanding and its regular achievement requires careful quality control. There are three distinct phases to the delivery of the planned treatment: calibration of the radiation beam in a reference situation, calculation of the dose distribution for a patient relative to the reference dose and the delivery of the radiation to the patient as planned. Each has distinctly different quality assurance requirements and must be diligently observed if the desired accuracy is to be achieved

  3. Automated gamma knife radiosurgery treatment planning with image registration, data-mining, and Nelder-Mead simplex optimization

    International Nuclear Information System (INIS)

    Lee, Kuan J.; Barber, David C.; Walton, Lee

    2006-01-01

    Gamma knife treatments are usually planned manually, requiring much expertise and time. We describe a new, fully automatic method of treatment planning. The treatment volume to be planned is first compared with a database of past treatments to find volumes closely matching in size and shape. The treatment parameters of the closest matches are used as starting points for the new treatment plan. Further optimization is performed with the Nelder-Mead simplex method: the coordinates and weight of the isocenters are allowed to vary until a maximally conformal plan specific to the new treatment volume is found. The method was tested on a randomly selected set of 10 acoustic neuromas and 10 meningiomas. Typically, matching a new volume took under 30 seconds. The time for simplex optimization, on a 3 GHz Xeon processor, ranged from under a minute for small volumes ( 30 000 cubic mm,>20 isocenters). In 8/10 acoustic neuromas and 8/10 meningiomas, the automatic method found plans with conformation number equal or better than that of the manual plan. In 4/10 acoustic neuromas and 5/10 meningiomas, both overtreatment and undertreatment ratios were equal or better in automated plans. In conclusion, data-mining of past treatments can be used to derive starting parameters for treatment planning. These parameters can then be computer optimized to give good plans automatically

  4. Development of a Whole Body Atlas for Radiation Therapy Planning and Treatment Optimization

    International Nuclear Information System (INIS)

    Qatarneh, Sharif

    2006-01-01

    The main objective of radiation therapy is to obtain the highest possible probability of tumor cure while minimizing adverse reactions in healthy tissues. A crucial step in the treatment process is to determine the location and extent of the primary tumor and its loco regional lymphatic spread in relation to adjacent radiosensitive anatomical structures and organs at risk. These volumes must also be accurately delineated with respect to external anatomic reference points, preferably on surrounding bony structures. At the same time, it is essential to have the best possible physical and radiobiological knowledge about the radiation responsiveness of the target tissues and organs at risk in order to achieve a more accurate optimization of the treatment outcome. A computerized whole body Atlas has therefore been developed to serve as a dynamic database, with systematically integrated knowledge, comprising all necessary physical and radiobiological information about common target volumes and normal tissues. The Atlas also contains a database of segmented organs and a lymph node topography, which was based on the Visible Human dataset, to form standard reference geometry of organ systems. The reference knowledge base and the standard organ dataset can be utilized for Atlas-based image processing and analysis in radiation therapy planning and for biological optimization of the treatment outcome. Atlas-based segmentation procedures were utilized to transform the reference organ dataset of the Atlas into the geometry of individual patients. The anatomic organs and target volumes of the database can be converted by elastic transformation into those of the individual patient for final treatment planning. Furthermore, a database of reference treatment plans was started by implementing state-of-the-art biologically based radiation therapy planning techniques such as conformal, intensity modulated, and radio biologically optimized treatment planning. The computerized Atlas can

  5. Interactive dose shaping - efficient strategies for CPU-based real-time treatment planning

    International Nuclear Information System (INIS)

    Ziegenhein, P; Kamerling, C P; Oelfke, U

    2014-01-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  6. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    International Nuclear Information System (INIS)

    Lewis, R.D.; Ryde, S.J.S.; Seaby, A.W.; Hancock, D.A.; Evans, C.J.

    2000-01-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms. (author)

  7. Optimization of stereotactic body radiotherapy treatment planning using a multicriteria optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Ghandour, Sarah; Cosinschi, Adrien; Mazouni, Zohra; Pachoud, Marc; Matzinger, Oscar [Riviera-Chablais Hospital, Vevey (Switzerland). Cancer Center, Radiotherapy Dept.

    2016-07-01

    To provide high-quality and efficient dosimetric planning for various types of stereotactic body radiotherapy (SBRT) for tumor treatment using a multicriteria optimization (MCO) technique fine-tuned with direct machine parameter optimization (DMPO). Eighteen patients with lung (n = 11), liver (n = 5) or adrenal cell cancer (n = 2) were treated using SBRT in our clinic between December 2014 and June 2015. Plans were generated using the RayStation trademark Treatment Planning System (TPS) with the VMAT technique. Optimal deliverable SBRT plans were first generated using an MCO algorithm to find a well-balanced tradeoff between tumor control and normal tissue sparing in an efficient treatment planning time. Then, the deliverable plan was post-processed using the MCO solution as the starting point for the DMPO algorithm to improve the dose gradient around the planning target volume (PTV) while maintaining the clinician's priorities. The dosimetric quality of the plans was evaluated using dose-volume histogram (DVH) parameters, which account for target coverage and the sparing of healthy tissue, as well as the CI100 and CI50 conformity indexes. Using a combination of the MCO and DMPO algorithms showed that the treatment plans were clinically optimal and conformed to all organ risk dose volume constraints reported in the literature, with a computation time of approximately one hour. The coverage of the PTV (D99% and D95%) and sparing of organs at risk (OAR) were similar between the MCO and MCO + DMPO plans, with no significant differences (p > 0.05) for all the SBRT plans. The average CI100 and CI50 values using MCO + DMPO were significantly better than those with MCO alone (p < 0.05). The MCO technique allows for convergence on an optimal solution for SBRT within an efficient planning time. The combination of the MCO and DMPO techniques yields a better dose gradient, especially for lung tumors.

  8. Idaho National Engineering Laboratory Conceptual Site Treatment Plan. Sections 1 through 8, Tables 2-1 through 6-1, Figures 1 and 2

    International Nuclear Information System (INIS)

    Eaton, D.

    1993-10-01

    The US Department of Energy (DOE) is required by Section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (FFCAct), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The FFCAct requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the host state or the US Environmental Protection Agency (EPA) for either approval, approval with modification, or disapproval. The Idaho National Engineering Laboratory (INEL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the FFCAct and is being provided to the State of Idaho, the EPA, and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix A of this document. In addition to aiding the INEL in formulating its Final Proposed STP, this CSTP will also provide information to other DOE sites for use in identifying common technology needs and potential options for treating their wastes. The INEL CSTP is also intended to be used in conjunction with CSTPs from other sites as a basis for nationwide discussions among state regulators, the EPA, and other interested parties on treatment strategies and options, and on technical and equity issues associated with DOE's mixed waste

  9. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    Energy Technology Data Exchange (ETDEWEB)

    Vandewouw, Marlee M., E-mail: marleev@mie.utoronto.ca; Aleman, Dionne M. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada)

    2016-08-15

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  10. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    International Nuclear Information System (INIS)

    Vandewouw, Marlee M.; Aleman, Dionne M.; Jaffray, David A.

    2016-01-01

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, are used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.

  11. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Ungun, B [Stanford University, Stanford, CA (United States); Stanford University School of Medicine, Stanford, CA (United States); Fu, A; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Boyd, S [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  12. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    International Nuclear Information System (INIS)

    Ungun, B; Fu, A; Xing, L; Boyd, S

    2016-01-01

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction, we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the

  13. Evaluation of IMRT plans of prostate carcinoma from four treatment planning systems based on Monte Carlo

    International Nuclear Information System (INIS)

    Chi Zifeng; Han Chun; Liu Dan; Cao Yankun; Li Runxiao

    2011-01-01

    Objective: With the Monte Carlo method to recalculate the IMRT dose distributions from four TPS to provide a platform for independent comparison and evaluation of the plan quality.These results will help make a clinical decision as which TPS will be used for prostate IMRT planning. Methods: Eleven prostate cancer cases were planned with the Corvus, Xio, Pinnacle and Eclipse TPS. The plans were recalculated by Monte Carlo using leaf sequences and MUs for individual plans. Dose-volume-histograms and isodose distributions were compared. Other quantities such as D min (the minimum dose received by 99% of CTV/PTV), D max (the maximum dose received by 1% of CTV/PTV), V 110% , V 105% , V 95% (the volume of CTV/PTV receiving 110%, 105%, 95% of the prescription dose), the volume of rectum and bladder receiving >65 Gy and >40 Gy, and the volume of femur receiving >50 Gy were evaluated. Total segments and MUs were also compared. Results: The Monte Carlo results agreed with the dose distributions from the TPS to within 3%/3 mm. The Xio, Pinnacle and Eclipse plans show less target dose heterogeneity and lower V 65 and V 40 for the rectum and bladder compared to the Corvus plans. The PTV D min is about 2 Gy lower for Xio plans than others while the Corvus plans have slightly lower female head V 50 (0.03% and 0.58%) than others. The Corvus plans require significantly most segments (187.8) and MUs (1264.7) to deliver and the Pinnacle plans require fewest segments (82.4) and MUs (703.6). Conclusions: We have tested an independent Monte Carlo dose calculation system for dose reconstruction and plan evaluation. This system provides a platform for the fair comparison and evaluation of treatment plans to facilitate clinical decision making in selecting a TPS and beam delivery system for particular treatment sites. (authors)

  14. 75 FR 29588 - Office of New Reactors: Proposed NUREG-0800; Standard Review Plan Section 13.6.6, Draft Revision...

    Science.gov (United States)

    2010-05-26

    ...; Standard Review Plan Section 13.6.6, Draft Revision 0 on Cyber Security Plan AGENCY: Nuclear Regulatory... Plants,'' on a proposed Standard Review Plan (SRP) Section 13.6.6 on ``Cyber Security Plan'' (Agencywide Documents Access and Management System (ADAMS) Accession No. ML093560837). The Office of Nuclear Security...

  15. Intertechnology Corporation proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-09-01

    This report has three major parts. The first of these derives the requirements for the Test and Evaluation plan from the System Level Plan which is summarized in Section II. The second part contains the proposed plan to fill these requirements and includes hardware and software recommendations as well as procedures and management considerations. Primary emphasis has been given to the remote site because this is the area in which the commercial part of the demonstration is most unique. Finally, some pre-demonstration activities are described. The pilot program is intended to resolve a number of issues which arose in the course of the T and E plan. These relate to choice of scan frequencies, compression algorithms, etc. It is also intended to confirm performance and cost effectiveness of the site data collection package. The base line measurements of attitudes, etc. provide a reference mark against which one can measure the non-technical effectiveness of the demonstration program. (WDM)

  16. Effect of MLC leaf width on the planning and delivery of SMLC IMRT using the CORVUS inverse treatment planning system

    International Nuclear Information System (INIS)

    Burmeister, Jay; McDermott, Patrick N.; Bossenberger, Todd; Ben-Josef, Edgar; Levin, Kenneth; Forman, Jeffrey D.

    2004-01-01

    This study investigates the influence of multileaf collimator (MLC) leaf width on intensity modulated radiation therapy (IMRT) plans delivered via the segmented multileaf collimator (SMLC) technique. IMRT plans were calculated using the Corvus treatment planning system for three brain, three prostate, and three pancreas cases using leaf widths of 0.5 and 1 cm. Resulting differences in plan quality and complexity are presented here. Plans calculated using a 1 cm leaf width were chosen over the 0.5 cm leaf width plans in seven out of nine cases based on clinical judgment. Conversely, optimization results revealed a superior objective function result for the 0.5 cm leaf width plans in seven out of the nine comparisons. The 1 cm leaf width objective function result was superior only for very large target volumes, indicating that expanding the solution space for plan optimization by using narrower leaves may result in a decreased probability of finding the global minimum. In the remaining cases, we can conclude that we are often not utilizing the objective function as proficiently as possible to meet our clinical goals. There was often no apparent clinically significant difference between the two plans, and in such cases the issue becomes one of plan complexity. A comparison of plan complexity revealed that the average 1 cm leaf width plan required roughly 60% fewer segments and over 40% fewer monitor units than required by 0.5 cm leaf width plans. This allows a significant decrease in whole body dose and total treatment time. For very complex IMRT plans, the treatment delivery time may affect the biologically effective dose. A clinically significant improvement in plan quality from using narrower leaves was evident only in cases with very small target volumes or those with concavities that are small with respect to the MLC leaf width. For the remaining cases investigated in this study, there was no clinical advantage to reducing the MLC leaf width from 1 to 0.5 cm. In

  17. Proposed plan for the management of bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    1990-02-01

    This proposed plan addresses the management of contaminated bulk wastes at the Weldon Spring quarry. Activities at the site are being conducted by the US Department of Energy under its Surplus Facilities Management Program. A remedial investigation/feasibility study has been prepared in accordance with requirements of the Comprehensive Environmental Response. The purposes of the proposed plan are to present a notice and brief analysis of the proposed quarry bulk waste remedial action, describe the remedial action alternatives for this interim remedial action, identify the currently preferred alternative for managing the bulk wastes and present the rationale for this preference, serve as a companion document to the RI/FS and administrative record file for this action, and outline the public's role in the decision-making process for this action. 2 figs., 4 tabs

  18. 76 FR 6727 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Science.gov (United States)

    2011-02-08

    ... location. Written comments will be accepted through the close of business on March 16, 2011. Locations: The... Regulations, Water Code and Comprehensive Plan To Provide for Regulation of Natural Gas Development Projects... proposed rule containing tentative dates and locations for public hearings on proposed amendments to its...

  19. Treatment planning for conformation therapy using a multi-leaf collimator

    International Nuclear Information System (INIS)

    Boesecke, R.; Doll, J.; Bauer, B.; Schlegel, W.; Pastyr, O.; Lorenz, W.J.

    1988-01-01

    In high energy photon therapy an optimum dose distribution is achieved with an irradiation from several directions, thus adapting the field shape to the target volume. Some methods of irradiation planning using these techniques are presented. The result of such a treatment planning is demonstrated. (orig.) [de

  20. Specification and acceptance testing of radiotherapy treatment planning systems

    International Nuclear Information System (INIS)

    2007-04-01

    Quality assurance (QA) in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient and to minimize the possibility of accidental exposure. The computerized radiotherapy treatment planning systems (RTPSs) are now widely available in industrialized and developing countries and it is of special importance to support hospitals in Member States in developing procedures for acceptance testing, commissioning and QA of their RTPSs. Responding to these needs, a group of experts developed an IAEA publication with such recommendations, which was published in 2004 as IAEA Technical Reports Series No. 430. This report provides a general framework and describes a large number of tests and procedures that should be considered by the users of new RTPSs. However, small hospitals with limited resources or large hospitals with high patient load and limited staff are not always able to perform complete characterization, validation and software testing of algorithms used in RTPSs. Therefore, the IAEA proposed more specific guidelines that provide a step-by-step recommendation for users at hospitals or cancer centres how to implement acceptance and commissioning procedures for newly purchased RTPSs. The current publication was developed in the framework of the Coordinated Research Project on Development of Procedures for Quality Assurance for Dosimetry Calculations in Radiotherapy and uses the International Electrotechnical Commission (IEC) standard IEC 62083, Requirements for the Safety of Radiotherapy Treatment Planning Systems as its basis. The report addresses the procedures for specification and acceptance testing of RTPSs to be used by both manufacturers and users at the hospitals. Recommendations are provided for specific tests to be performed at the manufacturing facility known as type tests, and for acceptance tests to be performed at the hospital known as site tests. The purpose of acceptance testing is to demonstrate to the

  1. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    International Nuclear Information System (INIS)

    Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 ( 60 Co) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving 60 Co ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. (author)

  2. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    Science.gov (United States)

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  3. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  4. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy.

    Science.gov (United States)

    Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun

    2015-04-07

    Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation

  5. Treatment planning: A key milestone to prevent treatment dropout in adolescents with borderline personality disorder.

    Science.gov (United States)

    Desrosiers, Lyne; Saint-Jean, Micheline; Breton, Jean-Jacques

    2015-06-01

    The aim of this study was to gain a broader appreciation of processes involved in treatment dropout in adolescents with borderline personality disorder (BPD). A constructivist grounded theory was chosen using a multiple-case research design with three embedded levels of analysis (adolescent, parent, and care setting). Theoretical sampling and the different stages of analysis specific to grounded theory were performed according to the iterative process of constant comparative analysis. Twelve cases were examined (nine dropouts among adolescents with BPD and for the purpose of falsification, one dropout of suicidal adolescent without BPD and two completed treatments among adolescents with BPD). To document the cases, three groups of informants were recruited (adolescents, parents, and therapists involved in the treatment) and 34 interviews were conducted. Psychological characteristics, perception of mental illness and mental health care, and help-seeking context were the specific treatment dropout vulnerabilities identified in adolescents with BPD and in their parents. However, their disengagement became an issue only when care-setting response--including mitigation of accessibility problems, adaptation of services to needs of adolescents with BPD, preparation for treatment, and concern for clinicians' disposition to treat--was ill-suited to these treatment dropout vulnerabilities. Treatment planning proves to be a key milestone to properly engage adolescents with BPD and their parent. Systematic assessment of treatment dropout vulnerabilities before the intervention plan is laid out could foster better-suited responses of the care setting thus decreasing the incidence of treatment discontinuation in adolescents with BPD. Treatment dropout vulnerabilities specific to adolescents with BPD and their parents can be detected before the beginning of treatment. Premature treatment termination may be prevented if the care setting considers these vulnerabilities at treatment

  6. Modelling of treatment couch top with prowess panther treatment planning system for external beam radiotherapy

    International Nuclear Information System (INIS)

    Owusu-Agyapong, Linus

    2016-07-01

    The aim of this work is to evaluate the attenuation effects of a treatment couch and to alternatively model the couch top material with a Prowess Panther treatment planning system which does not support couch top modelling. The Hounsfield Unit classification of the couch structure was determined using a PMMA phantom by comparing ion chamber measurements with the dose forecasted by the treatment planning system (TPS). The transmission factor (TF) of the couch top was determined and was used as a TF for a treatment accessory that represented the treatment couch in the TPS. A treatment plan was done for various angles with and without the interference of the couch top and a simulated treatment was done using the PMMA phantom. Ion chamber measurement were made and compared with dose predicted by the TPS to evaluate the accuracy of the couch top modelling in the treatment planning system TPS. These investigations were done for various field sizes. The ideal set of HU for the couch was established to be -674. The measured TF was 0.956042 and the TPS calculated Transmission factor was 0.951456. The percentage difference between the measured and calculated TFs was 0.48% and this agrees perfectly with the IAEA recommended tolerance of 2%. Relative attenuation measurements were as high as 54.16% and as low as 0.63% for the beams that exited the couch before interacting with the phantom. In comparing couch modelling by couch simulation and couch TF insert, it was observed that the normalized doses were the same for 5×5 square field but deviated approximately 1% for the other field sizes. The highest deviation was observed at 10×10 square field. This study demonstrates that the couch simulation method of couch modelling is the best method that can be used to account for the effect of the treatment couch top on intersecting posterior beam fields. Thus, the attenuation effects of the treatment couch was effectively evaluated and the couch top material accurately modelled in

  7. Independent technique of verifying high-dose rate (HDR) brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Korb, Leroy J.; Darnell, Brenda; Krishna, K. V.; Ulewicz, Dennis

    1998-01-01

    Purpose: An independent technique for verifying high-dose rate (HDR) brachytherapy treatment plans has been formulated and validated clinically. Methods and Materials: In HDR brachytherapy, dwell times at respective dwell positions are computed, using an optimization algorithm in a HDR treatment-planning system to deliver a specified dose to many target points simultaneously. Because of the variability of dwell times, concerns have been expressed regarding the ability of the algorithm to compute the correct dose. To address this concern, a commercially available low-dose rate (LDR) algorithm was used to compute the doses at defined distances, based on the dwell times obtained from the HDR treatment plans. The percent deviation between doses computed using the HDR and LDR algorithms were reviewed for HDR procedures performed over the last year. Results: In this retrospective study, the difference between computed doses using the HDR and LDR algorithms was found to be within 5% for about 80% of the HDR procedures. All of the reviewed procedures have dose differences of less than 10%. Conclusion: An independent technique for verifying HDR brachytherapy treatment plans has been validated based on clinical data. Provided both systems are available, this technique is universal in its applications and not limited to either a particular implant applicator, implant site, or implant type

  8. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, S.; Hinkelbein, W. [Dept. of Radiooncology, Charite Univ. Medicine, Berlin (Germany); Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H. [Eye Tumor Therapy, Hahn-Meitner Inst., Berlin (Germany); Bendl, R. [Dept. of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg (Germany); Lemke, A.J. [Dept. of Diagnostic Radiology, Charite Univ. Medicine, Berlin (Germany); Bechrakis, N.E.; Foerster, M.H. [Dept. of Ophthalmology, Charite Univ. Medicine, Berlin (Germany)

    2006-07-15

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  9. Proton therapy of uveal melanomas. Intercomparison of MRI-based and conventional treatment planning

    International Nuclear Information System (INIS)

    Marnitz, S.; Hinkelbein, W.; Cordini, D.; Heufelder, J.; Simiantonakis, I.; Kluge, H.; Bendl, R.; Lemke, A.J.; Bechrakis, N.E.; Foerster, M.H.

    2006-01-01

    Background and purpose: proton therapy for uveal melanoma provides high-conformal dose application to the target volume and, thus, an optimal saving of the organs at risk nearby. Treatment planning is done with the model-based treatment-planning system eyeplan. Tumor reconstruction is based only on a fundus composite, which often leads to an overestimation of the clinical target volume (CTV). The purpose was to exploit MRI on trial in a proton therapy-planning system by using the novel image-based treatment-planning system octopus. Patients and methods: ten patients with uveal melanomas received both a high-resolution planning CT and MRI of the eye. MR examinations were made with an eye coil. Eyeplan requires eye geometry data for modeling, and tantalum marker clips for submillimeter positioning and additional information from ultrasound and 3-D imaging. By contrast, octopus provides the full integration of 3-D imaging (e.g., CT, MRI). CTVs were delineated in each slice. For all patients, CTVs (eyeplan vs. octopus) were compared intraindividually. Results: octopus planning led to a mean reduction of the target volume by a factor of 1.7 (T1-weighted [T1w]) and 2.2 (T2w) without compromising safety. The corresponding field size could be scaled down on average by a factor of 1.2 (T1w) and 1.4 (T2w), respectively. Conclusion: compared with the conventional eyeplan, MRI-based treatment planning of ocular tumors with octopus could be a powerful tool for reducing the CTV and, consequently, the treatment volume and the field size. This might be translated into a better patient compliance during treatment and a decreased late toxicity. (orig.)

  10. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  11. 77 FR 55224 - Notice of Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and...

    Science.gov (United States)

    2012-09-07

    ... Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and California Desert... California Desert Conservation Area (CDCA) Plan Amendment/Final Environmental Impact Statement (EIS), for the.... District Court in September 2006. Portions of the biological opinion for the Peirson's milkvetch were also...

  12. The influence of cephalometrics on orthodontic treatment planning

    NARCIS (Netherlands)

    Nijkamp, P.G.; Habets, L.L.M.H.; Aartman, I.H.A.; Zentner, A.

    2008-01-01

    SUMMARY Since its introduction, cephalometrics, i.e. cephalometric radiography and analysis, has been used for orthodontic treatment planning. However, the effectiveness of this diagnostic method remains questionable. A randomized crossover study was designed to assess the infl uence of

  13. Constrained treatment planning using sequential beam selection

    International Nuclear Information System (INIS)

    Woudstra, E.; Storchi, P.R.M.

    2000-01-01

    In this paper an algorithm is described for automated treatment plan generation. The algorithm aims at delivery of the prescribed dose to the target volume without violation of constraints for target, organs at risk and the surrounding normal tissue. Pre-calculated dose distributions for all candidate orientations are used as input. Treatment beams are selected in a sequential way. A score function designed for beam selection is used for the simultaneous selection of beam orientations and weights. In order to determine the optimum choice for the orientation and the corresponding weight of each new beam, the score function is first redefined to account for the dose distribution of the previously selected beams. Addition of more beams to the plan is stopped when the target dose is reached or when no additional dose can be delivered without violating a constraint. In the latter case the score function is modified by importance factor changes to enforce better sparing of the organ with the limiting constraint and the algorithm is run again. (author)

  14. Reconciling Patient Safety and Epistemic Humility: An Ethical Use of Opioid Treatment Plans.

    Science.gov (United States)

    Ho, Anita

    2017-05-01

    In this issue of the Hastings Center Report, Joshua Rager and Peter Schwartz suggest using opioid treatment agreements as public health monitoring tools to inform patients about "the requirements entailed by undergoing opioid therapy," rather than as contractual agreements to alter patients' individual behavior or to benefit them directly. Because Rager and Schwartz's argument presents suspected OTA violations as a justification to stop providing opioids yet does not highlight the broader epistemic and systemic context within which clinicians prescribe these medications, their proposal may perpetuate a climate of distrust and stigmatization without correcting systemic factors that may have placed patients and others at risk in the first place. Given the context of epistemic uncertainty regarding opioid safety and efficacy, insufficient training for opioid prescribers, and inadequate patient education, I propose replacing OTAs, which have a narrow focus on patient behaviors, with opioid treatment plans, which would promote mutual, collaborative, and shared decision-making on the most appropriate pain management program. An OTP can be ethically justified as a tool to prevent and treat iatrogenic addiction under a specific paradigm-one that adopts a default position of professional epistemic humility and holds all collaborative parties accountable in chronic pain management. © 2017 The Hastings Center.

  15. WE-F-BRB-00: New Developments in Knowledge-Based Treatment Planning and Automation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented.

  16. WE-F-BRB-00: New Developments in Knowledge-Based Treatment Planning and Automation

    International Nuclear Information System (INIS)

    2015-01-01

    Advancements in informatics in radiotherapy are opening up opportunities to improve our ability to assess treatment plans. Models on individualizing patient dose constraints from prior patient data and shape relationships have been extensively researched and are now making their way into commercial products. New developments in knowledge based treatment planning involve understanding the impact of the radiation dosimetry on the patient. Akin to radiobiology models that have driven intensity modulated radiotherapy optimization, toxicity and outcome predictions based on treatment plans and prior patient experiences may be the next step in knowledge based planning. In order to realize these predictions, it is necessary to understand how the clinical information can be captured, structured and organized with ontologies and databases designed for recall. Large databases containing radiation dosimetry and outcomes present the opportunity to evaluate treatment plans against predictions of toxicity and disease response. Such evaluations can be based on dose volume histogram or even the full 3-dimensional dose distribution and its relation to the critical anatomy. This session will provide an understanding of ontologies and standard terminologies used to capture clinical knowledge into structured databases; How data can be organized and accessed to utilize the knowledge in planning; and examples of research and clinical efforts to incorporate that clinical knowledge into planning for improved care for our patients. Learning Objectives: Understand the role of standard terminologies, ontologies and data organization in oncology Understand methods to capture clinical toxicity and outcomes in a clinical setting Understand opportunities to learn from clinical data and its application to treatment planning Todd McNutt receives funding from Philips, Elekta and Toshiba for some of the work presented

  17. Assessment of Uncertainties in Treatment Planning for Scanned Ion Beam Therapy of Moving Tumors

    International Nuclear Information System (INIS)

    Hild, Sebastian; Durante, Marco; Bert, Christoph

    2013-01-01

    Purpose: To provide methods for quantification of uncertainties in 4-dimensional (4D) treatment during treatment planning. Methods and Materials: Uncertainty information was generated by multiple 4D treatment simulations with varying parameters. Sampled data were analyzed using uncertainty visualization methods that have been added to common treatment plan evaluation methods (eg, dose-volume histogram and dose distribution analysis). To illustrate the potential of the introduced methods, uncertainty analysis was completed for a single lung cancer case using 3 motion mitigation techniques: gating, slice-by-slice rescanning, and breath-controlled rescanning. Results: By repeating 4D dose calculations with varying parameters, we were able to show local uncertainties in dose distributions and to evaluate the stability of treatment setups. The new methods were found suitable for uncertainty evaluation in 4D treatment planning of moving tumors. Calculation time of the uncertainty base data was time consuming but contrivable overnight. Conclusions: Uncertainty analysis and visualization for 4D treatment planning provide an important tool in the decision process for an optimal treatment approach.

  18. Hemangiopericytoma - The need for a protocol-based treatment plan

    Directory of Open Access Journals (Sweden)

    Murugesan Krishnan

    2011-01-01

    Full Text Available Hemangiopericytoma is a vascular tumor which comprises only 1% of all vascular tumors. The frequency of occurrence in the head and neck accounts for about 16-33% of all hemangiopericytomas. In this paper we discuss the surgical management, the difficulties in decision-making and treatment-planning in a case of a maxillary tumor in a five-year-old boy with a two-year follow-up. A five-year-old boy presented with a large unilateral maxillary tumor with nasal obstruction. Computed tomography revealed a heterogeneous mass completely occupying the right maxillary sinus and displacing the lateral wall of the nose and nasal septum. The lesion was diagnosed as hemangiopericytoma after histopathological confirmation. The option of surgical resection (total maxillectomy was carried out after evaluating the available literature. Various treatment modalities like surgery, chemotherapy and radiotherapy were taken into consideration as the tumor has an aggressive nature. Due to the inadequate literature on definitive treatment options for these types of tumors, there was difficulty in arriving at a protocol-based treatment plan.

  19. Proposed plan for the 100-IU-1, 100-IU-3, 100-IU-4, AND 100-IU-5 Operable Units

    International Nuclear Information System (INIS)

    1995-06-01

    This proposed plan identifies the preferred alternative for the Riverland Rad Yard, the Wahluke Slope, the Sodium Dichromate Baffel Landfill, and the, White Bluffs Pickling Acid Cribs, located at the Hanford Site. These areas are known respectively as the 100-IU-1, 100-IU-3, 100-IU-4, and 100-IU-5 Operable Units. Between 1992 and 1994, each of the four operable units was the subject of an expedited response action that addressed removal of site contaminants in soil. Waste sites in the 100-IU-2 (White Bluffs Townsite) and 100-IU-6 (Hanford Townsite) Operable Units will be addressed in future proposed plans. A proposed plan is intended to be a fact sheet for public review that summarizes the information relied upon to recommend the preferred alternative. As presented in this proposed plan, no further action is the preferred alternative for the final resolution of the 100-IU-1, 100-IU-3, 100-IU-4, and 100-IU-5 Operable Units. The preferred alternative is recommended because all suspect hazardous substances above cleanup levels have been removed from the waste sites, and the sites are unlikely to pose any significant risk to human health or the environment

  20. Volumetric visualization of anatomy for treatment planning

    International Nuclear Information System (INIS)

    Pelizzari, Charles A.; Grzeszczuk, Robert; Chen, George T. Y.; Heimann, Ruth; Haraf, Daniel J.; Vijayakumar, Srinivasan; Ryan, Martin J.

    1996-01-01

    Purpose: Delineation of volumes of interest for three-dimensional (3D) treatment planning is usually performed by contouring on two-dimensional sections. We explore the usage of segmentation-free volumetric rendering of the three-dimensional image data set for tumor and normal tissue visualization. Methods and Materials: Standard treatment planning computed tomography (CT) studies, with typically 5 to 10 mm slice thickness, and spiral CT studies with 3 mm slice thickness were used. The data were visualized using locally developed volume-rendering software. Similar to the method of Drebin et al., CT voxels are automatically assigned an opacity and other visual properties (e.g., color) based on a probabilistic classification into tissue types. Using volumetric compositing, a projection into the opacity-weighted volume is produced. Depth cueing, perspective, and gradient-based shading are incorporated to achieve realistic images. Unlike surface-rendered displays, no hand segmentation is required to produce detailed renditions of skin, muscle, or bony anatomy. By suitable manipulation of the opacity map, tissue classes can be made transparent, revealing muscle, vessels, or bone, for example. Manually supervised tissue masking allows irrelevant tissues overlying tumors or other structures of interest to be removed. Results: Very high-quality renditions are produced in from 5 s to 1 min on midrange computer workstations. In the pelvis, an anteroposterior (AP) volume rendered view from a typical planning CT scan clearly shows the skin and bony anatomy. A muscle opacity map permits clear visualization of the superficial thigh muscles, femoral veins, and arteries. Lymph nodes are seen in the femoral triangle. When overlying muscle and bone are cut away, the prostate, seminal vessels, bladder, and rectum are seen in 3D perspective. Similar results are obtained for thorax and for head and neck scans. Conclusion: Volumetric visualization of anatomy is useful in treatment

  1. Simulation model for planning metallurgical treatment of large-size billets

    International Nuclear Information System (INIS)

    Timofeev, M.A.; Echeistova, L.A.; Kuznetsov, V.G.; Semakin, S.V.; Krivonogov, A.B.

    1989-01-01

    The computerized simulation system ''Ritm'' for planning metallurgical treatment of billets is developed. Three principles, specifying the organization structure of the treatment cycle are formulated as follows: a cycling principle, a priority principle and a principle of group treatment. The ''Ritm'' software consists of three independent operating systems: preparation of source data, simulation, data output

  2. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Locke, C.; Zavgorodni, S.; British Columbia Cancer Agency, Vancouver Island Center, Victoria BC

    2008-01-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam

  3. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems

  4. MO-D-BRB-02: SBRT Treatment Planning and Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [Stanford University Cancer Center (United States)

    2016-06-15

    Increased use of SBRT and hypofractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide current knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT/IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional and multi-modality imaging for reliable guidance of SBRT. Discuss treatment planning and QA issues specific to SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. NIH/NCI; Varian Medical Systems; F. Yin, Duke University has a research agreement with Varian Medical Systems. In addition to research grant, I had a technology license agreement with Varian Medical Systems.

  5. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting was