PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION
Robert Ramon de Carvalho Sousa; Abimael de Jesus Barros Costa; Eliezé Bulhões de Carvalho; Adriano de Carvalho Paranaíba; Daylyne Maerla Gomes Lima Sandoval
2016-01-01
This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW) algorithm (1964) in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (on...
PROPOSAL OF ALGORITHM FOR ROUTE OPTIMIZATION
Directory of Open Access Journals (Sweden)
Robert Ramon de Carvalho Sousa
2016-06-01
Full Text Available This article uses “Six Sigma” methodology for the elaboration of an algorithm for routing problems which is able to obtain more efficient results than those from Clarke and Wright´s (CW algorithm (1964 in situations of random increase of product delivery demands, facing the incapability of service level increase . In some situations, the algorithm proposed obtained more efficient results than the CW algorithm. The key factor was a reduction in the number of mistakes (one way routes and in the level of result variation.
Incremental Tensor Principal Component Analysis for Handwritten Digit Recognition
Directory of Open Access Journals (Sweden)
Chang Liu
2014-01-01
Full Text Available To overcome the shortcomings of traditional dimensionality reduction algorithms, incremental tensor principal component analysis (ITPCA based on updated-SVD technique algorithm is proposed in this paper. This paper proves the relationship between PCA, 2DPCA, MPCA, and the graph embedding framework theoretically and derives the incremental learning procedure to add single sample and multiple samples in detail. The experiments on handwritten digit recognition have demonstrated that ITPCA has achieved better recognition performance than that of vector-based principal component analysis (PCA, incremental principal component analysis (IPCA, and multilinear principal component analysis (MPCA algorithms. At the same time, ITPCA also has lower time and space complexity.
EVD Dualdating Based Online Subspace Learning
Directory of Open Access Journals (Sweden)
Bo Jin
2014-01-01
Full Text Available Conventional incremental PCA methods usually only discuss the situation of adding samples. In this paper, we consider two different cases: deleting samples and simultaneously adding and deleting samples. To avoid the NP-hard problem of downdating SVD without right singular vectors and specific position information, we choose to use EVD instead of SVD, which is used by most IPCA methods. First, we propose an EVD updating and downdating algorithm, called EVD dualdating, which permits simultaneous arbitrary adding and deleting operation, via transforming the EVD of the covariance matrix into a SVD updating problem plus an EVD of a small autocorrelation matrix. A comprehensive analysis is delivered to express the essence, expansibility, and computation complexity of EVD dualdating. A mathematical theorem proves that if the whole data matrix satisfies the low-rank-plus-shift structure, EVD dualdating is an optimal rank-k estimator under the sequential environment. A selection method based on eigenvalues is presented to determine the optimal rank k of the subspace. Then, we propose three incremental/decremental PCA methods: EVDD-IPCA, EVDD-DPCA, and EVDD-IDPCA, which are adaptive to the varying mean. Finally, plenty of comparative experiments demonstrate that EVDD-based methods outperform conventional incremental/decremental PCA methods in both efficiency and accuracy.
Proposed genetic algorithms for construction site lay out
Mawdesley, Michael J.; Al-Jibouri, Saad H.S.
2003-01-01
The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities are to be positioned to n
Proposed hybrid-classifier ensemble algorithm to map snow cover area
Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir
2018-01-01
Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.
Hypersensitivity to local anaesthetics--update and proposal of evaluation algorithm
DEFF Research Database (Denmark)
Thyssen, Jacob Pontoppidan; Menné, Torkil; Elberling, Jesper
2008-01-01
of patients suspected with immediate- and delayed-type immune reactions. Literature was examined using PubMed-Medline, EMBASE, Biosis and Science Citation Index. Based on the literature, the proposed algorithm may safely and rapidly distinguish between immediate-type and delayed-type allergic immune reactions....
Proposal of an Algorithm to Synthesize Music Suitable for Dance
Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo
This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.
stability analysis of food barley genotypes in northern ethiopia
African Journals Online (AJOL)
ACSS
interaction and stability for barley grain yield and yield related traits in the growing ... that the environments were diverse; causing most of the variation in grain yield. ... component axes IPCA1, IPCA2 and IPCA3, which explained 58.06, 27.11 and ..... AMMI analysis of variance for grain yield (t ha-1) of food barley genotypes ...
International Nuclear Information System (INIS)
Kobayashi, Masato; Nishii, Ryuichi; Shikano, Naoto; Flores, Leo G.; Mizutani, Asuka; Ogai, Kazuhiro; Sugama, Jyunko; Nagamachi, Shigeki; Kawai, Keiichi
2015-01-01
Introduction: A specific diagnosis for melanoma is strongly desired because malignant melanoma has poor prognosis. In a previous study, although radioiodine-125-labeled 4-hydroxyphenyl-L-cysteine ( 125 I-L-PC) was found to have good substrate affinity for tyrosinase enzyme in the melanin metabolic pathway, 123/131 I-L-PC had insufficient substrate affinity for tyrosinase to diagnose melanoma. In this study, we synthesized 4-hydroxyphenylcysteamine (4-PCA) and developed a novel radioiodine-125-labeled 4-hydroxyphenylcysteamine ( 125 I-PCA) to increase affinity for the melanin biosynthesis pathway. Methods: 4-PCA was separated with 2-hydroxyphenylcysteamine (2-PCA), which is an isomer of 4-PCA, and was examined using melting point, proton nuclear magnetic resonance, mass spectrometry and elemental analysis. 125 I-PCA was prepared using the chloramine-T method under no-carrier added conditions. We performed biodistribution experiments using B16 melanoma-bearing mice using 125 I-PCA, 125 I-L-PC, 125 I-α-methyl-L-tyrosine, 123 I-m-iodobenzylguanidine and 67 Ga-citrate. In vitro assay was performed with B16 melanoma cells, and affinity for tyrosinase, DNA polymerase and amino acid transport was evaluated using phenylthiourea, thymidine, ouabine and L-tyrosine inhibitor. In addition, partition coefficients of 125 I-PCA were evaluated. Results: In the synthesis of 4-PCA, analysis values did not differ between calculated and reported values, and 4-PCA was separated from 2-PCA at high purity. In biodistribution experiments, 125 I-PCA was accumulated and retained in B16 melanoma cells when compared with 125 I-L-PC. 125 I-PCA showed the highest values at 60 min after radiotracer injection in melanoma-to-muscle ratios, melanoma-to-blood ratios and melanoma-to-skin ratios. Accumulation of 125 I-PCA was significantly inhibited by phenylthiourea and thymidine. Partition coefficients of 125 I-PCA were lower than those of N-isopropyl-p-[ 123 I]iodoamphetamine and were not
International Nuclear Information System (INIS)
Nishii, R.; Nagamachi, S.; Tamura, S.; Kawai, K.; Nishimura, K.; Kinuya, S.; Uehara, T.; Tonami, N.; Arano, Y.
2002-01-01
Purpose: The aim of our study is to develop a new radiopharmaceutical labeled with radioiodine for detection and therapy of tumors, which have affinity to a characteristic metabolism in tumor. 3-Iodo-4-hydroxyphenyl-L-cysteine (I- L-PC), which we have reported previously, was found to have an interaction for tyrosinase, an essential and rate-limiting enzyme to melanin biosynthesis. In this study, considering higher affinity for tyrosinase, we synthesized 3-iodo-4-hydroxyphenylcysteamine (I-PCA) that was an amine derivative of I-L-PC and examined biodistribution study in melanoma-bearing mice. Method/Materials: 4-Hydroxyphenylcysteamine (4-PCA) was synthesized and radioiodinated in our laboratory. Synthesis of 4-PCA was confirmed by 1 H-NMR, mass spectrometry and elemental analysis. 125 I-PCA was prepared by conventional chloramine-T method under a no-carrier added condition. 125 I-PCA was purified by Sep-Pak-C-18 cartridge and the labeling efficiency and radiochemical purity were examined by TLC analysis. Biodistribution study of I-PCA was performed using B16 melanoma-bearing C57BL6 mice. The radioactivities of each organ were measured and % injected dose / g wet tissue was determined. Moreover, the tumor-to-blood ratio (T/B ratio) and tumor-to-muscle ratios (T/M ratio) of 125 I-PCA were also evaluated and were compared with 125 I-L-PC, 67 Ga-citrate, 125 I-L-AMT and 123 I-MIBG. Results: Radiosynthesis of 125 I-PCA was carried out conveniently and efficiently within only 15 min. A labeling efficiency of more than 73 % resulted in the labeling of 4-PCA to 125 I-PCA. After the simple Sep-Pak purification, no-carrier added 125 I-PCA with radiochemical purity greater than 90 % was obtained. The biodistribution of 125 I-PCA showed rapid blood clearance, renal excretion and low accumulation in normal tissue, while increase of accumulation in the tumor for 30 min. As a consequence, T/B ratio reached approximately 1.6 ± 0.3 and T/M ratio increased up to 8.7 ± 3.2 at 60
Directory of Open Access Journals (Sweden)
A. Bhushan
2015-07-01
Full Text Available In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal Component Analysis (IPCA is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for spatiotemporal sensor data streams.
Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems
Directory of Open Access Journals (Sweden)
Sotirios Kontogiannis
2017-11-01
Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.
Proposed algorithm for determining the delta intercept of a thermocouple psychrometer curve
International Nuclear Information System (INIS)
Kurzmack, M.A.
1993-01-01
The USGS Hydrologic Investigations Program is currently developing instrumentation to study the unsaturated zone at Yucca Mountain in Nevada. Surface-based boreholes up to 2,500 feet in depth will be drilled, and then instrumented in order to define the water potential field within the unsaturated zone. Thermocouple psychrometers will be used to monitor the in-situ water potential. An algorithm is proposed for simply and efficiently reducing a six wire thermocouple psychrometer voltage output curve to a single value, the delta intercept. The algorithm identifies a plateau region in the psychrometer curve and extrapolates a linear regression back to the initial start of relaxation. When properly conditioned for the measurements being made, the algorithm results in reasonable results even with incomplete or noisy psychrometer curves over a 1 to 60 bar range
Construction Method of Display Proposal for Commodities in Sales Promotion by Genetic Algorithm
Yumoto, Masaki
In a sales promotion task, wholesaler prepares and presents the display proposal for commodities in order to negotiate with retailer's buyers what commodities they should sell. For automating the sales promotion tasks, the proposal has to be constructed according to the target retailer's buyer. However, it is difficult to construct the proposal suitable for the target retail store because of too much combination of commodities. This paper proposes a construction method by Genetic algorithm (GA). The proposed method represents initial display proposals for commodities with genes, improve ones with the evaluation value by GA, and rearrange one with the highest evaluation value according to the classification of commodity. Through practical experiment, we can confirm that display proposal by the proposed method is similar with the one constructed by a wholesaler.
[New methodological advances: algorithm proposal for management of Clostridium difficile infection].
González-Abad, María José; Alonso-Sanz, Mercedes
2015-06-01
Clostridium difficile infection (CDI) is considered the most common cause of health care-associated diarrhea and also is an etiologic agent of community diarrhea. The aim of this study was to assess the potential benefit of a test that detects glutamate dehydrogenase (GDH) antigen and C. difficile toxin A/B, simultaneously, followed by detection of C. difficile toxin B (tcdB) gene by PCR as confirmatory assay on discrepant samples, and to propose an algorithm more efficient. From June 2012 to January 2013 at Hospital Infantil Universitario Niño Jesús, Madrid, the stool samples were studied for the simultaneous detection of GDH and toxin A/B, and also for detection of toxin A/B alone. When results between GDH and toxin A/B were discordant, a single sample for patient was selected for detection of C. difficile toxin B (tcdB) gene. A total of 116 samples (52 patients) were tested. Four were positive and 75 negative for toxigenic C. difficile (Toxin A/B, alone or combined with GDH). C. difficile was detected in the remaining 37 samples but not toxin A/B, regardless of the method used, except one. Twenty of the 37 specimens were further tested for C. difficile toxin B (tcdB) gene and 7 were positive. The simultaneous detection of GDH and toxin A/B combined with PCR recovered undiagnosed cases of CDI. In accordance with our data, we propose a two-step algorithm: detection of GDH and PCR (in samples GDH positive). This algorithm could provide a superior cost-benefit ratio in our population.
Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers
Energy Technology Data Exchange (ETDEWEB)
Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E. [Department of Electrical Engineering, University of Malaga, C/ Dr. Ortiz Ramos, sn., Escuela de Ingenierias, 29071 Malaga (Spain)
2011-02-15
Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)
Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers
International Nuclear Information System (INIS)
Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E.
2011-01-01
Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)
Directory of Open Access Journals (Sweden)
Helio Yochihiro Fuchigami
2014-08-01
Full Text Available This article addresses the problem of minimizing makespan on two parallel flow shops with proportional processing and setup times. The setup times are separated and sequence-independent. The parallel flow shop scheduling problem is a specific case of well-known hybrid flow shop, characterized by a multistage production system with more than one machine working in parallel at each stage. This situation is very common in various kinds of companies like chemical, electronics, automotive, pharmaceutical and food industries. This work aimed to propose six Simulated Annealing algorithms, their perturbation schemes and an algorithm for initial sequence generation. This study can be classified as “applied research” regarding the nature, “exploratory” about the objectives and “experimental” as to procedures, besides the “quantitative” approach. The proposed algorithms were effective regarding the solution and computationally efficient. Results of Analysis of Variance (ANOVA revealed no significant difference between the schemes in terms of makespan. It’s suggested the use of PS4 scheme, which moves a subsequence of jobs, for providing the best percentage of success. It was also found that there is a significant difference between the results of the algorithms for each value of the proportionality factor of the processing and setup times of flow shops.
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
Designing algorithm visualization on mobile platform: The proposed guidelines
Supli, A. A.; Shiratuddin, N.
2017-09-01
This paper entails an ongoing study about the design guidelines of algorithm visualization (AV) on mobile platform, helping students learning data structures and algorithm (DSA) subject effectively. Our previous review indicated that design guidelines of AV on mobile platform are still few. Mostly, previous guidelines of AV are developed for AV on desktop and website platform. In fact, mobile learning has been proved to enhance engagement in learning circumstances, and thus effect student's performance. In addition, the researchers highly recommend including UI design and Interactivity in designing effective AV system. However, the discussions of these two aspects in previous AV design guidelines are not comprehensive. The UI design in this paper describes the arrangement of AV features in mobile environment, whereas interactivity is about the active learning strategy features based on learning experiences (how to engage learners). Thus, this study main objective is to propose design guidelines of AV on mobile platform (AVOMP) that entails comprehensively UI design and interactivity aspects. These guidelines are developed through content analysis and comparative analysis from various related studies. These guidelines are useful for AV designers to help them constructing AVOMP for various topics on DSA.
Directory of Open Access Journals (Sweden)
Manel Hlaili
2016-01-01
Full Text Available Photovoltaic (PV energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond, perturbation and observation (P&O, ripple correlation (RC algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.
Approaches to drug therapy for COPD in Russia: a proposed therapeutic algorithm
Directory of Open Access Journals (Sweden)
Zykov KA
2017-04-01
Full Text Available Kirill A Zykov,1 Svetlana I Ovcharenko2 1Laboratory of Pulmonology, Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, 2I.M. Sechenov First Moscow State Medical University, Moscow, Russia Abstract: Until recently, there have been few clinical algorithms for the management of patients with COPD. Current evidence-based clinical management guidelines can appear to be complex, and they lack clear step-by-step instructions. For these reasons, we chose to create a simple and practical clinical algorithm for the management of patients with COPD, which would be applicable to real-world clinical practice, and which was based on clinical symptoms and spirometric parameters that would take into account the pathophysiological heterogeneity of COPD. This optimized algorithm has two main fields, one for nonspecialist treatment by primary care and general physicians and the other for treatment by specialized pulmonologists. Patients with COPD are treated with long-acting bronchodilators and short-acting drugs on a demand basis. If the forced expiratory volume in one second (FEV1 is ≥50% of predicted and symptoms are mild, treatment with a single long-acting muscarinic antagonist or long-acting beta-agonist is proposed. When FEV1 is <50% of predicted and/or the COPD assessment test score is ≥10, the use of combined bronchodilators is advised. If there is no response to treatment after three months, referral to a pulmonary specialist is recommended for pathophysiological endotyping: 1 eosinophilic endotype with peripheral blood or sputum eosinophilia >3%; 2 neutrophilic endotype with peripheral blood neutrophilia >60% or green sputum; or 3 pauci-granulocytic endotype. It is hoped that this simple, optimized, step-by-step algorithm will help to individualize the treatment of COPD in real-world clinical practice. This algorithm has yet to be evaluated prospectively or by comparison with other COPD management algorithms, including
Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L.; Yerys, Benjamin E.; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth
2015-01-01
Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised…
Vertigo in childhood: proposal for a diagnostic algorithm based upon clinical experience.
Casani, A P; Dallan, I; Navari, E; Sellari Franceschini, S; Cerchiai, N
2015-06-01
The aim of this paper is to analyse, after clinical experience with a series of patients with established diagnoses and review of the literature, all relevant anamnestic features in order to build a simple diagnostic algorithm for vertigo in childhood. This study is a retrospective chart review. A series of 37 children underwent complete clinical and instrumental vestibular examination. Only neurological disorders or genetic diseases represented exclusion criteria. All diagnoses were reviewed after applying the most recent diagnostic guidelines. In our experience, the most common aetiology for dizziness is vestibular migraine (38%), followed by acute labyrinthitis/neuritis (16%) and somatoform vertigo (16%). Benign paroxysmal vertigo was diagnosed in 4 patients (11%) and paroxysmal torticollis was diagnosed in a 1-year-old child. In 8% (3 patients) of cases, the dizziness had a post-traumatic origin: 1 canalolithiasis of the posterior semicircular canal and 2 labyrinthine concussions, respectively. Menière's disease was diagnosed in 2 cases. A bilateral vestibular failure of unknown origin caused chronic dizziness in 1 patient. In conclusion, this algorithm could represent a good tool for guiding clinical suspicion to correct diagnostic assessment in dizzy children where no neurological findings are detectable. The algorithm has just a few simple steps, based mainly on two aspects to be investigated early: temporal features of vertigo and presence of hearing impairment. A different algorithm has been proposed for cases in which a traumatic origin is suspected.
Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L; Yerys, Benjamin E; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth
2015-01-01
Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised algorithm demonstrated increased sensitivity, but lower specificity in the overall sample. Estimates were highest for females, individuals with a verb...
Autonomous Star Tracker Algorithms
DEFF Research Database (Denmark)
Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren
1998-01-01
Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
Proposals for Updating Tai Algorithm
1997-12-01
1997 meeting, the Comiti International des Poids et Mesures (CIPM) decided to change the name of the Comiti Consultatif pour la Difinition de la ...Report of the BIPM Time Section, 1988,1, D1-D22. [2] P. Tavella, C. Thomas, Comparative study of time scale algorithms, Metrologia , 1991, 28, 57...alternative choice for implementing an upper limit of clock weights, Metrologia , 1996, 33, 227-240. [5] C. Thomas, Impact of New Clock Technologies
A New Modified Firefly Algorithm
Directory of Open Access Journals (Sweden)
Medha Gupta
2016-07-01
Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.
Oliver, Carlos G.; Ricottone, Alessandro; Philippopoulos, Pericles
2017-01-01
We propose a proof-of-work algorithm that rewards blockchain miners for using computational resources to solve NP-complete puzzles. The resulting blockchain will publicly store and improve solutions to problems with real world applications while maintaining a secure and fully functional transaction ledger.
Modified Clipped LMS Algorithm
Directory of Open Access Journals (Sweden)
Lotfizad Mojtaba
2005-01-01
Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
Directory of Open Access Journals (Sweden)
Vinu Sherimon
2017-07-01
Full Text Available Ensuring the quality of food, particularly seafood has increasingly become an important issue nowadays. Quality Management Systems empower any organization to identify, measure, control and improve the quality of the products manufactured that will eventually lead to improved business performance. With the advent of new technologies, now intelligent systems are being developed. To ensure the quality of seafood, an ontology based seafood quality analyzer and miner (ONTO SQAM model is proposed. The knowledge is represented using ontology. The domain concepts are defined using ontology. This paper presents the initial part of the proposed model – the analysis of quality test parameter values. Two algorithms are proposed to do the analysis – Comparison Algorithm and Data Store Updater algorithm. The algorithms ensure that the values of various quality tests are in the acceptable range. The real data sets taken from different seafood companies in Kerala, India, and validated by the Marine Product Export Development Authority of India (MPEDA are used for the experiments. The performance of the algorithms is evaluated using standard performance metrics such as precision, recall, and accuracy. The results obtained show that all the three measures achieved good results.
Analysis and Improvement of Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Xi-Guang Li
2017-02-01
Full Text Available The Fireworks Algorithm is a recently developed swarm intelligence algorithm to simulate the explosion process of fireworks. Based on the analysis of each operator of Fireworks Algorithm (FWA, this paper improves the FWA and proves that the improved algorithm converges to the global optimal solution with probability 1. The proposed algorithm improves the goal of further boosting performance and achieving global optimization where mainly include the following strategies. Firstly using the opposition-based learning initialization population. Secondly a new explosion amplitude mechanism for the optimal firework is proposed. In addition, the adaptive t-distribution mutation for non-optimal individuals and elite opposition-based learning for the optimal individual are used. Finally, a new selection strategy, namely Disruptive Selection, is proposed to reduce the running time of the algorithm compared with FWA. In our simulation, we apply the CEC2013 standard functions and compare the proposed algorithm (IFWA with SPSO2011, FWA, EFWA and dynFWA. The results show that the proposed algorithm has better overall performance on the test functions.
Directory of Open Access Journals (Sweden)
Moscote-Salazar Luis Rafael
2016-06-01
Full Text Available Subarachnoid pleural fistulas are rare. They have been described as complications of thoracic surgery, penetrating injuries and spinal surgery, among others. We present the case of a 3-year-old female child, who suffer spinal cord trauma secondary to a car accident, developing a posterior subarachnoid pleural fistula. To our knowledge this is the first reported case of a pediatric patient with subarachnoid pleural fistula resulting from closed trauma, requiring intensive multimodal management. We also present a management algorithm and a proposed classification. The diagnosis of this pathology is difficult when not associated with neurological deficit. A high degree of suspicion, multidisciplinary management and timely surgical intervention allow optimal management.
Improved autonomous star identification algorithm
International Nuclear Information System (INIS)
Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong
2015-01-01
The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)
Verification-Based Interval-Passing Algorithm for Compressed Sensing
Wu, Xiaofu; Yang, Zhen
2013-01-01
We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Relative price variability in Brazil: an analysis of headline and core inflation rates
Directory of Open Access Journals (Sweden)
Cleomar Gomes da Silva
2015-08-01
Full Text Available O objetivo deste artigo é estudar a relação causal entre inflação e variabilidade de preços relativos no Brasil, para o período entre janeiro de 1995 e junho de 2011. O foco é o IPCA e seu núcleo, levando-se também em conta o período das metas de inflação. A análise de séries temporais mostra que: 1 a correlação entre inflação e dispersão de preços relativos é positiva e significante (o mesmo se aplica ao núcleo da inflação; 2 para o período referente às metas para a inflação, há queda da dispersão de preços; 3 há bi causalidade entre inflação total e dispersão total de preços, ao passo que a causalidade é do núcleo de inflação para sua respectiva variabilidade; 4 as funções de respostas a impulsos mostram que choques no núcleo do IPCA não afetam a dispersão dos preços do núcleo tanto quanto os choques ao IPCA total afetam a dispersão total de preços; 5 a decomposição de variância relacionada ao núcleo do IPCA e seu respectivo RPV parece estar reduzida em relação aos dados do IPCA cheio.
Composite Differential Search Algorithm
Directory of Open Access Journals (Sweden)
Bo Liu
2014-01-01
Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
Lymphatic malformations: a proposed management algorithm.
LENUS (Irish Health Repository)
Oosthuizen, J C
2012-02-01
OBJECTIVE: The aim of this study was to develop a management algorithm for cervicofacial lymphatic malformations, based on the authors\\' experience in managing these lesions as well as current literature on the subject. STUDY DESIGN AND METHODS: A retrospective medical record review of all the patients treated for lymphatic malformations at our institution during a 10-year period (1998-2008) was performed. DATA COLLECTED: age at diagnosis, location and type of lesion, radiologic investigation performed, presenting symptoms, treatment modality used, complications and results achieved. RESULTS: 14 patients were identified. Eight (57%) male and six (43%) female. There was an equal distribution between the left and right sides. The majority (71%) of cases were diagnosed within the first year of life. The majority of lesions were located in the suprahyoid region. The predominant reason for referral was an asymptomatic mass in 7 cases (50%) followed by airway compromise (36%) and dysphagia (14%). Management options employed included: observation, OK-432 injection, surgical excision and laser therapy. In 5 cases (36%) a combination of these were used. CONCLUSION: Historically surgical excision has been the management option of choice for lymphatic malformations. However due to the morbidity and high complication rate associated this is increasingly being questioned. Recent advances in sclerotherapy e.g. OK-432 injection have also shown significant promise. Based on experience in managing these lesions as well as current literature the authors of this paper have developed an algorithm for the management of cervicofacial lymphatic malformations.
Proposed algorithm to improve job shop production scheduling using ant colony optimization method
Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari
2017-12-01
This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
International Nuclear Information System (INIS)
Campos, Gustavo L.; Campos, Tarcísio P.R.
2017-01-01
This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)
Energy Technology Data Exchange (ETDEWEB)
Campos, Gustavo L.; Campos, Tarcísio P.R., E-mail: gustavo.lobato@ifmg.edu.br, E-mail: tprcampos@pq.cnpq.br, E-mail: gustavo.lobato@ifmg.edu.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear
2017-07-01
This paper brings to light optimized proposal for a circular particle accelerator for proton beam therapy purposes (named as ACPT). The methodology applied is based on computational metaheuristics based on genetic algorithms (GA) were used to obtain optimized parameters of the equipment. Some fundamental concepts in the metaheuristics developed in Matlab® software will be presented. Four parameters were considered for the proposed modeling for the equipment, being: potential difference, magnetic field, length and radius of the resonant cavity. As result, this article showed optimized parameters for two ACPT, one of them used for ocular radiation therapy, as well some parameters that will allow teletherapy, called in order ACPT - 65 and ACPT - 250, obtained through metaheuristics based in GA. (author)
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
Unsupervised Classification Using Immune Algorithm
Al-Muallim, M. T.; El-Kouatly, R.
2012-01-01
Unsupervised classification algorithm based on clonal selection principle named Unsupervised Clonal Selection Classification (UCSC) is proposed in this paper. The new proposed algorithm is data driven and self-adaptive, it adjusts its parameters to the data to make the classification operation as fast as possible. The performance of UCSC is evaluated by comparing it with the well known K-means algorithm using several artificial and real-life data sets. The experiments show that the proposed U...
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.
Ricci, E; Di Domenico, S; Cianca, E; Rossi, T
2015-01-01
Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.
Named Entity Linking Algorithm
Directory of Open Access Journals (Sweden)
M. F. Panteleev
2017-01-01
Full Text Available In the tasks of processing text in natural language, Named Entity Linking (NEL represents the task to define and link some entity, which is found in the text, with some entity in the knowledge base (for example, Dbpedia. Currently, there is a diversity of approaches to solve this problem, but two main classes can be identified: graph-based approaches and machine learning-based ones. Graph and Machine Learning approaches-based algorithm is proposed accordingly to the stated assumptions about the interrelations of named entities in a sentence and in general.In the case of graph-based approaches, it is necessary to solve the problem of identifying an optimal set of the related entities according to some metric that characterizes the distance between these entities in a graph built on some knowledge base. Due to limitations in processing power, to solve this task directly is impossible. Therefore, its modification is proposed. Based on the algorithms of machine learning, an independent solution cannot be built due to small volumes of training datasets relevant to NEL task. However, their use can contribute to improving the quality of the algorithm. The adaptation of the Latent Dirichlet Allocation model is proposed in order to obtain a measure of the compatibility of attributes of various entities encountered in one context.The efficiency of the proposed algorithm was experimentally tested. A test dataset was independently generated. On its basis the performance of the model was compared using the proposed algorithm with the open source product DBpedia Spotlight, which solves the NEL problem.The mockup, based on the proposed algorithm, showed a low speed as compared to DBpedia Spotlight. However, the fact that it has shown higher accuracy, stipulates the prospects for work in this direction.The main directions of development were proposed in order to increase the accuracy of the system and its productivity.
Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm
Directory of Open Access Journals (Sweden)
Jianyong Liu
2015-01-01
Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network
Directory of Open Access Journals (Sweden)
Kai Hu
2013-01-01
Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.
Recursive automatic classification algorithms
Energy Technology Data Exchange (ETDEWEB)
Bauman, E V; Dorofeyuk, A A
1982-03-01
A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.
Modified Decoding Algorithm of LLR-SPA
Directory of Open Access Journals (Sweden)
Zhongxun Wang
2014-09-01
Full Text Available In wireless sensor networks, the energy consumption is mainly occurred in the stage of information transmission. The Low Density Parity Check code can make full use of the channel information to save energy. Because of the widely used decoding algorithm of the Low Density Parity Check code, this paper proposes a new decoding algorithm which is based on the LLR-SPA (Sum-Product Algorithm in Log-Likelihood-domain to improve the accuracy of the decoding algorithm. In the modified algorithm, a piecewise linear function is used to approximate the complicated Jacobi correction term in LLR-SPA decoding algorithm. Construct the tangent by the tangency point to the function of Jacobi correction term, which is based on the first order Taylor Series. In this way, the proposed piecewise linear approximation offers almost a perfect match to the function of Jacobi correction term. Meanwhile, the proposed piecewise linear approximation could avoid the operation of logarithmic which is more suitable for practical application. The simulation results show that the proposed algorithm could improve the decoding accuracy greatly without noticeable variation of the computational complexity.
Efficient scheduling request algorithm for opportunistic wireless access
Nam, Haewoon
2011-08-01
An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers) the threshold during a guard period if no user sends a scheduling request. However, if multiple users make requests simultaneously and therefore a collision occurs, the proposed algorithm no longer updates the threshold but narrows down the user search space by splitting the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a request, it is shown that the proposed algorithm significantly alleviates the burden of the signaling for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots to make a user selection given a certain scheduling outage probability. © 2011 IEEE.
Iterative group splitting algorithm for opportunistic scheduling systems
Nam, Haewoon
2014-05-01
An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold during a guard period if no user sends a feedback. However, when a feedback collision occurs at any point of time, the proposed algorithm no longer updates the threshold but narrows down the user search space by dividing the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a feedback, it is shown that the proposed algorithm significantly alleviates the signaling overhead for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots than the opportunistic splitting algorithm to make a user selection with a given level of scheduling outage probability or provides a higher ergodic capacity given a certain number of mini-slots. © 2013 IEEE.
Sourds en prison : Difficultés de communication et isolement accru
Bamberg, Anne
1998-01-01
D'abord diffusé le 9 mai 1998 sous forme de note publique Sourds en prison. Justice et droits de l'homme au colloque de l'ANVP (Association nationale des visiteurs de prison) sur le Respect des droits de l'homme en prison, une version de ce texte fut publiée jusqu'en 2011 sur le site Internet de l'IPCA (International Prison Chaplains' Association) http://www.pkala.net/IPCA/. Voir aussi Sourds en prison, in Jéricho. Bulletin de l'ANVP (Association Nationale des Visiteurs de Prison), 175, novem...
Relative Pose Estimation Algorithm with Gyroscope Sensor
Directory of Open Access Journals (Sweden)
Shanshan Wei
2016-01-01
Full Text Available This paper proposes a novel vision and inertial fusion algorithm S2fM (Simplified Structure from Motion for camera relative pose estimation. Different from current existing algorithms, our algorithm estimates rotation parameter and translation parameter separately. S2fM employs gyroscopes to estimate camera rotation parameter, which is later fused with the image data to estimate camera translation parameter. Our contributions are in two aspects. (1 Under the circumstance that no inertial sensor can estimate accurately enough translation parameter, we propose a translation estimation algorithm by fusing gyroscope sensor and image data. (2 Our S2fM algorithm is efficient and suitable for smart devices. Experimental results validate efficiency of the proposed S2fM algorithm.
Iterative group splitting algorithm for opportunistic scheduling systems
Nam, Haewoon; Alouini, Mohamed-Slim
2014-01-01
An efficient feedback algorithm for opportunistic scheduling systems based on iterative group splitting is proposed in this paper. Similar to the opportunistic splitting algorithm, the proposed algorithm adjusts (or lowers) the feedback threshold
Efficient scheduling request algorithm for opportunistic wireless access
Nam, Haewoon; Alouini, Mohamed-Slim
2011-01-01
An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers
Bit Loading Algorithms for Cooperative OFDM Systems
Directory of Open Access Journals (Sweden)
Gui Bo
2008-01-01
Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.
Bit Loading Algorithms for Cooperative OFDM Systems
Directory of Open Access Journals (Sweden)
Bo Gui
2007-12-01
Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.
Inclusive Flavour Tagging Algorithm
International Nuclear Information System (INIS)
Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex
2016-01-01
Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)
Kiers, Henk A.L.; Harshman, Richard A.
Multilinear analysis methods such as component (and three-way component) analysis of very large data sets can become very computationally demanding and even infeasible unless some method is used to compress the data and/or speed up the algorithms. We discuss two previously proposed speedup methods.
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
International Nuclear Information System (INIS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-01-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
Energy Technology Data Exchange (ETDEWEB)
Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)
2015-12-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.
A Newton-type neural network learning algorithm
International Nuclear Information System (INIS)
Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.
1993-01-01
First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab
An improved VSS NLMS algorithm for active noise cancellation
Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan
2017-08-01
In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.
Efficient RNA structure comparison algorithms.
Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason
2017-12-01
Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Fast algorithm for Morphological Filters
International Nuclear Information System (INIS)
Lou Shan; Jiang Xiangqian; Scott, Paul J
2011-01-01
In surface metrology, morphological filters, which evolved from the envelope filtering system (E-system) work well for functional prediction of surface finish in the analysis of surfaces in contact. The naive algorithms are time consuming, especially for areal data, and not generally adopted in real practice. A fast algorithm is proposed based on the alpha shape. The hull obtained by rolling the alpha ball is equivalent to the morphological opening/closing in theory. The algorithm depends on Delaunay triangulation with time complexity O(nlogn). In comparison to the naive algorithms it generates the opening and closing envelope without combining dilation and erosion. Edge distortion is corrected by reflective padding for open profiles/surfaces. Spikes in the sample data are detected and points interpolated to prevent singularities. The proposed algorithm works well both for morphological profile and area filters. Examples are presented to demonstrate the validity and superiority on efficiency of this algorithm over the naive algorithm.
WDM Multicast Tree Construction Algorithms and Their Comparative Evaluations
Makabe, Tsutomu; Mikoshi, Taiju; Takenaka, Toyofumi
We propose novel tree construction algorithms for multicast communication in photonic networks. Since multicast communications consume many more link resources than unicast communications, effective algorithms for route selection and wavelength assignment are required. We propose a novel tree construction algorithm, called the Weighted Steiner Tree (WST) algorithm and a variation of the WST algorithm, called the Composite Weighted Steiner Tree (CWST) algorithm. Because these algorithms are based on the Steiner Tree algorithm, link resources among source and destination pairs tend to be commonly used and link utilization ratios are improved. Because of this, these algorithms can accept many more multicast requests than other multicast tree construction algorithms based on the Dijkstra algorithm. However, under certain delay constraints, the blocking characteristics of the proposed Weighted Steiner Tree algorithm deteriorate since some light paths between source and destinations use many hops and cannot satisfy the delay constraint. In order to adapt the approach to the delay-sensitive environments, we have devised the Composite Weighted Steiner Tree algorithm comprising the Weighted Steiner Tree algorithm and the Dijkstra algorithm for use in a delay constrained environment such as an IPTV application. In this paper, we also give the results of simulation experiments which demonstrate the superiority of the proposed Composite Weighted Steiner Tree algorithm compared with the Distributed Minimum Hop Tree (DMHT) algorithm, from the viewpoint of the light-tree request blocking.
Firefly Mating Algorithm for Continuous Optimization Problems
Directory of Open Access Journals (Sweden)
Amarita Ritthipakdee
2017-01-01
Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Directory of Open Access Journals (Sweden)
Shawq Malik Mehibs
2017-12-01
Full Text Available Nowadays cloud computing had become is an integral part of IT industry, cloud computing provides Working environment allow a user of environmental to share data and resources over the internet. Where cloud computing its virtual grouping of resources offered over the internet, this lead to different matters related to the security and privacy in cloud computing. And therefore, create intrusion detection very important to detect outsider and insider intruders of cloud computing with high detection rate and low false positive alarm in the cloud environment. This work proposed network intrusion detection module using fuzzy c mean algorithm. The kdd99 dataset used for experiments .the proposed system characterized by a high detection rate with low false positive alarm
Cantiello, Francesco; Russo, Giorgio Ivan; Cicione, Antonio; Ferro, Matteo; Cimino, Sebastiano; Favilla, Vincenzo; Perdonà, Sisto; De Cobelli, Ottavio; Magno, Carlo; Morgia, Giuseppe; Damiano, Rocco
2016-04-01
To assess the performance of prostate health index (PHI) and prostate cancer antigen 3 (PCA3) when added to the PRIAS or Epstein criteria in predicting the presence of pathologically insignificant prostate cancer (IPCa) in patients who underwent radical prostatectomy (RP) but eligible for active surveillance (AS). An observational retrospective study was performed in 188 PCa patients treated with laparoscopic or robot-assisted RP but eligible for AS according to Epstein or PRIAS criteria. Blood and urinary specimens were collected before initial prostate biopsy for PHI and PCA3 measurements. Multivariate logistic regression analyses and decision curve analysis were carried out to identify predictors of IPCa using the updated ERSPC definition. At the multivariate analyses, the inclusion of both PCA3 and PHI significantly increased the accuracy of the Epstein multivariate model in predicting IPCa with an increase of 17 % (AUC = 0.77) and of 32 % (AUC = 0.92), respectively. The inclusion of both PCA3 and PHI also increased the predictive accuracy of the PRIAS multivariate model with an increase of 29 % (AUC = 0.87) and of 39 % (AUC = 0.97), respectively. DCA revealed that the multivariable models with the addition of PHI or PCA3 showed a greater net benefit and performed better than the reference models. In a direct comparison, PHI outperformed PCA3 performance resulting in higher net benefit. In a same cohort of patients eligible for AS, the addition of PHI and PCA3 to Epstein or PRIAS models improved their prognostic performance. PHI resulted in greater net benefit in predicting IPCa compared to PCA3.
Directory of Open Access Journals (Sweden)
Carlos Henrique Marques dos Santos
Full Text Available Abstract Objective: The aim of the present study was to evaluate the ability of ischemic postconditioning, atorvastatin and both associated to prevent or minimize reperfusion injury in the lung of rats subjected to ischemia and reperfusion by abdominal aortic clamping. Methods: We used 41 Wistar norvegic rats, which were distributed into 5 groups: ischemia and reperfusion (I/R, ischemic postcondictioning (IPC, postconditioning + atorvastatin (IPC+A, atorvastatin (A and SHAM. It was performed a medium laparotomy, dissection and isolation of the infra-renal abdominal aorta; except for the SHAM group, all the others were submitted to the aortic clamping for 70 minutes (ischemia and posterior clamp removal (reperfusion, 70 minutes. In the IPC and IPC+A groups, postconditioning was performed between the ischemia and reperfusion phases by four cycles of reperfusion and ischemia lasting 30 seconds each. In the IPC+A and A groups, preceding the surgical procedure, administration of 3.4 mg/day of atorvastatin was performed for seven days by gavage. After the surgical procedure, the right caudal lobe was removed from the lung for histological study, using tissue injury score ranging from grade 1 (normal tissue to grade 4 (intense lesion. Results: The mean lung injury was 3.6 in the I/R group, 1.6 in the IPC group, 1.2 in the IPC+A group, 1.2 in the A group, and 1 in the SHAM group (P<0.01. Conclusion: Ischemic postconditioning and atorvastatin were able to minimize lung reperfusion injury, alone or in combination.
Opposite Degree Algorithm and Its Applications
Directory of Open Access Journals (Sweden)
Xiao-Guang Yue
2015-12-01
Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.
Applying Kitaev's algorithm in an ion trap quantum computer
International Nuclear Information System (INIS)
Travaglione, B.; Milburn, G.J.
2000-01-01
Full text: Kitaev's algorithm is a method of estimating eigenvalues associated with an operator. Shor's factoring algorithm, which enables a quantum computer to crack RSA encryption codes, is a specific example of Kitaev's algorithm. It has been proposed that the algorithm can also be used to generate eigenstates. We extend this proposal for small quantum systems, identifying the conditions under which the algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate a simple example, in which the algorithm effectively generates eigenstates
Simulation and Proposed Handover Alert Algorithm for Mobile Communication System
Directory of Open Access Journals (Sweden)
Muzhir Shaban Al-Ani
2009-10-01
Full Text Available this paper deals with the simulation and presentation of a novel approach to design and implementation of algorithm to realize hand over process for a mobile communication system during mobile network. This algorithm performs the ability of the system to extract important information features about the received signal. When the strength of the received signal is dropped below a certain threshold value then an alert process is activated to achieve the continuity of the transmission due to a ready scan which is existed on time.
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Modified artificial bee colony algorithm for reactive power optimization
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Directory of Open Access Journals (Sweden)
Yu-Pei Huang
2018-01-01
Full Text Available This paper proposes a modified maximum power point tracking (MPPT algorithm for photovoltaic systems under rapidly changing partial shading conditions (PSCs. The proposed algorithm integrates a genetic algorithm (GA and the firefly algorithm (FA and further improves its calculation process via a differential evolution (DE algorithm. The conventional GA is not advisable for MPPT because of its complicated calculations and low accuracy under PSCs. In this study, we simplified the GA calculations with the integration of the DE mutation process and FA attractive process. Results from both the simulation and evaluation verify that the proposed algorithm provides rapid response time and high accuracy due to the simplified processing. For instance, evaluation results demonstrate that when compared to the conventional GA, the execution time and tracking accuracy of the proposed algorithm can be, respectively, improved around 69.4% and 4.16%. In addition, in comparison to FA, the tracking speed and tracking accuracy of the proposed algorithm can be improved around 42.9% and 1.85%, respectively. Consequently, the major improvement of the proposed method when evaluated against the conventional GA and FA is tracking speed. Moreover, this research provides a framework to integrate multiple nature-inspired algorithms for MPPT. Furthermore, the proposed method is adaptable to different types of solar panels and different system formats with specifically designed equations, the advantages of which are rapid tracking speed with high accuracy under PSCs.
Efficient On-the-fly Algorithms for the Analysis of Timed Games
DEFF Research Database (Denmark)
Cassez, Franck; David, Alexandre; Fleury, Emmanuel
2005-01-01
In this paper, we propose the first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties The algorithm we propose is a symbolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for linear-time model-ch...... symbolic algorithm are proposed as well as methods for obtaining time-optimal winning strategies (for reachability games). Extensive evaluation of an experimental implementation of the algorithm yields very encouraging performance results.......In this paper, we propose the first efficient on-the-fly algorithm for solving games based on timed game automata with respect to reachability and safety properties The algorithm we propose is a symbolic extension of the on-the-fly algorithm suggested by Liu & Smolka [15] for linear-time model...
Modified Projection Algorithms for Solving the Split Equality Problems
Directory of Open Access Journals (Sweden)
Qiao-Li Dong
2014-01-01
proposed a CQ algorithm for solving it. In this paper, we propose a modification for the CQ algorithm, which computes the stepsize adaptively and performs an additional projection step onto two half-spaces in each iteration. We further propose a relaxation scheme for the self-adaptive projection algorithm by using projections onto half-spaces instead of those onto the original convex sets, which is much more practical. Weak convergence results for both algorithms are analyzed.
Algorithmic approach to diagram techniques
International Nuclear Information System (INIS)
Ponticopoulos, L.
1980-10-01
An algorithmic approach to diagram techniques of elementary particles is proposed. The definition and axiomatics of the theory of algorithms are presented, followed by the list of instructions of an algorithm formalizing the construction of graphs and the assignment of mathematical objects to them. (T.A.)
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
Directory of Open Access Journals (Sweden)
Xingwang Huang
2017-01-01
Full Text Available Binary bat algorithm (BBA is a binary version of the bat algorithm (BA. It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO. Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Directory of Open Access Journals (Sweden)
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
Directory of Open Access Journals (Sweden)
Ait-Ali Lamia
2011-11-01
Full Text Available Abstract Background To propose a new diagnostic algorithm for candidates for Fontan and identify those who can skip cardiac catheterization (CC. Methods Forty-four candidates for Fontan (median age 4.8 years, range: 2-29 years were prospectively evaluated by trans-thoracic echocardiography (TTE, Cardiovascular magnetic resonance (CMR and CC. Before CC, according to clinical, echo and CMR findings, patients were divided in two groups: Group I comprised 18 patients deemed suitable for Fontan without requiring CC; group II comprised 26 patients indicated for CC either in order to detect more details, or for interventional procedures. Results In Group I ("CC not required" no unexpected new information affecting surgical planning was provided by CC. Conversely, in Group II new information was provided by CC in three patients (0 vs 11.5%, p = 0.35 and in six an interventional procedure was performed. During CC, minor complications occurred in one patient from Group I and in three from Group II (6 vs 14%, p = 0.7. Radiation Dose-Area product was similar in the two groups (Median 20 Gycm2, range: 5-40 vs 26.5 Gycm2, range: 9-270 p = 0.37. All 18 Group I patients and 19 Group II patients underwent a total cavo-pulmonary anastomosis; in the remaining seven group II patients, four were excluded from Fontan; two are awaiting Fontan; one refused the intervention. Conclusion In this paper we propose a new diagnostic algorithm in a pre-Fontan setting. An accurate non-invasive evaluation comprising TTE and CMR could select patients who can skip CC.
ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS
Directory of Open Access Journals (Sweden)
I. A. Petrova
2016-05-01
Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.
Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery
Kim, Daeun; Haldar, Justin P.
2016-01-01
This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368
A voting-based star identification algorithm utilizing local and global distribution
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
Multi-User Identification-Based Eye-Tracking Algorithm Using Position Estimation
Directory of Open Access Journals (Sweden)
Suk-Ju Kang
2016-12-01
Full Text Available This paper proposes a new multi-user eye-tracking algorithm using position estimation. Conventional eye-tracking algorithms are typically suitable only for a single user, and thereby cannot be used for a multi-user system. Even though they can be used to track the eyes of multiple users, their detection accuracy is low and they cannot identify multiple users individually. The proposed algorithm solves these problems and enhances the detection accuracy. Specifically, the proposed algorithm adopts a classifier to detect faces for the red, green, and blue (RGB and depth images. Then, it calculates features based on the histogram of the oriented gradient for the detected facial region to identify multiple users, and selects the template that best matches the users from a pre-determined face database. Finally, the proposed algorithm extracts the final eye positions based on anatomical proportions. Simulation results show that the proposed algorithm improved the average F1 score by up to 0.490, compared with benchmark algorithms.
An empirical study on SAJQ (Sorting Algorithm for Join Queries
Directory of Open Access Journals (Sweden)
Hassan I. Mathkour
2010-06-01
Full Text Available Most queries that applied on database management systems (DBMS depend heavily on the performance of the used sorting algorithm. In addition to have an efficient sorting algorithm, as a primary feature, stability of such algorithms is a major feature that is needed in performing DBMS queries. In this paper, we study a new Sorting Algorithm for Join Queries (SAJQ that has both advantages of being efficient and stable. The proposed algorithm takes the advantage of using the m-way-merge algorithm in enhancing its time complexity. SAJQ performs the sorting operation in a time complexity of O(nlogm, where n is the length of the input array and m is number of sub-arrays used in sorting. An unsorted input array of length n is arranged into m sorted sub-arrays. The m-way-merge algorithm merges the sorted m sub-arrays into the final output sorted array. The proposed algorithm keeps the stability of the keys intact. An analytical proof has been conducted to prove that, in the worst case, the proposed algorithm has a complexity of O(nlogm. Also, a set of experiments has been performed to investigate the performance of the proposed algorithm. The experimental results have shown that the proposed algorithm outperforms other Stable–Sorting algorithms that are designed for join-based queries.
An Efficient Algorithm for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Sergio Gerardo de-los-Cobos-Silva
2015-01-01
Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.
A Unified Differential Evolution Algorithm for Global Optimization
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
The serial message-passing schedule for LDPC decoding algorithms
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Phase retrieval via incremental truncated amplitude flow algorithm
Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao
2017-10-01
This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.
DEFF Research Database (Denmark)
Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino
2016-01-01
A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
Automatic Circuit Design and Optimization Using Modified PSO Algorithm
Directory of Open Access Journals (Sweden)
Subhash Patel
2016-04-01
Full Text Available In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard PSO algorithm.
Cascade Error Projection: A New Learning Algorithm
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
Adaptive Step Size Gradient Ascent ICA Algorithm for Wireless MIMO Systems
Directory of Open Access Journals (Sweden)
Zahoor Uddin
2018-01-01
Full Text Available Independent component analysis (ICA is a technique of blind source separation (BSS used for separation of the mixed received signals. ICA algorithms are classified into adaptive and batch algorithms. Adaptive algorithms perform well in time-varying scenario with high-computational complexity, while batch algorithms have better separation performance in quasistatic channels with low-computational complexity. Amongst batch algorithms, the gradient-based ICA algorithms perform well, but step size selection is critical in these algorithms. In this paper, an adaptive step size gradient ascent ICA (ASS-GAICA algorithm is presented. The proposed algorithm is free from selection of the step size parameter with improved convergence and separation performance. Different performance evaluation criteria are used to verify the effectiveness of the proposed algorithm. Performance of the proposed algorithm is compared with the FastICA and optimum block adaptive ICA (OBAICA algorithms for quasistatic and time-varying wireless channels. Simulation is performed over quadrature amplitude modulation (QAM and binary phase shift keying (BPSK signals. Results show that the proposed algorithm outperforms the FastICA and OBAICA algorithms for a wide range of signal-to-noise ratio (SNR and input data block lengths.
Two General Extension Algorithms of Latin Hypercube Sampling
Directory of Open Access Journals (Sweden)
Zhi-zhao Liu
2015-01-01
Full Text Available For reserving original sampling points to reduce the simulation runs, two general extension algorithms of Latin Hypercube Sampling (LHS are proposed. The extension algorithms start with an original LHS of size m and construct a new LHS of size m+n that contains the original points as many as possible. In order to get a strict LHS of larger size, some original points might be deleted. The relationship of original sampling points in the new LHS structure is shown by a simple undirected acyclic graph. The basic general extension algorithm is proposed to reserve the most original points, but it costs too much time. Therefore, a general extension algorithm based on greedy algorithm is proposed to reduce the extension time, which cannot guarantee to contain the most original points. These algorithms are illustrated by an example and applied to evaluating the sample means to demonstrate the effectiveness.
DNABIT Compress – Genome compression algorithm
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-01
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923
Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network
Directory of Open Access Journals (Sweden)
T. Panigrahi
2012-01-01
Full Text Available In a distributed parameter estimation problem, during each sampling instant, a typical sensor node communicates its estimate either by the diffusion algorithm or by the incremental algorithm. Both these conventional distributed algorithms involve significant communication overheads and, consequently, defeat the basic purpose of wireless sensor networks. In the present paper, we therefore propose two new distributed algorithms, namely, block diffusion least mean square (BDLMS and block incremental least mean square (BILMS by extending the concept of block adaptive filtering techniques to the distributed adaptation scenario. The performance analysis of the proposed BDLMS and BILMS algorithms has been carried out and found to have similar performances to those offered by conventional diffusion LMS and incremental LMS algorithms, respectively. The convergence analyses of the proposed algorithms obtained from the simulation study are also found to be in agreement with the theoretical analysis. The remarkable and interesting aspect of the proposed block-based algorithms is that their communication overheads per node and latencies are less than those of the conventional algorithms by a factor as high as the block size used in the algorithms.
Opposition-Based Adaptive Fireworks Algorithm
Chibing Gong
2016-01-01
A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...
Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP
Directory of Open Access Journals (Sweden)
Patrick A. Naylor
2008-05-01
Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.
Adaptive symbiotic organisms search (SOS algorithm for structural design optimization
Directory of Open Access Journals (Sweden)
Ghanshyam G. Tejani
2016-07-01
Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.
Discrete Riccati equation solutions: Distributed algorithms
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.
Rate-control algorithms testing by using video source model
DEFF Research Database (Denmark)
Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Anna
2008-01-01
In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set.......In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set....
Scalable Nearest Neighbor Algorithms for High Dimensional Data.
Muja, Marius; Lowe, David G
2014-11-01
For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.
New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems
Directory of Open Access Journals (Sweden)
Xiguang Li
2017-01-01
Full Text Available Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA, is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent.
Multilevel Image Segmentation Based on an Improved Firefly Algorithm
Directory of Open Access Journals (Sweden)
Kai Chen
2016-01-01
Full Text Available Multilevel image segmentation is time-consuming and involves large computation. The firefly algorithm has been applied to enhancing the efficiency of multilevel image segmentation. However, in some cases, firefly algorithm is easily trapped into local optima. In this paper, an improved firefly algorithm (IFA is proposed to search multilevel thresholds. In IFA, in order to help fireflies escape from local optima and accelerate the convergence, two strategies (i.e., diversity enhancing strategy with Cauchy mutation and neighborhood strategy are proposed and adaptively chosen according to different stagnation stations. The proposed IFA is compared with three benchmark optimal algorithms, that is, Darwinian particle swarm optimization, hybrid differential evolution optimization, and firefly algorithm. The experimental results show that the proposed method can efficiently segment multilevel images and obtain better performance than the other three methods.
A Self Adaptive Differential Evolution Algorithm for Global Optimization
Kumar, Pravesh; Pant, Millie
This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.
Improved Collaborative Filtering Algorithm using Topic Model
Directory of Open Access Journals (Sweden)
Liu Na
2016-01-01
Full Text Available Collaborative filtering algorithms make use of interactions rates between users and items for generating recommendations. Similarity among users or items is calculated based on rating mostly, without considering explicit properties of users or items involved. In this paper, we proposed collaborative filtering algorithm using topic model. We describe user-item matrix as document-word matrix and user are represented as random mixtures over item, each item is characterized by a distribution over users. The experiments showed that the proposed algorithm achieved better performance compared the other state-of-the-art algorithms on Movie Lens data sets.
Directory of Open Access Journals (Sweden)
Tieyu Zhao
2015-01-01
Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.
An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers
Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin
2018-03-01
An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding
Directory of Open Access Journals (Sweden)
Yongjian Nian
2013-01-01
Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.
Android Malware Classification Using K-Means Clustering Algorithm
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Watermarking Algorithms for 3D NURBS Graphic Data
Directory of Open Access Journals (Sweden)
Jae Jun Lee
2004-10-01
Full Text Available Two watermarking algorithms for 3D nonuniform rational B-spline (NURBS graphic data are proposed: one is appropriate for the steganography, and the other for watermarking. Instead of directly embedding data into the parameters of NURBS, the proposed algorithms embed data into the 2D virtual images extracted by parameter sampling of 3D model. As a result, the proposed steganography algorithm can embed information into more places of the surface than the conventional algorithm, while preserving the data size of the model. Also, any existing 2D watermarking technique can be used for the watermarking of 3D NURBS surfaces. From the experiment, it is found that the algorithm for the watermarking is robust to the attacks on weights, control points, and knots. It is also found to be robust to the remodeling of NURBS models.
[A new peak detection algorithm of Raman spectra].
Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing
2014-01-01
The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.
Some nonlinear space decomposition algorithms
Energy Technology Data Exchange (ETDEWEB)
Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)
1996-12-31
Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.
A robust firearm identification algorithm of forensic ballistics specimens
Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.
2017-09-01
There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.
Incoherent beam combining based on the momentum SPGD algorithm
Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng
2018-05-01
Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.
Ameneiros-Lago, E; Carballada-Rico, C; Garrido-Sanjuán, J A; García Martínez, A
2015-01-01
Decision making in the patient with chronic advanced disease is especially complex. Health professionals are obliged to prevent avoidable suffering and not to add any more damage to that of the disease itself. The adequacy of the clinical interventions consists of only offering those diagnostic and therapeutic procedures appropriate to the clinical situation of the patient and to perform only those allowed by the patient or representative. In this article, the use of an algorithm is proposed that should serve to help health professionals in this decision making process. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
An Enhanced Genetic Algorithm for the Generalized Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
H. Jafarzadeh
2017-12-01
Full Text Available The generalized traveling salesman problem (GTSP deals with finding the minimum-cost tour in a clustered set of cities. In this problem, the traveler is interested in finding the best path that goes through all clusters. As this problem is NP-hard, implementing a metaheuristic algorithm to solve the large scale problems is inevitable. The performance of these algorithms can be intensively promoted by other heuristic algorithms. In this study, a search method is developed that improves the quality of the solutions and competition time considerably in comparison with Genetic Algorithm. In the proposed algorithm, the genetic algorithms with the Nearest Neighbor Search (NNS are combined and a heuristic mutation operator is applied. According to the experimental results on a set of standard test problems with symmetric distances, the proposed algorithm finds the best solutions in most cases with the least computational time. The proposed algorithm is highly competitive with the published until now algorithms in both solution quality and running time.
Memetic Algorithm and its Application to the Arrangement of Exam Timetable
Directory of Open Access Journals (Sweden)
Wenhua Huang
2016-06-01
Full Text Available This paper looks at Memetic Algorithm for solving timetabling problems. We present a new memetic algorithm which consists of global search algorithm and local search algorithm. In the proposed method, a genetic algorithm is chosen for global search algorithm while a simulated annealing algorithm is used for local search algorithm. In particular, we could get an optimal solution through the .NET with the real data of JiangXi Normal University. Experimental results show that the proposed algorithm can solve the university exam timetabling problem efficiently.
A robust embedded vision system feasible white balance algorithm
Wang, Yuan; Yu, Feihong
2018-01-01
White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.
A Location-Aware Vertical Handoff Algorithm for Hybrid Networks
Mehbodniya, Abolfazl
2010-07-01
One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.
Simultaneous and semi-alternating projection algorithms for solving split equality problems.
Dong, Qiao-Li; Jiang, Dan
2018-01-01
In this article, we first introduce two simultaneous projection algorithms for solving the split equality problem by using a new choice of the stepsize, and then propose two semi-alternating projection algorithms. The weak convergence of the proposed algorithms is analyzed under standard conditions. As applications, we extend the results to solve the split feasibility problem. Finally, a numerical example is presented to illustrate the efficiency and advantage of the proposed algorithms.
Dynamic route guidance algorithm based algorithm based on artificial immune system
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.
Controller Parameter Optimization for Nonlinear Systems Using Enhanced Bacteria Foraging Algorithm
Directory of Open Access Journals (Sweden)
V. Rajinikanth
2012-01-01
Full Text Available An enhanced bacteria foraging optimization (EBFO algorithm-based Proportional + integral + derivative (PID controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.
An effective one-dimensional anisotropic fingerprint enhancement algorithm
Ye, Zhendong; Xie, Mei
2012-01-01
Fingerprint identification is one of the most important biometric technologies. The performance of the minutiae extraction and the speed of the fingerprint verification system rely heavily on the quality of the input fingerprint images, so the enhancement of the low fingerprint is a critical and difficult step in a fingerprint verification system. In this paper we proposed an effective algorithm for fingerprint enhancement. Firstly we use normalization algorithm to reduce the variations in gray level values along ridges and valleys. Then we utilize the structure tensor approach to estimate each pixel of the fingerprint orientations. At last we propose a novel algorithm which combines the advantages of onedimensional Gabor filtering method and anisotropic method to enhance the fingerprint in recoverable region. The proposed algorithm has been evaluated on the database of Fingerprint Verification Competition 2004, and the results show that our algorithm performs within less time.
Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.
2011-07-01
We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)
Model-Free Adaptive Control Algorithm with Data Dropout Compensation
Directory of Open Access Journals (Sweden)
Xuhui Bu
2012-01-01
Full Text Available The convergence of model-free adaptive control (MFAC algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that the proposed algorithm can compensate the effect of the data dropout, and the better output performance can be obtained.
Directory of Open Access Journals (Sweden)
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
A new simple iterative reconstruction algorithm for SPECT transmission measurement
International Nuclear Information System (INIS)
Hwang, D.S.; Zeng, G.L.
2005-01-01
This paper proposes a new iterative reconstruction algorithm for transmission tomography and compares this algorithm with several other methods. The new algorithm is simple and resembles the emission ML-EM algorithm in form. Due to its simplicity, it is easy to implement and fast to compute a new update at each iteration. The algorithm also always guarantees non-negative solutions. Evaluations are performed using simulation studies and real phantom data. Comparisons with other algorithms such as convex, gradient, and logMLEM show that the proposed algorithm is as good as others and performs better in some cases
Seismic noise attenuation using an online subspace tracking algorithm
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices
Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly
2010-01-01
In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.
High-order hydrodynamic algorithms for exascale computing
Energy Technology Data Exchange (ETDEWEB)
Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-05
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
GSM Channel Equalization Algorithm - Modern DSP Coprocessor Approach
Directory of Open Access Journals (Sweden)
M. Drutarovsky
1999-12-01
Full Text Available The paper presents basic equations of efficient GSM Viterbi equalizer algorithm based on approximation of GMSK modulation by linear superposition of amplitude modulated pulses. This approximation allows to use Ungerboeck form of channel equalizer with significantly reduced arithmetic complexity. Proposed algorithm can be effectively implemented on the Viterbi and Filter coprocessors of new Motorola DSP56305 digital signal processor. Short overview of coprocessor features related to the proposed algorithm is included.
Computationally Efficient DOA Tracking Algorithm in Monostatic MIMO Radar with Automatic Association
Directory of Open Access Journals (Sweden)
Huaxin Yu
2014-01-01
Full Text Available We consider the problem of tracking the direction of arrivals (DOA of multiple moving targets in monostatic multiple-input multiple-output (MIMO radar. A low-complexity DOA tracking algorithm in monostatic MIMO radar is proposed. The proposed algorithm obtains DOA estimation via the difference between previous and current covariance matrix of the reduced-dimension transformation signal, and it reduces the computational complexity and realizes automatic association in DOA tracking. Error analysis and Cramér-Rao lower bound (CRLB of DOA tracking are derived in the paper. The proposed algorithm not only can be regarded as an extension of array-signal-processing DOA tracking algorithm in (Zhang et al. (2008, but also is an improved version of the DOA tracking algorithm in (Zhang et al. (2008. Furthermore, the proposed algorithm has better DOA tracking performance than the DOA tracking algorithm in (Zhang et al. (2008. The simulation results demonstrate effectiveness of the proposed algorithm. Our work provides the technical support for the practical application of MIMO radar.
Deng, Honggui; Liu, Yan; Ren, Shuang; He, Hailang; Tang, Chengying
2017-10-01
We propose an enhanced partial transmit sequence technique based on novel peak-value feedback algorithm and genetic algorithm (GAPFA-PTS) to reduce peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems(VLC-OFDM). To demonstrate the advantages of our proposed algorithm, we analyze the flow of proposed technique and compare the performances with other techniques through MATLAB simulation. The results show that GAPFA-PTS technique achieves a significant improvement in PAPR reduction while maintaining low bit error rate (BER) and low complexity in VLC-OFDM systems.
Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height
Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang
2018-02-01
This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
A high accuracy algorithm of displacement measurement for a micro-positioning stage
Directory of Open Access Journals (Sweden)
Xiang Zhang
2017-05-01
Full Text Available A high accuracy displacement measurement algorithm for a two degrees of freedom compliant precision micro-positioning stage is proposed based on the computer micro-vision technique. The algorithm consists of an integer-pixel and a subpixel matching procedure. Series of simulations are conducted to verify the proposed method. The results show that the proposed algorithm possesses the advantages of high precision and stability, the resolution can attain to 0.01 pixel theoretically. In addition, the consuming time is reduced about 6.7 times compared with the classical normalized cross correlation algorithm. To validate the practical performance of the proposed algorithm, a laser interferometer measurement system (LIMS is built up. The experimental results demonstrate that the algorithm has better adaptability than that of the LIMS.
Quasi-human seniority-order algorithm for unequal circles packing
International Nuclear Information System (INIS)
Zhu, Dingju
2016-01-01
In the existing methods for solving unequal circles packing problems, the initial configuration is given arbitrarily or randomly, but the impact of different initial configurations for existing packing algorithm to the speed of existing packing algorithm solving unequal circles packing problems is very large. The quasi-human seniority-order algorithm proposed in this paper can generate a better initial configuration for existing packing algorithm to accelerate the speed of existing packing algorithm solving unequal circles packing problems. In experiments, the quasi-human seniority-order algorithm is applied to generate better initial configurations for quasi-physical elasticity methods to solve the unequal circles packing problems, and the experimental results show that the proposed quasi-human seniority-order algorithm can greatly improve the speed of solving the problem.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error
Unsupervised learning algorithms
Aydin, Kemal
2016-01-01
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...
A Dynamic Fuzzy Cluster Algorithm for Time Series
Directory of Open Access Journals (Sweden)
Min Ji
2013-01-01
clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Research and implementation of finger-vein recognition algorithm
Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin
2017-06-01
In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Directory of Open Access Journals (Sweden)
Huimin Lu
2013-01-01
Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Multimodal Estimation of Distribution Algorithms.
Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun
2016-02-15
Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
A High-Order CFS Algorithm for Clustering Big Data
Directory of Open Access Journals (Sweden)
Fanyu Bu
2016-01-01
Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Parallel data encryption with RSA algorithm
Неретин, А. А.
2016-01-01
In this paper a parallel RSA algorithm with preliminary shuffling of source text was presented.Dependence of an encryption speed on the number of encryption nodes has been analysed, The proposed algorithm was implemented on C# language.
An algorithm for determination of peak regions and baseline elimination in spectroscopic data
International Nuclear Information System (INIS)
Morhac, Miroslav
2009-01-01
In the paper we propose a new algorithm for the determination of peaks containing regions and their separation from peak-free regions. Further based on this algorithm we propose a new background elimination algorithm which allows more accurate estimate of the background beneath the peaks than the algorithms known so far. The algorithm is based on a clipping operation with the window adjustable automatically to the widths of identified peak regions. The illustrative examples presented in the paper prove in favor of the proposed algorithms.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
Rosenberger C
2008-01-01
Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
Optimization-Based Image Segmentation by Genetic Algorithms
Directory of Open Access Journals (Sweden)
H. Laurent
2008-05-01
Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.
An improved algorithm for connectivity analysis of distribution networks
International Nuclear Information System (INIS)
Kansal, M.L.; Devi, Sunita
2007-01-01
In the present paper, an efficient algorithm for connectivity analysis of moderately sized distribution networks has been suggested. Algorithm is based on generation of all possible minimal system cutsets. The algorithm is efficient as it identifies only the necessary and sufficient conditions of system failure conditions in n-out-of-n type of distribution networks. The proposed algorithm is demonstrated with the help of saturated and unsaturated distribution networks. The computational efficiency of the algorithm is justified by comparing the computational efforts with the previously suggested appended spanning tree (AST) algorithm. The proposed technique has the added advantage as it can be utilized for generation of system inequalities which is useful in reliability estimation of capacitated networks
Phase-unwrapping algorithm by a rounding-least-squares approach
Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin
2014-02-01
A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.
SVC control enhancement applying self-learning fuzzy algorithm for islanded microgrid
Directory of Open Access Journals (Sweden)
Hossam Gabbar
2016-03-01
Full Text Available Maintaining voltage stability, within acceptable levels, for islanded Microgrids (MGs is a challenge due to limited exchange power between generation and loads. This paper proposes an algorithm to enhance the dynamic performance of islanded MGs in presence of load disturbance using Static VAR Compensator (SVC with Fuzzy Model Reference Learning Controller (FMRLC. The proposed algorithm compensates MG nonlinearity via fuzzy membership functions and inference mechanism imbedded in both controller and inverse model. Hence, MG keeps the desired performance as required at any operating condition. Furthermore, the self-learning capability of the proposed control algorithm compensates for grid parameter’s variation even with inadequate information about load dynamics. A reference model was designed to reject bus voltage disturbance with achievable performance by the proposed fuzzy controller. Three simulations scenarios have been presented to investigate effectiveness of proposed control algorithm in improving steady-state and transient performance of islanded MGs. The first scenario conducted without SVC, second conducted with SVC using PID controller and third conducted using FMRLC algorithm. A comparison for results shows ability of proposed control algorithm to enhance disturbance rejection due to learning process.
One improved LSB steganography algorithm
Song, Bing; Zhang, Zhi-hong
2013-03-01
It is easy to be detected by X2 and RS steganalysis with high accuracy that using LSB algorithm to hide information in digital image. We started by selecting information embedded location and modifying the information embedded method, combined with sub-affine transformation and matrix coding method, improved the LSB algorithm and a new LSB algorithm was proposed. Experimental results show that the improved one can resist the X2 and RS steganalysis effectively.
Hill climbing algorithms and trivium
DEFF Research Database (Denmark)
Borghoff, Julia; Knudsen, Lars Ramkilde; Matusiewicz, Krystian
2011-01-01
This paper proposes a new method to solve certain classes of systems of multivariate equations over the binary field and its cryptanalytical applications. We show how heuristic optimization methods such as hill climbing algorithms can be relevant to solving systems of multivariate equations....... A characteristic of equation systems that may be efficiently solvable by the means of such algorithms is provided. As an example, we investigate equation systems induced by the problem of recovering the internal state of the stream cipher Trivium. We propose an improved variant of the simulated annealing method...
Merged Search Algorithms for Radio Frequency Identification Anticollision
Directory of Open Access Journals (Sweden)
Bih-Yaw Shih
2012-01-01
The arbitration algorithm for RFID system is used to arbitrate all the tags to avoid the collision problem with the existence of multiple tags in the interrogation field of a transponder. A splitting algorithm which is called Binary Search Tree (BST is well known for multitags arbitration. In the current study, a splitting-based schema called Merged Search Tree is proposed to capture identification codes correctly for anticollision. Performance of the proposed algorithm is compared with the original BST according to time and power consumed during the arbitration process. The results show that the proposed model can reduce searching time and power consumed to achieve a better performance arbitration.
Exact and Heuristic Algorithms for Runway Scheduling
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
Asymmetric intimacy and algorithm for detecting communities in bipartite networks
Wang, Xingyuan; Qin, Xiaomeng
2016-11-01
In this paper, an algorithm to choose a good partition in bipartite networks has been proposed. Bipartite networks have more theoretical significance and broader prospect of application. In view of distinctive structure of bipartite networks, in our method, two parameters are defined to show the relationships between the same type nodes and heterogeneous nodes respectively. Moreover, our algorithm employs a new method of finding and expanding the core communities in bipartite networks. Two kinds of nodes are handled separately and merged, and then the sub-communities are obtained. After that, objective communities will be found according to the merging rule. The proposed algorithm has been simulated in real-world networks and artificial networks, and the result verifies the accuracy and reliability of the parameters on intimacy for our algorithm. Eventually, comparisons with similar algorithms depict that the proposed algorithm has better performance.
DEFF Research Database (Denmark)
Li, Wuzhao; Wang, Lei; Cai, Xingjuan
2015-01-01
and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...
Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.
2017-12-01
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
Genetic Algorithm Applied to the Eigenvalue Equalization Filtered-x LMS Algorithm (EE-FXLMS
Directory of Open Access Journals (Sweden)
Stephan P. Lovstedt
2008-01-01
Full Text Available The FXLMS algorithm, used extensively in active noise control (ANC, exhibits frequency-dependent convergence behavior. This leads to degraded performance for time-varying tonal noise and noise with multiple stationary tones. Previous work by the authors proposed the eigenvalue equalization filtered-x least mean squares (EE-FXLMS algorithm. For that algorithm, magnitude coefficients of the secondary path transfer function are modified to decrease variation in the eigenvalues of the filtered-x autocorrelation matrix, while preserving the phase, giving faster convergence and increasing overall attenuation. This paper revisits the EE-FXLMS algorithm, using a genetic algorithm to find magnitude coefficients that give the least variation in eigenvalues. This method overcomes some of the problems with implementing the EE-FXLMS algorithm arising from finite resolution of sampled systems. Experimental control results using the original secondary path model, and a modified secondary path model for both the previous implementation of EE-FXLMS and the genetic algorithm implementation are compared.
Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array
Directory of Open Access Journals (Sweden)
Ezgi Deniz Ülker
2014-01-01
Full Text Available The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Directory of Open Access Journals (Sweden)
Gonglin Yuan
Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
A genetic algorithm for solving supply chain network design model
Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.
2013-09-01
Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.
Parallel algorithms for testing finite state machines:Generating UIO sequences
Hierons, RM; Turker, UC
2016-01-01
This paper describes an efficient parallel algorithm that uses many-core GPUs for automatically deriving Unique Input Output sequences (UIOs) from Finite State Machines. The proposed algorithm uses the global scope of the GPU's global memory through coalesced memory access and minimises the transfer between CPU and GPU memory. The results of experiments indicate that the proposed method yields considerably better results compared to a single core UIO construction algorithm. Our algorithm is s...
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Directory of Open Access Journals (Sweden)
Mingwei Leng
2013-01-01
Full Text Available The accuracy of most of the existing semisupervised clustering algorithms based on small size of labeled dataset is low when dealing with multidensity and imbalanced datasets, and labeling data is quite expensive and time consuming in many real-world applications. This paper focuses on active data selection and semisupervised clustering algorithm in multidensity and imbalanced datasets and proposes an active semisupervised clustering algorithm. The proposed algorithm uses an active mechanism for data selection to minimize the amount of labeled data, and it utilizes multithreshold to expand labeled datasets on multidensity and imbalanced datasets. Three standard datasets and one synthetic dataset are used to demonstrate the proposed algorithm, and the experimental results show that the proposed semisupervised clustering algorithm has a higher accuracy and a more stable performance in comparison to other clustering and semisupervised clustering algorithms, especially when the datasets are multidensity and imbalanced.
Genetic local search algorithm for optimization design of diffractive optical elements.
Zhou, G; Chen, Y; Wang, Z; Song, H
1999-07-10
We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.
A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images
Directory of Open Access Journals (Sweden)
Guofeng Tong
2014-04-01
Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.
Fuzzy Rules for Ant Based Clustering Algorithm
Directory of Open Access Journals (Sweden)
Amira Hamdi
2016-01-01
Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.
An efficient non-dominated sorting method for evolutionary algorithms.
Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F
2008-01-01
We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.
Rules Extraction with an Immune Algorithm
Directory of Open Access Journals (Sweden)
Deqin Yan
2007-12-01
Full Text Available In this paper, a method of extracting rules with immune algorithms from information systems is proposed. Designing an immune algorithm is based on a sharing mechanism to extract rules. The principle of sharing and competing resources in the sharing mechanism is consistent with the relationship of sharing and rivalry among rules. In order to extract rules efficiently, a new concept of flexible confidence and rule measurement is introduced. Experiments demonstrate that the proposed method is effective.
Algorithm for Spatial Clustering with Obstacles
El-Sharkawi, Mohamed E.; El-Zawawy, Mohamed A.
2009-01-01
In this paper, we propose an efficient clustering technique to solve the problem of clustering in the presence of obstacles. The proposed algorithm divides the spatial area into rectangular cells. Each cell is associated with statistical information that enables us to label the cell as dense or non-dense. We also label each cell as obstructed (i.e. intersects any obstacle) or non-obstructed. Then the algorithm finds the regions (clusters) of connected, dense, non-obstructed cells. Finally, th...
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
Seismic active control by a heuristic-based algorithm
International Nuclear Information System (INIS)
Tang, Yu.
1996-01-01
A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws
A Novel Modified Algorithm with Reduced Complexity LDPC Code Decoder
Directory of Open Access Journals (Sweden)
Song Yang
2014-10-01
Full Text Available A novel efficient decoding algorithm reduced the sum-product algorithm (SPA Complexity with LPDC code is proposed. Base on the hyperbolic tangent rule, modified the Check node update with two horizontal process, which have similar calculation, Motivated by the finding that sun- min (MS algorithm reduce the complexity reducing the approximation error in the horizontal process, simplify the information weight small part. Compared with the exiting approximations, the proposed method is less computational complexity than SPA algorithm. Simulation results show that the author algorithm can achieve performance very close SPA.
A scalable and practical one-pass clustering algorithm for recommender system
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
A similarity based agglomerative clustering algorithm in networks
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
Distribution agnostic structured sparsity recovery algorithms
Al-Naffouri, Tareq Y.; Masood, Mudassir
2013-01-01
We present an algorithm and its variants for sparse signal recovery from a small number of its measurements in a distribution agnostic manner. The proposed algorithm finds Bayesian estimate of a sparse signal to be recovered and at the same time
VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER
Directory of Open Access Journals (Sweden)
P. N. Filippenko
2013-03-01
Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.
A Fast DOA Estimation Algorithm Based on Polarization MUSIC
Directory of Open Access Journals (Sweden)
R. Guo
2015-04-01
Full Text Available A fast DOA estimation algorithm developed from MUSIC, which also benefits from the processing of the signals' polarization information, is presented. Besides performance enhancement in precision and resolution, the proposed algorithm can be exerted on various forms of polarization sensitive arrays, without specific requirement on the array's pattern. Depending on the continuity property of the space spectrum, a huge amount of computation incurred in the calculation of 4-D space spectrum is averted. Performance and computation complexity analysis of the proposed algorithm is discussed and the simulation results are presented. Compared with conventional MUSIC, it is indicated that the proposed algorithm has considerable advantage in aspects of precision and resolution, with a low computation complexity proportional to a conventional 2-D MUSIC.
Successive approximation algorithm for cancellation of artifacts in DSA images
International Nuclear Information System (INIS)
Funakami, Raiko; Hiroshima, Kyoichi; Nishino, Junji
2000-01-01
In this paper, we propose an algorithm for cancellation of artifacts in DSA images. We have already proposed an automatic registration method based on the detection of local movements. When motion of the object is large, it is difficult to estimate the exact movement, and the cancellation of artifacts may therefore fail. The algorithm we propose here is based on a simple rigid model. We present the results of applying the proposed method to a series of experimental X-ray images, as well as the results of applying the algorithm as preprocessing for a registration method based on local movement. (author)
A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems
Directory of Open Access Journals (Sweden)
Yu Lei
2014-01-01
Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.
Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation
Directory of Open Access Journals (Sweden)
R. V. V. Krishna
2016-10-01
Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.
Wavefront-ray grid FDTD algorithm
ÇİYDEM, MEHMET
2016-01-01
A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
Efficient Record Linkage Algorithms Using Complete Linkage Clustering.
Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar
2016-01-01
Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
Improved algorithm for solving nonlinear parabolized stability equations
International Nuclear Information System (INIS)
Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng
2016-01-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)
Novel Adaptive Bacteria Foraging Algorithms for Global Optimization
Directory of Open Access Journals (Sweden)
Ahmad N. K. Nasir
2014-01-01
Full Text Available This paper presents improved versions of bacterial foraging algorithm (BFA. The chemotaxis feature of bacteria through random motion is an effective strategy for exploring the optimum point in a search area. The selection of small step size value in the bacteria motion leads to high accuracy in the solution but it offers slow convergence. On the contrary, defining a large step size in the motion provides faster convergence but the bacteria will be unable to locate the optimum point hence reducing the fitness accuracy. In order to overcome such problems, novel linear and nonlinear mathematical relationships based on the index of iteration, index of bacteria, and fitness cost are adopted which can dynamically vary the step size of bacteria movement. The proposed algorithms are tested with several unimodal and multimodal benchmark functions in comparison with the original BFA. Moreover, the application of the proposed algorithms in modelling of a twin rotor system is presented. The results show that the proposed algorithms outperform the predecessor algorithm in all test functions and acquire better model for the twin rotor system.
An Improved Direction Finding Algorithm Based on Toeplitz Approximation
Directory of Open Access Journals (Sweden)
Qing Wang
2013-01-01
Full Text Available In this paper, a novel direction of arrival (DOA estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
The optimal algorithm for Multi-source RS image fusion.
Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan
2016-01-01
In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.
Green cloud environment by using robust planning algorithm
Directory of Open Access Journals (Sweden)
Jyoti Thaman
2017-11-01
Full Text Available Cloud computing provided a framework for seamless access to resources through network. Access to resources is quantified through SLA between service providers and users. Service provider tries to best exploit their resources and reduce idle times of the resources. Growing energy concerns further makes the life of service providers miserable. User’s requests are served by allocating users tasks to resources in Clouds and Grid environment through scheduling algorithms and planning algorithms. With only few Planning algorithms in existence rarely planning and scheduling algorithms are differentiated. This paper proposes a robust hybrid planning algorithm, Robust Heterogeneous-Earliest-Finish-Time (RHEFT for binding tasks to VMs. The allocation of tasks to VMs is based on a novel task matching algorithm called Interior Scheduling. The consistent performance of proposed RHEFT algorithm is compared with Heterogeneous-Earliest-Finish-Time (HEFT and Distributed HEFT (DHEFT for various parameters like utilization ratio, makespan, Speed-up and Energy Consumption. RHEFT’s consistent performance against HEFT and DHEFT has established the robustness of the hybrid planning algorithm through rigorous simulations.
Improved Parallel Three-List Algorithm for the Knapsack Problem without Memory Conflicts
Institute of Scientific and Technical Information of China (English)
Pan Jun; Li Kenli; Li Qinghua
2006-01-01
Based on the two-list algorithm and the parallel three-list algorithm, an improved parallel three-list algorithm for knapsack problem is proposed, in which the method of divide and conquer, and parallel merging without memory conflicts are adopted. To find a solution for the n-element knapsack problem, the proposed algorithm needs O(23n/8) time when O(23n/8) shared memory units and O(2n/4) processors are available. The comparisons between the proposed algorithm and 10 existing algorithms show that the improved parallel three-list algorithm is the first exclusive-read exclusive-write (EREW) parallel algorithm that can solve the knapsack instances in less than O(2n/2) time when the available hardware resource is smaller than O(2n/2), and hence is an improved result over the past researches.
Artificial root foraging optimizer algorithm with hybrid strategies
Directory of Open Access Journals (Sweden)
Yang Liu
2017-02-01
Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.
Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-03-01
Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Two-Step Proximal Gradient Algorithm for Low-Rank Matrix Completion
Directory of Open Access Journals (Sweden)
Qiuyu Wang
2016-06-01
Full Text Available In this paper, we propose a two-step proximal gradient algorithm to solve nuclear norm regularized least squares for the purpose of recovering low-rank data matrix from sampling of its entries. Each iteration generated by the proposed algorithm is a combination of the latest three points, namely, the previous point, the current iterate, and its proximal gradient point. This algorithm preserves the computational simplicity of classical proximal gradient algorithm where a singular value decomposition in proximal operator is involved. Global convergence is followed directly in the literature. Numerical results are reported to show the efficiency of the algorithm.
Arc-Search Infeasible Interior-Point Algorithm for Linear Programming
Yang, Yaguang
2014-01-01
Mehrotra's algorithm has been the most successful infeasible interior-point algorithm for linear programming since 1990. Most popular interior-point software packages for linear programming are based on Mehrotra's algorithm. This paper proposes an alternative algorithm, arc-search infeasible interior-point algorithm. We will demonstrate, by testing Netlib problems and comparing the test results obtained by arc-search infeasible interior-point algorithm and Mehrotra's algorithm, that the propo...
Quantum algorithm for support matrix machines
Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan
2017-09-01
We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.
A Modified Artificial Bee Colony Algorithm for p-Center Problems
Directory of Open Access Journals (Sweden)
Alkın Yurtkuran
2014-01-01
Full Text Available The objective of the p-center problem is to locate p-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve the p-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient.
A novel highly parallel algorithm for linearly unmixing hyperspectral images
Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto
2014-10-01
Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Directory of Open Access Journals (Sweden)
Zhongyi Hu
2013-01-01
Full Text Available Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA based memetic algorithm (FA-MA to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
A DIFFERENTIAL EVOLUTION ALGORITHM DEVELOPED FOR A NURSE SCHEDULING PROBLEM
Directory of Open Access Journals (Sweden)
Shahnazari-Shahrezaei, P.
2012-11-01
Full Text Available Nurse scheduling is a type of manpower allocation problem that tries to satisfy hospital managers objectives and nurses preferences as much as possible by generating fair shift schedules. This paper presents a nurse scheduling problem based on a real case study, and proposes two meta-heuristics a differential evolution algorithm (DE and a greedy randomised adaptive search procedure (GRASP to solve it. To investigate the efficiency of the proposed algorithms, two problems are solved. Furthermore, some comparison metrics are applied to examine the reliability of the proposed algorithms. The computational results in this paper show that the proposed DE outperforms the GRASP.
A simple algorithm for calculating the area of an arbitrary polygon
Directory of Open Access Journals (Sweden)
K.R. Wijeweera
2017-06-01
Full Text Available Computing the area of an arbitrary polygon is a popular problem in pure mathematics. The two methods used are Shoelace Method (SM and Orthogonal Trapezoids Method (OTM. In OTM, the polygon is partitioned into trapezoids by drawing either horizontal or vertical lines through its vertices. The area of each trapezoid is computed and the resultant areas are added up. In SM, a formula which is a generalization of Green’s Theorem for the discrete case is used. The most of the available systems is based on SM. Since an algorithm for OTM is not available in literature, this paper proposes an algorithm for OTM along with efficient implementation. Conversion of a pure mathematical method into an efficient computer program is not straightforward. In order to reduce the run time, minimal computation needs to be achieved. Handling of indeterminate forms and special cases separately can support this. On the other hand, precision error should also be avoided. Salient feature of the proposed algorithm is that it successfully handles these situations achieving minimum run time. Experimental results of the proposed method are compared against that of the existing algorithm. However, the proposed algorithm suggests a way to partition a polygon into orthogonal trapezoids which is not an easy task. Additionally, the proposed algorithm uses only basic mathematical concepts while the Green’s theorem uses complicated mathematical concepts. The proposed algorithm can be used when the simplicity is important than the speed.
Kachingwe, Aimie F; Grech, Steven
2008-12-01
A case series of 6 athletes with a suspected sports hernia. Groin pain in athletes is common, and 1 source of groin pain is athletic pubalgia, or a sports hernia. Description of this condition and its management is scarce in the physical therapy literature. The purpose of this case series is to describe a conservative approach to treating athletes with a likely sports hernia and to provide physical therapists with an algorithm for managing athletes with this dysfunction. Six collegiate athletes (age range, 19-22 years; 4 males, 2 females) with a physician diagnosis of groin pain secondary to possible/probable sports hernia were referred to physical therapy. A method of evaluation was constructed and a cluster of 5 key findings indicative of a sports hernia is presented. The athletes were managed according to a proposed algorithm and received physical therapy consisting of soft tissue and joint mobilization/manipulation, neuromuscular re-education, manual stretching, and therapeutic exercise. Three of the athletes received conservative intervention and were able to fully return to sport after a mean of 7.7 sessions of physical therapy. The other 3 athletes reached this outcome after surgical repair and a mean of 6.7 sessions of physical therapy. Conservative management including manual therapy appears to be a viable option in the management of athletes with a sports hernia. Follow-up randomized clinical trials should be performed to further investigate the effectiveness of conservative rehabilitation compared to a homogeneous group of patients undergoing surgical repair for this condition. Therapy, level 4.
Advanced defect detection algorithm using clustering in ultrasonic NDE
Gongzhang, Rui; Gachagan, Anthony
2016-02-01
A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.
Maximum-entropy clustering algorithm and its global convergence analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.
An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization
Directory of Open Access Journals (Sweden)
Rafał Dreżewski
2017-08-01
Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.
in vitro production of virus free sweet potato [ipomoea batatas (l
African Journals Online (AJOL)
preferred customer
YIELD STABILITY OF BREAD WHEAT ... Key words/phrases: AMMI model, ANOVA, Genotype-by-Environment Interaction, main effects, ... and environments in multi-environment trials. ... Interaction Principal Component Axis (IPCA), and so on.
A Learning Algorithm for Multimodal Grammar Inference.
D'Ulizia, A; Ferri, F; Grifoni, P
2011-12-01
The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.
Parallel image encryption algorithm based on discretized chaotic map
International Nuclear Information System (INIS)
Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue
2008-01-01
Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms
The bilinear complexity and practical algorithms for matrix multiplication
Smirnov, A. V.
2013-12-01
A method for deriving bilinear algorithms for matrix multiplication is proposed. New estimates for the bilinear complexity of a number of problems of the exact and approximate multiplication of rectangular matrices are obtained. In particular, the estimate for the boundary rank of multiplying 3 × 3 matrices is improved and a practical algorithm for the exact multiplication of square n × n matrices is proposed. The asymptotic arithmetic complexity of this algorithm is O( n 2.7743).
Algorithm for shortest path search in Geographic Information Systems by using reduced graphs.
Rodríguez-Puente, Rafael; Lazo-Cortés, Manuel S
2013-01-01
The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their most demanding applications we can mention shortest paths search. Several studies about shortest path search show the feasibility of using graphs for this purpose. Dijkstra's algorithm is one of the classic shortest path search algorithms. This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications to Dijkstra's algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by reducing the search space. This article proposes a modification of Dijkstra's shortest path search algorithm in reduced graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra's algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra's algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms.
A street rubbish detection algorithm based on Sift and RCNN
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
Performance indices and evaluation of algorithms in building energy efficient design optimization
International Nuclear Information System (INIS)
Si, Binghui; Tian, Zhichao; Jin, Xing; Zhou, Xin; Tang, Peng; Shi, Xing
2016-01-01
Building energy efficient design optimization is an emerging technique that is increasingly being used to design buildings with better overall performance and a particular emphasis on energy efficiency. To achieve building energy efficient design optimization, algorithms are vital to generate new designs and thus drive the design optimization process. Therefore, the performance of algorithms is crucial to achieving effective energy efficient design techniques. This study evaluates algorithms used for building energy efficient design optimization. A set of performance indices, namely, stability, robustness, validity, speed, coverage, and locality, is proposed to evaluate the overall performance of algorithms. A benchmark building and a design optimization problem are also developed. Hooke–Jeeves algorithm, Multi-Objective Genetic Algorithm II, and Multi-Objective Particle Swarm Optimization algorithm are evaluated by using the proposed performance indices and benchmark design problem. Results indicate that no algorithm performs best in all six areas. Therefore, when facing an energy efficient design problem, the algorithm must be carefully selected based on the nature of the problem and the performance indices that matter the most. - Highlights: • Six indices of algorithm performance in building energy optimization are developed. • For each index, its concept is defined and the calculation formulas are proposed. • A benchmark building and benchmark energy efficient design problem are proposed. • The performance of three selected algorithms are evaluated.
An Improved User Selection Algorithm in Multiuser MIMO Broadcast with Channel Prediction
Min, Zhi; Ohtsuki, Tomoaki
In multiuser MIMO-BC (Multiple-Input Multiple-Output Broadcasting) systems, user selection is important to achieve multiuser diversity. The optimal user selection algorithm is to try all the combinations of users to find the user group that can achieve the multiuser diversity. Unfortunately, the high calculation cost of the optimal algorithm prevents its implementation. Thus, instead of the optimal algorithm, some suboptimal user selection algorithms were proposed based on semiorthogonality of user channel vectors. The purpose of this paper is to achieve multiuser diversity with a small amount of calculation. For this purpose, we propose a user selection algorithm that can improve the orthogonality of a selected user group. We also apply a channel prediction technique to a MIMO-BC system to get more accurate channel information at the transmitter. Simulation results show that the channel prediction can improve the accuracy of channel information for user selections, and the proposed user selection algorithm achieves higher sum rate capacity than the SUS (Semiorthogonal User Selection) algorithm. Also we discuss the setting of the algorithm threshold. As the result of a discussion on the calculation complexity, which uses the number of complex multiplications as the parameter, the proposed algorithm is shown to have a calculation complexity almost equal to that of the SUS algorithm, and they are much lower than that of the optimal user selection algorithm.
Automatic bounding estimation in modified NLMS algorithm
International Nuclear Information System (INIS)
Shahtalebi, K.; Doost-Hoseini, A.M.
2002-01-01
Modified Normalized Least Mean Square algorithm, which is a sign form of Nlm based on set-membership (S M) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performance of algorithm is compared with Modified Normalized Least Mean Square
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Lei Chen
2014-01-01
Full Text Available The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms.
Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm
Directory of Open Access Journals (Sweden)
Jinsheng Yang
2012-01-01
Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.
Efficient algorithms of multidimensional γ-ray spectra compression
International Nuclear Information System (INIS)
Morhac, M.; Matousek, V.
2006-01-01
The efficient algorithms to compress multidimensional γ-ray events are presented. Two alternative kinds of compression algorithms based on both the adaptive orthogonal and randomizing transforms are proposed. In both algorithms we employ the reduction of data volume due to the symmetry of the γ-ray spectra
Regularization iteration imaging algorithm for electrical capacitance tomography
Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao
2018-03-01
The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.
Visual Perception Based Rate Control Algorithm for HEVC
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
A Novel Clustering Algorithm Inspired by Membrane Computing
Directory of Open Access Journals (Sweden)
Hong Peng
2015-01-01
Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.
A Motion Estimation Algorithm Using DTCWT and ARPS
Directory of Open Access Journals (Sweden)
Unan Y. Oktiawati
2013-09-01
Full Text Available In this paper, a hybrid motion estimation algorithm utilizing the Dual Tree Complex Wavelet Transform (DTCWT and the Adaptive Rood Pattern Search (ARPS block is presented. The proposed algorithm first transforms each video sequence with DTCWT. The frame n of the video sequence is used as a reference input and the frame n+2 is used to find the motion vector. Next, the ARPS block search algorithm is carried out and followed by an inverse DTCWT. The motion compensation is then carried out on each inversed frame n and motion vector. The results show that PSNR can be improved for mobile device without depriving its quality. The proposed algorithm also takes less memory usage compared to the DCT-based algorithm. The main contribution of this work is a hybrid wavelet-based motion estimation algorithm for mobile devices. Other contribution is the visual quality scoring system as used in section 6.
SeqCompress: an algorithm for biological sequence compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan
2014-10-01
The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo
2008-03-01
In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.
An algorithm of improving speech emotional perception for hearing aid
Xi, Ji; Liang, Ruiyu; Fei, Xianju
2017-07-01
In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.
HC-IPSAG and GC-IPSAG algorithm proposals
DEFF Research Database (Denmark)
Bǎdoi, C.-I.; Croitoru, V.; Prasad, N.
2010-01-01
The cognitive radio (CR) technology was proposed as a solution for the lack of wireless resources in an environment with a rapidly growing number of users. The CR advances the dynamic utilization of the licensed users' unused spectrum channels by secondary users. The paper looks into large CR...
Efficient Geo-Computational Algorithms for Constructing Space-Time Prisms in Road Networks
Directory of Open Access Journals (Sweden)
Hui-Ping Chen
2016-11-01
Full Text Available The Space-time prism (STP is a key concept in time geography for analyzing human activity-travel behavior under various Space-time constraints. Most existing time-geographic studies use a straightforward algorithm to construct STPs in road networks by using two one-to-all shortest path searches. However, this straightforward algorithm can introduce considerable computational overhead, given the fact that accessible links in a STP are generally a small portion of the whole network. To address this issue, an efficient geo-computational algorithm, called NTP-A*, is proposed. The proposed NTP-A* algorithm employs the A* and branch-and-bound techniques to discard inaccessible links during two shortest path searches, and thereby improves the STP construction performance. Comprehensive computational experiments are carried out to demonstrate the computational advantage of the proposed algorithm. Several implementation techniques, including the label-correcting technique and the hybrid link-node labeling technique, are discussed and analyzed. Experimental results show that the proposed NTP-A* algorithm can significantly improve STP construction performance in large-scale road networks by a factor of 100, compared with existing algorithms.
Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm
Povitsky, A.
1998-01-01
In this research an efficient parallel algorithm for 3-D directionally split problems is developed. The proposed algorithm is based on a reformulated version of the pipelined Thomas algorithm that starts the backward step computations immediately after the completion of the forward step computations for the first portion of lines This algorithm has data available for other computational tasks while processors are idle from the Thomas algorithm. The proposed 3-D directionally split solver is based on the static scheduling of processors where local and non-local, data-dependent and data-independent computations are scheduled while processors are idle. A theoretical model of parallelization efficiency is used to define optimal parameters of the algorithm, to show an asymptotic parallelization penalty and to obtain an optimal cover of a global domain with subdomains. It is shown by computational experiments and by the theoretical model that the proposed algorithm reduces the parallelization penalty about two times over the basic algorithm for the range of the number of processors (subdomains) considered and the number of grid nodes per subdomain.
An Enhanced Jaya Algorithm with a Two Group Adaption
Directory of Open Access Journals (Sweden)
Chibing Gong
2017-01-01
Full Text Available This paper proposes a novel performance enhanced Jaya algorithm with a two group adaption (E-Jaya. Two improvements are presented in E-Jaya. First, instead of using the best and the worst values in Jaya algorithm, EJaya separates all candidates into two groups: the better and the worse groups based on their fitness values, then the mean of the better group and the mean of the worse group are used. Second, in order to add non algorithm-specific parameters in E-Jaya, a novel adaptive method of dividing the two groups has been developed. Finally, twelve benchmark functions with different dimensionality, such as 40, 60, and 100, were evaluated using the proposed EJaya algorithm. The results show that E-Jaya significantly outperformed Jaya algorithm in terms of the solution accuracy. Additionally, E-Jaya was also compared with a differential evolution (DE, a self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. E-Jaya algorithm outperforms all the algorithms.
Real parameter optimization by an effective differential evolution algorithm
Directory of Open Access Journals (Sweden)
Ali Wagdy Mohamed
2013-03-01
Full Text Available This paper introduces an Effective Differential Evolution (EDE algorithm for solving real parameter optimization problems over continuous domain. The proposed algorithm proposes a new mutation rule based on the best and the worst individuals among the entire population of a particular generation. The mutation rule is combined with the basic mutation strategy through a linear decreasing probability rule. The proposed mutation rule is shown to promote local search capability of the basic DE and to make it faster. Furthermore, a random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme are merged to avoid stagnation and/or premature convergence. Additionally, the scaling factor and crossover of DE are introduced as uniform random numbers to enrich the search behavior and to enhance the diversity of the population. The effectiveness and benefits of the proposed modifications used in EDE has been experimentally investigated. Numerical experiments on a set of bound-constrained problems have shown that the new approach is efficient, effective and robust. The comparison results between the EDE and several classical differential evolution methods and state-of-the-art parameter adaptive differential evolution variants indicate that the proposed EDE algorithm is competitive with , and in some cases superior to, other algorithms in terms of final solution quality, efficiency, convergence rate, and robustness.
EV Charging Algorithm Implementation with User Price Preference
Energy Technology Data Exchange (ETDEWEB)
Wang, Bin; Hu, Boyang; Qiu, Charlie; Chu, Peter; Gadh, Rajit
2015-02-17
in this paper, we propose and implement a smart Electric Vehicle (EV) charging algorithm to control the EV charging infrastructures according to users’ price preferences. EVSE (Electric Vehicle Supply Equipment), equipped with bidirectional communication devices and smart meters, can be remotely monitored by the proposed charging algorithm applied to EV control center and mobile app. On the server side, ARIMA model is utilized to fit historical charging load data and perform day-ahead prediction. A pricing strategy with energy bidding policy is proposed and implemented to generate a charging price list to be broadcasted to EV users through mobile app. On the user side, EV drivers can submit their price preferences and daily travel schedules to negotiate with Control Center to consume the expected energy and minimize charging cost simultaneously. The proposed algorithm is tested and validated through the experimental implementations in UCLA parking lots.
Integrated Association Rules Complete Hiding Algorithms
Directory of Open Access Journals (Sweden)
Mohamed Refaat Abdellah
2017-01-01
Full Text Available This paper presents database security approach for complete hiding of sensitive association rules by using six novel algorithms. These algorithms utilize three new weights to reduce the needed database modifications and support complete hiding, as well as they reduce the knowledge distortion and the data distortions. Complete weighted hiding algorithms enhance the hiding failure by 100%; these algorithms have the advantage of performing only a single scan for the database to gather the required information to form the hiding process. These proposed algorithms are built within the database structure which enables the sanitized database to be generated on run time as needed.
Construction Example for Algebra System Using Harmony Search Algorithm
Directory of Open Access Journals (Sweden)
FangAn Deng
2015-01-01
Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.
Semioptimal practicable algorithmic cooling
International Nuclear Information System (INIS)
Elias, Yuval; Mor, Tal; Weinstein, Yossi
2011-01-01
Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.
Combined heat and power economic dispatch by harmony search algorithm
Energy Technology Data Exchange (ETDEWEB)
Vasebi, A.; Bathaee, S.M.T. [Power System Research Laboratory, Department of Electrical and Electronic Engineering, K.N.Toosi University of Technology, 322-Mirdamad Avenue West, 19697 Tehran (Iran); Fesanghary, M. [Department of Mechanical Engineering, Amirkabir University of Technology, 424-Hafez Avenue, Tehran (Iran)
2007-12-15
The optimal utilization of multiple combined heat and power (CHP) systems is a complicated problem that needs powerful methods to solve. This paper presents a harmony search (HS) algorithm to solve the combined heat and power economic dispatch (CHPED) problem. The HS algorithm is a recently developed meta-heuristic algorithm, and has been very successful in a wide variety of optimization problems. The method is illustrated using a test case taken from the literature as well as a new one proposed by authors. Numerical results reveal that the proposed algorithm can find better solutions when compared to conventional methods and is an efficient search algorithm for CHPED problem. (author)
A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation
Directory of Open Access Journals (Sweden)
Guomin Li
2016-12-01
Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.
Normalized Minimum Error Entropy Algorithm with Recursive Power Estimation
Directory of Open Access Journals (Sweden)
Namyong Kim
2016-06-01
Full Text Available The minimum error entropy (MEE algorithm is known to be superior in signal processing applications under impulsive noise. In this paper, based on the analysis of behavior of the optimum weight and the properties of robustness against impulsive noise, a normalized version of the MEE algorithm is proposed. The step size of the MEE algorithm is normalized with the power of input entropy that is estimated recursively for reducing its computational complexity. The proposed algorithm yields lower minimum MSE (mean squared error and faster convergence speed simultaneously than the original MEE algorithm does in the equalization simulation. On the condition of the same convergence speed, its performance enhancement in steady state MSE is above 3 dB.
Genetic Algorithm Based Economic Dispatch with Valve Point Effect
Energy Technology Data Exchange (ETDEWEB)
Park, Jong Nam; Park, Kyung Won; Kim, Ji Hong; Kim, Jin O [Hanyang University (Korea, Republic of)
1999-03-01
This paper presents a new approach on genetic algorithm to economic dispatch problem for valve point discontinuities. Proposed approach in this paper on genetic algorithms improves the performance to solve economic dispatch problem for valve point discontinuities through improved death penalty method, generation-apart elitism, atavism and sexual selection with sexual distinction. Numerical results on a test system consisting of 13 thermal units show that the proposed approach is faster, more robust and powerful than conventional genetic algorithms. (author). 8 refs., 10 figs.
A new genetic algorithm for flexible job-shop scheduling problems
International Nuclear Information System (INIS)
Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia
2015-01-01
Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.
A new genetic algorithm for flexible job-shop scheduling problems
Energy Technology Data Exchange (ETDEWEB)
Driss, Imen; Mouss, Kinza Nadia; Laggoun, Assia [University of Batna, Batna (Algeria)
2015-03-15
Flexible job-shop scheduling problem (FJSP), which is proved to be NP-hard, is an extension of the classical job-shop scheduling problem. In this paper, we propose a new genetic algorithm (NGA) to solve FJSP to minimize makespan. This new algorithm uses a new chromosome representation and adopts different strategies for crossover and mutation. The proposed algorithm is validated on a series of benchmark data sets and tested on data from a drug manufacturing company. Experimental results prove that the NGA is more efficient and competitive than some other existing algorithms.
Analysis and improvement of a chaos-based image encryption algorithm
International Nuclear Information System (INIS)
Xiao Di; Liao Xiaofeng; Wei Pengcheng
2009-01-01
The security of digital image attracts much attention recently. In Guan et al. [Guan Z, Huang F, Guan W. Chaos-based image encryption algorithm. Phys Lett A 2005; 346: 153-7.], a chaos-based image encryption algorithm has been proposed. In this paper, the cause of potential flaws in the original algorithm is analyzed in detail, and then the corresponding enhancement measures are proposed. Both theoretical analysis and computer simulation indicate that the improved algorithm can overcome these flaws and maintain all the merits of the original one.
Low-Complexity Regularization Algorithms for Image Deblurring
Alanazi, Abdulrahman
2016-11-01
Image restoration problems deal with images in which information has been degraded by blur or noise. In practice, the blur is usually caused by atmospheric turbulence, motion, camera shake, and several other mechanical or physical processes. In this study, we present two regularization algorithms for the image deblurring problem. We first present a new method based on solving a regularized least-squares (RLS) problem. This method is proposed to find a near-optimal value of the regularization parameter in the RLS problems. Experimental results on the non-blind image deblurring problem are presented. In all experiments, comparisons are made with three benchmark methods. The results demonstrate that the proposed method clearly outperforms the other methods in terms of both the output PSNR and structural similarity, as well as the visual quality of the deblurred images. To reduce the complexity of the proposed algorithm, we propose a technique based on the bootstrap method to estimate the regularization parameter in low and high-resolution images. Numerical results show that the proposed technique can effectively reduce the computational complexity of the proposed algorithms. In addition, for some cases where the point spread function (PSF) is separable, we propose using a Kronecker product so as to reduce the computations. Furthermore, in the case where the image is smooth, it is always desirable to replace the regularization term in the RLS problems by a total variation term. Therefore, we propose a novel method for adaptively selecting the regularization parameter in a so-called square root regularized total variation (SRTV). Experimental results demonstrate that our proposed method outperforms the other benchmark methods when applied to smooth images in terms of PSNR, SSIM and the restored image quality. In this thesis, we focus on the non-blind image deblurring problem, where the blur kernel is assumed to be known. However, we developed algorithms that also work
Directory of Open Access Journals (Sweden)
Hao Yin
2014-01-01
Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.
Neurogenetic Algorithm for Solving Combinatorial Engineering Problems
Directory of Open Access Journals (Sweden)
M. Jalali Varnamkhasti
2012-01-01
Full Text Available Diversity of the population in a genetic algorithm plays an important role in impeding premature convergence. This paper proposes an adaptive neurofuzzy inference system genetic algorithm based on sexual selection. In this technique, for choosing the female chromosome during sexual selection, a bilinear allocation lifetime approach is used to label the chromosomes based on their fitness value which will then be used to characterize the diversity of the population. The motivation of this algorithm is to maintain the population diversity throughout the search procedure. To promote diversity, the proposed algorithm combines the concept of gender and age of individuals and the fuzzy logic during the selection of parents. In order to appraise the performance of the techniques used in this study, one of the chemistry problems and some nonlinear functions available in literature is used.
An Initialization Method Based on Hybrid Distance for k-Means Algorithm.
Yang, Jie; Ma, Yan; Zhang, Xiangfen; Li, Shunbao; Zhang, Yuping
2017-11-01
The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method adopted for choosing initial cluster centers is extremely important. In this letter, we redefine the density of points according to the number of its neighbors, as well as the distance between points and their neighbors. In addition, we define a new distance measure that considers both Euclidean distance and density. Based on that, we propose an algorithm for selecting initial cluster centers that can dynamically adjust the weighting parameter. Furthermore, we propose a new internal clustering validation measure, the clustering validation index based on the neighbors (CVN), which can be exploited to select the optimal result among multiple clustering results. Experimental results show that the proposed algorithm outperforms existing initialization methods on real-world data sets and demonstrates the adaptability of the proposed algorithm to data sets with various characteristics.
An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets
Directory of Open Access Journals (Sweden)
Kang Zhang
2014-01-01
Full Text Available Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved algorithm for solving nonlinear parabolized stability equations
Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng
2016-08-01
Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).
A novel symbiotic organisms search algorithm for congestion management in deregulated environment
Verma, Sumit; Saha, Subhodip; Mukherjee, V.
2017-01-01
In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.
An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering
Directory of Open Access Journals (Sweden)
Ming Yan
2006-01-01
Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.
Kim, Jinkwon; Min, Se Dong; Lee, Myoungho
2011-06-27
Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects
Directory of Open Access Journals (Sweden)
Min Se Dong
2011-06-01
Full Text Available Abstract Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
Human resource recommendation algorithm based on ensemble learning and Spark
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
Image processing algorithm for robot tracking in reactor vessel
International Nuclear Information System (INIS)
Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun
2011-01-01
In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia
2009-07-01
This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
A new adaptive blind channel identification algorithm
International Nuclear Information System (INIS)
Peng Dezhong; Xiang Yong; Yi Zhang
2009-01-01
This paper addresses the blind identification of single-input multiple-output (SIMO) finite-impulse-response (FIR) systems. We first propose a new adaptive algorithm for the blind identification of SIMO FIR systems. Then, its convergence property is analyzed systematically. It is shown that under some mild conditions, the proposed algorithm is guaranteed to converge in the mean to the true channel impulse responses in both noisy and noiseless cases. Simulations are carried out to demonstrate the theoretical results.
Development and performance analysis of a lossless data reduction algorithm for voip
International Nuclear Information System (INIS)
Misbahuddin, S.; Boulejfen, N.
2014-01-01
VoIP (Voice Over IP) is becoming an alternative way of voice communications over the Internet. To better utilize voice call bandwidth, some standard compression algorithms are applied in VoIP systems. However, these algorithms affect the voice quality with high compression ratios. This paper presents a lossless data reduction technique to improve VoIP data transfer rate over the IP network. The proposed algorithm exploits the data redundancies in digitized VFs (Voice Frames) generated by VoIP systems. Performance of proposed data reduction algorithm has been presented in terms of compression ratio. The proposed algorithm will help retain the voice quality along with the improvement in VoIP data transfer rates. (author)
One-Step Leapfrog LOD-BOR-FDTD Algorithm with CPML Implementation
Directory of Open Access Journals (Sweden)
Yi-Gang Wang
2016-01-01
Full Text Available An unconditionally stable one-step leapfrog locally one-dimensional finite-difference time-domain (LOD-FDTD algorithm towards body of revolution (BOR is presented. The equations of the proposed algorithm are obtained by the algebraic manipulation of those used in the conventional LOD-BOR-FDTD algorithm. The equations for z-direction electric and magnetic fields in the proposed algorithm should be treated specially. The new algorithm obtains a higher computational efficiency while preserving the properties of the conventional LOD-BOR-FDTD algorithm. Moreover, the convolutional perfectly matched layer (CPML is introduced into the one-step leapfrog LOD-BOR-FDTD algorithm. The equation of the one-step leapfrog CPML is concise. Numerical results show that its reflection error is small. It can be concluded that the similar CPML scheme can also be easily applied to the one-step leapfrog LOD-FDTD algorithm in the Cartesian coordinate system.
Seismic noise attenuation using an online subspace tracking algorithm
Zhou, Yatong; Li, Shuhua; Zhang, D.; Chen, Yangkang
2018-01-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient
Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
The PARAFAC-MUSIC Algorithm for DOA Estimation with Doppler Frequency in a MIMO Radar System
Directory of Open Access Journals (Sweden)
Nan Wang
2014-01-01
Full Text Available The PARAFAC-MUSIC algorithm is proposed to estimate the direction-of-arrival (DOA of the targets with Doppler frequency in a monostatic MIMO radar system in this paper. To estimate the Doppler frequency, the PARAFAC (parallel factor algorithm is firstly utilized in the proposed algorithm, and after the compensation of Doppler frequency, MUSIC (multiple signal classification algorithm is applied to estimate the DOA. By these two steps, the DOA of moving targets can be estimated successfully. Simulation results show that the proposed PARAFAC-MUSIC algorithm has a higher accuracy than the PARAFAC algorithm and the MUSIC algorithm in DOA estimation.
"Accelerated Perceptron": A Self-Learning Linear Decision Algorithm
Zuev, Yu. A.
2003-01-01
The class of linear decision rules is studied. A new algorithm for weight correction, called an "accelerated perceptron", is proposed. In contrast to classical Rosenblatt's perceptron this algorithm modifies the weight vector at each step. The algorithm may be employed both in learning and in self-learning modes. The theoretical aspects of the behaviour of the algorithm are studied when the algorithm is used for the purpose of increasing the decision reliability by means of weighted voting. I...
Distribution Agnostic Structured Sparsity Recovery: Algorithms and Applications
Masood, Mudassir
2015-05-01
Compressed sensing has been a very active area of research and several elegant algorithms have been developed for the recovery of sparse signals in the past few years. However, most of these algorithms are either computationally expensive or make some assumptions that are not suitable for all real world problems. Recently, focus has shifted to Bayesian-based approaches that are able to perform sparse signal recovery at much lower complexity while invoking constraint and/or a priori information about the data. While Bayesian approaches have their advantages, these methods must have access to a priori statistics. Usually, these statistics are unknown and are often difficult or even impossible to predict. An effective workaround is to assume a distribution which is typically considered to be Gaussian, as it makes many signal processing problems mathematically tractable. Seemingly attractive, this assumption necessitates the estimation of the associated parameters; which could be hard if not impossible. In the thesis, we focus on this aspect of Bayesian recovery and present a framework to address the challenges mentioned above. The proposed framework allows Bayesian recovery of sparse signals but at the same time is agnostic to the distribution of the unknown sparse signal components. The algorithms based on this framework are agnostic to signal statistics and utilize a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. In the thesis, we propose several algorithms based on this framework which utilize the structure present in signals for improved recovery. In addition to the algorithm that considers just the sparsity structure of sparse signals, tools that target additional structure of the sparsity recovery problem are proposed. These include several algorithms for a) block-sparse signal estimation, b) joint reconstruction of several common support sparse signals, and c
A Developed ESPRIT Algorithm for DOA Estimation
Fayad, Youssef; Wang, Caiyun; Cao, Qunsheng; Hafez, Alaa El-Din Sayed
2015-05-01
A novel algorithm for estimating direction of arrival (DOAE) for target, which aspires to contribute to increase the estimation process accuracy and decrease the calculation costs, has been carried out. It has introduced time and space multiresolution in Estimation of Signal Parameter via Rotation Invariance Techniques (ESPRIT) method (TS-ESPRIT) to realize subspace approach that decreases errors caused by the model's nonlinearity effect. The efficacy of the proposed algorithm is verified by using Monte Carlo simulation, the DOAE accuracy has evaluated by closed-form Cramér-Rao bound (CRB) which reveals that the proposed algorithm's estimated results are better than those of the normal ESPRIT methods leading to the estimator performance enhancement.
An Adaptive Tradeoff Algorithm for Multi-issue SLA Negotiation
Son, Seokho; Sim, Kwang Mong
Since participants in a Cloud may be independent bodies, mechanisms are necessary for resolving different preferences in leasing Cloud services. Whereas there are currently mechanisms that support service-level agreement negotiation, there is little or no negotiation support for concurrent price and timeslot for Cloud service reservations. For the concurrent price and timeslot negotiation, a tradeoff algorithm to generate and evaluate a proposal which consists of price and timeslot proposal is necessary. The contribution of this work is thus to design an adaptive tradeoff algorithm for multi-issue negotiation mechanism. The tradeoff algorithm referred to as "adaptive burst mode" is especially designed to increase negotiation speed and total utility and to reduce computational load by adaptively generating concurrent set of proposals. The empirical results obtained from simulations carried out using a testbed suggest that due to the concurrent price and timeslot negotiation mechanism with adaptive tradeoff algorithm: 1) both agents achieve the best performance in terms of negotiation speed and utility; 2) the number of evaluations of each proposal is comparatively lower than previous scheme (burst-N).
Novel prediction- and subblock-based algorithm for fractal image compression
International Nuclear Information System (INIS)
Chung, K.-L.; Hsu, C.-H.
2006-01-01
Fractal encoding is the most consuming part in fractal image compression. In this paper, a novel two-phase prediction- and subblock-based fractal encoding algorithm is presented. Initially the original gray image is partitioned into a set of variable-size blocks according to the S-tree- and interpolation-based decomposition principle. In the first phase, each current block of variable-size range block tries to find the best matched domain block based on the proposed prediction-based search strategy which utilizes the relevant neighboring variable-size domain blocks. The first phase leads to a significant computation-saving effect. If the domain block found within the predicted search space is unacceptable, in the second phase, a subblock strategy is employed to partition the current variable-size range block into smaller blocks to improve the image quality. Experimental results show that our proposed prediction- and subblock-based fractal encoding algorithm outperforms the conventional full search algorithm and the recently published spatial-correlation-based algorithm by Truong et al. in terms of encoding time and image quality. In addition, the performance comparison among our proposed algorithm and the other two algorithms, the no search-based algorithm and the quadtree-based algorithm, are also investigated
A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring
International Nuclear Information System (INIS)
Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi
2011-01-01
The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.
A new algorithm for combined dynamic economic emission dispatch with security constraints
International Nuclear Information System (INIS)
Arul, R.; Velusami, S.; Ravi, G.
2015-01-01
The primary objective of CDEED (combined dynamic economic emission dispatch) problem is to determine the optimal power generation schedule for the online generating units over a time horizon considered and simultaneously minimizing the emission level and satisfying the generators and system constraints. The CDEED problem is bi-objective optimization problem, where generation cost and emission are considered as two competing objective functions. This bi-objective CDEED problem is represented as a single objective optimization problem by assigning different weights for each objective functions. The weights are varied in steps and for each variation one compromise solution are generated and finally fuzzy based selection method is used to select the best compromise solution from the set of compromise solutions obtained. In order to reflect the test systems considered as real power system model, the security constraints are also taken into account. Three new versions of DHS (differential harmony search) algorithms have been proposed to solve the CDEED problems. The feasibility of the proposed algorithms is demonstrated on IEEE-26 and IEEE-39 bus systems. The result obtained by the proposed CSADHS (chaotic self-adaptive differential harmony search) algorithm is found to be better than EP (evolutionary programming), DHS, and the other proposed algorithms in terms of solution quality, convergence speed and computation time. - Highlights: • In this paper, three new algorithms CDHS, SADHS and CSADHS are proposed. • To solve DED with emission, poz's, spinning reserve and security constraints. • Results obtained by the proposed CSADHS algorithm are better than others. • The proposed CSADHS algorithm has fast convergence characteristic than others
Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms
Directory of Open Access Journals (Sweden)
Ahmed Azouaoui
2012-01-01
Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.
Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
International Nuclear Information System (INIS)
Liu, Hui; Tian, Hong-qi; Li, Yan-fei; Zhang, Lei
2015-01-01
Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS
Hybrid employment recommendation algorithm based on Spark
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Context Aware Handover Algorithms For Mobile Positioning Systems
Directory of Open Access Journals (Sweden)
Sazid Z. Khan
2014-01-01
Full Text Available Abstract: This work proposes context aware handover algorithms for mobile positioning systems. The algorithms perform handover among positioning systems based on important contextual factors related to position determination with efficient use of battery. The proposed solution which consists of the algorithms is implemented in the form of an Android application named Locate@nav6. The performance of the proposed solution was tested in selected experimental areas. The handover performance was compared with other existing location applications. The proposed solution performed correct handover among positioning systems in 95% of cases studied while two other applications performed correct handover in only 50% of cases studied. Battery usage of the proposed solution is less than one third of the battery usage of two other applications. The analysis of the positioning error of the applications demonstrated that, the proposed solution is able to reduce positioning error indirectly by handing over the task of positioning to an appropriate positioning system. This kept the average error of positioning below 42.1 meters for Locate@nav6 while the average error for two other applications namely Google Latitude and Malaysia maps was between 92.7 and 171.13 meters.
A Streaming Algorithm for Online Estimation of Temporal and Spatial Extent of Delays
Directory of Open Access Journals (Sweden)
Kittipong Hiriotappa
2017-01-01
Full Text Available Knowing traffic congestion and its impact on travel time in advance is vital for proactive travel planning as well as advanced traffic management. This paper proposes a streaming algorithm to estimate temporal and spatial extent of delays online which can be deployed with roadside sensors. First, the proposed algorithm uses streaming input from individual sensors to detect a deviation from normal traffic patterns, referred to as anomalies, which is used as an early indication of delay occurrence. Then, a group of consecutive sensors that detect anomalies are used to temporally and spatially estimate extent of delay associated with the detected anomalies. Performance evaluations are conducted using a real-world data set collected by roadside sensors in Bangkok, Thailand, and the NGSIM data set collected in California, USA. Using NGSIM data, it is shown qualitatively that the proposed algorithm can detect consecutive occurrences of shockwaves and estimate their associated delays. Then, using a data set from Thailand, it is shown quantitatively that the proposed algorithm can detect and estimate delays associated with both recurring congestion and incident-induced nonrecurring congestion. The proposed algorithm also outperforms the previously proposed streaming algorithm.
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Joint control algorithm in access network
Institute of Scientific and Technical Information of China (English)
2008-01-01
To deal with long probing delay and inaccurate probing results in the endpoint admission control method,a joint local and end-to-end admission control algorithm is proposed,which introduces local probing of access network besides end-to-end probing.Through local probing,the algorithm accurately estimated the resource status of the access network.Simulation shows that this algorithm can improve admission control performance and reduce users' average waiting time when the access network is heavily loaded.
A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network
Directory of Open Access Journals (Sweden)
Jiujun Cheng
2015-01-01
Full Text Available The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario.
Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics
Fijany, Amir; Scheid, Robert E.
1989-01-01
The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.
Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm
Directory of Open Access Journals (Sweden)
N. Sri Madhava Raja
2014-01-01
Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
An opposition-based harmony search algorithm for engineering optimization problems
Directory of Open Access Journals (Sweden)
Abhik Banerjee
2014-03-01
Full Text Available Harmony search (HS is a derivative-free real parameter optimization algorithm. It draws inspiration from the musical improvisation process of searching for a perfect state of harmony. The proposed opposition-based HS (OHS of the present work employs opposition-based learning for harmony memory initialization and also for generation jumping. The concept of opposite number is utilized in OHS to improve the convergence rate of the HS algorithm. The potential of the proposed algorithm is assessed by means of an extensive comparative study of the numerical results on sixteen benchmark test functions. Additionally, the effectiveness of the proposed algorithm is tested for reactive power compensation of an autonomous power system. For real-time reactive power compensation of the studied model, Takagi Sugeno fuzzy logic (TSFL is employed. Time-domain simulation reveals that the proposed OHS-TSFL yields on-line, off-nominal model parameters, resulting in real-time incremental change in terminal voltage response profile.
A recursive algorithm for computing the inverse of the Vandermonde matrix
Directory of Open Access Journals (Sweden)
Youness Aliyari Ghassabeh
2016-12-01
Full Text Available The inverse of a Vandermonde matrix has been used for signal processing, polynomial interpolation, curve fitting, wireless communication, and system identification. In this paper, we propose a novel fast recursive algorithm to compute the inverse of a Vandermonde matrix. The algorithm computes the inverse of a higher order Vandermonde matrix using the available lower order inverse matrix with a computational cost of $ O(n^2 $. The proposed algorithm is given in a matrix form, which makes it appropriate for hardware implementation. The running time of the proposed algorithm to find the inverse of a Vandermonde matrix using a lower order Vandermonde matrix is compared with the running time of the matrix inversion function implemented in MATLAB.
A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs
Directory of Open Access Journals (Sweden)
Yu Zheng
2017-06-01
Full Text Available In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.
An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM
Wang, Juan
2018-03-01
The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Directory of Open Access Journals (Sweden)
Ruochen Liu
2013-01-01
Full Text Available The permutation flow shop scheduling problem (PFSSP is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO based memetic algorithm (MPSOMA is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS and individual improvement scheme (IIS. Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA, on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Congested Link Inference Algorithms in Dynamic Routing IP Network
Directory of Open Access Journals (Sweden)
Yu Chen
2017-01-01
Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.
7-12 Genotype x Environment Interaction and Yield Stability of Maize 1
African Journals Online (AJOL)
Analysis of variance and stability analysis were computed. Variances due to genotypes .... Interaction Principal Component Analysis score (IPCA1) was significant ..... protein value index of seed and its implication in adaptation of chick pea.
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Institute of Scientific and Technical Information of China (English)
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Chu, Xiaowen; Li, Bo; Chlamtac, Imrich
2002-07-01
Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength
Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks
Ren, Shengwei; Zhang, Li; Zhang, Shibing
2016-10-01
Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.
Du, Tingsong; Hu, Yang; Ke, Xianting
2015-01-01
An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.
Directory of Open Access Journals (Sweden)
Tingsong Du
2015-01-01
Full Text Available An improved quantum artificial fish swarm algorithm (IQAFSA for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA, the basic artificial fish swarm algorithm (BAFSA, and the global edition artificial fish swarm algorithm (GAFSA to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Realization of Deutsch-like algorithm using ensemble computing
International Nuclear Information System (INIS)
Wei Daxiu; Luo Jun; Sun Xianping; Zeng Xizhi
2003-01-01
The Deutsch-like algorithm [Phys. Rev. A. 63 (2001) 034101] distinguishes between even and odd query functions using fewer function calls than its possible classical counterpart in a two-qubit system. But the similar method cannot be applied to a multi-qubit system. We propose a new approach for solving Deutsch-like problem using ensemble computing. The proposed algorithm needs an ancillary qubit and can be easily extended to multi-qubit system with one query. Our ensemble algorithm beginning with a easily-prepared initial state has three main steps. The classifications of the functions can be obtained directly from the spectra of the ancilla qubit. We also demonstrate the new algorithm in a four-qubit molecular system using nuclear magnetic resonance (NMR). One hydrogen and three carbons are selected as the four qubits, and one of carbons is ancilla qubit. We choice two unitary transformations, corresponding to two functions (one odd function and one even function), to validate the ensemble algorithm. The results show that our experiment is successfully and our ensemble algorithm for solving the Deutsch-like problem is virtual
Multi-stage phase retrieval algorithm based upon the gyrator transform.
Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev
2010-01-18
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.
Multi-stage phase retrieval algorithm based upon the gyrator transform
Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev
2010-01-01
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
Directory of Open Access Journals (Sweden)
Jian Gao
2011-08-01
Full Text Available Distributed Permutation Flowshop Scheduling Problem (DPFSP is a newly proposed scheduling problem, which is a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the proposed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard instances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences of the results are also statistically significant. It is also seen that best-known solutions for most instances are updated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic algorithms with the existing local search methods.
Algorithms for boundary detection in radiographic images
International Nuclear Information System (INIS)
Gonzaga, Adilson; Franca, Celso Aparecido de
1996-01-01
Edge detecting techniques applied to radiographic digital images are discussed. Some algorithms have been implemented and the results are displayed to enhance boundary or hide details. An algorithm applied in a pre processed image with contrast enhanced is proposed and the results are discussed
Experiments with parallel algorithms for combinatorial problems
G.A.P. Kindervater (Gerard); H.W.J.M. Trienekens
1985-01-01
textabstractIn the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines
Set-Membership Proportionate Affine Projection Algorithms
Directory of Open Access Journals (Sweden)
Stefan Werner
2007-01-01
Full Text Available Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set-membership filtering (SMF in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive faster converge for both situations of sparse and dispersive channels while decreasing the average computational complexity due to the data discerning feature of the SMF approach. In addition, we propose a rule that allows us to automatically adjust the number of past data pairs employed in the update. This leads to a set-membership proportionate affine projection algorithm (SM-PAPA having a variable data-reuse factor allowing a significant reduction in the overall complexity when compared with a fixed data-reuse factor. Reduced-complexity implementations of the proposed algorithms are also considered that reduce the dimensions of the matrix inversions involved in the update. Simulations show good results in terms of reduced number of updates, speed of convergence, and final mean-squared error.
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
Modified Firefly Algorithm based controller design for integrating and unstable delay processes
Directory of Open Access Journals (Sweden)
A. Gupta
2016-03-01
Full Text Available In this paper, Modified Firefly Algorithm has been used for optimizing the controller parameters of Smith predictor structure. The proposed algorithm modifies the position formula of the standard Firefly Algorithm in order to achieve faster convergence rate. Performance criteria Integral Square Error (ISE is optimized using this optimization technique. Simulation results show high performance for Modified Firefly Algorithm as compared to conventional Firefly Algorithm in terms of convergence rate. Integrating and unstable delay processes are taken as examples to indicate the performance of the proposed method.
An algorithm of discovering signatures from DNA databases on a computer cluster.
Lee, Hsiao Ping; Sheu, Tzu-Fang
2014-10-05
Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.
Algorithmic and user study of an autocompletion algorithm on a large medical vocabulary.
Sevenster, Merlijn; van Ommering, Rob; Qian, Yuechen
2012-02-01
Autocompletion supports human-computer interaction in software applications that let users enter textual data. We will be inspired by the use case in which medical professionals enter ontology concepts, catering the ongoing demand for structured and standardized data in medicine. Goal is to give an algorithmic analysis of one particular autocompletion algorithm, called multi-prefix matching algorithm, which suggests terms whose words' prefixes contain all words in the string typed by the user, e.g., in this sense, opt ner me matches optic nerve meningioma. Second we aim to investigate how well it supports users entering concepts from a large and comprehensive medical vocabulary (snomed ct). We give a concise description of the multi-prefix algorithm, and sketch how it can be optimized to meet required response time. Performance will be compared to a baseline algorithm, which gives suggestions that extend the string typed by the user to the right, e.g. optic nerve m gives optic nerve meningioma, but opt ner me does not. We conduct a user experiment in which 12 participants are invited to complete 40 snomed ct terms with the baseline algorithm and another set of 40 snomed ct terms with the multi-prefix algorithm. Our results show that users need significantly fewer keystrokes when supported by the multi-prefix algorithm than when supported by the baseline algorithm. The proposed algorithm is a competitive candidate for searching and retrieving terms from a large medical ontology. Copyright © 2011 Elsevier Inc. All rights reserved.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
International Nuclear Information System (INIS)
Dong Yun Kim; Poong Hyun Seong; .
1997-01-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)
An improved algorithm for finding all minimal paths in a network
International Nuclear Information System (INIS)
Bai, Guanghan; Tian, Zhigang; Zuo, Ming J.
2016-01-01
Minimal paths (MPs) play an important role in network reliability evaluation. In this paper, we report an efficient recursive algorithm for finding all MPs in two-terminal networks, which consist of a source node and a sink node. A linked path structure indexed by nodes is introduced, which accepts both directed and undirected form of networks. The distance between each node and the sink node is defined, and a simple recursive algorithm is presented for labeling the distance for each node. Based on the distance between each node and the sink node, additional conditions for backtracking are incorporated to reduce the number of search branches. With the newly introduced linked node structure, the distances between each node and the sink node, and the additional backtracking conditions, an improved backtracking algorithm for searching for all MPs is developed. In addition, the proposed algorithm can be adapted to search for all minimal paths for each source–sink pair in networks consisting of multiple source nodes and/or multiple sink nodes. Through computational experiments, it is demonstrated that the proposed algorithm is more efficient than existing algorithms when the network size is not too small. The proposed algorithm becomes more advantageous as the size of the network grows. - Highlights: • A linked path structure indexed by nodes is introduced to represent networks. • Additional conditions for backtracking are proposed based on the distance of each node. • An efficient algorithm is developed to find all MPs for two-terminal networks. • The computational efficiency of the algorithm for two-terminal networks is investigated. • The computational efficiency of the algorithm for multi-terminal networks is investigated.
Directory of Open Access Journals (Sweden)
Fuqing Zhao
2016-01-01
Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms
DEFF Research Database (Denmark)
Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj
2012-01-01
We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...... algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging. © 2012 Society for Industrial and Applied Mathematics....
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
Directory of Open Access Journals (Sweden)
R. Venkata Rao
2013-01-01
Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.
Zero-block mode decision algorithm for H.264/AVC.
Lee, Yu-Ming; Lin, Yinyi
2009-03-01
In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.
Research on retailer data clustering algorithm based on Spark
Huang, Qiuman; Zhou, Feng
2017-03-01
Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.
Non-convex polygons clustering algorithm
Directory of Open Access Journals (Sweden)
Kruglikov Alexey
2016-01-01
Full Text Available A clustering algorithm is proposed, to be used as a preliminary step in motion planning. It is tightly coupled to the applied problem statement, i.e. uses parameters meaningful only with respect to it. Use of geometrical properties for polygons clustering allows for a better calculation time as opposed to general-purpose algorithms. A special form of map optimized for quick motion planning is constructed as a result.
An assembly sequence planning method based on composite algorithm
Directory of Open Access Journals (Sweden)
Enfu LIU
2016-02-01
Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.
A hybrid neural network – world cup optimization algorithm for melanoma detection
Directory of Open Access Journals (Sweden)
Razmjooy Navid
2018-03-01
Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
An Extension of the Fuzzy Possibilistic Clustering Algorithm Using Type-2 Fuzzy Logic Techniques
Directory of Open Access Journals (Sweden)
Elid Rubio
2017-01-01
Full Text Available In this work an extension of the Fuzzy Possibilistic C-Means (FPCM algorithm using Type-2 Fuzzy Logic Techniques is presented, and this is done in order to improve the efficiency of FPCM algorithm. With the purpose of observing the performance of the proposal against the Interval Type-2 Fuzzy C-Means algorithm, several experiments were made using both algorithms with well-known datasets, such as Wine, WDBC, Iris Flower, Ionosphere, Abalone, and Cover type. In addition some experiments were performed using another set of test images to observe the behavior of both of the above-mentioned algorithms in image preprocessing. Some comparisons are performed between the proposed algorithm and the Interval Type-2 Fuzzy C-Means (IT2FCM algorithm to observe if the proposed approach has better performance than this algorithm.
A method for evaluating discoverability and navigability of recommendation algorithms.
Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis
2017-01-01
Recommendations are increasingly used to support and enable discovery, browsing, and exploration of items. This is especially true for entertainment platforms such as Netflix or YouTube, where frequently, no clear categorization of items exists. Yet, the suitability of a recommendation algorithm to support these use cases cannot be comprehensively evaluated by any recommendation evaluation measures proposed so far. In this paper, we propose a method to expand the repertoire of existing recommendation evaluation techniques with a method to evaluate the discoverability and navigability of recommendation algorithms. The proposed method tackles this by means of first evaluating the discoverability of recommendation algorithms by investigating structural properties of the resulting recommender systems in terms of bow tie structure, and path lengths. Second, the method evaluates navigability by simulating three different models of information seeking scenarios and measuring the success rates. We show the feasibility of our method by applying it to four non-personalized recommendation algorithms on three data sets and also illustrate its applicability to personalized algorithms. Our work expands the arsenal of evaluation techniques for recommendation algorithms, extends from a one-click-based evaluation towards multi-click analysis, and presents a general, comprehensive method to evaluating navigability of arbitrary recommendation algorithms.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT
Directory of Open Access Journals (Sweden)
Cunsuo Pang
2016-09-01
Full Text Available This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT’s performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated pulse radar, SAR (Synthetic aperture radar, or ISAR (Inverse synthetic aperture radar, for improving the probability of target recognition.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Robust stability analysis of adaptation algorithms for single perceptron.
Hui, S; Zak, S H
1991-01-01
The problem of robust stability and convergence of learning parameters of adaptation algorithms in a noisy environment for the single preceptron is addressed. The case in which the same input pattern is presented in the adaptation cycle is analyzed. The algorithm proposed is of the Widrow-Hoff type. It is concluded that this algorithm is robust. However, the weight vectors do not necessarily converge in the presence of measurement noise. A modified version of this algorithm in which the reduction factors are allowed to vary with time is proposed, and it is shown that this algorithm is robust and that the weight vectors converge in the presence of bounded noise. Only deterministic-type arguments are used in the analysis. An ultimate bound on the error in terms of a convex combination of the initial error and the bound on the noise is obtained.
Application of cultural algorithm to generation scheduling of hydrothermal systems
International Nuclear Information System (INIS)
Yuan Xiaohui; Yuan Yanbin
2006-01-01
The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems
DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach
Directory of Open Access Journals (Sweden)
Tewfik Ahmed H
2006-01-01
Full Text Available Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.
Fast parallel algorithms for the x-ray transform and its adjoint.
Gao, Hao
2012-11-01
Iterative reconstruction methods often offer better imaging quality and allow for reconstructions with lower imaging dose than classical methods in computed tomography. However, the computational speed is a major concern for these iterative methods, for which the x-ray transform and its adjoint are two most time-consuming components. The speed issue becomes even notable for the 3D imaging such as cone beam scans or helical scans, since the x-ray transform and its adjoint are frequently computed as there is usually not enough computer memory to save the corresponding system matrix. The purpose of this paper is to optimize the algorithm for computing the x-ray transform and its adjoint, and their parallel computation. The fast and highly parallelizable algorithms for the x-ray transform and its adjoint are proposed for the infinitely narrow beam in both 2D and 3D. The extension of these fast algorithms to the finite-size beam is proposed in 2D and discussed in 3D. The CPU and GPU codes are available at https://sites.google.com/site/fastxraytransform. The proposed algorithm is faster than Siddon's algorithm for computing the x-ray transform. In particular, the improvement for the parallel computation can be an order of magnitude. The authors have proposed fast and highly parallelizable algorithms for the x-ray transform and its adjoint, which are extendable for the finite-size beam. The proposed algorithms are suitable for parallel computing in the sense that the computational cost per parallel thread is O(1).
Multi-machine power system stabilizers design using chaotic optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)
2010-07-15
In this paper, a multiobjective design of the multi-machine power system stabilizers (PSSs) using chaotic optimization algorithm (COA) is proposed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The PSSs parameters tuning problem is converted to an optimization problem which is solved by a chaotic optimization algorithm based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. Two different objective functions are proposed in this study for the PSSs design problem. The first objective function is the eigenvalues based comprising the damping factor, and the damping ratio of the lightly damped electro-mechanical modes, while the second is the time domain-based multi-objective function. The robustness of the proposed COA-based PSSs (COAPSS) is verified on a multi-machine power system under different operating conditions and disturbances. The results of the proposed COAPSS are demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices. In addition, the potential and superiority of the proposed method over the classical approach and genetic algorithm is demonstrated.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
The Algorithm of Link Prediction on Social Network
Directory of Open Access Journals (Sweden)
Liyan Dong
2013-01-01
Full Text Available At present, most link prediction algorithms are based on the similarity between two entities. Social network topology information is one of the main sources to design the similarity function between entities. But the existing link prediction algorithms do not apply the network topology information sufficiently. For lack of traditional link prediction algorithms, we propose two improved algorithms: CNGF algorithm based on local information and KatzGF algorithm based on global information network. For the defect of the stationary of social network, we also provide the link prediction algorithm based on nodes multiple attributes information. Finally, we verified these algorithms on DBLP data set, and the experimental results show that the performance of the improved algorithm is superior to that of the traditional link prediction algorithm.
A locally adaptive algorithm for shadow correction in color images
Karnaukhov, Victor; Kober, Vitaly
2017-09-01
The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.
Tsai, Jerry; Shaul, Donald B; Sydorak, Roman M; Lau, Stanley T; Akmal, Yasir; Rodriguez, Karen
2013-01-01
Increasing popularity of strong magnets as toys has led to their ingestion by children, putting them at risk of potentially harmful gastrointestinal tract injuries. To heighten physician awareness of the potential complications of magnetic foreign body ingestion, and to provide an updated algorithm for management of a patient who is suspected to have ingested magnets. A retrospective review of magnet ingestions treated over a two-year period at our institutions in the Southern California Permanente Medical Group. Data including patient demographics, clinical information, radiologic images, and surgical records were used to propose a management strategy. Five patients, aged 15 months to 18 years, presented with abdominal symptoms after magnet ingestion. Four of the 5 patients suffered serious complications, including bowel necrosis, perforation, fistula formation, and obstruction. All patients were successfully treated with laparoscopic-assisted exploration with or without endoscopy. Total days in the hospital averaged 5.2 days (range = 3 to 9 days). Average time to discharge following surgery was 4 days (range = 2 to 7 days). Ex vivo experimentation with toy magnetic beads were performed to reveal characteristics of the magnetic toys. Physicians should have a heightened sense of caution when treating a patient in whom magnetic foreign body ingestion is suspected, because of the potential gastrointestinal complications. An updated management strategy is proposed that both prevents delays in surgical care and avoids unnecessary surgical exploration.
An Optimal Parallel Algorithm for the Knapsack Problem Based on EREW
Institute of Scientific and Technical Information of China (English)
李肯立; 蒋盛益; 王卉; 李庆华
2003-01-01
A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2n/4)1-ε processors, 0≤ε≤1, and O(2n/2) memory to find a solution for the n-element knapsack problem in time O(2n/4(2n/4)ε). The cost of the proposed parallel algorithm is O(2n/2), which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.
A New Fuzzy Cognitive Map Learning Algorithm for Speech Emotion Recognition
Directory of Open Access Journals (Sweden)
Wei Zhang
2017-01-01
Full Text Available Selecting an appropriate recognition method is crucial in speech emotion recognition applications. However, the current methods do not consider the relationship between emotions. Thus, in this study, a speech emotion recognition system based on the fuzzy cognitive map (FCM approach is constructed. Moreover, a new FCM learning algorithm for speech emotion recognition is proposed. This algorithm includes the use of the pleasure-arousal-dominance emotion scale to calculate the weights between emotions and certain mathematical derivations to determine the network structure. The proposed algorithm can handle a large number of concepts, whereas a typical FCM can handle only relatively simple networks (maps. Different acoustic features, including fundamental speech features and a new spectral feature, are extracted to evaluate the performance of the proposed method. Three experiments are conducted in this paper, namely, single feature experiment, feature combination experiment, and comparison between the proposed algorithm and typical networks. All experiments are performed on TYUT2.0 and EMO-DB databases. Results of the feature combination experiments show that the recognition rates of the combination features are 10%–20% better than those of single features. The proposed FCM learning algorithm generates 5%–20% performance improvement compared with traditional classification networks.
Directory of Open Access Journals (Sweden)
Mahdi M. M. El-Arini
2013-01-01
Full Text Available In recent years, the solar energy has become one of the most important alternative sources of electric energy, so it is important to operate photovoltaic (PV panel at the optimal point to obtain the possible maximum efficiency. This paper presents a new optimization approach to maximize the electrical power of a PV panel. The technique which is based on objective function represents the output power of the PV panel and constraints, equality and inequality. First the dummy variables that have effect on the output power are classified into two categories: dependent and independent. The proposed approach is a multistage one as the genetic algorithm, GA, is used to obtain the best initial population at optimal solution and this initial population is fed to Lagrange multiplier algorithm (LM, then a comparison between the two algorithms, GA and LM, is performed. The proposed technique is applied to solar radiation measured at Helwan city at latitude 29.87°, Egypt. The results showed that the proposed technique is applicable.
A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.
Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong
2015-12-01
Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.
Computation-aware algorithm selection approach for interlaced-to-progressive conversion
Park, Sang-Jun; Jeon, Gwanggil; Jeong, Jechang
2010-05-01
We discuss deinterlacing results in a computationally constrained and varied environment. The proposed computation-aware algorithm selection approach (CASA) for fast interlaced to progressive conversion algorithm consists of three methods: the line-averaging (LA) method for plain regions, the modified edge-based line-averaging (MELA) method for medium regions, and the proposed covariance-based adaptive deinterlacing (CAD) method for complex regions. The proposed CASA uses two criteria, mean-squared error (MSE) and CPU time, for assigning the method. We proposed a CAD method. The principle idea of CAD is based on the correspondence between the high and low-resolution covariances. We estimated the local covariance coefficients from an interlaced image using Wiener filtering theory and then used these optimal minimum MSE interpolation coefficients to obtain a deinterlaced image. The CAD method, though more robust than most known methods, was not found to be very fast compared to the others. To alleviate this issue, we proposed an adaptive selection approach using a fast deinterlacing algorithm rather than using only one CAD algorithm. The proposed hybrid approach of switching between the conventional schemes (LA and MELA) and our CAD was proposed to reduce the overall computational load. A reliable condition to be used for switching the schemes was presented after a wide set of initial training processes. The results of computer simulations showed that the proposed methods outperformed a number of methods presented in the literature.
Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm
Directory of Open Access Journals (Sweden)
KeKe Gen
2015-01-01
Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and
FRAMEWORK FOR COMPARING SEGMENTATION ALGORITHMS
Directory of Open Access Journals (Sweden)
G. Sithole
2015-05-01
Full Text Available The notion of a ‘Best’ segmentation does not exist. A segmentation algorithm is chosen based on the features it yields, the properties of the segments (point sets it generates, and the complexity of its algorithm. The segmentation is then assessed based on a variety of metrics such as homogeneity, heterogeneity, fragmentation, etc. Even after an algorithm is chosen its performance is still uncertain because the landscape/scenarios represented in a point cloud have a strong influence on the eventual segmentation. Thus selecting an appropriate segmentation algorithm is a process of trial and error. Automating the selection of segmentation algorithms and their parameters first requires methods to evaluate segmentations. Three common approaches for evaluating segmentation algorithms are ‘goodness methods’, ‘discrepancy methods’ and ‘benchmarks’. Benchmarks are considered the most comprehensive method of evaluation. This paper shortcomings in current benchmark methods are identified and a framework is proposed that permits both a visual and numerical evaluation of segmentations for different algorithms, algorithm parameters and evaluation metrics. The concept of the framework is demonstrated on a real point cloud. Current results are promising and suggest that it can be used to predict the performance of segmentation algorithms.
A Low Delay and Fast Converging Improved Proportionate Algorithm for Sparse System Identification
Directory of Open Access Journals (Sweden)
Benesty Jacob
2007-01-01
Full Text Available A sparse system identification algorithm for network echo cancellation is presented. This new approach exploits both the fast convergence of the improved proportionate normalized least mean square (IPNLMS algorithm and the efficient implementation of the multidelay adaptive filtering (MDF algorithm inheriting the beneficial properties of both. The proposed IPMDF algorithm is evaluated using impulse responses with various degrees of sparseness. Simulation results are also presented for both speech and white Gaussian noise input sequences. It has been shown that the IPMDF algorithm outperforms the MDF and IPNLMS algorithms for both sparse and dispersive echo path impulse responses. Computational complexity of the proposed algorithm is also discussed.
Chaotically encoded particle swarm optimization algorithm and its applications
International Nuclear Information System (INIS)
Alatas, Bilal; Akin, Erhan
2009-01-01
This paper proposes a novel particle swarm optimization (PSO) algorithm, chaotically encoded particle swarm optimization algorithm (CENPSOA), based on the notion of chaos numbers that have been recently proposed for a novel meaning to numbers. In this paper, various chaos arithmetic and evaluation measures that can be used in CENPSOA have been described. Furthermore, CENPSOA has been designed to be effectively utilized in data mining applications.
Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
T. Vigneswari; M. A. Maluk Mohamed
2015-01-01
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp
2009-04-15
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.
Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization
International Nuclear Information System (INIS)
Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji
2009-01-01
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets
Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
International Nuclear Information System (INIS)
Oliva, Diego; Abd El Aziz, Mohamed; Ella Hassanien, Aboul
2017-01-01
Highlights: •We modify the whale algorithm using chaotic maps. •We apply a chaotic algorithm to estimate parameter of photovoltaic cells. •We perform a study of chaos in whale algorithm. •Several comparisons and metrics support the experimental results. •We test the method with data from real solar cells. -- Abstract: The using of solar energy has been increased since it is a clean source of energy. In this way, the design of photovoltaic cells has attracted the attention of researchers over the world. There are two main problems in this field: having a useful model to characterize the solar cells and the absence of data about photovoltaic cells. This situation even affects the performance of the photovoltaic modules (panels). The characteristics of the current vs. voltage are used to describe the behavior of solar cells. Considering such values, the design problem involves the solution of the complex non-linear and multi-modal objective functions. Different algorithms have been proposed to identify the parameters of the photovoltaic cells and panels. Most of them commonly fail in finding the optimal solutions. This paper proposes the Chaotic Whale Optimization Algorithm (CWOA) for the parameters estimation of solar cells. The main advantage of the proposed approach is using the chaotic maps to compute and automatically adapt the internal parameters of the optimization algorithm. This situation is beneficial in complex problems, because along the iterative process, the proposed algorithm improves their capabilities to search for the best solution. The modified method is able to optimize complex and multimodal objective functions. For example, the function for the estimation of parameters of solar cells. To illustrate the capabilities of the proposed algorithm in the solar cell design, it is compared with other optimization methods over different datasets. Moreover, the experimental results support the improved performance of the proposed approach
Modulation Algorithms for Manipulating Nuclear Spin States
Liu, Boyang; Zhang, Ming; Dai, Hong-Yi
2013-01-01
We exploit the impact of exact frequency modulation on transition time of steering nuclear spin states from theoretical point of view. 1-stage and 2-stage Frequency-Amplitude-Phase modulation (FAPM) algorithms are proposed in contrast with 1-stage and 3-stage Amplitude-Phase modulation (APM) algorithms. The sufficient conditions are further present for transiting nuclear spin states within the specified time by these four modulation algorithms. It is demonstrated that transition time performa...
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2013-03-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
Principal distance constraint error diffusion algorithm for homogeneous dot distribution
Kang, Ki-Min; Kim, Choon-Woo
1999-12-01
The perceived quality of the halftoned image strongly depends on the spatial distribution of the binary dots. Various error diffusion algorithms have been proposed for realizing the homogeneous dot distribution in the highlight and shadow regions. However, they are computationally expensive and/or require large memory space. This paper presents a new threshold modulated error diffusion algorithm for the homogeneous dot distribution. The proposed method is applied exactly same as the Floyd-Steinberg's algorithm except the thresholding process. The threshold value is modulated based on the difference between the distance to the nearest minor pixel, `minor pixel distance', and the principal distance. To do so, calculation of the minor pixel distance is needed for every pixel. But, it is quite time consuming and requires large memory resources. In order to alleviate this problem, `the minor pixel offset array' that transforms the 2D history of minor pixels into the 1D codes is proposed. The proposed algorithm drastically reduces the computational load and memory spaces needed for calculation of the minor pixel distance.
Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
International Nuclear Information System (INIS)
Rao, R.V.; More, K.C.
2017-01-01
Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.
Improved Algorithms OF CELF and CELF++ for Influence Maximization
Directory of Open Access Journals (Sweden)
Jiaguo Lv
2014-06-01
Full Text Available Motivated by the wide application in some fields, such as viral marketing, sales promotion etc, influence maximization has been the most important and extensively studied problem in social network. However, the most classical KK-Greedy algorithm for influence maximization is inefficient. Two major sources of the algorithm’s inefficiency were analyzed in this paper. With the analysis of algorithms CELF and CELF++, all nodes in the influenced set of u would never bring any marginal gain when a new seed u was produced. Through this optimization strategy, a lot of redundant nodes will be removed from the candidate nodes. Basing on the strategy, two improved algorithms of Lv_CELF and Lv_CELF++ were proposed in this study. To evaluate the two algorithms, the two algorithms with their benchmark algorithms of CELF and CELF++ were conducted on some real world datasets. To estimate the algorithms, influence degree and running time were employed to measure the performance and efficiency respectively. Experimental results showed that, compared with benchmark algorithms of CELF and CELF++, matching effects and higher efficiency were achieved by the new algorithms Lv_CELF and Lv_CELF++. Solutions with the proposed optimization strategy can be useful for the decisionmaking problems under the scenarios related to the influence maximization problem.
An Enhanced Hybrid Social Based Routing Algorithm for MANET-DTN
Directory of Open Access Journals (Sweden)
Martin Matis
2016-01-01
Full Text Available A new routing algorithm for mobile ad hoc networks is proposed in this paper: an Enhanced Hybrid Social Based Routing (HSBR algorithm for MANET-DTN as optimal solution for well-connected multihop mobile networks (MANET and/or worse connected MANET with small density of the nodes and/or due to mobility fragmented MANET into two or more subnetworks or islands. This proposed HSBR algorithm is fully decentralized combining main features of both Dynamic Source Routing (DSR and Social Based Opportunistic Routing (SBOR algorithms. The proposed scheme is simulated and evaluated by replaying real life traces which exhibit this highly dynamic topology. Evaluation of new proposed HSBR algorithm was made by comparison with DSR and SBOR. All methods were simulated with different levels of velocity. The results show that HSBR has the highest success of packet delivery, but with higher delay in comparison with DSR, and much lower in comparison with SBOR. Simulation results indicate that HSBR approach can be applicable in networks, where MANET or DTN solutions are separately useless or ineffective. This method provides delivery of the message in every possible situation in areas without infrastructure and can be used as backup method for disaster situation when infrastructure is destroyed.
An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt
Directory of Open Access Journals (Sweden)
Qingming Zhan
2017-08-01
Full Text Available An adaptive spatial clustering (ASC algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or Voronoi diagram. It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need for prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU
Phase Grouping Line Extraction Algorithm Using Overlapped Partition
Directory of Open Access Journals (Sweden)
WANG Jingxue
2015-07-01
Full Text Available Aiming at solving the problem of fracture at the discontinuities area and the challenges of line fitting in each partition, an innovative line extraction algorithm is proposed based on phase grouping using overlapped partition. The proposed algorithm adopted dual partition steps, which will generate overlapped eight partitions. Between the two steps, the middle axis in the first step coincides with the border lines in the other step. Firstly, the connected edge points that share the same phase gradients are merged into the line candidates, and fitted into line segments. Then to remedy the break lines at the border areas, the break segments in the second partition steps are refitted. The proposed algorithm is robust and does not need any parameter tuning. Experiments with various datasets have confirmed that the method is not only capable of handling the linear features, but also powerful enough in handling the curve features.
Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.
Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio
2018-02-21
Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.
A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance
Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan
2017-08-01
Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.
Performance of Jet Algorithms in CMS
CMS Collaboration
The CMS Combined Software and Analysis Challenge 2007 (CSA07) is well underway and expected to produce a wealth of physics analyses to be applied to the first incoming detector data in 2008. The JetMET group of CMS supports four different jet clustering algorithms for the CSA07 Monte Carlo samples, with two different parameterizations each: \\fastkt, \\siscone, \\midpoint, and \\itcone. We present several studies comparing the performance of these algorithms using QCD dijet and \\ttbar Monte Carlo samples. We specifically observe that the \\siscone algorithm performs equal to or better than the \\midpoint algorithm in all presented studies and propose that \\siscone be adopted as the preferred cone-based jet clustering algorithm in future CMS physics analyses, as it is preferred by theorists for its infrared- and collinear-safety to all orders of perturbative QCD. We furthermore encourage the use of the \\fastkt algorithm which is found to perform as good as any other algorithm under study, features dramatically reduc...
Directory of Open Access Journals (Sweden)
Peter Brida
2013-01-01
Full Text Available Medical implants based on wireless communication will play crucial role in healthcare systems. Some applications need to know the exact position of each implant. RF positioning seems to be an effective approach for implant localization. The two most common positioning data typically used for RF positioning are received signal strength and time of flight of a radio signal between transmitter and receivers (medical implant and network of reference devices with known position. This leads to positioning methods: received signal strength (RSS and time of arrival (ToA. Both methods are based on trilateration. Used positioning data are very important, but the positioning algorithm which estimates the implant position is important as well. In this paper, the proposal of novel algorithm for trilateration is presented. The proposed algorithm improves the quality of basic trilateration algorithms with the same quality of measured positioning data. It is called Enhanced Positioning Trilateration Algorithm (EPTA. The proposed algorithm can be divided into two phases. The first phase is focused on the selection of the most suitable sensors for position estimation. The goal of the second one lies in the positioning accuracy improving by adaptive algorithm. Finally, we provide performance analysis of the proposed algorithm by computer simulations.
Multi-robot task allocation based on two dimensional artificial fish swarm algorithm
Zheng, Taixiong; Li, Xueqin; Yang, Liangyi
2007-12-01
The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.
Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen
2012-10-01
This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.
Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
International Nuclear Information System (INIS)
Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti
2015-01-01
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.
A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case
Directory of Open Access Journals (Sweden)
Chun-Wei Tsai
2014-01-01
Full Text Available This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.
Directory of Open Access Journals (Sweden)
Ali Akbar Hasani
2016-11-01
Full Text Available In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.
Research on Improved NSGA-II Algorithm and Its Application in Emergency Management
Directory of Open Access Journals (Sweden)
Xi Fang
2018-01-01
Full Text Available This paper constructs a dynamic multiobjective location model; three objectives are considered: the first objective maximizes the total utility of relief supplies, the second objective minimizes the number of temporary facilities needed to operate, and the third objective maximizes the satisfaction for all demand points. We propose an improved NSGA-II to solve the optimization problem. The computational experiments are divided into two sections: In the first procedure, the numerical experiment is constructed by the classical functions ZDT1, ZDT2, and DTLZ2; the results show that the proposed algorithm generates the exact Pareto front, and the convergence and uniformity of the proposed algorithm are better than the NSGA-II and MOEA/D. In the second procedure, the simulation experiment is constructed by a case in emergency management; the results show that the proposed algorithm is more reasonable than the traditional algorithms NSGA-II and MOEA/D in terms of the three objectives. It is proved that the improved NSGA-II algorithm, which is proposed in this paper, has high precision application for the sudden disaster crisis and emergency management.
A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers
Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair
We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.
An Improved Fast Flocking Algorithm with Obstacle Avoidance for Multiagent Dynamic Systems
Directory of Open Access Journals (Sweden)
Jialiang Wang
2014-01-01
Full Text Available Flocking behavior is a common phenomenon in nature, such as flocks of birds and groups of fish. In order to make the agents effectively avoid obstacles and fast form flocking towards the direction of destination point, this paper proposes a fast multiagent obstacle avoidance (FMOA algorithm. FMOA is illustrated based on the status of whether the flocking has formed. If flocking has not formed, agents should avoid the obstacles toward the direction of target. If otherwise, these agents have reached the state of lattice and then these agents only need to avoid the obstacles and ignore the direction of target. The experimental results show that the proposed FMOA algorithm has better performance in terms of flocking path length. Furthermore, the proposed FMOA algorithm is applied to the formation flying of quad-rotor helicopters. Compared with other technologies to perform the localization of quad-rotor helicopter, this paper innovatively constructs a smart environment by deploying some wireless sensor network (WSN nodes using the proposed localization algorithm. Finally, the proposed FMOA algorithm is used to conduct the formation flying of these quad-rotor helicopters in the smart environment.
The geometry of entanglement and Grover's algorithm
International Nuclear Information System (INIS)
Iwai, Toshihiro; Hayashi, Naoki; Mizobe, Kimitake
2008-01-01
A measure of entanglement with respect to a bipartite partition of n-qubit has been defined and studied from the viewpoint of Riemannian geometry (Iwai 2007 J. Phys. A: Math. Theor. 40 12161). This paper has two aims. One is to study further the geometry of entanglement, and the other is to investigate Grover's search algorithms, both the original and the fixed-point ones, in reference with entanglement. As the distance between the maximally entangled states and the separable states is known already in the previous paper, this paper determines the set of maximally entangled states nearest to a typical separable state which is used as an initial state in Grover's search algorithms, and to find geodesic segments which realize the above-mentioned distance. As for Grover's algorithms, it is already known that while the initial and the target states are separable, the algorithms generate sequences of entangled states. This fact is confirmed also in the entanglement measure proposed in the previous paper, and then a split Grover algorithm is proposed which generates sequences of separable states only with respect to the bipartite partition
Parallel conjugate gradient algorithms for manipulator dynamic simulation
Fijany, Amir; Scheld, Robert E.
1989-01-01
Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).
A Parallel Adaptive Particle Swarm Optimization Algorithm for Economic/Environmental Power Dispatch
Directory of Open Access Journals (Sweden)
Jinchao Li
2012-01-01
Full Text Available A parallel adaptive particle swarm optimization algorithm (PAPSO is proposed for economic/environmental power dispatch, which can overcome the premature characteristic, the slow-speed convergence in the late evolutionary phase, and lacking good direction in particles’ evolutionary process. A search population is randomly divided into several subpopulations. Then for each subpopulation, the optimal solution is searched synchronously using the proposed method, and thus parallel computing is realized. To avoid converging to a local optimum, a crossover operator is introduced to exchange the information among the subpopulations and the diversity of population is sustained simultaneously. Simulation results show that the proposed algorithm can effectively solve the economic/environmental operation problem of hydropower generating units. Performance comparisons show that the solution from the proposed method is better than those from the conventional particle swarm algorithm and other optimization algorithms.
Dynamic population artificial bee colony algorithm for multi-objective optimal power flow
Directory of Open Access Journals (Sweden)
Man Ding
2017-03-01
Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.
Evolutionary Algorithms Approach to the Solution of Damage Detection Problems
Salazar Pinto, Pedro Yoajim; Begambre, Oscar
2010-09-01
In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.
Generating log-normally distributed random numbers by using the Ziggurat algorithm
International Nuclear Information System (INIS)
Choi, Jong Soo
2016-01-01
Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method
A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation
Directory of Open Access Journals (Sweden)
Gao Lin
2012-06-01
Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.
A fast sparse reconstruction algorithm for electrical tomography
International Nuclear Information System (INIS)
Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng
2014-01-01
Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)
DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.
Kalsi, Shruti; Kaur, Harleen; Chang, Victor
2017-12-05
Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
International Nuclear Information System (INIS)
Kim, Dong Yun
1997-02-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller
Flash-Aware Page Replacement Algorithm
Directory of Open Access Journals (Sweden)
Guangxia Xu
2014-01-01
Full Text Available Due to the limited main memory resource of consumer electronics equipped with NAND flash memory as storage device, an efficient page replacement algorithm called FAPRA is proposed for NAND flash memory in the light of its inherent characteristics. FAPRA introduces an efficient victim page selection scheme taking into account the benefit-to-cost ratio for evicting each victim page candidate and the combined recency and frequency value, as well as the erase count of the block to which each page belongs. Since the dirty victim page often contains clean data that exist in both the main memory and the NAND flash memory based storage device, FAPRA only writes the dirty data within the victim page back to the NAND flash memory based storage device in order to reduce the redundant write operations. We conduct a series of trace-driven simulations and experimental results show that our proposed FAPRA algorithm outperforms the state-of-the-art algorithms in terms of page hit ratio, the number of write operations, runtime, and the degree of wear leveling.
Toward human-centered algorithm design
Directory of Open Access Journals (Sweden)
Eric PS Baumer
2017-07-01
Full Text Available As algorithms pervade numerous facets of daily life, they are incorporated into systems for increasingly diverse purposes. These systems’ results are often interpreted differently by the designers who created them than by the lay persons who interact with them. This paper offers a proposal for human-centered algorithm design, which incorporates human and social interpretations into the design process for algorithmically based systems. It articulates three specific strategies for doing so: theoretical, participatory, and speculative. Drawing on the author’s work designing and deploying multiple related systems, the paper provides a detailed example of using a theoretical approach. It also discusses findings pertinent to participatory and speculative design approaches. The paper addresses both strengths and challenges for each strategy in helping to center the process of designing algorithmically based systems around humans.
A novel minimum cost maximum power algorithm for future smart home energy management.
Singaravelan, A; Kowsalya, M
2017-11-01
With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
A flexible fuzzy regression algorithm for forecasting oil consumption estimation
International Nuclear Information System (INIS)
Azadeh, A.; Khakestani, M.; Saberi, M.
2009-01-01
Oil consumption plays a vital role in socio-economic development of most countries. This study presents a flexible fuzzy regression algorithm for forecasting oil consumption based on standard economic indicators. The standard indicators are annual population, cost of crude oil import, gross domestic production (GDP) and annual oil production in the last period. The proposed algorithm uses analysis of variance (ANOVA) to select either fuzzy regression or conventional regression for future demand estimation. The significance of the proposed algorithm is three fold. First, it is flexible and identifies the best model based on the results of ANOVA and minimum absolute percentage error (MAPE), whereas previous studies consider the best fitted fuzzy regression model based on MAPE or other relative error results. Second, the proposed model may identify conventional regression as the best model for future oil consumption forecasting because of its dynamic structure, whereas previous studies assume that fuzzy regression always provide the best solutions and estimation. Third, it utilizes the most standard independent variables for the regression models. To show the applicability and superiority of the proposed flexible fuzzy regression algorithm the data for oil consumption in Canada, United States, Japan and Australia from 1990 to 2005 are used. The results show that the flexible algorithm provides accurate solution for oil consumption estimation problem. The algorithm may be used by policy makers to accurately foresee the behavior of oil consumption in various regions.
The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm
Directory of Open Access Journals (Sweden)
Zhang Fang Hu
2014-04-01
Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.
An Early Fire Detection Algorithm Using IP Cameras
Directory of Open Access Journals (Sweden)
Hector Perez-Meana
2012-05-01
Full Text Available The presence of smoke is the first symptom of fire; therefore to achieve early fire detection, accurate and quick estimation of the presence of smoke is very important. In this paper we propose an algorithm to detect the presence of smoke using video sequences captured by Internet Protocol (IP cameras, in which important features of smoke, such as color, motion and growth properties are employed. For an efficient smoke detection in the IP camera platform, a detection algorithm must operate directly in the Discrete Cosine Transform (DCT domain to reduce computational cost, avoiding a complete decoding process required for algorithms that operate in spatial domain. In the proposed algorithm the DCT Inter-transformation technique is used to increase the detection accuracy without inverse DCT operation. In the proposed scheme, firstly the candidate smoke regions are estimated using motion and color smoke properties; next using morphological operations the noise is reduced. Finally the growth properties of the candidate smoke regions are furthermore analyzed through time using the connected component labeling technique. Evaluation results show that a feasible smoke detection method with false negative and false positive error rates approximately equal to 4% and 2%, respectively, is obtained.
A New Filtering Algorithm Utilizing Radial Velocity Measurement
Institute of Scientific and Technical Information of China (English)
LIU Yan-feng; DU Zi-cheng; PAN Quan
2005-01-01
Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.
Modified Bat Algorithm Based on Lévy Flight and Opposition Based Learning
Directory of Open Access Journals (Sweden)
Xian Shan
2016-01-01
Full Text Available Bat Algorithm (BA is a swarm intelligence algorithm which has been intensively applied to solve academic and real life optimization problems. However, due to the lack of good balance between exploration and exploitation, BA sometimes fails at finding global optimum and is easily trapped into local optima. In order to overcome the premature problem and improve the local searching ability of Bat Algorithm for optimization problems, we propose an improved BA called OBMLBA. In the proposed algorithm, a modified search equation with more useful information from the search experiences is introduced to generate a candidate solution, and Lévy Flight random walk is incorporated with BA in order to avoid being trapped into local optima. Furthermore, the concept of opposition based learning (OBL is embedded to BA to enhance the diversity and convergence capability. To evaluate the performance of the proposed approach, 16 benchmark functions have been employed. The results obtained by the experiments demonstrate the effectiveness and efficiency of OBMLBA for global optimization problems. Comparisons with some other BA variants and other state-of-the-art algorithms have shown the proposed approach significantly improves the performance of BA. Performances of the proposed algorithm on large scale optimization problems and real world optimization problems are not discussed in the paper, and it will be studied in the future work.
Billings, Jake
2017-01-01
A new variation of blockchain proof of work algorithm is proposed to incentivize the timely execution of image processing algorithms. A sample image processing algorithm is proposed to determine interesting images using analysis of the entropy of pixel subsets within images. The efficacy of the image processing algorithm is examined using two small sets of training and test data. The interesting image algorithm is then integrated into a simplified blockchain mining proof of work algorithm bas...
An Algorithm for Isolating the Real Solutions of Piecewise Algebraic Curves
Directory of Open Access Journals (Sweden)
Jinming Wu
2011-01-01
to compute the real solutions of two piecewise algebraic curves. It is primarily based on the Krawczyk-Moore iterative algorithm and good initial iterative interval searching algorithm. The proposed algorithm is relatively easy to implement.
New Algorithm for Evaluating the Green Supply Chain Performance in an Uncertain Environment
Directory of Open Access Journals (Sweden)
Pan Liu
2016-09-01
Full Text Available An effective green supply chain (GSC can help an enterprise obtain more benefits and reduce costs. Therefore, developing an effective evaluation method for GSC performance evaluation is becoming increasingly important. In this study, the advantages and disadvantages of the current performance evaluations and algorithms for GSC performance evaluations were discussed and evaluated. Based on these findings, an improved five-dimensional balanced scorecard was proposed in which the green performance indicators were revised to facilitate their measurement. A model based on Rough Set theory, the Genetic Algorithm, and the Levenberg Marquardt Back Propagation (LMBP neural network algorithm was proposed. Next, using Matlab, the Rosetta tool, and the practical data of company F, a case study was conducted. The results indicate that the proposed model has a high convergence speed and an accurate prediction ability. The credibility and effectiveness of the proposed model was validated. In comparison with the normal Back Propagation neural network algorithm and the LMBP neural network algorithm, the proposed model has greater credibility and effectiveness. In practice, this method provides a more suitable indicator system and algorithm for enterprises to be able to implement GSC performance evaluations in an uncertain environment. Academically, the proposed method addresses the lack of a theoretical basis for GSC performance evaluation, thus representing a new development in GSC performance evaluation theory.
Directory of Open Access Journals (Sweden)
Hyo Seon Park
2014-01-01
Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.
A new cut-based algorithm for the multi-state flow network reliability problem
International Nuclear Information System (INIS)
Yeh, Wei-Chang; Bae, Changseok; Huang, Chia-Ling
2015-01-01
Many real-world systems can be modeled as multi-state network systems in which reliability can be derived in terms of the lower bound points of level d, called d-minimal cuts (d-MCs). This study proposes a new method to find and verify obtained d-MCs with simple and useful found properties for the multi-state flow network reliability problem. The proposed algorithm runs in O(mσp) time, which represents a significant improvement over the previous O(mp 2 σ) time bound based on max-flow/min-cut, where p, σ and m denote the number of MCs, d-MC candidates and edges, respectively. The proposed algorithm also conquers the weakness of some existing methods, which failed to remove duplicate d-MCs in special cases. A step-by-step example is given to demonstrate how the proposed algorithm locates and verifies all d-MC candidates. As evidence of the utility of the proposed approach, we present extensive computational results on 20 benchmark networks in another example. The computational results compare favorably with a previously developed algorithm in the literature. - Highlights: • A new method is proposed to find all d-MCs for the multi-state flow networks. • The proposed method can prevent the generation of d-MC duplicates. • The proposed method is simpler and more efficient than the best-known algorithms
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
International Nuclear Information System (INIS)
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
Directory of Open Access Journals (Sweden)
Woonki Na
2017-03-01
Full Text Available This paper presents an improved maximum power point tracking (MPPT algorithm using a fuzzy logic controller (FLC in order to extract potential maximum power from photovoltaic cells. The objectives of the proposed algorithm are to improve the tracking speed, and to simultaneously solve the inherent drawbacks such as slow tracking in the conventional perturb and observe (P and O algorithm. The performances of the conventional P and O algorithm and the proposed algorithm are compared by using MATLAB/Simulink in terms of the tracking speed and steady-state oscillations. Additionally, both algorithms were experimentally validated through a digital signal processor (DSP-based controlled-boost DC-DC converter. The experimental results show that the proposed algorithm performs with a shorter tracking time, smaller output power oscillation, and higher efficiency, compared with the conventional P and O algorithm.
A chaos-based image encryption algorithm with variable control parameters
International Nuclear Information System (INIS)
Wang Yong; Wong, K.-W.; Liao Xiaofeng; Xiang Tao; Chen Guanrong
2009-01-01
In recent years, a number of image encryption algorithms based on the permutation-diffusion structure have been proposed. However, the control parameters used in the permutation stage are usually fixed in the whole encryption process, which favors attacks. In this paper, a chaos-based image encryption algorithm with variable control parameters is proposed. The control parameters used in the permutation stage and the keystream employed in the diffusion stage are generated from two chaotic maps related to the plain-image. As a result, the algorithm can effectively resist all known attacks against permutation-diffusion architectures. Theoretical analyses and computer simulations both confirm that the new algorithm possesses high security and fast encryption speed for practical image encryption.
A novel progressively swarmed mixed integer genetic algorithm for ...
African Journals Online (AJOL)
MIGA) which inherits the advantages of binary and real coded Genetic Algorithm approach. The proposed algorithm is applied for the conventional generation cost minimization Optimal Power Flow (OPF) problem and for the Security ...
Sort-Mid tasks scheduling algorithm in grid computing
Directory of Open Access Journals (Sweden)
Naglaa M. Reda
2015-11-01
Full Text Available Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm
Directory of Open Access Journals (Sweden)
Jiao Shi
2014-01-01
Full Text Available How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems.
An Algorithm for Induction Motor Stator Flux Estimation
Directory of Open Access Journals (Sweden)
STOJIC, D. M.
2012-08-01
Full Text Available A new method for the induction motor stator flux estimation used in the sensorless IM drive applications is presented in this paper. Proposed algorithm advantageously solves problems associated with the pure integration, commonly used for the stator flux estimation. An observer-based structure is proposed based on the stator flux vector stationary state, in order to eliminate the undesired DC offset component present in the integrator based stator flux estimates. By using a set of simulation runs it is shown that the proposed algorithm enables the DC-offset free stator flux estimated for both low and high stator frequency induction motor operation.
A novel method to design S-box based on chaotic map and genetic algorithm
International Nuclear Information System (INIS)
Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang
2012-01-01
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
A novel method to design S-box based on chaotic map and genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, Yong, E-mail: wangyong_cqupt@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wong, Kwok-Wo [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, Changbing [Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Li, Yang [Department of Automatic Control and Systems Engineering, The University of Sheffield, Mapping Street, S1 3DJ (United Kingdom)
2012-01-30
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing
2018-02-01
For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.
Automated training for algorithms that learn from genomic data.
Cilingir, Gokcen; Broschat, Shira L
2015-01-01
Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable.
A Direct Search Algorithm for Global Optimization
Directory of Open Access Journals (Sweden)
Enrique Baeyens
2016-06-01
Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.
Directory of Open Access Journals (Sweden)
Yu Fan
2016-10-01
Full Text Available In order to defend the hypersonic glide vehicle (HGV, a cost-effective single-model tracking algorithm using Cubature Kalman filter (CKF is proposed in this paper based on modified aerodynamic model (MAM as process equation and radar measurement model as measurement equation. In the existing aerodynamic model, the two control variables attack angle and bank angle cannot be measured by the existing radar equipment and their control laws cannot be known by defenders. To establish the process equation, the MAM for HGV tracking is proposed by using additive white noise to model the rates of change of the two control variables. For the ease of comparison several multiple model algorithms based on CKF are presented, including interacting multiple model (IMM algorithm, adaptive grid interacting multiple model (AGIMM algorithm and hybrid grid multiple model (HGMM algorithm. The performances of these algorithms are compared and analyzed according to the simulation results. The simulation results indicate that the proposed tracking algorithm based on modified aerodynamic model has the best tracking performance with the best accuracy and least computational cost among all tracking algorithms in this paper. The proposed algorithm is cost-effective for HGV tracking.
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Directory of Open Access Journals (Sweden)
A. A. Margun
2017-01-01
Full Text Available The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw. DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Yurtkuran, Alkın; Emel, Erdal
2016-01-01
The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
Directory of Open Access Journals (Sweden)
Alkın Yurtkuran
2016-01-01
Full Text Available The artificial bee colony (ABC algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
GraDit: graph-based data repair algorithm for multiple data edits rule violations
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
Su, Yuanchao; Sun, Xu; Gao, Lianru; Li, Jun; Zhang, Bing
2016-10-01
Endmember extraction is a key step in hyperspectral unmixing. A new endmember extraction framework is proposed for hyperspectral endmember extraction. The proposed approach is based on the swarm intelligence (SI) algorithm, where discretization is used to solve the SI algorithm because pixels in a hyperspectral image are naturally defined within a discrete space. Moreover, a "distance" factor is introduced into the objective function to limit the endmember numbers which is generally limited in real scenarios, while traditional SI algorithms likely produce superabundant spectral signatures, which generally belong to the same classes. Three endmember extraction methods are proposed based on the artificial bee colony, ant colony optimization, and particle swarm optimization algorithms. Experiments with both simulated and real hyperspectral images indicate that the proposed framework can improve the accuracy of endmember extraction.
Algorithm of reducing the false positives in IDS based on correlation Analysis
Liu, Jianyi; Li, Sida; Zhang, Ru
2018-03-01
This paper proposes an algorithm of reducing the false positives in IDS based on correlation Analysis. Firstly, the algorithm analyzes the distinguishing characteristics of false positives and real alarms, and preliminary screen the false positives; then use the method of attribute similarity clustering to the alarms and further reduces the amount of alarms; finally, according to the characteristics of multi-step attack, associated it by the causal relationship. The paper also proposed a reverse causation algorithm based on the attack association method proposed by the predecessors, turning alarm information into a complete attack path. Experiments show that the algorithm simplifies the number of alarms, improve the efficiency of alarm processing, and contribute to attack purposes identification and alarm accuracy improvement.
A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems
Directory of Open Access Journals (Sweden)
Cengiz Kahraman
2009-12-01
Full Text Available In this paper a new artificial immune system (AIS algorithm is proposed to solve multi objective fuzzy flow shop scheduling problems. A new mutation operator is also described for this AIS. Fuzzy sets are used to model processing times and due dates. The objectives are to minimize the average tardiness and the number of tardy jobs. The developed new AIS algorithm is tested on real world data collected at an engine cylinder liner manufacturing process. The feasibility and effectiveness of the proposed AIS is demonstrated by comparing it with genetic algorithms. Computational results demonstrate that the proposed AIS algorithm is more effective meta-heuristic for multi objective flow shop scheduling problems with fuzzy processing time and due date.
A redundancy-removing feature selection algorithm for nominal data
Directory of Open Access Journals (Sweden)
Zhihua Li
2015-10-01
Full Text Available No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.
Directory of Open Access Journals (Sweden)
Arazi Idrus
2017-12-01
Full Text Available In this paper, we present our work-in-progress of a proposed framework for automated negotiation in the construction domain. The proposed framework enables software agents to conduct negotiations and autonomously make value-based decisions. The framework consists of three main components which are, solution generator algorithm, negotiation algorithm, and conflict resolution algorithm. This paper extends the discussion on the solution generator algorithm that enables software agents to generate solutions and rank them from 1st to nth solution for the negotiation stage of the operation. The solution generator algorithm consists of three steps which are, review solutions, rank solutions, and form ranked solutions. For validation purpose, we present a scenario that utilizes the proposed algorithm to rank solutions. The validation shows that the algorithm is promising, however, it also highlights the conflict between different parties that needs further negotiation action.
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
Noninteractive Verifiable Outsourcing Algorithm for Bilinear Pairing with Improved Checkability
Directory of Open Access Journals (Sweden)
Yanli Ren
2017-01-01
Full Text Available It is well known that the computation of bilinear pairing is the most expensive operation in pairing-based cryptography. In this paper, we propose a noninteractive verifiable outsourcing algorithm of bilinear pairing based on two servers in the one-malicious model. The outsourcer need not execute any expensive operation, such as scalar multiplication and modular exponentiation. Moreover, the outsourcer could detect any failure with a probability close to 1 if one of the servers misbehaves. Therefore, the proposed algorithm improves checkability and decreases communication cost compared with the previous ones. Finally, we utilize the proposed algorithm as a subroutine to achieve an anonymous identity-based encryption (AIBE scheme with outsourced decryption and an identity-based signature (IBS scheme with outsourced verification.
Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms
DEFF Research Database (Denmark)
Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos
2014-01-01
systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...
Output Current Ripple Reduction Algorithms for Home Energy Storage Systems
Directory of Open Access Journals (Sweden)
Jin-Hyuk Park
2013-10-01
Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.
An improved cooperative adaptive cruise control (CACC) algorithm considering invalid communication
Wang, Pangwei; Wang, Yunpeng; Yu, Guizhen; Tang, Tieqiao
2014-05-01
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
High speed numerical integration algorithm using FPGA | Razak ...
African Journals Online (AJOL)
Conventionally, numerical integration algorithm is executed in software and time consuming to accomplish. Field Programmable Gate Arrays (FPGAs) can be used as a much faster, very efficient and reliable alternative to implement the numerical integration algorithm. This paper proposed a hardware implementation of four ...
Optimization of wind farm turbines layout using an evolutive algorithm
International Nuclear Information System (INIS)
Gonzalez, Javier Serrano; Santos, Jesus Riquelme; Payan, Manuel Burgos; Gonzalez Rodriguez, Angel G.; Mora, Jose Castro
2010-01-01
The optimum wind farm configuration problem is discussed in this paper and an evolutive algorithm to optimize the wind farm layout is proposed. The algorithm's optimization process is based on a global wind farm cost model using the initial investment and the present value of the yearly net cash flow during the entire wind-farm life span. The proposed algorithm calculates the yearly income due to the sale of the net generated energy taking into account the individual wind turbine loss of production due to wake decay effects and it can deal with areas or terrains with non-uniform load-bearing capacity soil and different roughness length for every wind direction or restrictions such as forbidden areas or limitations in the number of wind turbines or the investment. The results are first favorably compared with those previously published and a second collection of test cases is used to proof the performance and suitability of the proposed evolutive algorithm to find the optimum wind farm configuration. (author)
FSD-HSO Optimization Algorithm for Closed Fringes Interferogram Demodulation
Directory of Open Access Journals (Sweden)
Ulises H. Rodriguez-Marmolejo
2016-01-01
Full Text Available Due to the physical nature of the interference phenomenon, extracting the phase of an interferogram is a known sinusoidal modulation problem. In order to solve this problem, a new hybrid mathematical optimization model for phase extraction is established. The combination of frequency guide sequential demodulation and harmony search optimization algorithms is used for demodulating closed fringes patterns in order to find the phase of interferogram applications. The proposed algorithm is tested in four sets of different synthetic interferograms, finding a range of average relative error in phase reconstructions of 0.14–0.39 rad. For reference, experimental results are compared with the genetic algorithm optimization technique, obtaining a reduction in the error up to 0.1448 rad. Finally, the proposed algorithm is compared with a very known demodulation algorithm, using a real interferogram, obtaining a relative error of 1.561 rad. Results are shown in patterns with complex fringes distribution.
Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms
Directory of Open Access Journals (Sweden)
Fernando A. Auat Cheein
2013-01-01
Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.
Text Clustering Algorithm Based on Random Cluster Core
Directory of Open Access Journals (Sweden)
Huang Long-Jun
2016-01-01
Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Neural Network Blind Equalization Algorithm Applied in Medical CT Image Restoration
Directory of Open Access Journals (Sweden)
Yunshan Sun
2013-01-01
Full Text Available A new algorithm for iterative blind image restoration is presented in this paper. The method extends blind equalization found in the signal case to the image. A neural network blind equalization algorithm is derived and used in conjunction with Zigzag coding to restore the original image. As a result, the effect of PSF can be removed by using the proposed algorithm, which contributes to eliminate intersymbol interference (ISI. In order to obtain the estimation of the original image, what is proposed in this method is to optimize constant modulus blind equalization cost function applied to grayscale CT image by using conjugate gradient method. Analysis of convergence performance of the algorithm verifies the feasibility of this method theoretically; meanwhile, simulation results and performance evaluations of recent image quality metrics are provided to assess the effectiveness of the proposed method.
Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing
Directory of Open Access Journals (Sweden)
Ahmad M. Manasrah
2018-01-01
Full Text Available Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are managed using the workflow technology over the cloud, which represents one of the challenges in using the resources in an efficient manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to the resources efficiently. The Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the dependent tasks over the heterogonous resources in cloud computing environments. The experiment results show that the GA-PSO algorithm decreases the total execution time of the workflow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the workflow application over the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster and with higher quality compared to other algorithms.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
Fast treatment plan modification with an over-relaxed Cimmino algorithm
International Nuclear Information System (INIS)
Wu Chuan; Jeraj, Robert; Lu Weiguo; Mackie, Thomas R.
2004-01-01
A method to quickly modify a treatment plan in adaptive radiotherapy was proposed and studied. The method is based on a Cimmino-type algorithm in linear programming. The fast convergence speed is achieved by over-relaxing the algorithm relaxation parameter from its sufficient convergence range of (0, 2) to (0, ∞). The algorithm parameters are selected so that the over-relaxed Cimmino (ORC) algorithm can effectively approximate an unconstrained re-optimization process in adaptive radiotherapy. To demonstrate the effectiveness and flexibility of the proposed method in adaptive radiotherapy, two scenarios with different organ motion/deformation of one nasopharyngeal case were presented with comparisons made between this method and the re-optimization method. In both scenarios, the ORC algorithm modified treatment plans have dose distributions that are similar to those given by the re-optimized treatment plans. It takes us using the ORC algorithm to finish a treatment plan modification at least three times faster than the re-optimization procedure compared
Dynamic Vehicle Routing Using an Improved Variable Neighborhood Search Algorithm
Directory of Open Access Journals (Sweden)
Yingcheng Xu
2013-01-01
Full Text Available In order to effectively solve the dynamic vehicle routing problem with time windows, the mathematical model is established and an improved variable neighborhood search algorithm is proposed. In the algorithm, allocation customers and planning routes for the initial solution are completed by the clustering method. Hybrid operators of insert and exchange are used to achieve the shaking process, the later optimization process is presented to improve the solution space, and the best-improvement strategy is adopted, which make the algorithm can achieve a better balance in the solution quality and running time. The idea of simulated annealing is introduced to take control of the acceptance of new solutions, and the influences of arrival time, distribution of geographical location, and time window range on route selection are analyzed. In the experiment, the proposed algorithm is applied to solve the different sizes' problems of DVRP. Comparing to other algorithms on the results shows that the algorithm is effective and feasible.
3-D Image Encryption Based on Rubik's Cube and RC6 Algorithm
Helmy, Mai; El-Rabaie, El-Sayed M.; Eldokany, Ibrahim M.; El-Samie, Fathi E. Abd
2017-12-01
A novel encryption algorithm based on the 3-D Rubik's cube is proposed in this paper to achieve 3D encryption of a group of images. This proposed encryption algorithm begins with RC6 as a first step for encrypting multiple images, separately. After that, the obtained encrypted images are further encrypted with the 3-D Rubik's cube. The RC6 encrypted images are used as the faces of the Rubik's cube. From the concepts of image encryption, the RC6 algorithm adds a degree of diffusion, while the Rubik's cube algorithm adds a degree of permutation. The simulation results demonstrate that the proposed encryption algorithm is efficient, and it exhibits strong robustness and security. The encrypted images are further transmitted over wireless Orthogonal Frequency Division Multiplexing (OFDM) system and decrypted at the receiver side. Evaluation of the quality of the decrypted images at the receiver side reveals good results.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
A Novel Modification of PSO Algorithm for SML Estimation of DOA
Directory of Open Access Journals (Sweden)
Haihua Chen
2016-12-01
Full Text Available This paper addresses the issue of reducing the computational complexity of Stochastic Maximum Likelihood (SML estimation of Direction-of-Arrival (DOA. The SML algorithm is well-known for its high accuracy of DOA estimation in sensor array signal processing. However, its computational complexity is very high because the estimation of SML criteria is a multi-dimensional non-linear optimization problem. As a result, it is hard to apply the SML algorithm to real systems. The Particle Swarm Optimization (PSO algorithm is considered as a rather efficient method for multi-dimensional non-linear optimization problems in DOA estimation. However, the conventional PSO algorithm suffers two defects, namely, too many particles and too many iteration times. Therefore, the computational complexity of SML estimation using conventional PSO algorithm is still a little high. To overcome these two defects and to reduce computational complexity further, this paper proposes a novel modification of the conventional PSO algorithm for SML estimation and we call it Joint-PSO algorithm. The core idea of the modification lies in that it uses the solution of Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT and stochastic Cramer-Rao bound (CRB to determine a novel initialization space. Since this initialization space is already close to the solution of SML, fewer particles and fewer iteration times are needed. As a result, the computational complexity can be greatly reduced. In simulation, we compare the proposed algorithm with the conventional PSO algorithm, the classic Altering Minimization (AM algorithm and Genetic algorithm (GA. Simulation results show that our proposed algorithm is one of the most efficient solving algorithms and it shows great potential for the application of SML in real systems.
Directory of Open Access Journals (Sweden)
Chen Deyun
2013-01-01
Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.
K-Nearest Neighbor Intervals Based AP Clustering Algorithm for Large Incomplete Data
Directory of Open Access Journals (Sweden)
Cheng Lu
2015-01-01
Full Text Available The Affinity Propagation (AP algorithm is an effective algorithm for clustering analysis, but it can not be directly applicable to the case of incomplete data. In view of the prevalence of missing data and the uncertainty of missing attributes, we put forward a modified AP clustering algorithm based on K-nearest neighbor intervals (KNNI for incomplete data. Based on an Improved Partial Data Strategy, the proposed algorithm estimates the KNNI representation of missing attributes by using the attribute distribution information of the available data. The similarity function can be changed by dealing with the interval data. Then the improved AP algorithm can be applicable to the case of incomplete data. Experiments on several UCI datasets show that the proposed algorithm achieves impressive clustering results.
Directory of Open Access Journals (Sweden)
W. H. Kwong
2000-06-01
Full Text Available The development of a new simplified model predictive control algorithm has been proposed in this work. The algorithm is developed within the framework of internal model control, and it is easy to understanding and implement. Simulation results for a continuous fermenter, which show that the proposed control algorithm is robust for moderate variations in plant parameters, are presented. The algorithm shows a good performance for setpoint tracking.
Iterative Mixture Component Pruning Algorithm for Gaussian Mixture PHD Filter
Directory of Open Access Journals (Sweden)
Xiaoxi Yan
2014-01-01
Full Text Available As far as the increasing number of mixture components in the Gaussian mixture PHD filter is concerned, an iterative mixture component pruning algorithm is proposed. The pruning algorithm is based on maximizing the posterior probability density of the mixture weights. The entropy distribution of the mixture weights is adopted as the prior distribution of mixture component parameters. The iterative update formulations of the mixture weights are derived by Lagrange multiplier and Lambert W function. Mixture components, whose weights become negative during iterative procedure, are pruned by setting corresponding mixture weights to zeros. In addition, multiple mixture components with similar parameters describing the same PHD peak can be merged into one mixture component in the algorithm. Simulation results show that the proposed iterative mixture component pruning algorithm is superior to the typical pruning algorithm based on thresholds.
An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment
Directory of Open Access Journals (Sweden)
Shaymaa Elsherbiny
2018-03-01
Full Text Available Cloud computing is emerging as a high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. Many resource management methods may enhance the efficiency of the whole cloud computing system. The key part of cloud computing resource management is resource scheduling. Optimized scheduling of tasks on the cloud virtual machines is an NP-hard problem and many algorithms have been presented to solve it. The variations among these schedulers are due to the fact that the scheduling strategies of the schedulers are adapted to the changing environment and the types of tasks. The focus of this paper is on workflows scheduling in cloud computing, which is gaining a lot of attention recently because workflows have emerged as a paradigm to represent complex computing problems. We proposed a novel algorithm extending the natural-based Intelligent Water Drops (IWD algorithm that optimizes the scheduling of workflows on the cloud. The proposed algorithm is implemented and embedded within the workflows simulation toolkit and tested in different simulated cloud environments with different cost models. Our algorithm showed noticeable enhancements over the classical workflow scheduling algorithms. We made a comparison between the proposed IWD-based algorithm with other well-known scheduling algorithms, including MIN-MIN, MAX-MIN, Round Robin, FCFS, and MCT, PSO and C-PSO, where the proposed algorithm presented noticeable enhancements in the performance and cost in most situations.
A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks
Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
Fuzzy Tracking and Control Algorithm for an SSVEP-Based BCI System
Directory of Open Access Journals (Sweden)
Yeou-Jiunn Chen
2016-09-01
Full Text Available Subjects with amyotrophic lateral sclerosis (ALS consistently experience decreasing quality of life because of this distinctive disease. Thus, a practical brain-computer interface (BCI application can effectively help subjects with ALS to participate in communication or entertainment. In this study, a fuzzy tracking and control algorithm is proposed for developing a BCI remote control system. To represent the characteristics of the measured electroencephalography (EEG signals after visual stimulation, a fast Fourier transform is applied to extract the EEG features. A self-developed fuzzy tracking algorithm quickly traces the changes of EEG signals. The accuracy and stability of a BCI system can be greatly improved by using a fuzzy control algorithm. Fifteen subjects were asked to attend a performance test of this BCI system. The canonical correlation analysis (CCA was adopted to compare the proposed approach, and the average recognition rates are 96.97% and 94.49% for proposed approach and CCA, respectively. The experimental results showed that the proposed approach is preferable to CCA. Overall, the proposed fuzzy tracking and control algorithm applied in the BCI system can profoundly help subjects with ALS to control air swimmer drone vehicles for entertainment purposes.
An improved affine projection algorithm for active noise cancellation
Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo
2017-08-01
Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.
Real time algorithms for sharp wave ripple detection.
Sethi, Ankit; Kemere, Caleb
2014-01-01
Neural activity during sharp wave ripples (SWR), short bursts of co-ordinated oscillatory activity in the CA1 region of the rodent hippocampus, is implicated in a variety of memory functions from consolidation to recall. Detection of these events in an algorithmic framework, has thus far relied on simple thresholding techniques with heuristically derived parameters. This study is an investigation into testing and improving the current methods for detection of SWR events in neural recordings. We propose and profile methods to reduce latency in ripple detection. Proposed algorithms are tested on simulated ripple data. The findings show that simple realtime algorithms can improve upon existing power thresholding methods and can detect ripple activity with latencies in the range of 10-20 ms.
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.
Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
Directory of Open Access Journals (Sweden)
Kriangkrai Maneerat
2016-01-01
Full Text Available One of the challenging problems for indoor wireless multifloor positioning systems is the presence of reference node (RN failures, which cause the values of received signal strength (RSS to be missed during the online positioning phase of the location fingerprinting technique. This leads to performance degradation in terms of floor accuracy, which in turn affects other localization procedures. This paper presents a robust floor determination algorithm called Robust Mean of Sum-RSS (RMoS, which can accurately determine the floor on which mobile objects are located and can work under either the fault-free scenario or the RN-failure scenarios. The proposed fault tolerance floor algorithm is based on the mean of the summation of the strongest RSSs obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSNs during the online phase. The performance of the proposed algorithm is compared with those of different floor determination algorithms in literature. The experimental results show that the proposed robust floor determination algorithm outperformed the other floor algorithms and can achieve the highest percentage of floor determination accuracy in all scenarios tested. Specifically, the proposed algorithm can achieve greater than 95% correct floor determination under the scenario in which 40% of RNs failed.
Algorithm for designing smart factory Industry 4.0
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The designing task of production division of the Industry 4.0 item designing company is being studied. The authors proposed an algorithm, which is based on the modified V L Volkovich method. This algorithm allows generating options how to arrange the production with robotized technological equipment functioning in the automatic mode. The optimization solution of the multi-criteria task for some additive criteria is the base of the algorithm.
International Nuclear Information System (INIS)
Gholami, Ali; Honarvar, Farhang; Moghaddam, Hamid Abrishami
2017-01-01
This paper presents an accurate and easy-to-implement algorithm for estimating the parameters of the asymmetric Gaussian chirplet model (AGCM) used for modeling echoes measured in ultrasonic nondestructive testing (NDT) of materials. The proposed algorithm is a combination of particle swarm optimization (PSO) and Levenberg–Marquardt (LM) algorithms. PSO does not need an accurate initial guess and quickly converges to a reasonable output while LM needs a good initial guess in order to provide an accurate output. In the combined algorithm, PSO is run first to provide a rough estimate of the output and this result is consequently inputted to the LM algorithm for more accurate estimation of parameters. To apply the algorithm to signals with multiple echoes, the space alternating generalized expectation maximization (SAGE) is used. The proposed combined algorithm is robust and accurate. To examine the performance of the proposed algorithm, it is applied to a number of simulated echoes having various signal to noise ratios. The combined algorithm is also applied to a number of experimental ultrasonic signals. The results corroborate the accuracy and reliability of the proposed combined algorithm. (paper)
Symbiotic organisms search algorithm for dynamic economic dispatch with valve-point effects
Sonmez, Yusuf; Kahraman, H. Tolga; Dosoglu, M. Kenan; Guvenc, Ugur; Duman, Serhat
2017-05-01
In this study, symbiotic organisms search (SOS) algorithm is proposed to solve the dynamic economic dispatch with valve-point effects problem, which is one of the most important problems of the modern power system. Some practical constraints like valve-point effects, ramp rate limits and prohibited operating zones have been considered as solutions. Proposed algorithm was tested on five different test cases in 5 units, 10 units and 13 units systems. The obtained results have been compared with other well-known metaheuristic methods reported before. Results show that proposed algorithm has a good convergence and produces better results than other methods.
Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.
2018-04-01
Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.
Extended reactance domain algorithms for DoA estimation onto an ESPAR antennas
Harabi, F.; Akkar, S.; Gharsallah, A.
2016-07-01
Based on an extended reactance domain (RD) covariance matrix, this article proposes new alternatives for directions of arrival (DoAs) estimation of narrowband sources through an electronically steerable parasitic array radiator (ESPAR) antennas. Because of the centro symmetry of the classic ESPAR antennas, an unitary transformation is applied to the collected data that allow an important reduction in both computational cost and processing time and, also, an enhancement of the resolution capabilities of the proposed algorithms. Moreover, this article proposes a new approach for eigenvalues estimation through only some linear operations. The developed DoAs estimation algorithms based on this new approach has illustrated a good behaviour with less calculation cost and processing time as compared to other schemes based on the classic eigenvalues approach. The conducted simulations demonstrate that high-precision and high-resolution DoAs estimation can be reached especially in very closely sources situation and low sources power as compared to the RD-MUSIC algorithm and the RD-PM algorithm. The asymptotic behaviours of the proposed DoAs estimators are analysed in various scenarios and compared with the Cramer-Rao bound (CRB). The conducted simulations testify the high-resolution of the developed algorithms and prove the efficiently of the proposed approach.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
International Nuclear Information System (INIS)
Zhang Jin; Shi Daxin; Anastasio, Mark A; Sillanpaa, Jussi; Chang Jenghwa
2005-01-01
We propose and investigate weighted expectation maximization (EM) algorithms for image reconstruction in x-ray tomography. The development of the algorithms is motivated by the respiratory-gated megavoltage tomography problem, in which the acquired asymmetric cone-beam projections are limited in number and unevenly sampled over view angle. In these cases, images reconstructed by use of the conventional EM algorithm can contain ring- and streak-like artefacts that are attributable to a combination of data inconsistencies and truncation of the projection data. By use of computer-simulated and clinical gated fan-beam megavoltage projection data, we demonstrate that the proposed weighted EM algorithms effectively mitigate such image artefacts. (note)
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
A new modified fast fractal image compression algorithm
DEFF Research Database (Denmark)
Salarian, Mehdi; Nadernejad, Ehsan; MiarNaimi, Hossein
2013-01-01
In this paper, a new fractal image compression algorithm is proposed, in which the time of the encoding process is considerably reduced. The algorithm exploits a domain pool reduction approach, along with the use of innovative predefined values for contrast scaling factor, S, instead of searching...
On the use of harmony search algorithm in the training of wavelet neural networks
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
An Efficient Distributed Algorithm for Constructing Spanning Trees in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Rosana Lachowski
2015-01-01
Full Text Available Monitoring and data collection are the two main functions in wireless sensor networks (WSNs. Collected data are generally transmitted via multihop communication to a special node, called the sink. While in a typical WSN, nodes have a sink node as the final destination for the data traffic, in an ad hoc network, nodes need to communicate with each other. For this reason, routing protocols for ad hoc networks are inefficient for WSNs. Trees, on the other hand, are classic routing structures explicitly or implicitly used in WSNs. In this work, we implement and evaluate distributed algorithms for constructing routing trees in WSNs described in the literature. After identifying the drawbacks and advantages of these algorithms, we propose a new algorithm for constructing spanning trees in WSNs. The performance of the proposed algorithm and the quality of the constructed tree were evaluated in different network scenarios. The results showed that the proposed algorithm is a more efficient solution. Furthermore, the algorithm provides multiple routes to the sensor nodes to be used as mechanisms for fault tolerance and load balancing.
Directory of Open Access Journals (Sweden)
Johan Soewanda
2007-01-01
Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm
A novel minimum cost maximum power algorithm for future smart home energy management
Directory of Open Access Journals (Sweden)
A. Singaravelan
2017-11-01
Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
UV Reconstruction Algorithm And Diurnal Cycle Variability
Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara
2009-03-01
UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.
An improved non-uniformity correction algorithm and its GPU parallel implementation
Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui
2018-05-01
The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.
A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features
Directory of Open Access Journals (Sweden)
P. Amudha
2015-01-01
Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.
A Constructive Data Classification Version of the Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
Alexandre Szabo
2013-01-01
Full Text Available The particle swarm optimization algorithm was originally introduced to solve continuous parameter optimization problems. It was soon modified to solve other types of optimization tasks and also to be applied to data analysis. In the latter case, however, there are few works in the literature that deal with the problem of dynamically building the architecture of the system. This paper introduces new particle swarm algorithms specifically designed to solve classification problems. The first proposal, named Particle Swarm Classifier (PSClass, is a derivation of a particle swarm clustering algorithm and its architecture, as in most classifiers, is pre-defined. The second proposal, named Constructive Particle Swarm Classifier (cPSClass, uses ideas from the immune system to automatically build the swarm. A sensitivity analysis of the growing procedure of cPSClass and an investigation into a proposed pruning procedure for this algorithm are performed. The proposals were applied to a wide range of databases from the literature and the results show that they are competitive in relation to other approaches, with the advantage of having a dynamically constructed architecture.
A fast algorithm for 3D azimuthally anisotropic velocity scan
Hu, Jingwei; Fomel, Sergey; Ying, Lexing
2014-01-01
© 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.
A fast algorithm for 3D azimuthally anisotropic velocity scan
Hu, Jingwei
2014-11-11
© 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm
Hasançebi, O.; Kazemzadeh Azad, S.
2014-01-01
This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models
Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng
2012-09-01
Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.
A proximity algorithm accelerated by Gauss–Seidel iterations for L1/TV denoising models
International Nuclear Information System (INIS)
Li, Qia; Shen, Lixin; Xu, Yuesheng; Micchelli, Charles A
2012-01-01
Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss–Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed. (paper)
A novel heuristic algorithm for capacitated vehicle routing problem
Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre
2017-09-01
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.
Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm
Directory of Open Access Journals (Sweden)
Wenping Zou
2011-01-01
Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Directory of Open Access Journals (Sweden)
Cheng-Yuan Shih
2010-01-01
Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
A real-time ECG data compression and transmission algorithm for an e-health device.
Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho
2011-09-01
This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.
An Image Encryption Algorithm Based on Balanced Pixel and Chaotic Map
Directory of Open Access Journals (Sweden)
Jian Zhang
2014-01-01
Full Text Available Image encryption technology has been applied in many fields and is becoming the main way of protecting the image information security. There are also many ways of image encryption. However, the existing encryption algorithms, in order to obtain a better effect of encryption, always need encrypting several times. There is not an effective method to decide the number of encryption times, generally determined by the human eyes. The paper proposes an image encryption algorithm based on chaos and simultaneously proposes a balanced pixel algorithm to determine the times of image encryption. Many simulation experiments have been done including encryption effect and security analysis. Experimental results show that the proposed method is feasible and effective.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.