Trigonometric solutions of triangle equations. Simple Lie superalgebras
International Nuclear Information System (INIS)
Bazhanov, V.V.; Shadrikov, A.G.
1988-01-01
Trigonometric solutions of the graded triangle equation are constructed for the fundamental representations of all simple (nonexceptional) Lie superalgebras with nondegenerate metric. In Sec. 1, we introduce the concept of Z 2 graded spaces and give the basic definitions. In Sec. 2, we determine fundamental representations of the Lie superalgebras sl(mn) and osp(2rs) and give explicit realizations of the Coxeter automorphisms. In secs. 3 and 4, we give the trigonometric solutions of the graded triangle equation (quantum R matrices)
Lie Point Symmetries and Exact Solutions of the Coupled Volterra System
International Nuclear Information System (INIS)
Ping, Liu; Sen-Yue, Lou
2010-01-01
The coupled Volterra system, an integrable discrete form of a coupled Korteweg–de Vries (KdV) system applied widely in fluids, Bose–Einstein condensation and atmospheric dynamics, is studied with the help of the Lie point symmetries. Two types of delayed differential reduction systems are derived from the coupled Volterra system by means of the symmetry reduction approach and symbolic computation. Cnoidal wave and solitary wave solutions for a delayed differential reduction system and the coupled Volterra system are proposed, respectively. (general)
't Hooft's solution for arbitrary semisimple Lie group
International Nuclear Information System (INIS)
Leznov, A.N.; Mukhtarov, M.A.
1990-07-01
The generalization of the 't Hooft's A 1 solution for every semisimple Lie algebra is found. The solution depends on r-independent chains of linear self-dual systems (Δ s α ) z = (Δ s+1 α ) y -bar, (Δ s α ) y -bar = -(Δ s+1 α ) z (1 ≤ α ≤ r); the length of α chain is equal to 2ω α + 1, where ω α are the indexes of the semisimple algebra and r is its rank. In the special case the O(4)-invariant solutions with instanton number equal to one arises. (author). 6 refs
Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation
International Nuclear Information System (INIS)
Wu Guocheng
2011-01-01
Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Dual Solutions for Nonlinear Flow Using Lie Group Analysis.
Directory of Open Access Journals (Sweden)
Muhammad Awais
Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.
On generalized Melvin solution for the Lie algebra E6
International Nuclear Information System (INIS)
Bolokhov, S.V.; Ivashchuk, V.D.
2017-01-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H s (z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H s (z), s = 1,.., 6, for the Lie algebra E 6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q s , s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E 6 -polynomials at large z are governed by the integer-valued matrix ν = A -1 (I + P), where A -1 is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z 2 -group of symmetry of the Dynkin diagram. The 2-form fluxes Φ s , s = 1,.., 6, are calculated. (orig.)
Directory of Open Access Journals (Sweden)
Decio Levi
2013-10-01
Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.
Lie group classification and exact solutions of the generalized Kompaneets equations
Directory of Open Access Journals (Sweden)
Oleksii Patsiuk
2015-04-01
Full Text Available We study generalized Kompaneets equations (GKEs with one functional parameter, and using the Lie-Ovsiannikov algorithm, we carried out the group classification. It is shown that the kernel algebra of the full groups of the GKEs is the one-dimensional Lie algebra. Using the direct method, we find the equivalence group. We obtain six non-equivalent (up to transformations from the equivalence group GKEs that allow wider invariance algebras than the kernel one. We find a number of exact solutions of the non-linear GKE which has the maximal symmetry properties.
International Nuclear Information System (INIS)
Wu Ming-Zhong; Bai Cheng-Ming
2015-01-01
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)
On generalized Melvin solution for the Lie algebra E{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Bolokhov, S.V. [Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation); Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation)
2017-10-15
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H{sub s}(z), s = 1,.., 6, for the Lie algebra E{sub 6} are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q{sub s}, s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E{sub 6}-polynomials at large z are governed by the integer-valued matrix ν = A{sup -1}(I + P), where A{sup -1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z{sub 2}-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ{sup s}, s = 1,.., 6, are calculated. (orig.)
Directory of Open Access Journals (Sweden)
Toshio Nakajima
2015-07-01
Full Text Available The imminent fear of water-related hazards such as flooding hangs over low-lying areas, in particular now because climate changes have led to increased hazards, like storm surges, that could result in serious harm. This paper aims to provide a novel solution—namely “the floating platform”—that can transform dangerous low-lying areas into those safeguarded against potential hazards. Additionally, by utilizing this solution as a secure base for society to build atop this new artificial reservoir, we offer a better future role for such areas. Meanwhile, we propose adoption of our concept soon at two low-lying areas in northeast Japan hard-hit by the huge 11 March 2011 tsunami: Sendai’s Arahama coastal district and the still-devastated residential harbor area of Kesennuma, both cities in need of a fresh perspective.
On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra
Energy Technology Data Exchange (ETDEWEB)
Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)
2017-10-15
A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)
International Nuclear Information System (INIS)
Chowdhury, A.R.; Mukherjee, R.
1984-01-01
The authors have made an exhaustive analysis for an equation introduced by Sabatier (1981) which in the special case reduces to the Harry-Dym equation. First they have deduced the Lie point symmetries and the corresponding ordinary differential equation, through the similarity forms. Next the extended Lie-Backlund type generators are deduced. In the second part the cnoidal wave like solutions are considered. From the Fourier spectrum analysis it is shown that a cnoidal wave breaks into several ordinary solitary waves. (Auth.)
Lie families: theory and applications
International Nuclear Information System (INIS)
Carinena, Jose F; Grabowski, Janusz; De Lucas, Javier
2010-01-01
We analyze the families of non-autonomous systems of first-order ordinary differential equations admitting a common time-dependent superposition rule, i.e. a time-dependent map expressing any solution of each of these systems in terms of a generic set of particular solutions of the system and some constants. We next study the relations of these families, called Lie families, with the theory of Lie and quasi-Lie systems and apply our theory to provide common time-dependent superposition rules for certain Lie families.
Some exact solutions for a unidimensional fokker-planck equation by using lie symmetries
Directory of Open Access Journals (Sweden)
Hugo Hernán Ortíz-Álvarez
2015-01-01
Full Text Available The Fokker Planck equation appears in the study of diffusion phenomena, stochastics processes and quantum and classical mechanics. A particular case fromthis equation, ut − uxx − xux − u=0, is examined by the Lie group method approach. From the invariant condition it was possible to obtain the infinitesimal generators or vectors associated to this equation, identifying the corresponding symmetry groups. Exact solution were found for each one of this generators and new solution were constructed by using symmetry properties.
Directory of Open Access Journals (Sweden)
Emrullah Yaşar
Full Text Available In this paper Lie symmetry analysis of the seventh-order time fractional Sawada–Kotera–Ito (FSKI equation with Riemann–Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi–Kober sense. Furthermore, adapting the Ibragimov’s nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method. Keywords: Fractional Sawada–Kotera–Ito equation, Lie symmetry, Riemann–Liouville fractional derivative, Conservation laws, Exact solutions
International Nuclear Information System (INIS)
Fronteau, J.; Combis, P.
1984-08-01
A Lagrangian method is introduced for the integration of non-linear Fokker-Planck equations. Examples of exact solutions obtained in this way are given, and also the explicit scheme used for the computation of numerical solutions. The method is, in addition, shown to be of a Lie-admissible type
Lie Algebras and Integrable Systems
International Nuclear Information System (INIS)
Zhang Yufeng; Mei Jianqin
2012-01-01
A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)
Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru
2018-04-01
This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.
Directory of Open Access Journals (Sweden)
Roman Cherniha
2018-04-01
Full Text Available This review is devoted to search for Lie and Q-conditional (nonclassical symmetries and exact solutions of a class of reaction-diffusion-convection equations with exponential nonlinearities. A complete Lie symmetry classification of the class is derived via two different algorithms in order to show that the result depends essentially on the type of equivalence transformations used for the classification. Moreover, a complete description of Q-conditional symmetries for PDEs from the class in question is also presented. It is shown that all the well-known results for reaction-diffusion equations with exponential nonlinearities follow as particular cases from the results derived for this class of reaction-diffusion-convection equations. The symmetries obtained for constructing exact solutions of the relevant equations are successfully applied. The exact solutions are compared with those found by means of different techniques. Finally, an application of the exact solutions for solving boundary-value problems arising in population dynamics is presented.
Ray, S. Saha
2018-04-01
In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.
Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean
Energy Technology Data Exchange (ETDEWEB)
Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)
2017-06-21
The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.
Paliathanasis, Andronikos; Vakili, Babak
2016-01-01
We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler-DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann-Robertson-Walker metric having the scale factor a( t), a scalar field with potential function V(φ ) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(φ ). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler-DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.
International Nuclear Information System (INIS)
Burde, G.I.
2002-01-01
A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given
Application of the Lie Symmetry Analysis for second-order fractional differential equations
Directory of Open Access Journals (Sweden)
Mousa Ilie
2017-12-01
Full Text Available Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to illustrate the proposed approach.
Celse, Jérémy; Chang, Kirk
2017-11-30
This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liars) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (including general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e., bigger lies) and frequency (i.e., lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights into organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior.
Lie-Hamilton systems on curved spaces: a geometrical approach
Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz
2017-12-01
A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.
Lie algebra of conformal Killing–Yano forms
International Nuclear Information System (INIS)
Ertem, Ümit
2016-01-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)
International Nuclear Information System (INIS)
Eghbali, Ali
2015-01-01
The equations of motion of a super non-Abelian T-dual sigma model on the Lie supergroup (C_1"1+A) in the curved background are explicitly solved by the super Poisson-Lie T-duality. To find the solution of the flat model we use the transformation of supercoordinates, transforming the metric into a constant one, which is shown to be a supercanonical transformation. Then, using the super Poisson-Lie T-duality transformations and the dual decomposition of elements of Drinfel’d superdouble, the solution of the equations of motion for the dual sigma model is obtained. The general form of the dilaton fields satisfying the vanishing β−function equations of the sigma models is found. In this respect, conformal invariance of the sigma models built on the Drinfel’d superdouble ((C_1"1+A) , I_(_2_|_2_)) is guaranteed up to one-loop, at least.
Directory of Open Access Journals (Sweden)
Cantarero Katarzyna
2017-06-01
Full Text Available Lay perceptions of lying are argued to consist of a lie prototype. The latter was found to entail the intention to deceive, belief in falsity and falsity (Coleman & Kay, 1981. We proposed and found that the perceptions of the benefits of others are also an important factor that influences the extent, to which an act of intentional misleading someone to foster a false belief is labeled as a lie. Drawing from the intuitionist model of moral judgments (Haidt, 2001 we assumed that moral judgment of the behaviour would mediate the relationship. In Study 1 we analyzed data coming from a crosscultural project and found that perceived intention to benefit others was negatively related to lie labeling and that this relationship was mediated by the moral judgment of that act. In Study 2 we found that manipulating the benefits of others influenced the extent, to which an act of intentional misleading in order to foster a false belief is labeled as a lie and that, again, this relationship is mediated by the moral judgment of that act.
Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa
2018-06-01
In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.
Quasi-Lie algebras and Lie groups
International Nuclear Information System (INIS)
Momo Bangoura
2006-07-01
In this work, we define the quasi-Poisson Lie quasigroups, dual objects to the quasi-Poisson Lie groups and we establish the correspondence between the local quasi-Poisson Lie quasigoups and quasi-Lie bialgebras (up to isomorphism). (author) [fr
International Nuclear Information System (INIS)
Foroutan, A.
1992-05-01
The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)
International Nuclear Information System (INIS)
Kumar, Vikas; Gupta, R. K.; Jiwari, Ram
2014-01-01
In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions
Lie groups and Lie algebras for physicists
Das, Ashok
2015-01-01
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-02-01
The Department of Energy has prepared an Environmental Assessment (DOE/EA-1143) evaluating the construction, equipping and operation of the proposed Lied Transplant Center at the University of Nebraska Medical Center in Omaha, Nebraska. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Statement in not required.
Similarity solutions for systems arising from an Aedes aegypti model
Freire, Igor Leite; Torrisi, Mariano
2014-04-01
In a recent paper a new model for the Aedes aegypti mosquito dispersal dynamics was proposed and its Lie point symmetries were investigated. According to the carried group classification, the maximal symmetry Lie algebra of the nonlinear cases is reached whenever the advection term vanishes. In this work we analyze the family of systems obtained when the wind effects on the proposed model are neglected. Wide new classes of solutions to the systems under consideration are obtained.
Application of Lie group analysis in geophysical fluid dynamics
Ibragimov, Ranis
2011-01-01
This is the first monograph dealing with the applications of the Lie group analysis to the modeling equations governing internal wave propagation in the deep ocean. A new approach to describe the nonlinear interactions of internal waves in the ocean is presented. While the central idea of the book is to investigate oceanic internal waves through the prism of Lie group analysis, it is also shown for the first time that internal wave beams, representing exact solutions to the equation of motion of stratified fluid, can be found by solving the given model as invariant solutions of nonlinear equat
Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system
International Nuclear Information System (INIS)
Cherniha, Roman; Davydovych, Vasyl’
2013-01-01
Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)
Lie Quasi-Bialgebras and Cohomology of Lie algebra
International Nuclear Information System (INIS)
Bangoura, Momo
2010-05-01
Lie quasi-bialgebras are natural generalisations of Lie bialgebras introduced by Drinfeld. To any Lie quasi-bialgebra structure of finite-dimensional (G, μ, γ, φ), corresponds one Lie algebra structure on D = G + G*, called the double of the given Lie quasi-bialgebra. We show that there exist on ΛG, the exterior algebra of G, a D-module structure and we establish an isomorphism of D-modules between ΛD and End(ΛG), D acting on ΛD by the adjoint action. (author) [fr
Directory of Open Access Journals (Sweden)
W. Sinkala
2012-01-01
Full Text Available We use Lie symmetry analysis to solve a boundary value problem that arises in chemical engineering, namely, mass transfer during the contact of a solid slab with an overhead flowing fluid. This problem was earlier tackled using Adomian decomposition method (Fatoorehchi and Abolghasemi 2011, leading to the Adomian series form of solution. It turns out that the application of Lie group analysis yields an elegant form of the solution. After introducing the governing mathematical model and some preliminaries of Lie symmetry analysis, we compute the Lie point symmetries admitted by the governing equation and use these to construct the desired solution as an invariant solution.
Leadership during Crisis: Threat Identifcation and Solution Proposal
Directory of Open Access Journals (Sweden)
Lukáš Mazánek
2016-01-01
Full Text Available Purpose of the article: In the current dynamic market environment, companies are vulnerable to many problems of different character, which could result into a real business crisis. The submitted study summarizes possible approaches to leading through crisis situation. Therefore proposal of solutions which tools leader could use during crisis was made. Purpose of this study is to create theoretical background for the future research, in the field of application right leadership concept during crisis. Methodology/methods: For the purpose of the illustration possible threats which can lead to a business crisis was chosen the Ishikawa diagram. Next up review of scientific publication focused on leadership during crisis was made. With emphasis especially on research studies published in last 10 years in the Leadership Quarterly Journal. These results was precisely analyzed and then the most useful informations synthesized into proposed solutions. Scientific aim: The aim of this study, is to identify possible threats which could be a source of corporate crises. Subsequently propose solutions within the competence of corporate leader, how to prevent those threats or lower the intensity of crisis which already occur Findings: Proposed solutions was found in the field of HR leadership, crisis communication, leader´s behavior connected with leadership style used during crisis and increasing effectivity of leading crisis team. The application of mentioned approaches, contribute to preparedness on the possible negative future development and reduce the intensity of crisis, which has already af-fected the corporation. Conclusions: The contribution of this study is creation of synoptic overview of corporate threats and proposal of corresponding solutions of those. The implication is to summarize results from previous empirical studies to create enough theoretic foundation for the future research.
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
Earthquakes - a danger to deep-lying repositories?
International Nuclear Information System (INIS)
2012-03-01
This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Applications of Lie algebras in the solution of dynamic problems
International Nuclear Information System (INIS)
Fellay, G.
1983-01-01
The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
A Proposed Solution to the Scholarly Communications Crisis
Schatzle, Chad
2005-01-01
After reviewing the history and parameters of the scholarly communications crisis, particularly in regard to skyrocketing prices for journals in the natural sciences, the author reviews and rejects previously attempted solutions. He then employs the principles of game theory in proposing a new solution to the crisis.
Ombud’s Corner: a world without lies?
Sudeshna Datta-Cockerill
2016-01-01
Can a world without lies exist? Are there different types of lies, some more acceptable than others, or is that just an excuse that we use to justify ourselves? What consequences do lies have in the working environment? If we look in the dictionary for the definition of “lie”, we find: “A lie is a false statement made with deliberate intent to deceive”. This simple definition turns out to be very useful when we feel stuck in intricate conflict situations where we suspect lies to have played a role. Examples may include supervisors presenting a situation in different ways to different colleagues; colleagues withholding information that could be useful to others; reports given in a non-accurate way; and rumours that spread around but cannot be verified. Peter was very keen to lead a particular project. He spoke to his supervisor Philippe who told him that he had in fact already proposed him to the board. When he did not get the job, Peter shared h...
Rubio Martí, Vicente
2016-01-01
En el presente proyecto definimos lo que es un grupo de Lie, así como su respectiva álgebra de Lie canónica como aproximación lineal a dicho grupo de Lie. El proceso de linealización, que es hallar el algebra de Lie de un grupo de Lie dado, tiene su
International Nuclear Information System (INIS)
Kashaev, R.M.; Savel'ev, M.V.; Savel'eva, S.A.
1990-01-01
Nonlinear equations associated through a zero curvature type representation with Lie algebras S 0 Diff T 2 and of infinitesimal diffeomorphisms of (S 1 ) 2 , and also with a new infinite-dimensional Lie algebras. In particular, the general solution (in the sense of the Goursat problem) of the heavently equation which describes self-dual Einstein spaces with one rotational Killing symmetry is discussed, as well as the solutions to a generalized equation. The paper is supplied with Appendix containing the definition of the continuum graded Lie algebras and the general construction of the nonlinear equations associated with them. 11 refs
The quantum poisson-Lie T-duality and mirror symmetry
International Nuclear Information System (INIS)
Parkhomenko, S.E.
1999-01-01
Poisson-Lie T-duality in quantum N=2 superconformal Wess-Zumino-Novikov-Witten models is considered. The Poisson-Lie T-duality transformation rules of the super-Kac-Moody algebra currents are found from the conjecture that, as in the classical case, the quantum Poisson-Lie T-duality transformation is given by an automorphism which interchanges the isotropic subalgebras of the underlying Manin triple in one of the chirality sectors of the model. It is shown that quantum Poisson-Lie T-duality acts on the N=2 super-Virasoro algebra generators of the quantum models as a mirror symmetry acts: in one of the chirality sectors it is a trivial transformation while in another chirality sector it changes the sign of the U(1) current and interchanges the spin-3/2 currents. A generalization of Poisson-Lie T-duality for the quantum Kazama-Suzuki models is proposed. It is shown that quantum Poisson-Lie T-duality acts in these models as a mirror symmetry also
Lie symmetry analysis and soliton solutions of time-fractional K(m, n ...
Indian Academy of Sciences (India)
2016-12-03
Dec 3, 2016 ... Factional differential equations are increasingly used to model problems in physics, such as fluid mechan- ics, biology, viscoelasticity, engineering etc. [1–4]. In .... According to the Lie theory, applying the prolongation. Pr.
International Nuclear Information System (INIS)
Berezin, F.A.
1977-01-01
Generalization of the Laplace-Casimir operator theory on the Lie supergroups is considered. The main result is the formula for radial parts of the Laplace operators under some general assumptions about the Lie supergroup. In particular these assumptions are valid for the Lie suppergroups U(p,g) and C (m,n). The first one is the analogue of the unitary group, the second one is the analogue of the linear group of canonical transformations
"Lie to me"-Oxytocin impairs lie detection between sexes.
Pfundmair, Michaela; Erk, Wiebke; Reinelt, Annika
2017-10-01
The hormone oxytocin modulates various aspects of social behaviors and even seems to lead to a tendency for gullibility. The aim of the current study was to investigate the effect of oxytocin on lie detection. We hypothesized that people under oxytocin would be particularly susceptible to lies told by people of the opposite sex. After administration of oxytocin or a placebo, male and female participants were asked to judge the veracity of statements from same- vs. other-sex actors who either lied or told the truth. Results showed that oxytocin decreased the ability of both male and female participants to correctly classify other-sex statements as truths or lies compared to placebo. This effect was based on a lower ability to detect lies and not a stronger bias to regard truth statements as false. Revealing a new effect of oxytocin, the findings may support assumptions about the hormone working as a catalyst for social adaption. Copyright © 2017. Published by Elsevier Ltd.
Papi, Paolo; Advances in Lie Superalgebras
2014-01-01
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.
Motivation and Consequences of Lying. A Qualitative Analysis of Everyday Lying
Directory of Open Access Journals (Sweden)
Beata Arcimowicz
2015-09-01
Full Text Available This article presents findings of qualitative analysis of semi-structured interviews with a group of "frequent liars" and another of "rare liars" who provided their subjective perspectives on the phenomenon of lying. Participants in this study previously had maintained a diary of their social interactions and lies over the course of one week, which allowed to assign them to one of the two groups: frequent or rare liars. Thematic analysis of the material followed by elements of theory formulation resulted in an extended lying typology that includes not only the target of the lie (the liar vs. other but also the motivation (protection vs. bringing benefits. We offer an analysis of what prevents from telling the truth, i.e. penalties, relationship losses, distress of the lied-to, and anticipated lack of criticism for telling the truth. We also focus on understanding moderatorsof consequences of lying (significance of the area of life, the type of lie and capacity to understand the liar that can be useful in future studies. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1503318
Transformation groups and Lie algebras
Ibragimov, Nail H
2013-01-01
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
Two Types of Expanding Lie Algebra and New Expanding Integrable Systems
International Nuclear Information System (INIS)
Dong Huanhe; Yang Jiming; Wang Hui
2010-01-01
From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebras are obtained. Two expanding integrable systems are produced with the help of the generalized zero curvature equation. One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM). (general)
Speaker Recognition for Mobile User Authentication: An Android Solution
Brunet , Kevin; Taam , Karim; Cherrier , Estelle; Faye , Ndiaga; Rosenberger , Christophe
2013-01-01
National audience; This paper deals with a biometric solution for authentication on mobile devices. Among the possible biometric modalities, speaker recognition seems the most natural choice for a mobile phone. This work lies in the continuation of our previous work \\cite{Biosig2012}, where we evaluated a candidate algorithm in terms of performance and time processing. The proposed solution is implemented here as an Android application. Its performances are evaluated both on a public database...
A discrete variational identity on semi-direct sums of Lie algebras
Energy Technology Data Exchange (ETDEWEB)
M, Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)
2007-12-14
The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant {gamma} involved in the variational identity is determined through the corresponding solution to the stationary discrete zero-curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case furnishes Hamiltonian structures for the associated integrable couplings of the Volterra lattice hierarchy.
A discrete variational identity on semi-direct sums of Lie algebras
International Nuclear Information System (INIS)
M, Wenxiu
2007-01-01
The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant γ involved in the variational identity is determined through the corresponding solution to the stationary discrete zero-curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case furnishes Hamiltonian structures for the associated integrable couplings of the Volterra lattice hierarchy
Lie-Nambu and Lie-Poisson structures in linear and nonlinear quantum mechanics
International Nuclear Information System (INIS)
Czachor, M.
1996-01-01
Space of density matrices in quantum mechanics can be regarded as a Poisson manifold with the dynamics given by certain Lie-Poisson bracket corresponding to an infinite dimensional Lie algebra. The metric structure associated with this Lie algebra is given by a metric tensor which is not equivalent to the Cartan-Killing metric. The Lie-Poisson bracket can be written in a form involving a generalized (Lie-)Nambu bracket. This bracket can be used to generate a generalized, nonlinear and completely integrable dynamics of density matrices. (author)
Lie groups, Lie algebras, and some of their applications
Gilmore, Robert
1974-01-01
Lie group theory plays an increasingly important role in modern physical theories. Many of its calculations remain fundamentally unchanged from one field of physics to another, altering only in terms of symbols and the language. Using the theory of Lie groups as a unifying vehicle, concepts and results from several fields of physics can be expressed in an extremely economical way. With rigor and clarity, this text introduces upper-level undergraduate students to Lie group theory and its physical applications.An opening discussion of introductory concepts leads to explorations of the classical
Lie symmetry analysis and soliton solutions of time-fractional K(m, n ...
Indian Academy of Sciences (India)
2016-12-03
Dec 3, 2016 ... Abstract. In this note, method of Lie symmetries is applied to investigate symmetry properties of time- fractional K (m, n) equation with the Riemann–Liouville derivatives. Reduction of time-fractional K (m, n) equation is done by virtue of the Erdélyi–Kober fractional derivative which depends on a parameter α.
Hsiang, Wu-Yi
2017-01-01
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartans' theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie t...
Lie algebraic discussion for affinity based information diffusion in social networks
Shang, Yilun
2017-11-01
In this paper we develop a dynamical information diffusion model which features the affinity of people with information disseminated in social networks. Four types of agents, i.e., susceptible, informed, known, and refractory ones, are involved in the system, and the affinity mechanism composing of an affinity threshold which represents the fitness of information to be propagated is incorporated. The model can be generally described by a time-inhomogeneous Markov chain, which is governed by its master (Kolmogorov) equation. Based on the Wei-Norman method, we derive analytical solutions of the model by constructing a low-dimensional Lie algebra. Numerical examples are provided to illustrate the obtained theoretical results. This study provides useful insights into the closed-form solutions of complex social dynamics models through the Lie algebra method.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
Canonical representations of the Lie superalgebra osp(1,4)
International Nuclear Information System (INIS)
Blank, J.; Havlicek, M.; Lassner, W.; Bednar, M.
1981-06-01
The method for constructing infinite dimensional representations of Lie superalgebras proposed by the authors recently is applied to the superalgebra osp(1,4). Explicit formulae for its generators in terms of two or three pairs of operators fulfilling the canonical commutation relations, at most one pair of operators fulfilling the canonical anticommutation relations and at most one real parameter are obtained. The generators of the Lie subalgebra sp(4,IR) contains osp(1,4) are represented skew-symmetrically and both Casimir operators are equal to multiples of the unity operator. (author)
Lying in business : Insights from Hanna Arendt's 'Lying in Politics'
Eenkhoorn, P.; Graafland, J.J.
2011-01-01
The political philosopher Hannah Arendt develops several arguments regarding why truthfulness cannot be counted among the political virtues. This article shows that similar arguments apply to lying in business. Based on Hannah Arendt's theory, we distinguish five reasons why lying is a structural
Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space
International Nuclear Information System (INIS)
Vakili, Babak; Khosravi, Nima
2010-01-01
We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in x, y, and z directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the Universe in each direction experiences an endless sequence of contractions and reexpansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.
Moral is political Notions of ideal citizenship in Lie Kim Hok’s Hikajat Khonghoetjoe
Directory of Open Access Journals (Sweden)
Evi Sutrisno
2017-04-01
Full Text Available This paper argues that the Hikajat Khonghoetjoe (The life story of Confucius, written by Lie Kim Hok in 1897, is a medium to propose modern ideas of flexible subjectivity, cosmopolitanism, active citizenship and the concepts of good governance to the Chinese Peranakans who experienced political and racial discrimination under Dutch colonization. Using the figure of Confucius, Lie aimed to cultivate virtuous subjects who apply their faith and morality in political sphere. He intended to raise political awareness and rights among the Chinese as colonial subjects and to valorize their bargaining power with the Dutch colonial government. By introducing Confucianism, Lie proposed that the Chinese reconnect themselves with China as an alternative patronage which could subvert White supremacy. Instead of using sources in Chinese, Lie translated the biography of Confucius from the European texts. In crafting his story, Lie applied conglomerate authorship, a technique commonly practised by Malay authors. It allowed him to select, combine and appropriate the source texts. To justify that Confucius' virtue and his teaching were superb and are applicable to contemporary life, Lie borrowed and emphasized European writers’ high appraisal of Confucianism, instead of using his own arguments and opinions. I call this writing technique “indirect agency”.
Clinical ethics consultation's dilemma, and a solution.
Rasmussen, Lisa M
2011-01-01
Clinical ethics consultation is on the horns of a dilemma. One horn skewers the field for its lack of standards, while the other horn skewers it for proposing arbitrary or deeply contested foundations. I articulate the dilemma by discussing several critiques of the field and the challenge of formulating standards and suggest that the solution lies, at least until a robust consensus emerges, with establishing a list of proscriptive standards to guide the field.
Medicine, lies and deceptions.
Benn, P
2001-04-01
This article offers a qualified defence of the view that there is a moral difference between telling lies to one's patients, and deceiving them without lying. However, I take issue with certain arguments offered by Jennifer Jackson in support of the same conclusion. In particular, I challenge her claim that to deny that there is such a moral difference makes sense only within a utilitarian framework, and I cast doubt on the aptness of some of her examples of non-lying deception. But I argue that lies have a greater tendency to damage trust than does non-lying deception, and suggest that since many doctors do believe there is a moral boundary between the two types of deception, encouraging them to violate that boundary may have adverse general effects on their moral sensibilities.
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Directory of Open Access Journals (Sweden)
Avraham eMerzel
2015-10-01
Full Text Available Do we feel bound by our own misrepresentations? Does one act of cheating compel the cheater to make subsequent choices that maintain the false image even at a cost? To answer these questions we employed a two-task paradigm such that in the first task the participants could benefit from false reporting of private observations whereas in the second they could benefit from making a prediction in line with their actual, rather than their previously reported observations. Thus, for those participants who inflated their report during the first task, sticking with that report for the second task was likely to lead to a loss, whereas deviating from it would imply that they had lied. Data from three experiments (total N=116 indicate that, having lied, participants were ready to suffer future loss rather than admit, even if implicitly, that they had lied.
Earthquakes - a danger to deep-lying repositories?; erdbeben: eine gefahr fuer tiefenlager?
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-03-15
This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed.
When is a lie acceptable? Work and private life lying acceptance depends on its beneficiary.
Cantarero, Katarzyna; Szarota, Piotr; Stamkou, Eftychia; Navas, Marisol; Dominguez Espinosa, Alejandra Del Carmen
2018-01-01
In this article we show that when analyzing attitude towards lying in a cross-cultural setting, both the beneficiary of the lie (self vs other) and the context (private life vs. professional domain) should be considered. In a study conducted in Estonia, Ireland, Mexico, The Netherlands, Poland, Spain, and Sweden (N = 1345), in which participants evaluated stories presenting various types of lies, we found usefulness of relying on the dimensions. Results showed that in the joint sample the most acceptable were other-oriented lies concerning private life, then other-oriented lies in the professional domain, followed by egoistic lies in the professional domain; and the least acceptance was shown for egoistic lies regarding one's private life. We found a negative correlation between acceptance of a behavior and the evaluation of its deceitfulness.
Second-Order Systems of ODEs Admitting Three-Dimensional Lie Algebras and Integrability
Directory of Open Access Journals (Sweden)
Muhammad Ayub
2013-01-01
the case of k≥3. We discuss the singular invariant representations of canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras. Furthermore, we give an integration procedure for canonical forms for systems of two second-order ODEs admitting three-dimensional Lie algebras which comprises of two approaches, namely, division into four types I, II, III, and IV and that of integrability of the invariant representations. We prove that if a system of two second-order ODEs has a three-dimensional solvable Lie algebra, then, its general solution can be obtained from a partially linear, partially coupled or reduced invariantly represented system of equations. A natural extension of this result is provided for a system of two kth-order (k≥3 ODEs. We present illustrative examples of familiar integrable physical systems which admit three-dimensional Lie algebras such as the classical Kepler problem and the generalized Ermakov systems that give rise to closed trajectories.
Lie bialgebras with triangular decomposition
International Nuclear Information System (INIS)
Andruskiewitsch, N.; Levstein, F.
1992-06-01
Lie bialgebras originated in a triangular decomposition of the underlying Lie algebra are discussed. The explicit formulas for the quantization of the Heisenberg Lie algebra and some motion Lie algebras are given, as well as the algebra of rational functions on the quantum Heisenberg group and the formula for the universal R-matrix. (author). 17 refs
Vrij, Aldert; Taylor, Paul J.; Picornell, Isabel; Oxburgh, Gavin; Myklebust, Trond; Grant, Tim; Milne, Rebecca
2015-01-01
In this chapter, we discuss verbal lie detection and will argue that speech content can be revealing about deception. Starting with a section discussing the, in our view, myth that non-verbal behaviour would be more revealing about deception than speech, we then provide an overview of verbal lie
Single-trial lie detection using a combined fNIRS-polygraph system
Directory of Open Access Journals (Sweden)
M. Raheel eBhutta
2015-06-01
Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.
Biyogmam, Guy Roger
2011-01-01
In this paper, we introduce the category of Lie $n$-racks and generalize several results known on racks. In particular, we show that the tangent space of a Lie $n$-Rack at the neutral element has a Leibniz $n$-algebra structure. We also define a cohomology theory of $n$-racks..
Jurco, Branislav
2011-01-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, which is simply connected in each simplicial level. We use the 1-jet of the classifying space of G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The res...
Nonflexible Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1978-01-01
We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type
6th Hilbert's problem and S.Lie's infinite groups
International Nuclear Information System (INIS)
Konopleva, N.P.
1999-01-01
The progress in Hilbert's sixth problem solving is demonstrated. That became possible thanks to the gauge field theory in physics and to the geometrical treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is the best basis for solution of the problem being discussed. This talk has been reported at the International Seminar '100 Years after Sophus Lie' (Leipzig, Germany)
Isomorphism of Intransitive Linear Lie Equations
Directory of Open Access Journals (Sweden)
Jose Miguel Martins Veloso
2009-11-01
Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.
Chen, Haoyao; Wang, Can; Lou, Yunjiang
2013-06-01
This paper presents an efficient approach to achieve microparticles flocking with robotics and optical tweezers technologies. All particles trapped by optical tweezers can be automatically moved toward a predefined region without collision. The main contribution of this paper lies in the proposal of several solutions to the flocking manipulation of microparticles in microenvironments. First, a simple flocking controller is proposed to generate the desired positions and velocities for particles' movement. Second, a velocity saturation method is implemented to prevent the desired velocities from exceeding a safe limit. Third, a two-layer control architecture is proposed for the motion control of optical tweezers. This architecture can help make many robotic manipulations achievable under microenvironments. The proposed approach with these solutions can be applied to many bioapplications especially in cell engineering and biomedicine. Experiments on yeast cells with a robot-tweezers system are finally performed to verify the effectiveness of the proposed approach.
Filiform Lie algebras of order 3
International Nuclear Information System (INIS)
Navarro, R. M.
2014-01-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases
Bakhurst, D
1992-01-01
This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrue...
International Nuclear Information System (INIS)
Prakash, M.
1985-01-01
The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations
Computations in finite-dimensional Lie algebras
Directory of Open Access Journals (Sweden)
A. M. Cohen
1997-12-01
Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.
Lying in Business : Insights from Hannah Arendt’s ‘Lying in Politics’
Eenkhoorn, P.; Graafland, J.J.
2010-01-01
The famous political philosopher Hannah Arendt develops several arguments why truthfulness cannot be counted among the political virtues. This article shows that similar arguments apply to lying in business. Based on Hannah Arendt’s theory, we distinguish five reasons why lying is a structural
Debey, E.; De Houwer, J.; Verschuere, B.
2014-01-01
Cognitive models of deception focus on the conflict-inducing nature of the truth activation during lying. Here we tested the counterintuitive hypothesis that the truth can also serve a functional role in the act of lying. More specifically, we examined whether the construction of a lie can involve a
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.
2007-01-01
Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves
Classification and identification of Lie algebras
Snobl, Libor
2014-01-01
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...
The structure of complex Lie groups
Lee, Dong Hoon
2001-01-01
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects.The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups.The differences between complex algebraic groups and complex Lie groups are sometimes subtle ...
Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)
2016-04-15
Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)
Purposes and Effects of Lying.
Hample, Dale
Three exploratory studies were aimed at describing the purposes of lies and the consequences of lying. Data were collected through a partly open-ended questionnaire, a content analysis of several tape-recorded interviews, and a large-scale survey. The results showed that two of every three lies were told for selfish reasons, while three of every…
Teaching the Truth about Lies to Psychology Students: The Speed Lying Task
Pearson, Matthew R.; Richardson, Thomas A.
2013-01-01
To teach the importance of deception in everyday social life, an in-class activity called the "Speed Lying Task" was given in an introductory social psychology class. In class, two major research findings were replicated: Individuals detected deception at levels no better than expected by chance and lie detection confidence was unrelated…
Bakhurst, D
1992-06-01
This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrues the nature of moral obligation. Against Jackson, it is argued that both lying and intentional deception are wrong where they infringe a patient's right to autonomy or his/her right to be treated with dignity. These rights represent 'deontological constraints' on action, defining what we must not do whatever the functional value of the consequences. Medical ethics must recognise such constraints if it is to contribute to the moral integrity of medical practice.
Gradings on simple Lie algebras
Elduque, Alberto
2013-01-01
Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.
Automorphic Lie algebras with dihedral symmetry
International Nuclear Information System (INIS)
Knibbeler, V; Lombardo, S; A Sanders, J
2014-01-01
The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)
Verschuere, B.; Spruyt, A.; Meijer, E.H.; Otgaar, H.
2011-01-01
Brain imaging studies suggest that truth telling constitutes the default of the human brain and that lying involves intentional suppression of the predominant truth response. By manipulating the truth proportion in the Sheffield lie test, we investigated whether the dominance of the truth response
Lie-admissible structure of Hamilton's original equations with external terms
International Nuclear Information System (INIS)
Santilli, R.M.
1991-09-01
As a necessary additional step in preparation of our operator studies of closed nonhamiltonian systems, in this note we consider the algebraic structure of the original equations proposed by Lagrange and Hamilton, those with external terms representing precisely the contact nonpotential forces of the interior dynamical problem. We show that the brackets of the theory violate the conditions to characterize any algebra. Nevertheless, when properly written, they characterize a covering of the Lie-isotopic algebras called Lie-admissible algebras. It is indicated that a similar occurrence exists for conventional operator treatments, e.g. for nonconservative nuclear cases characterized by nonhermitean Hamiltonians. This occurrence then prevents a rigorous treatment of basic notions, such as that of angular momentum and spin spin, which are centrally dependent on the existence of a consistent algebraic structure. The emergence of the Lie-admissible algebras is therefore expected to be unavoidable for any rigorous operator treatment of open systems with nonlinear, nonlocal and nonhamiltonian external forces. (author). 14 refs, 1 fig
Single-trial lie detection using a combined fNIRS-polygraph system
Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik
2015-01-01
Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Bakhurst, D
1992-01-01
This article challenges Jennifer Jackson's recent defence of doctors' rights to deceive patients. Jackson maintains there is a general moral difference between lying and intentional deception: while doctors have a prima facie duty not to lie, there is no such obligation to avoid deception. This paper argues 1) that an examination of cases shows that lying and deception are often morally equivalent, and 2) that Jackson's position is premised on a species of moral functionalism that misconstrues the nature of moral obligation. Against Jackson, it is argued that both lying and intentional deception are wrong where they infringe a patient's right to autonomy or his/her right to be treated with dignity. These rights represent 'deontological constraints' on action, defining what we must not do whatever the functional value of the consequences. Medical ethics must recognise such constraints if it is to contribute to the moral integrity of medical practice. PMID:1619626
Almost Kaehler Ricci Flows and Einstein and Lagrange-Finsler Structures on Lie Algebroids
Vacaru, Sergiu I
2015-01-01
In this work we investigate Ricci flows of almost Kaehler structures on Lie algebroids when the fundamental geometric objects are completely determined by (semi) Riemannian metrics, or effective) regular generating Lagrange/ Finsler, functions. There are constructed canonical almost symplectic connections for which the geometric flows can be represented as gradient ones and characterized by nonholonomic deformations of Grigory Perelman's functionals. The first goal of this paper is to define such thermodynamical type values and derive almost K\\"ahler - Ricci geometric evolution equations. The second goal is to study how fixed Lie algebroid, i.e. Ricci soliton, configurations can be constructed for Riemannian manifolds and/or (co) tangent bundles endowed with nonholonomic distributions modelling (generalized) Einstein or Finsler - Cartan spaces. Finally, there are provided some examples of generic off-diagonal solutions for Lie algebroid type Ricci solitons and (effective) Einstein and Lagrange-Finsler algebro...
Low-lying excited states by constrained DFT
Ramos, Pablo; Pavanello, Michele
2018-04-01
Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.
Exponentiation and deformations of Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1982-01-01
The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
Normalization in Lie algebras via mould calculus and applications
Paul, Thierry; Sauzin, David
2017-11-01
We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
An automatic system for the detection of dairy cows lying behaviour in free-stall barns
Directory of Open Access Journals (Sweden)
Simona M.C. Porto
2013-09-01
Full Text Available In this paper, a method for the automatic detection of dairy cow lying behaviour in free-stall barns is proposed. A computer visionbased system (CVBS composed of a video-recording system and a cow lying behaviour detector based on the Viola Jones algorithm was developed. The CVBS performance was tested in a head-to-head free stall barn. Two classifiers were implemented in the software component of the CVBS to obtain the cow lying behaviour detector. The CVBS was validated by comparing its detection results with those generated from visual recognition. This comparison allowed the following accuracy indices to be calculated: the branching factor (BF, the miss factor (MF, the sensitivity, and the quality percentage (QP. The MF value of approximately 0.09 showed that the CVBS missed one cow every 11 well detected cows. Conversely, the BF value of approximately 0.08 indicated that one false positive was detected every 13 well detected cows. The high value of approximately 0.92 obtained for the sensitivity index and that obtained for QP of about 0.85 revealed the ability of the proposed system to detect cows lying in the stalls.
Lie algebroids in derived differential topology
Nuiten, J.J.
2018-01-01
A classical principle in deformation theory asserts that any formal deformation problem is controlled by a differential graded Lie algebra. This thesis studies a generalization of this principle to Lie algebroids, and uses this to examine the interactions between the theory of Lie algebroids and the
Quantum Lie theory a multilinear approach
Kharchenko, Vladislav
2015-01-01
This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin Lie algebras; and Shestakov--Umirbaev operations for the Lie theory of nonassociative products. Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.
Lie Algebras Associated with Group U(n)
International Nuclear Information System (INIS)
Zhang Yufeng; Dong Huanghe; Honwah Tam
2007-01-01
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra A 1 are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Vertex ring-indexed Lie algebras
International Nuclear Information System (INIS)
Fairlie, David; Zachos, Cosmas
2005-01-01
Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers
Classification of simple flexible Lie-admissible algebras
International Nuclear Information System (INIS)
Okubo, S.; Myung, H.C.
1979-01-01
Let A be a finite-dimensional flexible Lie-admissible algebra over the complex field such that A - is a simple Lie algebra. It is shown that either A is itself a Lie algebra isomorphic to A - or A - is a Lie algebra of type A/sub n/ (n greater than or equal to 2). In the latter case, A is isomorphic to the algebra defined on the space of (n + 1) x (n + 1) traceless matrices with multiplication given by x * y = μxy + (1 - μ)yx - (1/(n + 100 Tr (xy) E where μ is a fixed scalar, xy denotes the matrix operators in Lie algebras which has been studied in theoretical physics. We also discuss a broader class of Lie algebras over arbitrary field of characteristic not equal to 2, called quasi-classical, which includes semisimple as well as reductive Lie algebras. For this class of Lie algebras, we can introduce a multiplication which makes the adjoint operator space into an associative algebra. When L is a Lie algebra with nondegenerate killing form, it is shown that the adjoint operator algebra of L in the adjoint representation becomes a commutative associative algebra with unit element and its dimension is 1 or 2 if L is simple over the complex field. This is related to the known result that a Lie algebra of type A/sub n/ (n greater than or equal to 2) alone has a nonzero completely symmetric adjoint operator in the adjoint representation while all other algebras have none. Finally, Lie-admissible algebras associated with bilinear form are investigated
A Third-Order p-Laplacian Boundary Value Problem Solved by an SL(3,ℝ Lie-Group Shooting Method
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2013-01-01
Full Text Available The boundary layer problem for power-law fluid can be recast to a third-order p-Laplacian boundary value problem (BVP. In this paper, we transform the third-order p-Laplacian into a new system which exhibits a Lie-symmetry SL(3,ℝ. Then, the closure property of the Lie-group is used to derive a linear transformation between the boundary values at two ends of a spatial interval. Hence, we can iteratively solve the missing left boundary conditions, which are determined by matching the right boundary conditions through a finer tuning of r∈[0,1]. The present SL(3,ℝ Lie-group shooting method is easily implemented and is efficient to tackle the multiple solutions of the third-order p-Laplacian. When the missing left boundary values can be determined accurately, we can apply the fourth-order Runge-Kutta (RK4 method to obtain a quite accurate numerical solution of the p-Laplacian.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Generation of exact solutions to the Einstein field equations for homogeneous space--time
International Nuclear Information System (INIS)
Hiromoto, R.E.
1978-01-01
A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon
Nonlinear analysis of flexible plates lying on elastic foundation
Directory of Open Access Journals (Sweden)
Trushin Sergey
2017-01-01
Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.
Seron, X
2014-10-01
The issue of lying occurs in neuropsychology especially when examinations are conducted in a forensic context. When a subject intentionally either presents non-existent deficits or exaggerates their severity to obtain financial or material compensation, this behaviour is termed malingering. Malingering is discussed in the general framework of lying in psychology, and the different procedures used by neuropsychologists to evidence a lack of collaboration at examination are briefly presented and discussed. When a lack of collaboration is observed, specific emphasis is placed on the difficulty in unambiguously establishing that this results from the patient's voluntary decision. Copyright © 2014. Published by Elsevier SAS.
The First Honest Book about Lies.
Kincher, Jonni; Espeland, Pamela, Ed.
Readers learn how to discern the truth from lies through a series of activities, games, and experiments. This book invites young students to look at lies in a fair and balanced way. Different types of lies are examined and the purposes they serve and discussed. Problem solving activities are given. The book is organized in nine chapters,…
On Deformations and Contractions of Lie Algebras
Directory of Open Access Journals (Sweden)
Marc de Montigny
2006-05-01
Full Text Available In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.
Lagrangian submanifolds and dynamics on Lie algebroids
International Nuclear Information System (INIS)
Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo
2005-01-01
In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)
Accurate high-lying eigenvalues of Schroedinger and Sturm-Liouville problems
International Nuclear Information System (INIS)
Vanden Berghe, G.; Van Daele, M.; De Meyer, H.
1994-01-01
A modified difference and a Numerov-like scheme have been introduced in a shooting algorithm for the determination of the (higher-lying) eigenvalues of Schroedinger equations and Sturm-Liouville problems. Some numerical experiments are introduced. Time measurements have been performed. The proposed algorithms are compared with other previously introduced shooting schemes. The structure of the eigenvalue error is discussed. ((orig.))
Pro-Lie Groups: A Survey with Open Problems
Directory of Open Access Journals (Sweden)
Karl H. Hofmann
2015-07-01
Full Text Available A topological group is called a pro-Lie group if it is isomorphic to a closed subgroup of a product of finite-dimensional real Lie groups. This class of groups is closed under the formation of arbitrary products and closed subgroups and forms a complete category. It includes each finite-dimensional Lie group, each locally-compact group that has a compact quotient group modulo its identity component and, thus, in particular, each compact and each connected locally-compact group; it also includes all locally-compact Abelian groups. This paper provides an overview of the structure theory and the Lie theory of pro-Lie groups, including results more recent than those in the authors’ reference book on pro-Lie groups. Significantly, it also includes a review of the recent insight that weakly-complete unital algebras provide a natural habitat for both pro-Lie algebras and pro-Lie groups, indeed for the exponential function that links the two. (A topological vector space is weakly complete if it is isomorphic to a power RX of an arbitrary set of copies of R. This class of real vector spaces is at the basis of the Lie theory of pro-Lie groups. The article also lists 12 open questions connected to pro-Lie groups.
Solution Proposals for Japan-Oriented Offshore Software Development in China
Zhang, Lei; Zhang, Xuan; Chai, Meiping; Tan, Yibing; Miyake, Shigeru; Taniguchi, Yoji; Hosoya, Jun; Mibe, Ryota
Surveys on the Japan-oriented vendors in China were conducted twice to find out the existent problems in the Japan-oriented offshore software development. From these survey results, four main problems were found out, which were the frequent requirement changes from the product owner, the misunderstanding of the requirement specification in the vendor side, the heavy overhead of the project management and the low-efficiency communication between the product owner and the vendor. Several solutions are proposed to solve these four problems, which mainly consist of the improvement of the offshore software development process and the development of the offshore development supporting tools. The proposed offshore development process is based on the application of the prototype development, the iteration development and the customer test driven development processes. The proposed offshore development supporting tools include the project management assistant tool and the communication assistant tool.
International Nuclear Information System (INIS)
Steinberg, S.; Wolf, K.B.
1979-01-01
The authors study the construction and action of certain Lie algebras of second- and higher-order differential operators on spaces of solutions of well-known parabolic, hyperbolic and elliptic linear differential equations. The latter include the N-dimensional quadratic quantum Hamiltonian Schroedinger equations, the one-dimensional heat and wave equations and the two-dimensional Helmholtz equation. In one approach, the usual similarity first-order differential operator algebra of the equation is embedded in the larger one, which appears as a quantum-mechanical dynamic algebra. In a second approach, the new algebra is built as the time evolution of a finite-transformation algebra on the initial conditions. In a third approach, the algebra to inhomogeneous similarity algebra is deformed to a noncompact classical one. In every case, we can integrate the algebra to a Lie group of integral transforms acting effectively on the solution space of the differential equation. (author)
Particle-like structure of coaxial Lie algebras
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions
Directory of Open Access Journals (Sweden)
Mohammad Izadi Najafabadi
2013-01-01
Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.
Solutions to higher hamiltonians in the Toda hierarchies
International Nuclear Information System (INIS)
Ferreira, L.A.; Londe, R.M.
1988-01-01
We present a method for constructing the general solution to higher hamiltonians of the Toda hierarchies of integrable models associated to a simple Lie group G. The method depends on some special properties of the representations of the Lie algebra of G and it constitutes a generalization of the method used to construct the solutions of the Toda Molecula models. The SL(3) and SL(4) cases are discussed in detail. (author) [pt
A class of exact solutions to the Einstein field equations
International Nuclear Information System (INIS)
Goyal, Nisha; Gupta, R K
2012-01-01
The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)
Solutions and conservation laws of Benjamin–Bona–Mahony ...
Indian Academy of Sciences (India)
obtained with power-law and dual power-law nonlinearities. The Lie group analysis as ... The notion of conservation laws plays an important role in the solution process of differential ... For the theory and applications of Lie group analysis the ...
A non-Lie algebraic framework and its possible merits for symmetry descriptions
International Nuclear Information System (INIS)
Ktorides, C.N.
1975-01-01
A nonassociative algebraic construction is introduced which bears a relation to a Lie algebra L paralleling the relation between an associative enveloping algebra and L. The key ingredient of this algebraic construction is the presence of two parameters which relate it to the enveloping algebra of L. The analog of the Poincare--Birkhoff--Witt theorem is proved for the new algebra. Possibilities of physical relevance are also considered. It is noted that, if fully developed, the mathematical framework suggested by this new algebra should be non-Lie. Subsequently, a certain scheme resulting from specific considerations connected with this (non-Lie) algebraic structure is found to bear striking resemblance to a recent phenomenological theory proposed for explaining CP violation by the K 0 system. Some relevant speculations are also made in view of certain recent trends of thought in elementary particle physics. Finally, in an appendix, a Gell-Mann--Okubo-like mass formula for the new algebra is derived for an SU (3) octet
On geometric approach to Lie symmetries of differential-difference equations
International Nuclear Information System (INIS)
Li Hongjing; Wang Dengshan; Wang Shikun; Wu Ke; Zhao Weizhong
2008-01-01
Based upon Cartan's geometric formulation of differential equations, Harrison and Estabrook proposed a geometric approach for the symmetries of differential equations. In this Letter, we extend Harrison and Estabrook's approach to analyze the symmetries of differential-difference equations. The discrete exterior differential technique is applied in our approach. The Lie symmetry of (2+1)-dimensional Toda equation is investigated by means of our approach
Carnovale, Giovanna; Caselli, Fabrizio; Concini, Corrado; Sole, Alberto
2017-01-01
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.
Preoperational assessment of solute release from waste rock at proposed mining operations
International Nuclear Information System (INIS)
Lapakko, Kim A.
2015-01-01
Highlights: • Modeling to estimate solute release from waste rock at proposed mines is described. • Components of the modeling process are identified and described. • Modeling inputs required are identified and described. • Examples of data generated and their application are presented. • Challenges inherent to environmental review are identified. - Abstract: Environmental assessments are conducted prior to mineral development at proposed mining operations. Among the objectives of these assessments is prediction of solute release from mine wastes projected to be generated by the proposed mining and associated operations. This paper provides guidance to those engaged in these assessments and, in more detail, provides insights on solid-phase characterization and application of kinetic test results for predicting solute release from waste rock. The logic guiding the process is consistent with general model construction practices and recent publications. Baseline conditions at the proposed site are determined and a detailed operational plan is developed and imposed upon the site. Block modeling of the mine geology is conducted to identify the mineral assemblages present, their masses and compositional variations. This information is used to select samples, representative of waste rock to be generated, that will be analyzed and tested to describe characteristics influencing waste rock drainage quality. The characterization results are used to select samples for laboratory dissolution testing (kinetic tests). These tests provide empirical data on dissolution of the various mineral assemblages present as waste rock. The data generated are used, in conjunction with environmental conditions, the proposed method of mine waste storage, and scientific and technical principles, to estimate solute release rates for the operational scale waste rock. Common concerns regarding waste rock are generation of acidic drainage and release of heavy metals and sulfate. Key solid
Testosterone administration reduces lying in men.
Directory of Open Access Journals (Sweden)
Matthias Wibral
Full Text Available Lying is a pervasive phenomenon with important social and economic implications. However, despite substantial interest in the prevalence and determinants of lying, little is known about its biological foundations. Here we study a potential hormonal influence, focusing on the steroid hormone testosterone, which has been shown to play an important role in social behavior. In a double-blind placebo-controlled study, 91 healthy men (24.32±2.73 years received a transdermal administration of 50 mg of testosterone (n=46 or a placebo (n=45. Subsequently, subjects participated in a simple task, in which their payoff depended on the self-reported outcome of a die-roll. Subjects could increase their payoff by lying without fear of being caught. Our results show that testosterone administration substantially decreases lying in men. Self-serving lying occurred in both groups, however, reported payoffs were significantly lower in the testosterone group (p<0.01. Our results contribute to the recent debate on the effect of testosterone on prosocial behavior and its underlying channels.
Properties of the low-lying levels of 122Sb
International Nuclear Information System (INIS)
Gunsteren, W.F. van; Rabenstein, D.
1977-01-01
Nanosecond lifetimes of low-lying levels in the doubly odd nucleus 122 Sb have been measured. On the basis of these results and of already published experimental material, spins and parities for most of the low-lying states are proposed. A simple theoretical description of this nucleus is presented. The model used is that of a proton coupled to a number projected neutron quasiparticle wave function, assuming a Z=N=50 core. The spectrum and transition rates were calculated in a shell model space consisting of eight subshells and using a renormalized Schiffer interaction. The shell model parameters were derived from adjadent nuclei. Good agreement with the experimental level scheme is found. Also the gamma decay properties can be accounted for rather well. Spectroscopic factors for the one-neutron transfer reactions leading to 122 Sb are predicted. Their measurement with high resolution techniques would be a helpful test for the interpretations given. (orig.) [de
Bosch, Jessica
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.
A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications
International Nuclear Information System (INIS)
Zhang Yu-Feng; Rui Wen-Juan; Wu Li-Xin
2015-01-01
With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. (paper)
Nurse Bullying: A Review And A Proposed Solution.
Castronovo, Marie A; Pullizzi, Amy; Evans, ShaKhira
2016-01-01
Nurse bullying is an extremely common phenomenon which has detrimental consequences to nurses, patients, health care institutions, and to the nursing profession itself. It has even been linked to increased patient mortality. This article demonstrates the critical need to resolve the issue of nurse bullying. It also shows that previous attempts of resolution have not been successful, which may be partly due to the fact that the problem is relatively unacknowledged outside the nursing profession. To resolve the problem of nurse bullying, we believe that the solution must include an incentive for institutions to implement the necessary interventions and to ensure that they are effective. We propose that a measurement pertaining to the level of nurse bullying be factored into the calculation of the value-based incentive payment in the Hospital Value-Based Purchasing program. To facilitate this, we propose that a survey be developed and implemented which is similar to the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey. However, whereas the HCAHPS survey measures patients' perspectives of hospital care, this survey would measure nurses' perspectives of workplace bullying. Copyright © 2015 Elsevier Inc. All rights reserved.
Surfaces immersed in Lie algebras associated with elliptic integrals
International Nuclear Information System (INIS)
Grundland, A M; Post, S
2012-01-01
The objective of this work is to adapt the Fokas–Gel’fand immersion formula to ordinary differential equations written in the Lax representation. The formalism of generalized vector fields and their prolongation structure is employed to establish necessary and sufficient conditions for the existence and integration of immersion functions for surfaces in Lie algebras. As an example, a class of second-order, integrable, ordinary differential equations is considered and the most general solutions for the wavefunctions of the linear spectral problem are found. Several explicit examples of surfaces associated with Jacobian and P-Weierstrass elliptic functions are presented. (paper)
Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.
2014-09-01
Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.
The Centroid of a Lie Triple Algebra
Directory of Open Access Journals (Sweden)
Xiaohong Liu
2013-01-01
Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.
Lie Symmetry of the Diffusive Lotka–Volterra System with Time-Dependent Coefficients
Directory of Open Access Journals (Sweden)
Vasyl’ Davydovych
2018-02-01
Full Text Available Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified coefficients to the system of ordinary differential equations (ODEs and an example of the exact solution with a biological interpretation are found.
Enveloping algebras of Lie groups with descrete series
International Nuclear Information System (INIS)
Nguyen huu Anh; Vuong manh Son
1990-09-01
In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs
Looking for truth and finding lies: the prospects for a nascent neuroimaging of deception.
Spence, Sean A; Kaylor-Hughes, Catherine J
2008-01-01
Lying is ubiquitous and has acquired many names. In 'natural experiments', both pathological lying and truthfulness implicate prefrontal cortices. Recently, the advent of functional neuroimaging has allowed investigators to study deception in the non-pathological state. Prefrontal cortices are again implicated, although the regions identified vary across experiments. Forensic application of such technology (to the detection of deceit) requires the solution of tractable technical problems. Whether we 'should' detect deception remains an ethical problem: one for societies to resolve. However, such a procedure would only appear to be ethical when subjects volunteer to participate, as might occur during the investigation of alleged miscarriages of justice. We demonstrate how this might be approached.
Symmetries and exact solutions of the nondiagonal Einstein-Rosen metrics
International Nuclear Information System (INIS)
Goyal, N; Gupta, R K
2012-01-01
We seek exact solutions of the nondiagonal Einstein-Rosen metrics. The method of Lie symmetry of differential equations is utilized to obtain new exact solutions of Einstein vacuum equations obtained from the nondiagonal Einstein-Rosen metric. Four cases arise depending on the nature of the Lie symmetry generator. In all cases, we find reductions in terms of ordinary differential equations and exact solutions of the nonlinear system of partial differential equations (PDEs) are derived. For this purpose, first we check the Painlevé property and then corresponding to the nonlinear system of PDEs, symmetries and exact solutions are obtained.
The challenges facing ethnographic design research: A proposed methodological solution
DEFF Research Database (Denmark)
Cash, Philip; Hicks, Ben; Culley, Steve
2009-01-01
Central to improving and maintaining high levels of performance in emerging ethnographic design research is a fundamental requirement to address some of the problems associated with the subject. In particular seven core issues are identified and include the complexity of test development......, variability of methods, resource intensiveness, subjectivity, comparability, common metrics and industrial acceptance. To address these problems this paper describes a structured methodological approach in which three main areas are proposed, the modularisation of the research process, the standardisation...... of the dataset and the stratification of the research context. The paper then examines the fundamental requirements of this scheme and how these relate to a Design Observatory approach. Following this, the proposed solution is related back to the initial problem set and potential issues are discussed. Finally...
BTZ black hole from Poisson–Lie T-dualizable sigma models with spectators
Directory of Open Access Journals (Sweden)
A. Eghbali
2017-09-01
Full Text Available The non-Abelian T-dualization of the BTZ black hole is discussed in detail by using the Poisson–Lie T-duality in the presence of spectators. We explicitly construct a dual pair of sigma models related by Poisson–Lie symmetry. The original model is built on a 2+1-dimensional manifold M≈O×G, where G as a two-dimensional real non-Abelian Lie group acts freely on M, while O is the orbit of G in M. The findings of our study show that the original model indeed is canonically equivalent to the SL(2,R Wess–Zumino–Witten (WZW model for a given value of the background parameters. Moreover, by a convenient coordinate transformation we show that this model describes a string propagating in a spacetime with the BTZ black hole metric in such a way that a new family of the solutions to low energy string theory with the BTZ black hole vacuum metric, constant dilaton field and a new torsion potential is found. The dual model is built on a 2+1-dimensional target manifold M˜ with two-dimensional real Abelian Lie group G˜ acting freely on it. We further show that the dual model yields a three-dimensional charged black string for which the mass M and axion charge Q per unit length are calculated. After that, the structure and asymptotic nature of the dual space–time including the horizon and singularity are determined.
The representations of Lie groups and geometric quantizations
International Nuclear Information System (INIS)
Zhao Qiang
1998-01-01
In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)
Mikš, Antonín; Novák, Pavel
2017-09-01
The paper is focused on the problem of determination of the point of incidence of a light ray for the case of reflection or refraction at the spherical optical surface, assuming that two fixed points in space that the sought light ray should go through are given. The requirement is that one of these points lies on the incident ray and the other point on the reflected/refracted ray. Although at first glance it seems to be a simple problem, it will be shown that it has no simple analytical solution. The basic idea of the solution is given, and it is shown that the problem leads to a nonlinear equation in one variable. The roots of the resulting nonlinear equation can be found by numerical methods of mathematical optimization. The proposed methods were implemented in MATLAB, and the proper function of these algorithms was verified on several examples.
Lie-superalgebraical aspects of quantum statistics
International Nuclear Information System (INIS)
Palev, T.D.
1978-01-01
The Lie-superalgebraical properties of the ordinary quantum statistics are discussed with the aim of possible generalization in quantum theory and in theoretical physics. It is indicated that the algebra generated by n pairs of Fermi or paraFermi operators is isomorphic to the classical simple Lie algebra Bsub(n) of the SO(2n+1) orthogonal group, whereas n pairs of Bose or paraBose operators generate the simple orthosympletic superalgebra B(O,n). The transition to infinite number of creation and annihilation operators (n → infinity) does not change a superalgebraic structure. Hence, ordinary Bose and Fermi quantization can be considered as quantization over definite irreducible representations of two simple Lie superalgebras. The idea is given of how one can introduce creation and annihilation operators that satisfy the second quantization postulates and generate other simple Lie superalgebras
New solutions to the Vortex Anisotropic Electron Hydrodynamic equations for a Weibel plasma
International Nuclear Information System (INIS)
Bychenkov, V.Yu.; Kovalev, V.F.; Pustovalov, V.V.
1996-01-01
On the basis of the group analysis, new nonlinear solutions to the equations of Vortex Anisotropic Electron Hydrodynamics (VAEH) describing large-scale magnetic structures in a plasm with an anisotropic pressure are obtained. Unlike familiar particular nonlinear solutions to the VAEH equations, new solutions, which are found in the form of an infinite series, are invariant or partially invariant with respect to the permissible Lie and Lie-Baecklund symmetry groups. Examples of finite regular solutions and solutions in the form of magnetic explosion are presented to illustrate the new solutions obtained
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.
2007-05-01
The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)
Testosterone Administration Reduces Lying in Men
Wibral, M.; Dohmen, T.J.; Klingmüller, Dietrich; Weber, Bernd; Falk, Armin
2012-01-01
Lying is a pervasive phenomenon with important social and economic implications. However, despite substantial interest in the prevalence and determinants of lying, little is known about its biological foundations. Here we study a potential hormonal influence, focusing on the steroid hormone
Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation
Directory of Open Access Journals (Sweden)
Hongwei Yang
2012-01-01
Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.
Reductive Lie-admissible algebras applied to H-spaces and connections
International Nuclear Information System (INIS)
Sagle, A.A.
1982-01-01
An algebra A with multiplication xy is Lie-admissible if the vector space A with new multiplication [x,y] = xy-yx is a Lie algebra; we denote this Lie algebra by A - . Thus, an associative algebra is Lie-admissible but a Cayley algebra is not Lie-admissible. In this paper we show how Lie-admissible algebras arise from Lie groups and their application to differential geometry on Lie groups via the following theorem. Let A be an n-dimensional Lie-admissible algebra over the reals. Let G be a Lie group with multiplication function μ and with Lie algebra g which is isomorphic to A - . Then there exiss a corrdinate system at the identify e in G which represents μ by a function F:gxg→g defined locally at the origin, such that the second derivative, F 2 , at the origin defines on the vector space g the structure of a nonassociative algebra (g, F 2 ). Furthermore this algebra is isomorphic to A and (g, F 2 ) - is isomorphic to A - . Thus roughly, any Lie-admissible algebra is isomorphic to an algebra obtained from a Lie algebra via a change of coordinates in the Lie group. Lie algebras arise by using canonical coordinates and the Campbell-Hausdorff formula. Applications of this show that any G-invariant psuedo-Riemannian connection on G is completely determined by a suitable Lie-admissible algebra. These results extend to H-spaces, reductive Lie-admissible algebras and connections on homogeneous H-spaces. Thus, alternative and other non-Lie-admissible algebras can be utilized
Behind every innovative solution lies an obscure feature
Directory of Open Access Journals (Sweden)
Lee Spector (Fellow ISGEC
2012-06-01
Full Text Available The Obscure Features Hypothesis (OFH for innovation states that a two-step process undergirds almost all innovative solutions: (1 notice an infrequently observed or new (i.e., obscure feature of the problem and (2 construct an interaction involving the obscure feature that produces the desired effects to solve the problem. The OFH leads to a systematic derivation of innovation-enhancing techniques by engaging in two tasks. First, we developed a 32-category system of the types of features possessable by a physical object or material. This Feature Type Taxonomy (FTT provides a panoramic view of the space of features and assists in searches for the obscure ones. Second, we are articulating the many cognitive reasons that obscure features are overlooked and are developing countering techniques for each known reason. We present the implications and techniques of the OFH, as well as indicate how software can assist innovators in the effective use of these innovation-enhancing techniques.
The Effect of Telling Lies on Belief in the Truth
Directory of Open Access Journals (Sweden)
Danielle Polage
2017-11-01
Full Text Available The current study looks at the effect of telling lies, in contrast to simply planning lies, on participants’ belief in the truth. Participants planned and told a lie, planned to tell a lie but didn’t tell it, told an unplanned lie, or neither planned nor told a lie (control about events that did not actually happen to them. Participants attempted to convince researchers that all of the stories told were true. Results show that telling a lie plays a more important role in inflating belief scores than simply preparing the script of a lie. Cognitive dissonance may lead to motivated forgetting of information that does not align with the lie. This research suggests that telling lies may lead to confusion as to the veracity of the lie leading to inflated belief scores.
Biderivations of finite dimensional complex simple Lie algebras
Tang, Xiaomin
2016-01-01
In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.
International Nuclear Information System (INIS)
Kanakoglou, K.; Daskaloyannis, C.; Herrera-Aguilar, A.
2010-01-01
The mathematical structure of a mixed paraparticle system (combining both parabosonic and parafermionic degrees of freedom) commonly known as the Relative Parabose Set, will be investigated and a braided group structure will be described for it. A new family of realizations of an arbitrary Lie superalgebra will be presented and it will be shown that these realizations possess the valuable representation-theoretic property of transferring invariably the super-Hopf structure. Finally two classes of virtual applications will be outlined: The first is of interest for both mathematics and mathematical physics and deals with the representation theory of infinite dimensional Lie superalgebras, while the second is of interest in theoretical physics and has to do with attempts to determine specific classes of solutions of the Skyrme model.
Graded-Lie-algebra cohomology and supergravity
International Nuclear Information System (INIS)
D'Auria, R.; Fre, P.; Regge, T.
1980-01-01
Detailed explanations of the cohomology invoked in the group-manifold approach to supergravity is given. The Chevalley cohomology theory of Lie algebras is extended to graded Lie algebras. The scheme of geometrical theories is enlarged so to include cosmological terms and higher powers of the curvature. (author)
DEFF Research Database (Denmark)
Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob
2010-01-01
as being applicable for averaging over many solvent configurations derived from, for example, molecular simulations. We test the proposed model using as a benchmark the two lowest-lying valence singlet excitations (n → π* and π → π*) of acrolein, formamide, and N-methylacetamide in aqueous solution as well...
White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not.
Cantarero, Katarzyna; Parzuchowski, Michal; Dukala, Karolina
2017-01-01
Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 ( N = 79), we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one's back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 ( N = 88), which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.
3-Lie bialgebras (Lb,Cd and (Lb,Ce
Directory of Open Access Journals (Sweden)
Bai Ruipu
2016-05-01
Full Text Available Four dimensional $3$-Lie coalgebras with two-dimensional derived algebras, and four-dimensional $3$-Lie bialgebras of type $(L_b, C_c$ are classified. It is proved that there exist three classes of four dimensional $3$-Lie coalgebras with two-dimensional derived algebra which are $(L, C_{c_i}$, $i=1, 2, 3$ (Lemma 3.1, and ten classes of four dimensional $3$-Lie bialgebras of type $(L_b, C_c$ (Theorem 3.2.
Internally connected graphs and the Kashiwara-Vergne Lie algebra
Felder, Matteo
2018-02-01
It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1 , thus giving a way to interpolate between these two Lie algebras.
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Preschoolers' Understanding of Lies and Innocent and Negligent Mistakes.
Siegal, Michael; Peterson, Candida C.
1998-01-01
Examined preschoolers' ability to distinguish innocent and negligent mistakes from lies. Found that, when asked to identify a mistake or lie about a food's contact with contaminants and identify a bystander's reaction, children distinguished mistakes from lies; they could also discriminate between lies and both negligent mistakes that generate…
Solutions for 80 km DWDM systems
DEFF Research Database (Denmark)
Dochhan, Annika; Griesser, Helmut; Eiselt, Nicklas
2016-01-01
Currently discussed solutions for 80 km DWDM transmission targeting inter-data center connections at 100G and 400G line rates are reviewed. PDM-64QAM, PAM4, and discrete multi-tone transmission (DMT) are investigated, while the focus lies on directly detected solutions. For DMT, the vestigial...
Internally connected graphs and the Kashiwara-Vergne Lie algebra
Felder, Matteo
2016-01-01
It is conjectured that the Kashiwara-Vergne Lie algebra $\\widehat{\\mathfrak{krv}}_2$ is isomorphic to the direct sum of the Grothendieck-Teichm\\"uller Lie algebra $\\mathfrak{grt}_1$ and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of $\\widehat{\\mathfrak{krv}}_2$ whose intersection is $\\mathfrak{grt}_1$, thus giving a way to interpolate between these two Lie algebras.
Legitimate lies : The relationship between omission, commission, and cheating
Pittarello, Andrea; Rubaltelli, Enrico; Motro, Daphna
Across four experiments, we show that when people can serve their self-interest, they are more likely to refrain from reporting the truth ( lie of omission) than actively lie ( lie of commission). We developed a novel online "Heads or Tails" task in which participants can lie to win a monetary
Nuclear plant problem needs a federal solution
International Nuclear Information System (INIS)
Zitser, B.S.
1984-01-01
Utilities presently committed to nuclear construction programs, regardless of their stage of completion, are experiencing a marked decline in financial health which the author of the following believes will be a long-term trend. Concerns over quality control, siting misgivings, cost underestimates, and consequential rate shock have increased pessimism on the part of investors, ratepayers, and regulators. The article describes the financial challenges facing one nuclear utility and discusses the factors contributing to widely disparate rate impact projections offered by utilities and regulators. The solution to financing difficulties imposed by cancellations and delays may lie with yet another player: the federal government. Outlining its potential advantages and problems, the author offers his proposal
Construction of Difference Equations Using Lie Groups
International Nuclear Information System (INIS)
Axford, R.A.
1998-01-01
The theory of prolongations of the generators of groups of point transformations to the grid point values of dependent variables and grid spacings is developed and applied to the construction of group invariant numerical algorithms. The concepts of invariant difference operators and generalized discrete sources are introduced for the discretization of systems of inhomogeneous differential equations and shown to produce exact difference equations. Invariant numerical flux functions are constructed from the general solutions of first order partial differential equations that come out of the evaluation of the Lie derivatives of conservation forms of difference schemes. It is demonstrated that invariant numerical flux functions with invariant flux or slope limiters can be determined to yield high resolution difference schemes. The introduction of an invariant flux or slope limiter can be done so as not to break the symmetry properties of a numerical flux-function
Elementary construction of graded lie groups
International Nuclear Information System (INIS)
Scheunert, M.; Rittenberg, V.
1977-06-01
We show how the definitions of the classical Lie groups have to be modified in the case where Grassmann variables are present. In particular, we construct the general linear, the special linear and the orthosymplectic graded Lie groups. Special attention is paid to the question of how to formulate an adequate 'unitarity condition'. (orig.) [de
Cartan calculus on quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''
Low-dimensional filiform Lie algebras over finite fields
Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)
2011-01-01
In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...
Expansion of the Lie algebra and its applications
International Nuclear Information System (INIS)
Guo Fukui; Zhang Yufeng
2006-01-01
We take the Lie algebra A1 as an example to illustrate a detail approach for expanding a finite dimensional Lie algebra into a higher-dimensional one. By making use of the late and its resulting loop algebra, a few linear isospectral problems with multi-component potential functions are established. It follows from them that some new integrable hierarchies of soliton equations are worked out. In addition, various Lie algebras may be constructed for which the integrable couplings of soliton equations are obtained by employing the expanding technique of the the Lie algebras
White Lies in Hand: Are Other-Oriented Lies Modified by Hand Gestures? Possibly Not
Directory of Open Access Journals (Sweden)
Katarzyna Cantarero
2017-06-01
Full Text Available Previous studies have shown that the hand-over-heart gesture is related to being more honest as opposed to using self-centered dishonesty. We assumed that the hand-over-heart gesture would also relate to other-oriented dishonesty, though the latter differs highly from self-centered lying. In Study 1 (N = 79, we showed that performing a hand-over-heart gesture diminished the tendency to use other-oriented white lies and that the fingers crossed behind one’s back gesture was not related to higher dishonesty. We then pre-registered and conducted Study 2 (N = 88, which was designed following higher methodological standards than Study 1. Contrary, to the findings of Study 1, we found that using the hand-over-heart gesture did not result in refraining from using other-oriented white lies. We discuss the findings of this failed replication indicating the importance of strict methodological guidelines in conducting research and also reflect on relatively small effect sizes related to some findings in embodied cognition.
On an infinite-dimensional Lie algebra of Virasoro-type
International Nuclear Information System (INIS)
Pei Yufeng; Bai Chengming
2012-01-01
In this paper, we study an infinite-dimensional Lie algebra of Virasoro-type which is realized as an affinization of a two-dimensional Novikov algebra. It is a special deformation of the Lie algebra of differential operators on a circle of order at most 1. There is an explicit construction of a vertex algebra associated with the Lie algebra. We determine all derivations of this Lie algebra in terms of some derivations and centroids of the corresponding Novikov algebra. The universal central extension of this Lie algebra is also determined. (paper)
Green's functions through so(2,1) lie algebra in nonrelativistic quantum mechanics
International Nuclear Information System (INIS)
Boschi-Filho, H.; Vaidya, A.N.
1991-01-01
The authors discuss an algebraic technique to construct the Green's function for systems described by the noncompact so(2,1) Lie algebra. They show that this technique solves the one-dimensional linear oscillator and Coulomb potentials and also generates particular solutions for other one-dimensional potentials. Then they construct explicitly the Green's function for the three-dimensional oscillator and the three-dimensional Coulomb potential, which are generalizations of the one-dimensional cases, and the Coulomb plus an Aharanov-Bohm, potential. They discuss the dynamical algebra involved in each case and also find their wave functions and bound state spectra. Finally they introduce in each case and also find their wave functions and bound state spectra. Finally they introduce a point canonical transformation in the generators of so(2,10) Lie algebra, show that this procedure permits us to solve the one-dimensional Morse potential in addition to the previous cases, and construct its Green's function and find its energy spectrum and wave functions
Solutions and conservation laws of Benjamin–Bona–Mahony
Indian Academy of Sciences (India)
In this paper, exact solutions of Benjamin–Bona–Mahony–Peregrine equation are obtained with power-law and dual power-law nonlinearities. The Lie group analysis as well as the simplest equation method are used to carry out the integration of these equations. The solutions obtained are cnoidal waves, periodic solutions ...
Analytical exact solution of the non-linear Schroedinger equation
International Nuclear Information System (INIS)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da
2011-01-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
International Nuclear Information System (INIS)
Ammar, F; Makhlouf, A; Silvestrov, S
2010-01-01
In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.
Quartic trace identity for exceptional Lie algebras
International Nuclear Information System (INIS)
Okubo, S.
1979-01-01
Let X be a representation matrix of generic element x of a simple Lie algebra in generic irreducible representation ]lambda] of the Lie algebra. Then, for all exceptional Lie algebras as well as A 1 and A 2 , we can prove the validity of a quartic trace identity Tr(X 4 ) =K (lambda)[Tr(X 2 )] 2 , where the constant K (lambda) depends only upon the irreducible representation ]lambda], and its explicit form is calculated. Some applications of second and fourth order indices have also been discussed
Two proposed convergence criteria for Monte Carlo solutions
International Nuclear Information System (INIS)
Forster, R.A.; Pederson, S.P.; Booth, T.E.
1992-01-01
The central limit theorem (CLT) can be applied to a Monte Carlo solution if two requirements are satisfied: (1) The random variable has a finite mean and a finite variance; and (2) the number N of independent observations grows large. When these two conditions are satisfied, a confidence interval (CI) based on the normal distribution with a specified coverage probability can be formed. The first requirement is generally satisfied by the knowledge of the Monte Carlo tally being used. The Monte Carlo practitioner has a limited number of marginal methods to assess the fulfillment of the second requirement, such as statistical error reduction proportional to 1/√N with error magnitude guidelines. Two proposed methods are discussed in this paper to assist in deciding if N is large enough: estimating the relative variance of the variance (VOV) and examining the empirical history score probability density function (pdf)
A Lie-Deprit perturbation algorithm for linear differential equations with periodic coefficients
Casas Pérez, Fernando; Chiralt Monleon, Cristina
2014-01-01
A perturbative procedure based on the Lie-Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear di erential equations with periodic coe cients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous sys- tem and also to its characteristic ...
Lie n-derivations on 7 -subspace lattice algebras
Indian Academy of Sciences (India)
all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...
International Nuclear Information System (INIS)
Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.
2009-01-01
Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.
International Nuclear Information System (INIS)
Unge, Rikard von
2002-01-01
We extend the path-integral formalism for Poisson-Lie T-duality to include the case of Drinfeld doubles which can be decomposed into bi-algebras in more than one way. We give the correct shift of the dilaton, correcting a mistake in the literature. We then use the fact that the six dimensional Drinfeld doubles have been classified to write down all possible conformal Poisson-Lie T-duals of three dimensional space times and we explicitly work out two duals to the constant dilaton and zero anti-symmetric tensor Bianchi type V space time and show that they satisfy the string equations of motion. This space-time was previously thought to have no duals because of the tracefulness of the structure constants. (author)
Directory of Open Access Journals (Sweden)
M. M. Rashidi
2014-01-01
Full Text Available The optimal homotopy analysis method (OHAM is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth order method. The effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. This close agreement supports our analysis and the accuracy of the numerical computations. This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.
A survey on stability and rigidity results for Lie algebras
Crainic, Marius; Schätz, Florian; Struchiner, Ivan
2014-01-01
We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).
Representations of Lie algebras and partial differential equations
Xu, Xiaoping
2017-01-01
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...
International Nuclear Information System (INIS)
Fradkin, E.S.; Linetsky, V.Ya.
1990-06-01
With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs
Some quantum Lie algebras of type Dn positive
International Nuclear Information System (INIS)
Bautista, Cesar; Juarez-Ramirez, Maria Araceli
2003-01-01
A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D n . Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D n positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true
Lie transforms and their use in Hamiltonian perturbation theory
International Nuclear Information System (INIS)
Cary, J.R.
1978-06-01
A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here
Study of some properties of partial differential equations by Lie algebra method
International Nuclear Information System (INIS)
Chongdar, A.K.; Ludu, A.
1990-05-01
In this note we present a system of optimal subalgebras of the Lie algebra obtained in course of investigating hypergeometric polynomial. In addition to this we have obtained some reduced equation and invariants of the P.D.E. obtained under certain transformation while studying hypergeometric polynomial by Weisner's method. Some topological properties of the solutions of P.D.E. are pointed out by using the extended jet bundle formalism. Some applications of our work on plasma physics and hydrodynamics are also cited. (author). 8 refs
Everybody else is doing it: exploring social transmission of lying behavior.
Directory of Open Access Journals (Sweden)
Heather Mann
Full Text Available Lying is a common occurrence in social interactions, but what predicts whether an individual will tell a lie? While previous studies have focused on personality factors, here we asked whether lying tendencies might be transmitted through social networks. Using an international sample of 1,687 socially connected pairs, we investigated whether lying tendencies were related in socially connected individuals, and tested two moderators of observed relationships. Participants recruited through a massive open online course reported how likely they would be to engage in specific lies; a friend or relative responded to the same scenarios independently. We classified lies according to their beneficiary (antisocial vs. prosocial lies, and their directness (lies of commission vs. omission, resulting in four unique lying categories. Regression analyses showed that antisocial commission, antisocial omission, and prosocial commission lying tendencies were all uniquely related in connected pairs, even when the analyses were limited to pairs that were not biologically related. For antisocial lies of commission, these relationships were strongest, and were moderated by amount of time spent together. Randomly paired individuals from the same countries were also related in their antisocial commission lying tendencies, signifying country-level norms. Our results indicate that a person's lying tendencies can be predicted by the lying tendencies of his or her friends and family members.
Everybody Else Is Doing It: Exploring Social Transmission of Lying Behavior
Mann, Heather; Garcia-Rada, Ximena; Houser, Daniel; Ariely, Dan
2014-01-01
Lying is a common occurrence in social interactions, but what predicts whether an individual will tell a lie? While previous studies have focused on personality factors, here we asked whether lying tendencies might be transmitted through social networks. Using an international sample of 1,687 socially connected pairs, we investigated whether lying tendencies were related in socially connected individuals, and tested two moderators of observed relationships. Participants recruited through a massive open online course reported how likely they would be to engage in specific lies; a friend or relative responded to the same scenarios independently. We classified lies according to their beneficiary (antisocial vs. prosocial lies), and their directness (lies of commission vs. omission), resulting in four unique lying categories. Regression analyses showed that antisocial commission, antisocial omission, and prosocial commission lying tendencies were all uniquely related in connected pairs, even when the analyses were limited to pairs that were not biologically related. For antisocial lies of commission, these relationships were strongest, and were moderated by amount of time spent together. Randomly paired individuals from the same countries were also related in their antisocial commission lying tendencies, signifying country-level norms. Our results indicate that a person's lying tendencies can be predicted by the lying tendencies of his or her friends and family members. PMID:25333483
Introduction to the theory of Lie groups
Godement, Roger
2017-01-01
This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory. Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
Representations of some quantum tori Lie subalgebras
International Nuclear Information System (INIS)
Jiang, Jingjing; Wang, Song
2013-01-01
In this paper, we define the q-analog Virasoro-like Lie subalgebras in x ∞ =a ∞ (b ∞ , c ∞ , d ∞ ). The embedding formulas into x ∞ are introduced. Irreducible highest weight representations of A(tilde sign) q , B(tilde sign) q , and C(tilde sign) q -series of the q-analog Virasoro-like Lie algebras in terms of vertex operators are constructed. We also construct the polynomial representations of the A(tilde sign) q , B(tilde sign) q , C(tilde sign) q , and D(tilde sign) q -series of the q-analog Virasoro-like Lie algebras.
Recoupling Lie algebra and universal ω-algebra
International Nuclear Information System (INIS)
Joyce, William P.
2004-01-01
We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure
Anti-Kählerian Geometry on Lie Groups
Fernández-Culma, Edison Alberto; Godoy, Yamile
2018-03-01
Let G be a Lie group of even dimension and let ( g, J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure ( g, J) where J is abelian then the Lie algebra of G is unimodular and ( G, g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple ( G, g, J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor 𝜃 on its Lie algebra and prove that such structure is anti-Kähler if and only if 𝜃 is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).
Chevalley, Claude
2018-01-01
The standard text on the subject for many years, this introductory treatment covers classical linear groups, topological groups, manifolds, analytic groups, differential calculus of Cartan, and compact Lie groups and their representations. 1946 edition.
Quantum algebras as quantizations of dual Poisson–Lie groups
International Nuclear Information System (INIS)
Ballesteros, Ángel; Musso, Fabio
2013-01-01
A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)
Being honest about dishonesty: correlating self-reports and actual lying
Halevy, R.; Shalvi, S.; Verschuere, B.
2014-01-01
Does everybody lie? A dominant view is that lying is part of everyday social interaction. Recent research, however, has claimed, that robust individual differences exist, with most people reporting that they do not lie, and only a small minority reporting very frequent lying. In this study, we found
S7 without any construction of Lie group
International Nuclear Information System (INIS)
Zhou Jian; Xu Senlin.
1988-12-01
It was proved that the sphere S n is a parallelizable manifold if and only if n = 1,3 or 7, and that S n is an H-space if and only if n = 0,1,3 or 7. Because a Lie group must necessarily be a parallelizable manifold and also an H-space, naturally one asks that S n is a Lie group for n = 0, 1,3 or 7? In this paper we prove that S 7 is not a Lie group, and it is not even a topological group. Therefore, S n is a Lie group (or a topological group) if and only if n = 0,1,3. (author). 11 refs
Reflection Positive Stochastic Processes Indexed by Lie Groups
Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur
2016-06-01
Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.
Bases in Lie and quantum algebras
International Nuclear Information System (INIS)
Ballesteros, A; Celeghini, E; Olmo, M A del
2008-01-01
Applications of algebras in physics are related to the connection of measurable observables to relevant elements of the algebras, usually the generators. However, in the determination of the generators in Lie algebras there is place for some arbitrary conventions. The situation is much more involved in the context of quantum algebras, where inside the quantum universal enveloping algebra, we have not enough primitive elements that allow for a privileged set of generators and all basic sets are equivalent. In this paper we discuss how the Drinfeld double structure underlying every simple Lie bialgebra characterizes uniquely a particular basis without any freedom, completing the Cartan program on simple algebras. By means of a perturbative construction, a distinguished deformed basis (we call it the analytical basis) is obtained for every quantum group as the analytical prolongation of the above defined Lie basis of the corresponding Lie bialgebra. It turns out that the whole construction is unique, so to each quantum universal enveloping algebra is associated one and only one bialgebra. In this way the problem of the classification of quantum algebras is moved to the classification of bialgebras. In order to make this procedure more clear, we discuss in detail the simple cases of su(2) and su q (2).
Solutions of the Noh Problem for Various Equations of State Using Lie Groups
International Nuclear Information System (INIS)
Axford, R.A.
1998-01-01
A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
Comparison of Poisson structures and Poisson-Lie dynamical r-matrices
Enriquez, B.; Etingof, P.; Marshall, I.
2004-01-01
We construct a Poisson isomorphism between the formal Poisson manifolds g^* and G^*, where g is a finite dimensional quasitriangular Lie bialgebra. Here g^* is equipped with its Lie-Poisson (or Kostant-Kirillov-Souriau) structure, and G^* with its Poisson-Lie structure. We also quantize Poisson-Lie dynamical r-matrices of Balog-Feher-Palla.
Sophus Lie une pensée audacieuse
Stubhaug, Arild
2006-01-01
Sophus Lie (1842-1899) compte parmi les plus grandes figures norvgiennes de la science. La notorit que lui valent ses travaux n'a rien envier celle de son illustre compatriote Niels Henrik Abel. Groupes et alg bres de Lie ont acquis droit de cit dans maints domaines. Dans cette biographie dtaille, l'crivain Arild Stubhaug, puisant dans la volumineuse correspondance de Lie, dcrit l'homme et la socit norvgienne dans la seconde moiti du XIXe si cle. Le lecteur peut ainsi suivre son enfance dans un presbyt re nich au fond d'un fjord, dcouvrir les rformes de l'enseignement, voyager en Europe, frque
Lying to patients with dementia: Attitudes versus behaviours in nurses.
Cantone, Daniela; Attena, Francesco; Cerrone, Sabrina; Fabozzi, Antonio; Rossiello, Riccardo; Spagnoli, Laura; Pelullo, Concetta Paola
2017-01-01
Using lies, in dementia care, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. In this article, we report results about the attitude and the behaviour of nurses towards the use of lies to patients with dementia. An epidemiological cross-sectional study was conducted between September 2016 and February 2017 in 12 elderly residential facilities and in the geriatric, psychiatric and neurological wards of six specialised hospitals of Italy's Campania Region. In all, 106 nurses compiled an attitude questionnaire (A) where the main question was 'Do you think it is ethically acceptable to use lies to patients with dementia?', instead 106 nurses compiled a behaviour questionnaire (B), where the main question was 'Have you ever used lies to patients with dementia?' Ethical considerations: Using lies in dementia care, although topic ethically still controversial, reveals a common practice far beyond the diagnosis and prognosis, extending to the entire care process. Only a small percentage of the interviewed nurses stated that they never used lies/that it is never acceptable to use lies (behaviour 10.4% and attitude 12.3%; p = 0.66). The situation in which nurses were more oriented to use lies was 'to prevent or reduce aggressive behaviors'. Indeed, only the 6.7% in the attitude group and 3.8% in the behaviour group were against using lies. On the contrary, the case in which the nurses were less oriented to use lies was 'to avoid wasting time giving explanations', in this situation were against using lies the 51.0% of the behaviour group and the 44.6% of the attitude group. Our results, according to other studies, support the hypothesis of a low propensity of nurses to ethical reflection about use of lies. In our country, the implementation of guidelines about a correct use of lie in the relationship between health operators and patients would be desirable.
Isometric elbow extensors strength in supine- and prone-lying positions.
Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M
2013-01-01
The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1 ± 4.2 kg and 13.1 ± 4.6 kg, while those measured from prone-lying position were 9.9 ± 3.6 kg and 12 ± 4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.
Young children will lie to prevent a moral transgression.
Harvey, Teresa; Davoodi, Telli; Blake, Peter R
2018-01-01
Children believe that it is wrong to tell lies, yet they are willing to lie prosocially to adhere to social norms and to protect a listener's feelings. However, it is not clear whether children will lie instrumentally to intervene on behalf of a third party when a moral transgression is likely to occur. In three studies (N=270), we investigated the conditions under which 5- to 8-year-olds would tell an "interventional lie" in order to misdirect one child who was seeking another child in a park. In Study 1, older children lied more when the seeker intended to steal a toy from another child than when the seeker intended to give cookies to the child. In Study 2, the transgression (stealing) was held constant, but harm to the victim was either emphasized or deemphasized. Children at all ages were more likely to lie to prevent the theft when harm was emphasized. In Study 3, harm to the victim was held constant and the act of taking was described as either theft or a positive action. Children at all ages were more likely to lie when the transgression was emphasized. We conclude that by 5years of age, children are capable of lying to prevent a moral transgression but that this is most likely to occur when both the transgression and the harm to the victim are salient. Published by Elsevier Inc.
Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang
2017-11-01
In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis
International Nuclear Information System (INIS)
Cary, J.R.
1979-08-01
Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples
Higher order Lie-Baecklund symmetries of evolution equations
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Roy Chowdhury, K.; Paul, S.
1983-10-01
We have considered in detail the analysis of higher order Lie-Baecklund symmetries for some representative nonlinear evolution equations. Until now all such symmetry analyses have been restricted only to the first order of the infinitesimal parameter. But the existence of Baecklund transformation (which can be shown to be an overall sum of higher order Lie-Baecklund symmetries) makes it necessary to search for such higher order Lie-Baecklund symmetries directly without taking recourse to the Baecklund transformation or inverse scattering technique. (author)
Dimension of the c-nilpotent multiplier of Lie algebras
Indian Academy of Sciences (India)
Abstract. The purpose of this paper is to derive some inequalities for dimension of the c-nilpotent multiplier of finite dimensional Lie algebras and their factor Lie algebras. We further obtain an inequality between dimensions of c-nilpotent multiplier of Lie algebra L and tensor product of a central ideal by its abelianized factor ...
The expectancy-value muddle in the theory of planned behaviour - and some proposed solutions.
French, David P; Hankins, Matthew
2003-02-01
The authors of the Theories of Reasoned Action and Planned Behaviour recommended a method for statistically analysing the relationships between beliefs and the Attitude, Subjective Norm, and Perceived Behavioural Control constructs. This method has been used in the overwhelming majority of studies using these theories. However, there is a growing awareness that this method yields statistically uninterpretable results (Evans, 1991). Despite this, the use of this method is continuing, as is uninformed interpretation of this problematic research literature. This is probably due to the lack of a simple account of where the problem lies, and the large number of alternatives available. This paper therefore summarizes the problem as simply as possible, gives consideration to the conclusions that can be validly drawn from studies that contain this problem, and critically reviews the many alternatives that have been proposed to address this problem. Different techniques are identified as being suitable, according to the purpose of the specific research project.
Low-lying S-wave and P-wave dibaryons in a nodal structure analysis
International Nuclear Information System (INIS)
Liu Yuxin; Li Jingsheng; Bao Chengguang
2003-01-01
The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons
Lie symmetries for systems of evolution equations
Paliathanasis, Andronikos; Tsamparlis, Michael
2018-01-01
The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.
Conformal and Lie superalgebras motivated from free fermionic fields
International Nuclear Information System (INIS)
Ma, Shukchuen
2003-01-01
In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure
Sugawara operators for classical Lie algebras
Molev, Alexander
2018-01-01
The celebrated Schur-Weyl duality gives rise to effective ways of constructing invariant polynomials on the classical Lie algebras. The emergence of the theory of quantum groups in the 1980s brought up special matrix techniques which allowed one to extend these constructions beyond polynomial invariants and produce new families of Casimir elements for finite-dimensional Lie algebras. Sugawara operators are analogs of Casimir elements for the affine Kac-Moody algebras. The goal of this book is to describe algebraic structures associated with the affine Lie algebras, including affine vertex algebras, Yangians, and classical \\mathcal{W}-algebras, which have numerous ties with many areas of mathematics and mathematical physics, including modular forms, conformal field theory, and soliton equations. An affine version of the matrix technique is developed and used to explain the elegant constructions of Sugawara operators, which appeared in the last decade. An affine analogue of the Harish-Chandra isomorphism connec...
Uncertainty Principles on Two Step Nilpotent Lie Groups
Indian Academy of Sciences (India)
Abstract. We extend an uncertainty principle due to Cowling and Price to two step nilpotent Lie groups, which generalizes a classical theorem of Hardy. We also prove an analogue of Heisenberg inequality on two step nilpotent Lie groups.
On squares of representations of compact Lie algebras
International Nuclear Information System (INIS)
Zeier, Robert; Zimborás, Zoltán
2015-01-01
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems
On squares of representations of compact Lie algebras
Energy Technology Data Exchange (ETDEWEB)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de [Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching (Germany); Zimborás, Zoltán, E-mail: zimboras@gmail.com [Department of Computer Science, University College London, Gower St., London WC1E 6BT (United Kingdom)
2015-08-15
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.
Controllability of linear vector fields on Lie groups
International Nuclear Information System (INIS)
Ayala, V.; Tirao, J.
1994-11-01
In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs
The influence of FMRI lie detection evidence on juror decision-making.
McCabe, David P; Castel, Alan D; Rhodes, Matthew G
2011-01-01
In the current study, we report on an experiment examining whether functional magnetic resonance imaging (fMRI) lie detection evidence would influence potential jurors' assessment of guilt in a criminal trial. Potential jurors (N = 330) read a vignette summarizing a trial, with some versions of the vignette including lie detection evidence indicating that the defendant was lying about having committed the crime. Lie detector evidence was based on evidence from the polygraph, fMRI (functional brain imaging), or thermal facial imaging. Results showed that fMRI lie detection evidence led to more guilty verdicts than lie detection evidence based on polygraph evidence, thermal facial imaging, or a control condition that did not include lie detection evidence. However, when the validity of the fMRI lie detection evidence was called into question on cross-examination, guilty verdicts were reduced to the level of the control condition. These results provide important information about the influence of lie detection evidence in legal settings. Copyright © 2011 John Wiley & Sons, Ltd.
Casimir elements of epsilon Lie algebras
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Polygraph lie detection on real events in a laboratory setting.
Bradley, M T; Cullen, M C
1993-06-01
This laboratory study dealt with real-life intense emotional events. Subjects generated embarrassing stories from their experience, then submitted to polygraph testing and, by lying, denied their stories and, by telling the truth, denied a randomly assigned story. Money was given as an incentive to be judged innocent on each story. An interrogator, blind to the stories, used Control Question Tests and found subjects more deceptive when lying than when truthful. Stories interacted with order such that lying on the second story was more easily detected than lying on the first. Embarrassing stories provide an alternative to the use of mock crimes to study lie detection in the laboratory.
Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem
Directory of Open Access Journals (Sweden)
R. J. Moitsheki
2012-01-01
Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.
Existence of extremal periodic solutions for quasilinear parabolic equations
Directory of Open Access Journals (Sweden)
Siegfried Carl
1997-01-01
bounded domain under periodic Dirichlet boundary conditions. Our main goal is to prove the existence of extremal solutions among all solutions lying in a sector formed by appropriately defined upper and lower solutions. The main tools used in the proof of our result are recently obtained abstract results on nonlinear evolution equations, comparison and truncation techniques and suitably constructed special testfunction.
Renormalization group flows and continual Lie algebras
International Nuclear Information System (INIS)
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)
Uniqueness of Solutions to Schrödinger Equations on Complex ...
Indian Academy of Sciences (India)
2006-09-05
simple Lie groups. We show that if the initial data is a bi-invariant function that has sufficient decay and the solution has sufficient decay at another fixed value of time, then the solution has to be identically zero for all time.
Analytic transfer maps for Lie algebraic design codes
International Nuclear Information System (INIS)
van Zeijts, J.; Neri, F.; Dragt, A.J.
1990-01-01
Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system
Lie Algebroids in Classical Mechanics and Optimal Control
Directory of Open Access Journals (Sweden)
Eduardo Martínez
2007-03-01
Full Text Available We review some recent results on the theory of Lagrangian systems on Lie algebroids. In particular we consider the symplectic and variational formalism and we study reduction. Finally we also consider optimal control systems on Lie algebroids and we show how to reduce Pontryagin maximum principle.
Transitive Lie algebras of vector fields: an overview
Draisma, J.
2011-01-01
This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late 19th century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in 20th-century research on
Accurately Detecting Students' Lies regarding Relational Aggression by Correctional Instructions
Dickhauser, Oliver; Reinhard, Marc-Andre; Marksteiner, Tamara
2012-01-01
This study investigates the effect of correctional instructions when detecting lies about relational aggression. Based on models from the field of social psychology, we predict that correctional instruction will lead to a less pronounced lie bias and to more accurate lie detection. Seventy-five teachers received videotapes of students' true denial…
Wess-Zumino-Novikov-Witten models based on Lie superalgebras
International Nuclear Information System (INIS)
Mohammedi, N.
1994-04-01
The affine current algebra for Lie superalgebras is examined. The bilinear invariant forms of the Lie superalgebra can be either degenerate or non-degenerate. We give the conditions for a Virasoro construction, in which the currents are primary fields of weight one, to exist. In certain cases, the Virasoro central charge is an integer equal to the super dimension of the group supermanifold. A Wess-Zumino-Novikov-Witten action based on these Lie superalgebras is also found. (orig.)
Directory of Open Access Journals (Sweden)
Juan I. Pérez-Díaz
2015-09-01
Full Text Available The objective of this paper is to investigate the cause of several unexpected high amplitude oscillations that occurred in the surge tank water level of a real hydropower plant during secondary load-frequency control (LFC maneuvers, after the replacement of the turbine runner, and to propose solutions that allow the power plant to continue providing secondary LFC in a safe and reliable manner. For this purpose, a simulation model has been developed and calibrated from data gathered during several on-site tests. Two different solutions are proposed in order to cope with the observed problem: using a state-dependent load change rate limiter or modifying the hydro turbine governor gains; the turbine governor remains the same as before the runner replacement. The proposed solutions are tested against a set of realistic secondary LFC signals by means of simulations and compared to each other as a function of the probability that the surge tank water level descends below a minimum safe level and the quality of the secondary LFC response. The results presented in the paper demonstrate the validity of the methodology proposed to determine the state-dependent ramp limit, as well as its effectiveness to prevent the surge tank drawdown and to provide clear insight into the trade-off between response quality and power plant safety.
On the q-exponential of matrix q-Lie algebras
Directory of Open Access Journals (Sweden)
Ernst Thomas
2017-01-01
Full Text Available In this paper, we define several new concepts in the borderline between linear algebra, Lie groups and q-calculus.We first introduce the ring epimorphism r, the set of all inversions of the basis q, and then the important q-determinant and corresponding q-scalar products from an earlier paper. Then we discuss matrix q-Lie algebras with a modified q-addition, and compute the matrix q-exponential to form the corresponding n × n matrix, a so-called q-Lie group, or manifold, usually with q-determinant 1. The corresponding matrix multiplication is twisted under τ, which makes it possible to draw diagrams similar to Lie group theory for the q-exponential, or the so-called q-morphism. There is no definition of letter multiplication in a general alphabet, but in this article we introduce new q-number systems, the biring of q-integers, and the extended q-rational numbers. Furthermore, we provide examples of matrices in suq(4, and its corresponding q-Lie group. We conclude with an example of system of equations with Ward number coeficients.
Non-coboundary Poisson–Lie structures on the book group
International Nuclear Information System (INIS)
Ballesteros, Ángel; Blasco, Alfonso; Musso, Fabio
2012-01-01
All possible Poisson–Lie (PL) structures on the 3D real Lie group generated by a dilation and two commuting translations are obtained. Their classification is fully performed by relating these PL groups to the corresponding Lie bialgebra structures on the corresponding ‘book’ Lie algebra. By construction, all these Poisson structures are quadratic Poisson–Hopf algebras for which the group multiplication is a Poisson map. In contrast to the case of simple Lie groups, it turns out that most of the PL structures on the book group are non-coboundary ones. Moreover, from the viewpoint of Poisson dynamics, the most interesting PL book structures are just some of these non-coboundaries, which are explicitly analysed. In particular, we show that the two different q-deformed Poisson versions of the sl(2, R) algebra appear as two distinguished cases in this classification, as well as the quadratic Poisson structure that underlies the integrability of a large class of 3D Lotka–Volterra equations. Finally, the quantization problem for these PL groups is sketched. (paper)
Group formalism of Lie transformations to time-fractional partial ...
Indian Academy of Sciences (India)
Lie symmetry analysis; Fractional partial differential equation; Riemann–Liouville fractional derivative ... science and engineering. It is known that while ... differential equations occurring in different areas of applied science [11,14]. The Lie ...
How (not) to Lie with Benefit-Cost Analysis
Scott Farrow
2013-01-01
Benefit-cost analysis is seen by some as a controversial activity in which the analyst can significantly bias the results. This note highlights some of the ways that analysts can "lie" in a benefit-cost analysis but more importantly, provides guidance on how not to lie and how to better inform public decisionmakers.
Ma, Fengling; Evans, Angela D.; Liu, Ying; Luo, Xianming; Xu, Fen
2015-01-01
Prior studies have demonstrated that social-cognitive factors such as children's false-belief understanding and parenting style are related to children's lie-telling behaviors. The present study aimed to investigate how earlier forms of theory-of-mind understanding contribute to children's lie-telling as well as how parenting practices are related…
Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction
Directory of Open Access Journals (Sweden)
Andrea Bonfiglioli
2014-12-01
Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
On a Lie-isotopic theory of gravity
International Nuclear Information System (INIS)
Gasperini, M.
1984-01-01
Starting from the isotopic lifting of the Poincare algebra, a Lie-isotopic theory of gravity is formulated, its physical interpretation is given in terms of a generalized principle of equivalence, and it is shown that a local Lorentz-isotopic symmetry motivates the introduction of a generalized metric-affine geometrical structure. Finally, possible applications of a Lie-isotopic theory to the problem of unifying gravity with internal symmetries, in four and more than four dimensions, are discussed
Homotopy Lie algebras associated with a proto-bialgebra
International Nuclear Information System (INIS)
Bangoura, Momo
2003-10-01
Motivated by the search for examples of homotopy Lie algebras, to any Lie proto-bialgebra structure on a finite-dimensional vector space F, we associate two homotopy Lie algebra structures defined on the suspension of the exterior algebra of F and that of its dual F*, respectively, with a 0-ary map corresponding to the image of the empty set. In these algebras, all n-ary brackets for n ≥ 4 vanish. More generally, to any element of odd degree in Λ(F*+F), we associate a set of n-ary skew-symmetric mappings on the suspension of ΛF (resp. Λ F*), which satisfy the generalized Jacobi identities if the given element is of square zero. (author)
Lie groups and grand unified theories
International Nuclear Information System (INIS)
Gubitoso, M.D.
1987-01-01
This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt
An introduction to Lie group integrators – basics, new developments and applications
International Nuclear Information System (INIS)
Celledoni, Elena; Marthinsen, Håkon; Owren, Brynjulf
2014-01-01
We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups
Deceit and dishonesty as practice: the comfort of lying.
Carter, Melody
2016-07-01
Lying and deceit are instruments of power, used by social actors in the pursuit of their practices as they seek to maintain social order. All social actors, nurses included, have deceit and dishonesty within their repertoire of practice. Much of this is benign, well intentioned and a function of being sociable and necessary in the pursuit of social order in the healthcare environment. Lying and deceit from a sociological point of view, is a reflection of the different modes of domination that exist within a social space. French philosopher Pierre Bourdieu theorized about the way that symbolic power works within social space. The social structures and the agency of individual actors moving within it are interrelated and interdependent. Bourdieu's ideas will be used to theorize about real clinical experiences where acts of deceit can be identified and a case example will be presented. Nurses are actors in the social space of clinical care, and their world is complex, challenging, and often fraught with the contradictory demands and choices that reflect and influence their behaviours. An exploration of lying and deceit in nursing as an instrument in the modes of domination that persist enables us to challenge some of the assumptions that are made about the motives that cause or tempt nurses to lie as well as to understand the way on which they are sometimes lied to, according to the acts of domination that exist in the field. Lying or acting dishonestly is a powerful act that is intent on retaining stability and social order and could be seen to be a justification of lying and deceit. However, we need to pause and consider, in whose interests are we striving to create social order? Is it in the end about the comfort of patients or for the comfort of professionals? © 2016 John Wiley & Sons Ltd.
Lie construction affects information storage under high memory load condition.
Directory of Open Access Journals (Sweden)
Yuqiu Liu
Full Text Available Previous studies indicate that lying consumes cognitive resources, especially working memory (WM resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA, a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
Lie construction affects information storage under high memory load condition.
Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan
2017-01-01
Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
Deformations of classical Lie algebras with homogeneous root system in characteristic two. I
International Nuclear Information System (INIS)
Chebochko, N G
2005-01-01
Spaces of local deformations of classical Lie algebras with a homogeneous root system over a field K of characteristic 2 are studied. By a classical Lie algebra over a field K we mean the Lie algebra of a simple algebraic Lie group or its quotient algebra by the centre. The description of deformations of Lie algebras is interesting in connection with the classification of the simple Lie algebras.
Lie symmetries in differential equations
International Nuclear Information System (INIS)
Pleitez, V.
1979-01-01
A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... The notion of approximation of Lie groups by discrete subgroups was introduced by Tôyama in Kodai Math. Sem. Rep. 1 (1949) 36–37 and investigated in detail by Kuranishi in Nagoya Math. J. 2 (1951) 63–71. It is known as a theorem of Tôyama that any connected Lie group approximated by discrete ...
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
On the low-lying states of TiC
Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.
1984-01-01
The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.
Internal deformation of Lie algebroids and symplectic realizations
Energy Technology Data Exchange (ETDEWEB)
Carinena, Jose F [Departamento de Fisica Teorica, Universidad de Zara-goza, 50009 Zaragoza (Spain); Costa, Joana M Nunes da [Departamento de Matematica, Universidade de Coimbra, 3001-454 Coimbra (Portugal); Santos, PatrIcia [Departamento de Fisica e Matematica, Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra (Portugal)
2006-06-02
Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom.
On split Lie algebras with symmetric root systems
Indian Academy of Sciences (India)
ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...
Internal deformation of Lie algebroids and symplectic realizations
International Nuclear Information System (INIS)
Carinena, Jose F; Costa, Joana M Nunes da; Santos, PatrIcia
2006-01-01
Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom
International Nuclear Information System (INIS)
Liu Hongzhun; Pan Zuliang; Li Peng
2006-01-01
In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
Subroutine for series solutions of linear differential equations
International Nuclear Information System (INIS)
Tasso, H.; Steuerwald, J.
1976-02-01
A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de
Freestall maintenance: effects on lying behavior of dairy cattle.
Drissler, M; Gaworski, M; Tucker, C B; Weary, D M
2005-07-01
In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).
Some quantum Lie algebras of type D{sub n} positive
Energy Technology Data Exchange (ETDEWEB)
Bautista, Cesar [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Edif 135, 14 sur y Av San Claudio, Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico); Juarez-Ramirez, Maria Araceli [Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Edif 158 Av San Claudio y Rio Verde sn Ciudad Universitaria, Puebla Pue. CP 72570 (Mexico)
2003-03-07
A quantum Lie algebra is constructed within the positive part of the Drinfeld-Jimbo quantum group of type D{sub n}. Our quantum Lie algebra structure includes a generalized antisymmetry property and a generalized Jacobi identity closely related to the braid equation. A generalized universal enveloping algebra of our quantum Lie algebra of type D{sub n} positive is proved to be the Drinfeld-Jimbo quantum group of the same type. The existence of such a generalized Lie algebra is reduced to an integer programming problem. Moreover, when the integer programming problem is feasible we show, by means of the generalized Jacobi identity, that the Poincare-Birkhoff-Witt theorem (basis) is still true.
Solution of linear ill-posed problems using overcomplete dictionaries
Pensky, Marianna
2016-01-01
In the present paper we consider application of overcomplete dictionaries to solution of general ill-posed linear inverse problems. Construction of an adaptive optimal solution for such problems usually relies either on a singular value decomposition or representation of the solution via an orthonormal basis. The shortcoming of both approaches lies in the fact that, in many situations, neither the eigenbasis of the linear operator nor a standard orthonormal basis constitutes an appropriate co...
Lie symmetries and superintegrability
International Nuclear Information System (INIS)
Nucci, M C; Post, S
2012-01-01
We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.
Computing nilpotent quotients in finitely presented Lie rings
Directory of Open Access Journals (Sweden)
Csaba Schneider
1997-12-01
Full Text Available A nilpotent quotient algorithm for finitely presented Lie rings over Z (and Q is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed by generators. Using that presentation the word problem is decidable in L. Provided that the Lie ring L is graded, it is possible to determine the canonical presentation for a lower central factor of L. Complexity is studied and it is shown that optimising the presentation is NP-hard. Computational details are provided with examples, timing and some structure theorems obtained from computations. Implementation in C and GAP interface are available.
Discussions About Lying With An Ethical Reasoning Robot
DEFF Research Database (Denmark)
Lindner, Felix; Wächter, Laura; Bentzen, Martin Mose
2017-01-01
The conversational ethical reasoning robot Immanuel is presented. Immanuel is capable of defending multiple ethical views on morally delicate situations. A study was conducted to evaluate the acceptance of Immanuel. The participants had a conversation with the robot on whether lying is permissibile...... in a given situation. The robot first signaled uncertainty about whether lying is right or wrong in the situation, then disagreed with the participant’s view, and finally asked for justification. The results indicate that participants with a higher tendency to utilitarian judgments are initially more certain...... about their view as compared to participants with a higher tendency to deontological judgments. These differences vanish at the end of the dialogue. Lying is defended and argued against by both utilitarian and deontologically oriented participants. The diversity of the reported arguments gives an idea...
A Lie based 4-dimensional higher Chern-Simons theory
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent
On the intersection of irreducible components of the space of finite-dimensional Lie algebras
International Nuclear Information System (INIS)
Gorbatsevich, Vladimir V
2012-01-01
The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra is considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.
Numerical solution of modified differential equations based on symmetry preservation.
Ozbenli, Ersin; Vedula, Prakash
2017-12-01
In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.
Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying
Directory of Open Access Journals (Sweden)
Oshin eVartanian
2013-10-01
Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.
Right inferior frontal gyrus activation as a neural marker of successful lying.
Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan
2013-01-01
There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.
Displacement in the parameter space versus spurious solution of discretization with large time step
International Nuclear Information System (INIS)
Mendes, Eduardo; Letellier, Christophe
2004-01-01
In order to investigate a possible correspondence between differential and difference equations, it is important to possess discretization of ordinary differential equations. It is well known that when differential equations are discretized, the solution thus obtained depends on the time step used. In the majority of cases, such a solution is considered spurious when it does not resemble the expected solution of the differential equation. This often happens when the time step taken into consideration is too large. In this work, we show that, even for quite large time steps, some solutions which do not correspond to the expected ones are still topologically equivalent to solutions of the original continuous system if a displacement in the parameter space is considered. To reduce such a displacement, a judicious choice of the discretization scheme should be made. To this end, a recent discretization scheme, based on the Lie expansion of the original differential equations, proposed by Monaco and Normand-Cyrot will be analysed. Such a scheme will be shown to be sufficient for providing an adequate discretization for quite large time steps compared to the pseudo-period of the underlying dynamics
Lie and Noether symmetries of systems of complex ordinary ...
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... Abstract. The Lie and Noether point symmetry analyses of a kth-order system of m complex ordi- nary differential equations (ODEs) with m dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like opera- tors.
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Critical Discourse Analysis of Eminem’s “Love the Way You Lie Part II”
Directory of Open Access Journals (Sweden)
Arbain Arbain
2016-09-01
Full Text Available This study is to analyze songs from Eminem which is related to his life story. In examining the songs, the researchers used the three inter-related processes of analysis tied to three inter-related dimensions of discourse proposed by Faiclough’s model of CDA. This study applied qualitative design with the content analysis approach. The analysis of this research focused on the words used such as African American Vernacular English variety, Informal language and American slang in the lyrics of the song Love The Way You Lie Part II and explain them. The result findings showed that there was a transcultural process or cross cultural in the song lyrics. There was a hiphop culture which was moved, changed and reused to create a new identity of the Eminem. There were 25 words and clauses of AAVE, 3 words of Informal language and 1 word of American slang language in the lyrics of the song of Love The Way You Lie.
Lying in the Name of the Collective Good: A Developmental Study
Fu, Genyue; Evans, Angela D.; Wang, Lingfeng; Lee, Kang
2008-01-01
The present study examined the developmental origin of "blue lies", a pervasive form of lying in the adult world that is told purportedly to benefit a collective. Seven, 9-, and 11-year-old Chinese children were surreptitiously placed in a real-life situation where they decided whether to lie to conceal their group's cheating behavior. Children…
International Nuclear Information System (INIS)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.; Kunold, A.
2015-01-01
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Lie groups and algebraic groups
Indian Academy of Sciences (India)
We give an exposition of certain topics in Lie groups and algebraic groups. This is not a complete ... of a polynomial equation is equivalent to the solva- bility of the equation ..... to a subgroup of the group of roots of unity in k (in particular, it is a ...
The Solution Construction of Heterotic Super-Liouville Model
Yang, Zhan-Ying; Zhen, Yi
2001-12-01
We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Prospects of functional Magnetic Resonance Imaging as lie detector
Directory of Open Access Journals (Sweden)
Elena eRusconi
2013-09-01
Full Text Available Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies as the savior of scientifically verifiable lie detection in the courtroom (Gerard, 2008: 5; however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
Effects of side lying on lung function in older individuals.
Manning, F; Dean, E; Ross, J; Abboud, R T
1999-05-01
Body positioning exerts a strong effect on pulmonary function, but its effect on other components of the oxygen transport pathway are less well understood, especially the effects of side-lying positions. This study investigated the interrelationships between side-lying positions and indexes of lung function such as spirometry, alveolar diffusing capacity, and inhomogeneity of ventilation in older individuals. Nineteen nonsmoking subjects (mean age=62.8 years, SD=6.8, range=50-74) with no history of cardiac or pulmonary disease were tested over 2 sessions. The test positions were sitting and left side lying in one session and sitting and right side lying in the other session. In each of the positions, forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), single-breath pulmonary diffusing capacity (DLCO/VA), and the slope of phase III (DN2%/L) of the single-breath nitrogen washout test to determine inhomogeneity of ventilation were measured. Compared with measurements obtained in the sitting position, FVC and FEV1 were decreased equally in the side-lying positions, but no change was observed in DLCO/VA or DN2%/L. Side-lying positions resulted in decreases in FVC and FEV1, which is consistent with the well-documented effects of the supine position. These findings further support the need for prescriptive rather than routine body positioning of patients with risks of cardiopulmonary compromise and the need to use upright positions in which lung volumes and capacities are maximized.
Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques
International Nuclear Information System (INIS)
Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.
2011-01-01
The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.
String Topology for Lie Groups
DEFF Research Database (Denmark)
A. Hepworth, Richard
2010-01-01
In 1999 Chas and Sullivan showed that the homology of the free loop space of an oriented manifold admits the structure of a Batalin-Vilkovisky algebra. In this paper we give a direct description of this Batalin-Vilkovisky algebra in the case that the manifold is a compact Lie group G. Our answer ...
Discrete finite nilpotent Lie analogs: New models for unified gauge field theory
International Nuclear Information System (INIS)
Kornacker, K.
1978-01-01
To each finite dimensional real Lie algebra with integer structure constants there corresponds a countable family of discrete finite nilpotent Lie analogs. Each finite Lie analog maps exponentially onto a finite unipotent group G, and is isomorphic to the Lie algebra of G. Reformulation of quantum field theory in discrete finite form, utilizing nilpotent Lie analogs, should elminate all divergence problems even though some non-Abelian gauge symmetry may not be spontaneously broken. Preliminary results in the new finite representation theory indicate that a natural hierarchy of spontaneously broken symmetries can arise from a single unbroken non-Abelian gauge symmetry, and suggest the possibility of a new unified group theoretic interpretation for hadron colors and flavors
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Clinical Research Environment in India: Challenges and Proposed Solutions.
Burt, Tal; Sharma, Pooja; Dhillon, Savita; Manchanda, Mukul; Mittal, Sanjay; Trehan, Naresh
2014-11-01
India has compelling need and keen aspirations for indigenous clinical research. Notwithstanding this need and previously reported growth the expected expansion of Indian clinical research has not materialized. We reviewed the scientific literature, lay press reports, and ClinicalTrials.gov data for information and commentary on projections, progress, and impediments associated with clinical trials in India. We also propose targeted solutions to identified challenges. The Indian clinical trial sector grew by (+) 20.3% CAGR (compound annual growth rate) between 2005 and 2010 and contracted by (-) 14.6% CAGR between 2010 and 2013. Phase-1 trials grew by (+) 43.5% CAGR from 2005-2013, phase-2 trials grew by (+) 19.8% CAGR from 2005-2009 and contracted by (-) 12.6% CAGR from 2009-2013, and phase-3 trials grew by (+) 13.0% CAGR from 2005-2010 and contracted by (-) 28.8% CAGR from 2010-2013. This was associated with a slowing of the regulatory approval process, increased media coverage and activist engagement, and accelerated development of regulatory guidelines and recuperative initiatives. We propose the following as potential targets for restorative interventions: Regulatory overhaul (leadership and enforcement of regulations, resolution of ambiguity in regulations, staffing, training, guidelines, and ethical principles [e.g., compensation]).Education and training of research professionals, clinicians, and regulators.Public awareness and empowerment. After a peak in 2009-2010, the clinical research sector in India appears to be experiencing a contraction. There are indications of challenges in regulatory enforcement of guidelines; training of clinical research professionals; and awareness, participation, partnership, and the general image amongst the non-professional media and public. Preventative and corrective principles and interventions are outlined with the goal of realizing the clinical research potential in India.
The vacuum preserving Lie algebra of a classical W-algebra
International Nuclear Information System (INIS)
Feher, L.; Tsutsui, I.
1993-07-01
We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)
The role of executive functions and theory of mind in children's prosocial lie-telling.
Williams, Shanna; Moore, Kelsey; Crossman, Angela M; Talwar, Victoria
2016-01-01
Children's prosocial lying was examined in relation to executive functioning skills and theory of mind development. Prosocial lying was observed using a disappointing gift paradigm. Of the 79 children (ages 6-12 years) who completed the disappointing gift paradigm, 47 (59.5%) told a prosocial lie to a research assistant about liking their prize. In addition, of those children who told prosocial lies, 25 (53.2%) maintained semantic leakage control during follow-up questioning, thereby demonstrating advanced lie-telling skills. When executive functioning was examined, children who told prosocial lies were found to have significantly higher performance on measures of working memory and inhibitory control. In addition, children who lied and maintained semantic leakage control also displayed more advanced theory of mind understanding. Although children's age was not a predictor of lie-telling behavior (i.e., truthful vs. lie-teller), age was a significant predictor of semantic leakage control, with older children being more likely to maintain their lies during follow-up questioning. Copyright © 2015 Elsevier Inc. All rights reserved.
On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach
International Nuclear Information System (INIS)
Kaur, Lakhveer; Gupta, R K
2013-01-01
Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)
Energy Technology Data Exchange (ETDEWEB)
Hauschild, K.; Bernstein, L.A.; Becker, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others
1996-12-31
The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.
MINAMI, Haruo
2016-01-01
For a compact simple Lie group $G$, we show that the element $[G, \\mathcal{L}] \\in \\pi^S_*(S^0)$ represented by the pair $(G, \\mathcal{L})$ is zero, where $\\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].
An introduction to Lie groups and the geometry of homogeneous spaces
Arvanitoyeorgos, Andreas
2003-01-01
It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differenti...
Multiplication: From Thales to Lie1
Indian Academy of Sciences (India)
Addition. To describe the geometric constructions of addition, as ..... general, we could apply the implicit function theorem of calculus to solve locally the defining ... and whose multiplication and inverse are analytic maps, is called a Lie group.
Counting Semisimple Orbits of Finite Lie Algebras by Genus
Fulman, Jason
1999-01-01
The adjoint action of a finite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of split semisimple orbits of a given genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of card shuffling.
Classification of filiform Lie algebras up to dimension 7 over finite fields
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad
2016-01-01
This paper tries to develop a recent research which consists in using Discrete Mathematics as a tool in the study of the problem of the classification of Lie algebras in general, dealing in this case with filiform Lie algebras up to dimension 7 over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As main results, we find out that there exist, up to isomor...
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
International Nuclear Information System (INIS)
Yu Zhang; Zhang Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
Lie algebras under constraints and nonbijective canonical transformations
International Nuclear Information System (INIS)
Kibler, M.; Winternitz, P.
1987-10-01
The concept of a Lie algebra under constraints is developed in connection with the theory of nonbijective canonical transformations. A finite dimensional vector space M, carrying a faithful linear representation of a Lie algebra L, is mapped into a lower dimensional space antiM in such a maner that a subalgebra L 0 of L is mapped into D(L 0 ) = 0. The Lie algebra L under the constraint D(L 0 ) = 0 is the largest subalgebra L 1 of L that can be represented faithfully on antiM. If L 0 is semi-simple, then L 1 is shown to be the centraliser cent L L 0 . If L is semi-simple and L 0 is an one-dimensional diagonal subalgebra of a Cartan subalgebra of L, then L 1 is shown to be the factor algebra cent L L 0 /L 0 . The latter two results are applied to nonbijective canonical transformations generalizing the Kustaanheimo-Stiefel transformation
The Influence of Lying Body Position on Handwriting.
Dziedzic, Tomasz
2016-01-01
Although the problem of handwriting variability due to lying body position has practical significance, particularly for last will cases, it has not been sufficiently studied. The presented experiment aimed to recognize how such posture may influence handwriting features. Samples of text and signatures were collected from 50 healthy individuals, aged 23-58, produced in three postures: typical sitting position (SP) and two different lying positions (LP1 & LP2). Using the SP sample of each individual as a specimen, eleven characteristics in LP1 and LP2 samples were evaluated as similar or different. Nine other features were measured with a specialized software, and their conformity was tested with Student's t-test. Although none of the characteristics differed significantly in most cases, variation occurred in pen pressure, margins, baselines, and heights of letters. Additionally, a series of blind tests revealed that lying position of the individuals did not hinder the possibility to identify their writings. © 2015 American Academy of Forensic Sciences.
Popliger, Mina; Talwar, Victoria; Crossman, Angela
2011-11-01
Children tell prosocial lies for self- and other-oriented reasons. However, it is unclear how motivational and socialization factors affect their lying. Furthermore, it is unclear whether children's moral understanding and evaluations of prosocial lie scenarios (including perceptions of vignette characters' feelings) predict their actual prosocial behaviors. These were explored in two studies. In Study 1, 72 children (36 second graders and 36 fourth graders) participated in a disappointing gift paradigm in either a high-cost condition (lost a good gift for a disappointing one) or a low-cost condition (received a disappointing gift). More children lied in the low-cost condition (94%) than in the high-cost condition (72%), with no age difference. In Study 2, 117 children (42 preschoolers, 41 early elementary school age, and 34 late elementary school age) participated in either a high- or low-cost disappointing gift paradigm and responded to prosocial vignette scenarios. Parents reported on their parenting practices and family emotional expressivity. Again, more children lied in the low-cost condition (68%) than in the high-cost condition (40%); however, there was an age effect among children in the high-cost condition. Preschoolers were less likely than older children to lie when there was a high personal cost. In addition, compared with truth-tellers, prosocial liars had parents who were more authoritative but expressed less positive emotion within the family. Finally, there was an interaction between children's prosocial lie-telling behavior and their evaluations of the protagonist's and recipient's feelings. Findings contribute to understanding the trajectory of children's prosocial lie-telling, their reasons for telling such lies, and their knowledge about interpersonal communication. Copyright © 2011 Elsevier Inc. All rights reserved.
Differential constraints and exact solutions of nonlinear diffusion equations
International Nuclear Information System (INIS)
Kaptsov, Oleg V; Verevkin, Igor V
2003-01-01
The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries
Cartan Connections and Lie Algebroids
Directory of Open Access Journals (Sweden)
Michael Crampin
2009-06-01
Full Text Available This paper is a study of the relationship between two constructions associated with Cartan geometries, both of which involve Lie algebroids: the Cartan algebroid, due to [Blaom A.D., Trans. Amer. Math. Soc. 358 (2006, 3651–3671], and tractor calculus [Cap A., Gover A.R., Trans. Amer. Math. Soc. 354 (2001, 1511–1548].
Lelieveld, Gert-Jan; Shalvi, Shaul; Crone, Eveline A
2016-05-01
This study investigated neural responses to evaluations of lies made by others. Participants learned about other individuals who were instructed to privately roll a die twice and report the outcome of the first roll to determine their pay (with higher rolls leading to higher pay). Participants evaluated three types of outcomes: honest reports, justifiable lies (reporting the second outcome instead of the first), or unjustifiable lies (reporting a different outcome than both die rolls). Evaluating lies relative to honest reports was associated with increased activation in the anterior cingulate cortex (ACC), insula and lateral prefrontal cortex. Moreover, justifiable lies were associated with even stronger activity in the dorsal ACC and dorsolateral prefrontal cortex compared to unjustifiable lies. These activities were more pronounced for justifiable lies where the deviance from the real outcome was larger. Together, these findings have implications for understanding how humans judge misconduct behavior of others. Copyright © 2016 Elsevier B.V. All rights reserved.
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Energy Technology Data Exchange (ETDEWEB)
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
A cohomological characterization of Leibniz central extensions of Lie algebras
International Nuclear Information System (INIS)
Hu Naihong; Pei Yufeng; Liu Dong
2006-12-01
Motivated by Pirashvili's spectral sequences on a Leibniz algebra, some notions such as invariant symmetric bilinear forms, dual space derivations and the Cartan-Koszul homomorphism are connected together to give a description of the second Leibniz cohomology groups with trivial coefficients of Lie algebras (as Leibniz objects), which leads to a concise approach to determining one-dimensional Leibniz central extensions of Lie algebras. As applications, we contain the discussions for some interesting classes of infinite-dimensional Lie algebras. In particular, our results include the cohomological version of Gao's main Theorem for Kac-Moody algebras and answer a question. (author)
A program for constructing finitely presented Lie algebras and superalgebras
International Nuclear Information System (INIS)
Gerdt, V.P.; Kornyak, V.V.
1997-01-01
The purpose of this paper is to describe a C program FPLSA for investigating finitely presented Lie algebras and superalgebras. The underlying algorithm is based on constructing the complete set of relations called also standard basis or Groebner basis of ideal of free Lie (super) algebra generated by the input set of relations. The program may be used, in particular, to compute the Lie (super)algebra basis elements and its structure constants, to classify the finitely presented algebras depending on the values of parameters in the relations, and to construct the Hilbert series. These problems are illustrated by examples. (orig.)
Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution
Baradaran, M.; Panahi, H.
2018-05-01
Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.
Deceptive Intentions: Can Cues to Deception Be Measured before a Lie Is Even Stated?
Directory of Open Access Journals (Sweden)
Sabine Ströfer
Full Text Available Can deceitful intentions be discriminated from truthful ones? Previous work consistently demonstrated that deceiving others is accompanied by nervousness/stress and cognitive load. Both are related to increased sympathetic nervous system (SNS activity. We hypothesized that SNS activity already rises during intentions to lie and, consequently, cues to deception can be detected before stating an actual lie. In two experiments, controlling for prospective memory, we monitored SNS activity during lying, truth telling, and truth telling with the aim of lying at a later instance. Electrodermal activity (EDA was used as an indicator of SNS. EDA was highest during lying, and compared to the truth condition, EDA was also raised during the intention to deceive. Moreover, the switch from truth telling toward lying in the intention condition evoked higher EDA than switching toward non-deception related tasks in the lie or truth condition. These results provide first empirical evidence that increased SNS activity related to deception can be monitored before a lie is stated. This implies that cues to deception are already present during the mere intention to lie.
Auxiliary representations of Lie algebras and the BRST constructions
International Nuclear Information System (INIS)
Burdik, C.; Pashnev, A.I.; Tsulaya, M.M.
2000-01-01
The method of construction of auxiliary representations for a given Lie algebra is discussed in the framework of the BRST approach. The corresponding BRST charge turns out to be nonhermitian. This problem is solved by the introduction of the additional kernel operator in the definition of the scalar product in the Fock space. The existence of the kernel operator is proved for any Lie algebra
Solution of differential equations by application of transformation groups
Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.
1968-01-01
Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.
Essays in the history of Lie groups and algebraic groups
Borel, Armand
2001-01-01
Lie groups and algebraic groups are important in many major areas of mathematics and mathematical physics. We find them in diverse roles, notably as groups of automorphisms of geometric structures, as symmetries of differential systems, or as basic tools in the theory of automorphic forms. The author looks at their development, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. Starting from Lie's theory of local analytic transformation groups and early work on Lie algebras, he follows the process of globalization in its two main frameworks: differential geometry and topology on one hand, algebraic geometry on the other. Chapters II to IV are devoted to the former, Chapters V to VIII, to the latter. The essays in the first part of the book survey various proofs of the full reducibility of linear representations of \\mathbf{SL}_2{(\\mathbb{C})}, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and con...
The Lie algebra of the N=2-string
International Nuclear Information System (INIS)
Kugel, K.
2006-01-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
Directory of Open Access Journals (Sweden)
Fedriani Martel, Eugenio M.
2006-06-01
Full Text Available En la presente comunicación explicamos algunas de las herramientas de la Geometría Diferencial y, en concreto, de la Teoría de Lie con las que se trabaja actualmente en Economía. Se indican las condiciones que se exigen a las funciones de producción y la definición de un tipo de progreso técnico denominado de tipo Lie, consistente en exigir las tres propiedades que han de verificar los grupos de Lie. También se expone el uso del operador de Lie en interpretaciones económicas y en la cuantificación del impacto del progreso técnico. Dicho operador permite dar una respuesta a la Controversia Solow-Stigler. Por último, se indican varias aplicaciones de la Teoría de Lie en los estudios económicos, que permiten abrir futuras líneas de investigación,de las que se apuntan algunas. De este modo, nuestro objetivo principal es mostrar el uso, actual y futuro, de la Teoría de Lie en el campo de la Economía.
Observability of linear control systems on Lie groups
International Nuclear Information System (INIS)
Ayala, V.; Hacibekiroglu, A.K.
1995-01-01
In this paper, we study the observability problem for a linear control system Σ on a Lie group G. The drift vector field of Σ is an infinitesimal automorphism of G and the control vectors are elements in the Lie algebra of G. We establish algebraic conditions to characterize locally and globally observability for Σ. As in the linear case on R n , these conditions are independent of the control vector. We give an algorithm on the co-tangent bundle of G to calculate the equivalence class of the neutral element. (author). 6 refs
Solano, L; Barkema, H W; Pajor, E A; Mason, S; LeBlanc, S J; Nash, C G R; Haley, D B; Pellerin, D; Rushen, J; de Passillé, A M; Vasseur, E; Orsel, K
2016-03-01
Lying behavior is an important measure of comfort and well-being in dairy cattle, and changes in lying behavior are potential indicators and predictors of lameness. Our objectives were to determine individual and herd-level risk factors associated with measures of lying behavior, and to evaluate whether automated measures of lying behavior can be used to detect lameness. A purposive sample of 40 Holstein cows was selected from each of 141 dairy farms in Alberta, Ontario, and Québec. Lying behavior of 5,135 cows between 10 and 120 d in milk was automatically and continuously recorded using accelerometers over 4 d. Data on factors hypothesized to influence lying behavior were collected, including information on individual cows, management practices, and facility design. Associations between predictor variables and measures of lying behavior were assessed using generalized linear mixed models, including farm and province as random and fixed effects, respectively. Logistic regression models were used to determine whether lying behavior was associated with lameness. At the cow-level, daily lying time increased with increasing days in milk, but this effect interacted with parity; primiparous cows had more frequent but shorter lying bouts in early lactation, changing to mature-cow patterns of lying behavior (fewer and longer lying bouts) in late lactation. In barns with stall curbs >22 cm high, the use of sand or >2 cm of bedding was associated with an increased average daily lying time of 1.44 and 0.06 h/d, respectively. Feed alleys ≥ 350 cm wide or stalls ≥ 114 cm wide were associated with increased daily lying time of 0.39 and 0.33 h/d, respectively, whereas rubber flooring in the feed alley was associated with 0.47 h/d lower average lying time. Lame cows had longer lying times, with fewer, longer, and more variable duration of bouts compared with nonlame cows. In that regard, cows with lying time ≥ 14 h/d, ≤ 5 lying bouts per day, bout duration ≥ 110 min
Ghosh, D.; Sierksma, G.
2000-01-01
Sensitivity analysis of e-optimal solutions is the problem of calculating the range within which a problem parameter may lie so that the given solution re-mains e-optimal. In this paper we study the sensitivity analysis problem for e-optimal solutions tocombinatorial optimization problems with
2-variable Laguerre matrix polynomials and Lie-algebraic techniques
International Nuclear Information System (INIS)
Khan, Subuhi; Hassan, Nader Ali Makboul
2010-01-01
The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.
Gai, Litao; Bilige, Sudao; Jie, Yingmo
2016-01-01
In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.
Lie-algebraic classification of effective theories with enhanced soft limits
Bogers, Mark P.; Brauner, Tomáš
2018-05-01
A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by the underlying spontaneously broken symmetry, which likewise allows one to bypass the Lagrangian and connect the scaling of the scattering amplitudes directly to the Lie algebra of the symmetry generators. We focus on theories with enhanced soft limits, where the scattering amplitudes scale with a higher power of momentum than expected based on the mere existence of Adler's zero. Our approach is complementary to that developed recently in ref. [1], and in the first step we reproduce their result. That is, as far as Lorentz-invariant theories with a single physical NG boson are concerned, we find no other nontrivial theories featuring enhanced soft limits beyond the already well-known ones: the Galileon and the Dirac-Born-Infeld (DBI) scalar. Next, we show that in a certain sense, these theories do not admit a nontrivial generalization to non-Abelian internal symmetries. Namely, for compact internal symmetry groups, all NG bosons featuring enhanced soft limits necessarily belong to the center of the group. For noncompact symmetry groups such as the ISO( n) group featured by some multi-Galileon theories, these NG bosons then necessarily belong to an Abelian normal subgroup. The Lie-algebraic consistency constraints admit two infinite classes of solutions, generalizing the known multi-Galileon and multi-flavor DBI theories.
Lie sphere transformations and the focal sets of hyper-surfaces
International Nuclear Information System (INIS)
Buyske, S.G.
1988-01-01
Isoparametric hypersurfaces of euclidean or spherical space are those with constant principal curvatures. The image of the hypersurface under a conformal transformation of the ambient space will no longer be isoparametric, but will be Dupin: the principal curvatures will be constant in the principal directions. Dupin hypersurfaces are closely related to taut hypersurfaces, for which almost every distance function is a perfect Morse function (the number of critical points is the minimum for the topology of the hypersurface). A weaker concept is tightness, for which almost every linear height function is required to be a perfect Morse function. Dupin and taut hypersurfaces are preserved not just under conformal, or Moebuius, transformations but also under the more general Lie sphere transformations. Roughly speaking, these are generated by Moebius transformations and parallel transformations. The purpose of this thesis is to study certain taut or Dupin hypersurfaces under Lie sphere transformations including the effect on the focal set. The thesis is divided into four sections. After the introduction, the method of studying hypersurfaces as Lie sphere objects is developed. The third section extends the concepts of tightness and tautness of semi-euclidean space. The final section shows that if a hypersurface is the Lie sphere image of certain standard constructions (tubes, cylinders, and rotations), the resulting family of curvature spheres is taut in the Lie quadric
Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows.
Kaufman, E I; LeBlanc, S J; McBride, B W; Duffield, T F; DeVries, T J
2016-09-01
The objective of this study was to characterize the association of lying behavior and subclinical ketosis (SCK) in transition dairy cows. A total of 339 dairy cows (107 primiparous and 232 multiparous) on 4 commercial dairy farms were monitored for lying behavior and SCK from 14d before calving until 28 d after calving. Lying time, frequency of lying bouts, and average lying bout length were measured using automated data loggers 24h/d. Cows were tested for SCK 1×/wk by taking a blood sample and analyzing for β-hydroxybutyrate; cows with β-hydroxybutyrate ≥1.2mmol/L postpartum were considered to have SCK. Cases of retained placenta, metritis, milk fever, or mastitis during the study period were recorded and cows were categorized into 1 of 4 groups: healthy (HLT) cows had no SCK or any other health problem (n=139); cows treated for at least 1 health issue other than SCK (n=50); SCK (HYK) cows with no other health problems during transition (n=97); or subclinically ketotic plus (HYK+) cows that had SCK and 1 or more other health problems (n=53). Daily lying time was summarized by week and comparisons were made between HLT, HYK, and HYK+, respectively. We found no difference among health categories in lying time, bout frequency, or bout length fromwk -2 towk +4 relative to calving for first-lactation cows. Differences in lying time for multiparous cows were seen inwk +1, when HYK+ cows spent 92±24.0 min/d more time lying down than HLT cows, and duringwk +3 and +4 when HYK cows spent 44±16.7 and 41±18.9 min/d, respectively, more time lying down than HLT cows. Increased odds of HYK+ were found to be associated with higher parity, longer dry period, and greater stall stocking density inwk -1 and longer lying time duringwk +1. When comparing HYK to HLT cows, the same variables were associated with odds of SCK; however, lying time was not retained in the final model. These results suggest that monitoring lying time may contribute to identifying multiparous cows
Exact solutions of a nonconservative system in elastodynamics
Kayyunnapara Thomas Joseph
2015-01-01
In this article we find an explicit formula for solutions of a nonconservative system when the initial data lies in the level set of one of the Riemann invariants. Also for nonconservative shock waves in the sense of Volpert we derive an explicit formula for the viscous shock profile.
Influence of social factors on the relation between lie-telling and children's cognitive abilities.
Talwar, Victoria; Lavoie, Jennifer; Gomez-Garibello, Carlos; Crossman, Angela M
2017-07-01
Lie-telling may be part of a normative developmental process for children. However, little is known about the complex interaction of social and cognitive factors related to this developmental behavior. The current study examined parenting style, maternal exposure to stressors, and children's cognitive abilities in relation to children's antisocial lie-telling behavior in an experimental setting. Children (3-6years, N=157) participated in a modified temptation resistance paradigm to elicit spontaneous lies. Results indicate that high authoritative parenting and high inhibitory control interact to predict a lower propensity to lie, but those who did lie had better semantic leakage control. This suggests that although children's lie-telling may be normative during early development, the relation to children's cognitive abilities can be moderated by responsive parenting behaviors that discourage lying. Copyright © 2017 Elsevier Inc. All rights reserved.
Children's Lies and Their Detection: Implications for Child Witness Testimony
Talwar, Victoria; Crossman, Angela M.
2012-01-01
The veracity of child witness testimony is central to the justice system where there are serious consequences for the child, the accused, and society. Thus, it is important to examine how children's lie-telling abilities develop and the factors that can influence their truthfulness. The current review examines children's lie-telling ability in…
An algorithm for analysis of the structure of finitely presented Lie algebras
Directory of Open Access Journals (Sweden)
Vladimir P. Gerdt
1997-12-01
Full Text Available We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most general mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering applications ranging from mathematical physics to combinatorial algebra. Some particular applications are constructionof prolongation algebras in the Wahlquist-Estabrook method for integrability analysis of nonlinear partial differential equations and investigation of Lie algebras arising in different physical models. The finite presentations also indicate a way to q-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic transformations which is sharply increased with growth of the number of generators and relations. For this reason, in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer results illustrating our algorithmand its actual implementation are also presented.
Transverse lie in labor: A study from Kaduna, Northern Nigeria ...
African Journals Online (AJOL)
Results: During the period there were 16633 deliveries and 30 women with transversely lying fetuses, giving an incidence of 1 in 554 deliveries. Forty percent of the cases were neglected transverse lies. The para 4 and above group had the highest incidence of 2.69/1000. Northern minorities ethnic group had the highest ...
Diagnostic Error in Stroke-Reasons and Proposed Solutions.
Bakradze, Ekaterina; Liberman, Ava L
2018-02-13
We discuss the frequency of stroke misdiagnosis and identify subgroups of stroke at high risk for specific diagnostic errors. In addition, we review common reasons for misdiagnosis and propose solutions to decrease error. According to a recent report by the National Academy of Medicine, most people in the USA are likely to experience a diagnostic error during their lifetimes. Nearly half of such errors result in serious disability and death. Stroke misdiagnosis is a major health care concern, with initial misdiagnosis estimated to occur in 9% of all stroke patients in the emergency setting. Under- or missed diagnosis (false negative) of stroke can result in adverse patient outcomes due to the preclusion of acute treatments and failure to initiate secondary prevention strategies. On the other hand, the overdiagnosis of stroke can result in inappropriate treatment, delayed identification of actual underlying disease, and increased health care costs. Young patients, women, minorities, and patients presenting with non-specific, transient, or posterior circulation stroke symptoms are at increased risk of misdiagnosis. Strategies to decrease diagnostic error in stroke have largely focused on early stroke detection via bedside examination strategies and a clinical decision rules. Targeted interventions to improve the diagnostic accuracy of stroke diagnosis among high-risk groups as well as symptom-specific clinical decision supports are needed. There are a number of open questions in the study of stroke misdiagnosis. To improve patient outcomes, existing strategies to improve stroke diagnostic accuracy should be more broadly adopted and novel interventions devised and tested to reduce diagnostic errors.
Homotopy Lie superalgebra in Yang-Mills theory
International Nuclear Information System (INIS)
Zeitlin, Anton M.
2007-01-01
The Yang-Mills equations are formulated in the form of generalized Maurer-Cartan equations, such that the corresponding algebraic operations are shown to satisfy the defining relations of homotopy Lie superalgebra
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
International Nuclear Information System (INIS)
Zhang Yu-Feng; Tam, Honwah
2016-01-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)
Lipkin, Harry J
2002-01-01
According to the author of this concise, high-level study, physicists often shy away from group theory, perhaps because they are unsure which parts of the subject belong to the physicist and which belong to the mathematician. However, it is possible for physicists to understand and use many techniques which have a group theoretical basis without necessarily understanding all of group theory. This book is designed to familiarize physicists with those techniques. Specifically, the author aims to show how the well-known methods of angular momentum algebra can be extended to treat other Lie group
Zanette, Sarah; Gao, Xiaoqing; Brunet, Megan; Bartlett, Marian Stewart; Lee, Kang
2016-10-01
The current study used computer vision technology to examine the nonverbal facial expressions of children (6-11years old) telling antisocial and prosocial lies. Children in the antisocial lying group completed a temptation resistance paradigm where they were asked not to peek at a gift being wrapped for them. All children peeked at the gift and subsequently lied about their behavior. Children in the prosocial lying group were given an undesirable gift and asked if they liked it. All children lied about liking the gift. Nonverbal behavior was analyzed using the Computer Expression Recognition Toolbox (CERT), which employs the Facial Action Coding System (FACS), to automatically code children's facial expressions while lying. Using CERT, children's facial expressions during antisocial and prosocial lying were accurately and reliably differentiated significantly above chance-level accuracy. The basic expressions of emotion that distinguished antisocial lies from prosocial lies were joy and contempt. Children expressed joy more in prosocial lying than in antisocial lying. Girls showed more joy and less contempt compared with boys when they told prosocial lies. Boys showed more contempt when they told prosocial lies than when they told antisocial lies. The key action units (AUs) that differentiate children's antisocial and prosocial lies are blink/eye closure, lip pucker, and lip raise on the right side. Together, these findings indicate that children's facial expressions differ while telling antisocial versus prosocial lies. The reliability of CERT in detecting such differences in facial expression suggests the viability of using computer vision technology in deception research. Copyright © 2016 Elsevier Inc. All rights reserved.
Unified Treatment of a Class of Spherically Symmetric Potentials: Quasi-Exact Solution
International Nuclear Information System (INIS)
Baradaran, M.; Panahi, H.
2016-01-01
We investigate the Schrödinger equation for a class of spherically symmetric potentials in a simple and unified manner using the Lie algebraic approach within the framework of quasi-exact solvability. We illustrate that all models give rise to the same basic differential equation, which is expressible as an element of the universal enveloping algebra of sl(2). Then, we obtain the general exact solutions of the problem by employing the representation theory of sl(2) Lie algebra.
Cartan determinants, LIE algebra extensions, and the exceptional group series
International Nuclear Information System (INIS)
Capps, R.H.
1986-01-01
In this note the author utilizes the determinant of the generalized Cartan matrix for candidate Dynkin systems for two purposes. The first is to provide an uncomplicated criterion for classifying candidate one-root extensions of diagrams for semisimple Lie algebras. The second is to help determine some important properties of related Lie algebras and their representations
Combination of activity and lying/standing data for detection of oestrus in cows
DEFF Research Database (Denmark)
Jónsson, Ragnar Ingi; Blanke, Mogens; Poulsen, Niels Kjølstad
2009-01-01
is measured by a sensor attached to the hind leg of the cow. Activity and lying/standing behaviour are modelled as a discrete event system, constructed using automata theory. In an attempt to estimate a biologically relevant lying balance, a lying balance indicator is constructed and is influencing transition...
Lying and executive control: an experimental investigation using ego depletion and goal neglect
Debey, E.; Verschuere, B.; Crombez, G.
2012-01-01
This study investigated whether lying requires executive control using a reaction-time based lie test. We hypothesized that (1) goal neglect induced by a long response-stimulus interval (RSI; 5-8 s) would make lying harder relative to a short RSI (.2 s) that promoted attentional focus, and (2)
The low-lying collective multipole response of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Spieker, Mark; Derya, Vera; Hennig, Andreas; Pickstone, Simon G.; Prill, Sarah; Vielmetter, Vera; Weinert, Michael; Wilhelmy, Julius; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Petkov, Pavel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); INRNE, Bulgarian Academy of Sciences, Sofia (Bulgaria); National Institute for Physics and Nuclear Engineering, Bucharest (Romania)
2016-07-01
We present experimental results on the low-lying multipole response, which were obtained with the recently established DSA-method in Cologne. Nuclear level lifetimes in the sub-ps regime are extracted by means of centroid-shifts utilizing the (p,p{sup '}γ) reaction at the 10 MV FN-Tandem accelerator in Cologne. The scattered protons are coincidently detected with the deexciting γ rays using the SONIC rate at HORUS detector array, which allows for a precise determination of the reaction kinematics. In addition to the pioneering results on octupole and hexadecapole mixed-symmetry states of {sup 96}Ru, this contribution will feature new results on low-lying quadrupole-octupole coupled states and on the low-lying E2 strength of {sup 112,114}Sn, which was recently discussed to be generated due to a quadrupole-type oscillation of the neutron skin against the isospin-saturated core.
International Nuclear Information System (INIS)
Ton-That, Tuong
2005-01-01
In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed
Solutions to the equations describing materials with competing quadratic and cubic nonlinearities
International Nuclear Information System (INIS)
Li-Na, Zhao; Ji, Lin; Zi-Shuang, Tong
2009-01-01
The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations share some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation
Walczyk, Jeffrey J.; Igou, Frank P.; Dixon, Alexa P.; Tcholakian, Talar
2013-01-01
This article critically reviews techniques and theories relevant to the emerging field of “lie detection by inducing cognitive load selectively on liars.” To help these techniques benefit from past mistakes, we start with a summary of the polygraph-based Controlled Question Technique (CQT) and the major criticisms of it made by the National Research Council (2003), including that it not based on a validated theory and administration procedures have not been standardized. Lessons from the more successful Guilty Knowledge Test are also considered. The critical review that follows starts with the presentation of models and theories offering insights for cognitive lie detection that can undergird theoretically load-inducing approaches. This is followed by evaluation of specific research-based, load-inducing proposals, especially for their susceptibility to rehearsal and other countermeasures. To help organize these proposals and suggest new direction for innovation and refinement, a theoretical taxonomy is presented based on the type of cognitive load induced in examinees (intrinsic or extraneous) and how open-ended the responses to test items are. Finally, four recommendations are proffered that can help researchers and practitioners to avert the corresponding mistakes with the CQT and yield new, valid cognitive lie detection technologies. PMID:23378840
On the geometry of Riemannian manifolds with a Lie structure at infinity
Directory of Open Access Journals (Sweden)
Bernd Ammann
2004-01-01
Full Text Available We study a generalization of the geodesic spray and give conditions for noncomapct manifolds with a Lie structure at infinity to have positive injectivity radius. We also prove that the geometric operators are generated by the given Lie algebra of vector fields. This is the first one in a series of papers devoted to the study of the analysis of geometric differential operators on manifolds with Lie structure at infinity.
The BRST complex and the cohomology of compact lie algebras
International Nuclear Information System (INIS)
Holten, J.W. van
1990-02-01
The authors construct the BRST and anti-BRST operator for a compact Lie algebra which is a direct sum of abelian and simple ideals. Two different inner products are defined on the ghost space and the hermiticity propeties of the ghost and BRST operators with respect to these inner products are discussed. A decomposition theorem for ghost states is derived and the cohomology of the BRST complex is shown to reduce to the standard Lie-algebra cohomology. The authors show that the cohomology classes of the Lie algebra are given by all invariant anti-symmetric tensors and explain how thse can be obtained as zero-modes of an invariant operator in the representation space of the ghosts. Explicit examples are given. (author) 24 refs
Statistics on Lie groups: A need to go beyond the pseudo-Riemannian framework
Miolane, Nina; Pennec, Xavier
2015-01-01
Lie groups appear in many fields from Medical Imaging to Robotics. In Medical Imaging and particularly in Computational Anatomy, an organ's shape is often modeled as the deformation of a reference shape, in other words: as an element of a Lie group. In this framework, if one wants to model the variability of the human anatomy, e.g. in order to help diagnosis of diseases, one needs to perform statistics on Lie groups. A Lie group G is a manifold that carries an additional group structure. Statistics on Riemannian manifolds have been well studied with the pioneer work of Fréchet, Karcher and Kendall [1, 2, 3, 4] followed by others [5, 6, 7, 8, 9]. In order to use such a Riemannian structure for statistics on Lie groups, one needs to define a Riemannian metric that is compatible with the group structure, i.e a bi-invariant metric. However, it is well known that general Lie groups which cannot be decomposed into the direct product of compact and abelian groups do not admit a bi-invariant metric. One may wonder if removing the positivity of the metric, thus asking only for a bi-invariant pseudo-Riemannian metric, would be sufficient for most of the groups used in Computational Anatomy. In this paper, we provide an algorithmic procedure that constructs bi-invariant pseudo-metrics on a given Lie group G. The procedure relies on a classification theorem of Medina and Revoy. However in doing so, we prove that most Lie groups do not admit any bi-invariant (pseudo-) metric. We conclude that the (pseudo-) Riemannian setting is not the richest setting if one wants to perform statistics on Lie groups. One may have to rely on another framework, such as affine connection space.
Charlton, G L; Haley, D B; Rushen, J; de Passillé, A M
2014-05-01
Lying time is an important measure of cow comfort, and the lying behavior of dairy cattle can now be recorded automatically with the use of accelerometers. To assess the effect that stall stocking density and the time that cows spend away from the home pen being milked has on the lying behavior of Holstein cattle, a total of 111 commercial freestall dairy farms were visited in Canada. Accelerometers were used to automatically record the lying behavior of 40 focal cows per farm. Total duration of lying, lying bout frequency, and the mean duration of lying bouts were calculated. Pen population was the total number of cows in the pen. To calculate stall stocking density (%) the number of cows in the pen and the number of useable stalls were counted and multiplied by 100, and the length × width of the pen was divided by the number of cows in the pen to calculate area/cow (m(2)). Time away from the pen per day was recorded from when the first cow in each pen was taken out of the home pen for milking until the last cow returned to the home pen after milking, and this time was multiplied by daily milking frequency. The median value for lying duration at the farm level was 10.6h/d, with 10.5 lying bouts/d, and a median lying bout duration of 1.2h. Stall stocking density ranged from 52.2 to 160.0%, with very few farms (7%) stocking at greater than 120%. Although stall stocking density was not significantly correlated with lying behavior, the results showed that no farm with stocking density greater that 100% achieved an average herd lying duration of 12h/d or higher, whereas 21.6% of farms with a stocking density of 100% or less did achieve the target lying time of ≥ 12 h/d, as recommended by the Canadian Code of Practice (χ(2)=4.86, degrees of freedom = 1). Area/cow (m(2)) was not correlated with any aspect of lying behavior, but regardless of space per cow, pen population was correlated with daily frequency and duration of lying bouts. As the number of cows in the pen
Proposal for Land Consolidation Project Solutions for Selected Problem Areas
Wojcik-Len, Justyna; Strek, Zanna
2017-12-01
One of the economic tools for supporting agricultural policy are the activities implemented under the Rural Development Program (RDP). By encouraging agricultural activities and creating equal opportunities for development of farms, among others in areas with unfavourable environmental conditions characterized by low productivity of soils exposed to degradation, decision makers can contribute to improving the spatial structure of rural areas. In Poland, one of the major concerns are agricultural problem areas (regions). In view of this situation, the aim of this article was to characterize the problem areas in question and propose land consolidation project solutions for selected fragments of those areas. This paper presents the results of a review of literature and an analysis of geodetic and cartographic data regarding the problem areas. The process of land consolidation, which is one of the technical and legal instruments supporting the development of rural areas, was characterized. The study allowed the present authors to establish criteria for selecting agricultural problem areas for land consolidation. To develop a proposal for rational management of the problem areas, key general criteria (location, topography, soil quality and usefulness) and specific criteria were defined and assigned weights. A conception of alternative development of the agricultural problem areas was created as part of a land consolidation project. The results were used to create a methodology for the development of agricultural problem areas to be employed during land consolidation in rural areas. Every agricultural space includes areas with unfavourable environmental and soil conditions determined by natural or anthropogenic factors. Development of agricultural problem areas through land consolidation should take into account the specific functions assigned to these areas in land use plans, as well as to comply with legal regulations.
Toriyeh: the Way of Escaping from Telling Lies to Patients
Directory of Open Access Journals (Sweden)
Ali Reza Alinouri
2015-06-01
Full Text Available Toriyeh means concealing real intention of speech using its parallel and common words so that the listener constructs from speaker's speech a meaning what he/she meant. The purpose of this research is studying jurisprudential dimensions of toriyeh in order to clarify its distinction from lying and related jurisprudential commandments by explanation of the most important discussions about toriyeh. This research was conducted via library method using verses, narratives, jurisprudence sources and decrees by religious authorities. two types of Second type: the speaker`s intention is the outward meaning but the listener misunderstands due to his mental moods. Some of the contemporaries regard the first type as forbidden and they regard the second type to allowable Toriyeh is not equivalent in the meaning with lying and jurists have mentioned narrative-based reasons to prove it. Therefore, in cases of emergency in which man is allowable to tell lie for removing inevitable loss he should use toriyeh as much as possible, and not tell a lie. Of course, toriyeh in the first sense is permissible and if a forbidden thing is conformed to it as a subordinate, it will lose its legality.
NSAID reduces lameness score without affecting lying behaviour of lame dairy cows
DEFF Research Database (Denmark)
Raundal, Peter M; Forkman, Björn; Herskin, Mette S.
2017-01-01
Foot lesions in dairycowsresulting in clinical lameness are often associatedwith pain (2)and altered lying behaviour compared to non‐lame cows (6).Use of non‐steroidalanti‐inflammatory drugs (NSAIDs)haveshown minoreffect on degree of lameness (3, 1) andnomodification of lying behaviour (1), However......, thesestudies didnot control fortype of foot lesions. We investigatedeffects of a4‐day NSAID treatment (ketoprofen) on lamenessscore and lying behavior in cows with lameness related to horn‐related (HR) lesionsand digital dermatitis (DD)....
Measurement and control in solution mining of copper and uranium
International Nuclear Information System (INIS)
Davidson, D.H.; Huff, R.V.; Sonstelie, W.E.
1978-01-01
The solution mining of deep-lying mineral deposits requires an integration of oilfield and extractive mineral technology. Although instrumentation is available to measure parameters relating to the oilfield components such as permeability, porosity and flow-logging, only limited services exist for monitoring leaching performance. This paper discusses the history of copper leaching, the need for solution mining development, and solution mining process descriptions. It discusses measurement requirements for deposit evaluation and the injection and production wellfields. It is concluded with a listing of desirable but unavailable instrumentation for further development of this technology
Akivis, M A
2011-01-01
This book describes the life and achievements of the great French mathematician, Elie Cartan. Here readers will find detailed descriptions of Cartan's discoveries in Lie groups and algebras, associative algebras, differential equations, and differential geometry, as well of later developments stemming from his ideas. There is also a biographical sketch of Cartan's life. A monumental tribute to a towering figure in the history of mathematics, this book will appeal to mathematicians and historians alike.
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
International Nuclear Information System (INIS)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Energy Technology Data Exchange (ETDEWEB)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation
International Nuclear Information System (INIS)
Ren Ji; Ruan Hangyu
2008-01-01
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained
Lie algebraical aspects of quantum statistics
International Nuclear Information System (INIS)
Palev, T.D.
1976-01-01
It is shown that the secon quantization axioms can, in principle, be satisfied with creation and annihilation operators generating (in the case of n pairs of such operators) the Lie algebra Asub(n) of the group SL(n+1). A concept of the Fock space is introduced. The matrix elements of the operators are found
ASSOCIATIVE RINGS SOLVED AS LIE RINGS
Directory of Open Access Journals (Sweden)
M. B. Smirnov
2011-01-01
Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2 and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4
Follow the Liar: The Effects of Adult Lies on Children's Honesty
Hays, Chelsea; Carver, Leslie J.
2014-01-01
Recent research shows that most adults admit they lie to children. We also know that children learn through modeling and imitation. To date there are no published studies that examine whether lying to children has an effect on children's honesty. We aimed to bridge the gap in this literature by examining the effects of adults' lies on…
Noether and Lie symmetries for charged perfect fluids
International Nuclear Information System (INIS)
Kweyama, M C; Govinder, K S; Maharaj, S D
2011-01-01
We study the underlying nonlinear partial differential equation that governs the behaviour of spherically symmetric charged fluids in general relativity. We investigate the conditions for the equation to admit a first integral or be reduced to quadratures using symmetry methods for differential equations. A general Noether first integral is found. We also undertake a comprehensive group analysis of the underlying equation using Lie point symmetries. The existence of a Lie symmetry is subject to solving an integro-differential equation in general; we investigate the conditions under which it can be reduced to quadratures. Earlier results for uncharged fluids and particular first integrals for charged matter are regained as special cases of our treatment.
The foundation and evolution of the Middlesex Hospital's lying-in service, 1745-86.
Croxson, B
2001-01-01
The Middlesex Hospital was founded in 1745, and opened the first British in-patient lying-in service in 1747. Men-Midwives were instrumental in founding and supporting the service. The hospital's lying-in service featured prominently in its fundraising literature, and the level of demand from benefactors suggests it was popular. From 1764 the hospital also provided domiciliary services, initially to cope with excess demand and later to compete with domiciliary charities. In 1786 it closed the in-patient services, and from this date provided only domiciliary lying-in services. From 1757, in common with the London lying-in hospitals, the Middlesex Hospital faced competition from a domiciliary charity: The Lying-In Charity for Delivering Poor Married Women in Their Own Homes. Later in the century it also faced competition from dispensaries. This paper describes the foundation and evolution of the Middlesex Hospital's lying-in service, including quantitative information about admissions and about the hospitals income and expenditure during the eighteenth century. It compares the characteristics of domiciliary and in-patient services, to analyse why in-patient services were supported by men-midwives and by benefactors.
The Local Stability of Solutions for a Nonlinear Equation
Directory of Open Access Journals (Sweden)
Haibo Yan
2014-01-01
Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.
Cox, Caitriona L; Fritz, Zoe
2016-01-01
In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's ‘Test of Publicity’ to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. PMID:27451425
Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Heyman, Gail; Lee, Kang
2008-01-01
This study examined cross-cultural differences and similarities in children’s moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an individual or vice versa. Participants chose to lie or to tell the truth as if they were the character (Experiments 1 and 2) and categorized and evaluated the story characters’ truthful and untruthful statements (Experiments 3 and 4). Most children in both cultures labeled lies as lies and truths as truths. The major cultural differences lay in choices and moral evaluations. Chinese children chose lying to help a collective but harm an individual, and they rated it less negatively than lying with opposite consequences. Chinese children rated truth telling to help an individual but harm a group less positively than the alternative. Canadian children did the opposite. These findings suggest that cross-cultural differences in emphasis on groups versus individuals affect children’s choices and moral judgments about truth and deception. PMID:17352539
Energy Technology Data Exchange (ETDEWEB)
Salam, A. [Imperial College of Science and Technology, London (United Kingdom)
1963-01-15
Throughout the history of quantum theory, a battle has raged between the amateurs and professional group theorists. The amateurs have maintained that everything one needs in the theory of groups can be discovered by the light of nature provided one knows how to multiply two matrices. In support of this claim, they of course, justifiably, point to the successes of that prince of amateurs in this field, Dirac, particularly with the spinor representations of the Lorentz group. As an amateur myself, I strongly believe in the truth of the non-professionalist creed. I think perhaps there is not much one has to learn in the way of methodology from the group theorists except caution. But this does not mean one should not be aware of the riches which have been amassed over the course of years particularly in that most highly developed of all mathematical disciplines - the theory of Lie groups. My lectures then are an amateur's attempt to gather some of the fascinating results for compact simple Lie groups which are likely to be of physical interest. I shall state theorems; and with a physicist's typical unconcern rarely, if ever, shall I prove these. Throughout, the emphasis will be to show the close similarity of these general groups with that most familiar of all groups, the group of rotations in three dimensions.
Directory of Open Access Journals (Sweden)
Letlhogonolo Daddy Moleleki
2014-01-01
Full Text Available We analyze the (3+1-dimensional Boussinesq equation, which has applications in fluid mechanics. We find exact solutions of the (3+1-dimensional Boussinesq equation by utilizing the Lie symmetry method along with the simplest equation method. The solutions obtained are traveling wave solutions. Moreover, we construct the conservation laws of the (3+1-dimensional Boussinesq equation using the new conservation theorem, which is due to Ibragimov.
The relation between quantum W algebras and Lie algebras
International Nuclear Information System (INIS)
Boer, J. de; Tjin, T.
1994-01-01
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)
Does a point lie inside a polygon
International Nuclear Information System (INIS)
Milgram, M.S.
1988-01-01
A superficially simple problem in computational geometry is that of determining whether a query point P lies in the interior of a polygon if it lies in the polygon's plane. Answering this question is often required when tracking particles in a Monte Carlo program; it is asked frequently and an efficient algorithm is crucial. Littlefield has recently rediscovered Shimrat's algorithm, while in separate works, Wooff, Preparata and Shamos and Mehlhorn, as well as Yamaguchi, give other algorithms. A practical algorithm answering this question when the polygon's plane is skewed in space is not immediately evident from most of these methods. Additionally, all but one fails when two sides extend to infinity (open polygons). In this paper the author review the above methods and present a new, efficient algorithm, valid for all convex polygons, open or closed, and topologically connected in n-dimensional space (n ≥ 2)
Harmonic analysis on exponential solvable Lie groups
Fujiwara, Hidenori
2015-01-01
This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers. The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobenius reciprocity, and associated alge...
Non-commutative representation for quantum systems on Lie groups
Energy Technology Data Exchange (ETDEWEB)
Raasakka, Matti Tapio
2014-01-27
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase
Non-commutative representation for quantum systems on Lie groups
International Nuclear Information System (INIS)
Raasakka, Matti Tapio
2014-01-01
The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path
Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space
International Nuclear Information System (INIS)
Daszkiewicz, Marcin; Walczyk, Cezary J.
2008-01-01
The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces
Computation of Lie transformations from a power series: Bounds and optimum truncation
International Nuclear Information System (INIS)
Gjaja, I.
1996-01-01
The problem considered is the computation of an infinite product (composition) of Lie transformations generated by homogeneous polynomials of increasing order from a given asymptotic power series. Bounds are computed for the infinitesimal form of the Lie transformations and for the domain of analyticity of the first n of them. Even when the power series is convergent, the estimates exhibit a factorial-type growth, and thus do not guarantee convergence of the product. The optimum truncation is determined by minimizing the remainder after the first n Lie transformations have been applied
Using Brain Imaging for Lie Detection: Where Science, Law and Research Policy Collide
Langleben, Daniel D.; Moriarty, Jane Campbell
2012-01-01
Progress in the use of functional magnetic resonance imaging (fMRI) of the brain to evaluate deception and differentiate lying from truth-telling has created anticipation of a breakthrough in the search for technology-based methods of lie detection. In the last few years, litigants have attempted to introduce fMRI lie detection evidence in courts. This article weighs in on the interdisciplinary debate about the admissibility of such evidence, identifying the missing pieces of the scientific puzzle that need to be completed if fMRI-based lie detection is to meet the standards of either legal reliability or general acceptance. We believe that the Daubert’s “known error rate” is the key concept linking the legal and scientific standards. We posit that properly-controlled clinical trials are the most convincing means to determine the error rates of fMRI-based lie detection and confirm or disprove the relevance of the promising laboratory research on this topic. This article explains the current state of the science and provides an analysis of the case law in which litigants have sought to introduce fMRI lie detection. Analyzing the myriad issues related to fMRI lie detection, the article identifies the key limitations of the current neuroimaging of deception science as expert evidence and explores the problems that arise from using scientific evidence before it is proven scientifically valid and reliable. We suggest that courts continue excluding fMRI lie detection evidence until this potentially useful form of forensic science meets the scientific standards currently required for adoption of a medical test or device. Given a multitude of stakeholders and, the charged and controversial nature and the potential societal impact of this technology, goodwill and collaboration of several government agencies may be required to sponsor impartial and comprehensive clinical trials that will guide the development of forensic fMRI technology. PMID:23772173
The socio-rhetorical force of 'truth talk' and lies: The case of 1 John ...
African Journals Online (AJOL)
This article canvassed Greek and Roman sources for discussions concerning truth talk and lies. It has investigated what social historians and/or anthropologists are saying about truth talking and lying and has developed a model that will examine the issue of truth and lying in socio-religious terms as defined by the ...
International Nuclear Information System (INIS)
Dobrev, V.K.
1986-11-01
Let G be a real linear connected semisimple Lie group. We present a canonical construction of the differential operators intertwining elementary (≡ generalized principal series) representations of G. The results are easily extended to real linear reductive Lie groups. (author). 20 refs
International Nuclear Information System (INIS)
Cosgrove, C.M.
1980-01-01
We investigate the precise interrelationships between several recently developed solution-generating techniques capable of generating asymptotically flat gravitational solutions with arbitrary multipole parameters. The transformations we study in detail here are the Lie groups Q and Q of Cosgrove, the Hoenselaers--Kinnersley--Xanthopoulos (HKX) transformations and their SL(2) tensor generalizations, the Neugebauer--Kramer discrete mapping, the Neugebauer Baecklund transformations I 1 and I 2 , the Harrison Baecklund transformation, and the Belinsky--Zakharov (BZ) one- and two-soliton transformations. Two particular results, among many reported here, are that the BZ soliton transformations are essentially equivalent to Harrison transformations and that the generalized HKX transformation may be deduced as a confluent double soliton transformation. Explicit algebraic expressions are given for the transforms of the Kinnersley--Chitre generating functions under all of the above transformations. In less detail, we also study the Kinnersley--Chitre β transformations, the non-null HKX transformations, and the Hilbert problems proposed independently by Belinsky and Zakharov, and Hauser and Ernst. In conclusion, we describe the nature of the exact solutions constructible in a finite number of steps with the available methods
On Lie point symmetry of classical Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Maharana, Karmadeva
2001-06-01
We perform the group analysis of Witten's equations of motion for a particle moving in the presence of a magnetic monopole, and also when constrained to move on the surface of a sphere, which is the classical example of Wess-Zumino-Witten model. We also consider variations of this model. Our analysis gives the generators of the corresponding Lie point symmetries. The Lie symmetry corresponding to Kepler's third law is obtained in two related examples. (author)
Semi-direct sums of Lie algebras and continuous integrable couplings
International Nuclear Information System (INIS)
Ma Wenxiu; Xu Xixiang; Zhang Yufeng
2006-01-01
A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems
Theory-of-Mind Training Causes Honest Young Children to Lie.
Ding, Xiao Pan; Wellman, Henry M; Wang, Yu; Fu, Genyue; Lee, Kang
2015-11-01
Theory of mind (ToM) has long been recognized to play a major role in children's social functioning. However, no direct evidence confirms the causal linkage between the two. In the current study, we addressed this significant gap by examining whether ToM causes the emergence of lying, an important social skill. We showed that after participating in ToM training to learn about mental-state concepts, 3-year-olds who originally had been unable to lie began to deceive consistently. This training effect lasted for more than a month. In contrast, 3-year-olds who participated in control training to learn about physical concepts were significantly less inclined to lie than the ToM-trained children. These findings provide the first experimental evidence supporting the causal role of ToM in the development of social competence in early childhood. © The Author(s) 2015.
Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.
DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K
2015-01-01
Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.
Cox, Caitriona L; Fritz, Zoe
2016-10-01
In modern practice, doctors who outright lie to their patients are often condemned, yet those who employ non-lying deceptions tend to be judged less critically. Some areas of non-disclosure have recently been challenged: not telling patients about resuscitation decisions; inadequately informing patients about risks of alternative procedures and withholding information about medical errors. Despite this, there remain many areas of clinical practice where non-disclosures of information are accepted, where lies about such information would not be. Using illustrative hypothetical situations, all based on common clinical practice, we explore the extent to which we should consider other deceptive practices in medicine to be morally equivalent to lying. We suggest that there is no significant moral difference between lying to a patient and intentionally withholding relevant information: non-disclosures could be subjected to Bok's 'Test of Publicity' to assess permissibility in the same way that lies are. The moral equivalence of lying and relevant non-disclosure is particularly compelling when the agent's motivations, and the consequences of the actions (from the patient's perspectives), are the same. We conclude that it is arbitrary to claim that there is anything inherently worse about lying to a patient to mislead them than intentionally deceiving them using other methods, such as euphemism or non-disclosure. We should question our intuition that non-lying deceptive practices in clinical practice are more permissible and should thus subject non-disclosures to the same scrutiny we afford to lies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Directory of Open Access Journals (Sweden)
M. M. Potsane
2014-01-01
Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.
On split Lie triple systems II
Indian Academy of Sciences (India)
the proof is complete. Acknowledgements. The first author was supported by the PCI of the UCA 'Teorıa de Lie y Teorıa de Espacios de Banach', by the PAI with project numbers FQM-298, FQM-3737, FQM-2467, by the project of the Spanish Ministerio de Educación y Ciencia MTM2004-06580-C02-02 and with fondos ...
Mauro, Christian;Sunyaev, Ali;Leimeister, Jan Marco;Schweiger, Andreas;Krcmar, Helmut
2014-01-01
This paper describes a single sign-on solution for the central management of health care provider?s smart cards in hospitals. The proposed approach which is expected to be an improvement over current methods is made possible through the introduction of a national healthcare telematics infrastructure in Germany where every physician and every patient will automatically be given an electronic health smart card (for patients) and a corresponding health professional card (for health care provider...
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Bidirectional composition on lie groups for gradient-based image alignment.
Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick
2010-09-01
In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.
Directory of Open Access Journals (Sweden)
M.J. Uddin
2016-09-01
Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.
International Nuclear Information System (INIS)
Feng, H.; Zheng, Y.; Ding, S.
2007-01-01
Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example
Invariant differential operators for non-compact Lie groups: an introduction
International Nuclear Information System (INIS)
Dobrev, V.K.
2015-01-01
In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. In the present paper we consider in detail the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,q-1)
Expansion in finite simple groups of Lie type
Tao, Terence
2015-01-01
Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.
DEFF Research Database (Denmark)
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey
2004-01-01
the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...
On symmetry reduction and exact solutions of the linear one-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Barannik, L.L.
1996-01-01
Symmetry reduction of the Schroedinger equation with potential is carried out on subalgebras of the Lie algebra which is the direct sum of the special Galilei algebra and one-dimensional algebra. Some new exact solutions are obtained
The Jordan structure of lie and Kac-Moody algebras
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.
1989-01-01
A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)
Growth of some varieties of Lie superalgebras
International Nuclear Information System (INIS)
Zaicev, M V; Mishchenko, S P
2007-01-01
We study numerical characteristics of varieties of Lie superalgebras and, in particular, the growth of codimensions. An example of an insoluble variety of almost polynomial growth is constructed. We prove that the exponent of this variety is equal to three and calculate the growth exponents for two earlier known soluble varieties
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Energy Technology Data Exchange (ETDEWEB)
Sharipov, A U; Yangirov, I Z
1982-01-01
A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.
Lie detection based on nonverbal expressions - study of the Czech Republic Police employees
Directory of Open Access Journals (Sweden)
Hedvika Boukalová
2014-12-01
Full Text Available Lie detection based on nonverbal behavior is not a standard method, it is an intuitive process, applied by lay persons, but also professionals. Some of the major sources (e.g. widespread Interrogation Manual by F. Inbau et al., 2004 offer clear recommendations about the nonverbal behavior of liars to investigators of serious crime. These findings are not supported by the research, moreover they can lead to lowering the ability to detect lie (Blair, Kooi 2004. Another topic is mapping the skills of professionals (police officers, members of the secret services and non-specialists to detect lies by nonverbal signs. Across the studies (with few exceptions a low performance in the task of detecting lies by nonverbal expressions (Ekman P., 1996; Vrij, 2004 and others is found. The levels of success are usually around the level of chance. The potential reasons for such results are analyzed (e.g. Blair, Kooi, 2004. However a group of psychologists led by P. Ekman and M. O'Sullivan (O'Sullivan, 2007 managed to find in their years lasting research a group of people whose ability to detect lies is well above the population average. This group is diverse in terms of age, interests and professions, all of them come from the USA. There were certain common features found in this group and also a focus on similar phenomena in the detection of lying. The main goal and research question is to find out: what is the success rate of differentiation between lies and truths in this specific professional group of Czech population, is it the same or different from the results reported in the context of available resources. The research will focus on the ability of respondents to determine the truth or deceit on the basis of non-verbal and paraverbal expressions of observed subjects, with focus on specific professional groups - mainly police workers. We assume, that the police officers are frequently in the contact with people, who are not willing to reveal critical
Decay modes of high-lying single-particle states in [sup 209]Pb
Energy Technology Data Exchange (ETDEWEB)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))
1994-05-01
The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
Directory of Open Access Journals (Sweden)
Rutwig Campoamor-Stursberg
2016-03-01
Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
International Nuclear Information System (INIS)
Li Xicheng; Xu Mingyu; Wang Shaowei
2008-01-01
In this paper, we give similarity solutions of partial differential equations of fractional order with a moving boundary condition. The solutions are given in terms of a generalized Wright function. The time-fractional Caputo derivative and two types of space-fractional derivatives are considered. The scale-invariant variable and the form of the solution of the moving boundary are obtained by the Lie group analysis. A comparison between the solutions corresponding to two types of fractional derivative is also given
A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels
International Nuclear Information System (INIS)
Sedighi, M R; Shakeri, M
2009-01-01
This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results
Computational Approaches to Modeling Artificial Emotion -– An overview of the Proposed Solutions
Directory of Open Access Journals (Sweden)
Zdzislaw eKOWALCZUK
2016-04-01
Full Text Available Cybernetic approach to modeling artificial emotion through the use of different theories of psychology is considered in this paper, presenting a review of twelve proposed solutions: ActAffAct, FLAME, EMA, ParleE, FearNot!, FAtiMA, WASABI, Cathexis, KARO, MAMID, FCM, and xEmotion. The main motivation for this study is founded on the hypothesis that emotions can play a definite utility role of scheduling variables in the construction of intelligent autonomous systems, agents and mobile robots. In this review we also include an innovative and panoptical, comprehensive system, referred to as the Intelligent System of Decision-making (ISD, which has been employed in practical applications of various autonomous units, and which applies as its part the xEmotion, taking into consideration the personal aspects of emotions, affects (short term emotions and mood (principally, long term emotions.
An introduction of gauge field by the Lie-isotopic lifting of the Hilbert space
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
It is introduced the gauge field by the Lie-isotopic lifting of the Hilbert space. Our method is different from other's in that the commutator between the isotropic element and the generators of the Lie algebra does not vanish in our case, but vanishes in other cases. Our method uses the Lie-isotopic lifting of the Hilbert space, but others do not use it
Masip, Jaume; Blandón-Gitlin, Iris; de la Riva, Clara; Herrero, Carmen
2016-09-01
Meta-analyses reveal that behavioral differences between liars and truth tellers are small. To facilitate lie detection, researchers are currently developing interviewing approaches to increase these differences. Some of these approaches assume that lying is cognitively more difficult than truth telling; however, they are not based on specific cognitive theories of lie production, which are rare. Here we examined one existing theory, Walczyk et al.'s (2014) Activation-Decision-Construction-Action Theory (ADCAT). We tested the Decision component. According to ADCAT, people decide whether to lie or tell the truth as if they were using a specific mathematical formula to calculate the motivation to lie from (a) the probability of a number of outcomes derived from lying vs. telling the truth, and (b) the costs/benefits associated with each outcome. In this study, participants read several hypothetical scenarios and indicated whether they would lie or tell the truth in each scenario (Questionnaire 1). Next, they answered several questions about the consequences of lying vs. telling the truth in each scenario, and rated the probability and valence of each consequence (Questionnaire 2). Significant associations were found between the participants' dichotomous decision to lie/tell the truth in Questionnaire 1 and their motivation to lie scores calculated from the Questionnaire 2 data. However, interestingly, whereas the expected consequences of truth telling were associated with the decision to lie vs. tell the truth, the expected consequences of lying were not. Suggestions are made to refine ADCAT, which can be a useful theoretical framework to guide deception research. Copyright © 2016 Elsevier B.V. All rights reserved.
Block (or Hamiltonian) Lie Symmetry of Dispersionless D-Type Drinfeld–Sokolov Hierarchy
International Nuclear Information System (INIS)
Li Chuan-Zhong; He Jing-Song; Su Yu-Cai
2014-01-01
In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type
Gruppi, anelli di Lie e teoria della coomologia
Zappa, G
2011-01-01
This book includes: R. Baer: Complementation in finite gropus; M. Lazard: Groupes, anneaux de Lie et probleme de Burnside; J. Tits: Sur les groupes algebriques afffines; Theoremes fondamentaux de structure; and, Classification des groupes semisimples et geometries associees.
van der Noort, V.
2009-01-01
This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations
O'Sullivan, Maureen
2007-02-01
Bond and Uysal (this issue) complain that expert lie detectors identified by O'Sullivan and Ekman (2004) are statistical flukes. They ignore one class of experts we have identified and misrepresent the procedures we use to identify the others. They also question the psychometric validity of the measures and protocol used. Many of their points are addressed in the chapter they criticize. The fruitfulness of the O'Sullivan-Ekman protocol is illustrated with respect to improved identification of expert lie detectors, as well as a replicated pattern of errors made by experts from different professional groups. The statistical arguments offered confuse the theoretical use of the binomial with the empirical use of the normal distribution. Data are provided that may clarify this distinction.
On numerical characteristics of subvarieties for three varieties of Lie algebras
International Nuclear Information System (INIS)
Petrogradskii, V M
1999-01-01
Let V be a variety of Lie algebras. For each n we consider the dimension of the space of multilinear elements in n distinct letters of a free algebra of this variety. This gives rise to the codimension sequence c n (V). To study the exponential growth one defines the exponent of the variety. The variety of Lie algebras with nilpotent derived subalgebra N s A is known to have Exp(N s A)=s. Over a field of characteristic zero the exponent of every subvariety V subset of N s A is known to be an integer. We shall prove that this is true over any field. Unlike associative algebras, for varieties of Lie algebras it is typical to have superexponential growth for the codimension sequence. Earlier the author introduced a scale for measuring this growth. The following extreme property is established for two varieties AN 2 and A 3 . Any subvariety in each of them cannot be 'just slightly smaller' in terms of this scale. That is, either a subvariety lies at the same point of the scale as the variety itself, or it is situated substantially lower on the scale. These results are also established over an arbitrary field and without using the representation theory of symmetric groups
Decay modes of high-lying single-particle states in 209Pb
International Nuclear Information System (INIS)
Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.
1993-01-01
The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs
The eyes don't have it: lie detection and Neuro-Linguistic Programming.
Directory of Open Access Journals (Sweden)
Richard Wiseman
Full Text Available Proponents of Neuro-Linguistic Programming (NLP claim that certain eye-movements are reliable indicators of lying. According to this notion, a person looking up to their right suggests a lie whereas looking up to their left is indicative of truth telling. Despite widespread belief in this claim, no previous research has examined its validity. In Study 1 the eye movements of participants who were lying or telling the truth were coded, but did not match the NLP patterning. In Study 2 one group of participants were told about the NLP eye-movement hypothesis whilst a second control group were not. Both groups then undertook a lie detection test. No significant differences emerged between the two groups. Study 3 involved coding the eye movements of both liars and truth tellers taking part in high profile press conferences. Once again, no significant differences were discovered. Taken together the results of the three studies fail to support the claims of NLP. The theoretical and practical implications of these findings are discussed.
Introduction to geometric nonlinear control; Controllability and lie bracket
Energy Technology Data Exchange (ETDEWEB)
Jakubczyk, B [Institute of Mathematics, Polish Academy of Sciences, Warsaw (Poland)
2002-07-15
We present an introduction to the qualitative theory of nonlinear control systems, with the main emphasis on controllability properties of such systems. We introduce the differential geometric language of vector fields, Lie bracket, distributions, foliations etc. One of the basic tools is the orbit theorem of Stefan and Sussmann. We analyse the basic controllability problems and give criteria for complete controllability, accessibility and related properties, using certain Lie algebras of ve fields defined by the system. A problem of path approximation is considered as an application of the developed theory. We illustrate our considerations with examples of simple systems or systems appearing in applications. The notes start from an elementary level and are self-contained. (author)
Introduction to quantized LIE groups and algebras
International Nuclear Information System (INIS)
Tjin, T.
1992-01-01
In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl 2 is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl 2 algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory
Shao, R; Lee, T M C
2017-07-25
High psychopathy is characterized by untruthfulness and manipulativeness. However, existing evidence on higher propensity or capacity to lie among non-incarcerated high-psychopathic individuals is equivocal. Of particular importance, no research has investigated whether greater psychopathic tendency is associated with better 'trainability' of lying. An understanding of whether the neurobehavioral processes of lying are modifiable through practice offers significant theoretical and practical implications. By employing a longitudinal design involving university students with varying degrees of psychopathic traits, we successfully demonstrate that the performance speed of lying about face familiarity significantly improved following two sessions of practice, which occurred only among those with higher, but not lower, levels of psychopathic traits. Furthermore, this behavioural improvement associated with higher psychopathic tendency was predicted by a reduction in lying-related neural signals and by functional connectivity changes in the frontoparietal and cerebellum networks. Our findings provide novel and pivotal evidence suggesting that psychopathic traits are the key modulating factors of the plasticity of both behavioural and neural processes underpinning lying. These findings broadly support conceptualization of high-functioning individuals with higher psychopathic traits as having preserved, or arguably superior, functioning in neural networks implicated in cognitive executive processing, but deficiencies in affective neural processes, from a neuroplasticity perspective.
A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method.
Nasirahmadi, A; Hensel, O; Edwards, S A; Sturm, B
2017-01-01
Machine vision-based monitoring of pig lying behaviour is a fast and non-intrusive approach that could be used to improve animal health and welfare. Four pens with 22 pigs in each were selected at a commercial pig farm and monitored for 15 days using top view cameras. Three thermal categories were selected relative to room setpoint temperature. An image processing technique based on Delaunay triangulation (DT) was utilized. Different lying patterns (close, normal and far) were defined regarding the perimeter of each DT triangle and the percentages of each lying pattern were obtained in each thermal category. A method using a multilayer perceptron (MLP) neural network, to automatically classify group lying behaviour of pigs into three thermal categories, was developed and tested for its feasibility. The DT features (mean value of perimeters, maximum and minimum length of sides of triangles) were calculated as inputs for the MLP classifier. The network was trained, validated and tested and the results revealed that MLP could classify lying features into the three thermal categories with high overall accuracy (95.6%). The technique indicates that a combination of image processing, MLP classification and mathematical modelling can be used as a precise method for quantifying pig lying behaviour in welfare investigations.
Test elements of direct sums and free products of free Lie algebras
Indian Academy of Sciences (India)
Abstract. We give a characterization of test elements of a direct sum of free Lie algebras in terms of test elements of the factors. In addition, we construct certain types of test elements and we prove that in a free product of free Lie algebras, product of the homogeneous test elements of the factors is also a test element.
Test elements of direct sums and free products of free Lie algebras
Indian Academy of Sciences (India)
We give a characterization of test elements of a direct sum of free Lie algebras in terms of test elements of the factors. In addition, we construct certain types of test elements and we prove that in a free product of free Lie algebras, product of the homogeneous test elements of the factors is also a test element.
Lie Algebras for Constructing Nonlinear Integrable Couplings
International Nuclear Information System (INIS)
Zhang Yufeng
2011-01-01
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)
Kinematics of semiclassical spin and spin fiber bundle associated with so(n) Lie-Poisson manifold
International Nuclear Information System (INIS)
Deriglazov, A A
2013-01-01
We describe geometric construction underlying the Lagrangian actions for non-Grassmann spinning particles proposed in our recent works. If we discard the spatial variables (the case of frozen spin), the problem reduces to formulation of a variational problem for Hamiltonian system on a manifold with so(n) Lie-Poisson bracket. To achieve this, we identify dynamical variables of the problem with coordinates of the base of a properly constructed fiber bundle. In turn, the fiber bundle is embedded as a surface into the phase space equipped with canonical Poisson bracket. This allows us to formulate the variational problem using the standard methods of Dirac theory for constrained systems.
Hyperfunction solutions of the zero rest mass equations and representations of LIE groups
International Nuclear Information System (INIS)
Dunne, E.G.
1984-01-01
Recently, hyperfunctions have arisen in an essential way in separate results in mathematical physics and in representation theory. In the setting of the twistor program, Wells, with others, has extended the Penrose transform to hyperfunction solutions of the zero rest mass equations, showing that the fundamental isomorphisms hold for this larger space. Meanwhile, Schmid has shown the existence of a canonical globalization of a Harish-Chandra module, V, to a representation of the group. This maximal globalization may be realized as the completion of V in a locally convex vector space in the hyperfunction topology. This thesis shows that the former is a particular case of the latter where the globalization can be done by hand. This explicit globalization is then carried out for a more general case of the Radon transform on homogeneous spaces
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.
2015-09-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
On the Partial Analytical Solution of the Kirchhoff Equation
Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Sobottka, Gerrit A.; Weber, Andreas G.
2015-01-01
We derive a combined analytical and numerical scheme to solve the (1+1)-dimensional differential Kirchhoff system. Here the object is to obtain an accurate as well as an efficient solution process. Purely numerical algorithms typically have the disadvantage that the quality of solutions decreases enormously with increasing temporal step sizes, which results from the numerical stiffness of the underlying partial differential equations. To prevent that, we apply a differential Thomas decomposition and a Lie symmetry analysis to derive explicit analytical solutions to specific parts of the Kirchhoff system. These solutions are general and depend on arbitrary functions, which we set up according to the numerical solution of the remaining parts. In contrast to a purely numerical handling, this reduces the numerical solution space and prevents the system from becoming unstable. The differential Kirchhoff equation describes the dynamic equilibrium of one-dimensional continua, i.e. slender structures like fibers. We evaluate the advantage of our method by simulating a cilia carpet.
2013-01-01
Background There is a rapidly growing public awareness of mental health problems among Vietnamese secondary school students. This study aims to determine the prevalence of anxiety, depression, and suicidal ideation, to identify related risk factors, and to explore students’ own proposals for improving their mental health. Methods A cross-sectional study was conducted among 1161 secondary students in Can Tho City, Vietnam during September through December, 2011. A structured questionnaire was used to assess anxiety, depression, suicidal ideation and proposed solutions. Depression was measured using the Center for Epidemiology Studies Depression Scale. Results The prevalence estimates of symptoms reaching a threshold comparable to a diagnosis of anxiety and depression were 22.8% and 41.1%, respectively. Suicide had been seriously considered by 26.3% of the students, while 12.9% had made a suicide plan and 3.8% had attempted suicide. Major risk factors related to anxiety and depression were physical or emotional abuse by the family, and high educational stress. As proposed solutions, nearly 80% of students suggested that the academic workload should be reduced and that confidential counselors should be appointed at schools. About half the students stated that the attitudes of their parents and teachers needed to change. A significant majority said that they would visit a website that provided mental health support for students. Conclusions Anxiety, depression, and suicidal ideation are common among Vietnamese secondary school students. There are strong associations with physical and emotional abuse in the family and high educational stress. Academic curricula and attitudes of parents and teachers need to be changed from a punitive to a more supportive approach to reduce the risk of poor mental health. An internet-based mental health intervention could be a feasible and effective first step to improve students’ mental health. PMID:24341792
Nguyen, Dat Tan; Dedding, Christine; Pham, Tam Thi; Wright, Pamela; Bunders, Joske
2013-12-17
There is a rapidly growing public awareness of mental health problems among Vietnamese secondary school students. This study aims to determine the prevalence of anxiety, depression, and suicidal ideation, to identify related risk factors, and to explore students' own proposals for improving their mental health. A cross-sectional study was conducted among 1161 secondary students in Can Tho City, Vietnam during September through December, 2011. A structured questionnaire was used to assess anxiety, depression, suicidal ideation and proposed solutions. Depression was measured using the Center for Epidemiology Studies Depression Scale. The prevalence estimates of symptoms reaching a threshold comparable to a diagnosis of anxiety and depression were 22.8% and 41.1%, respectively. Suicide had been seriously considered by 26.3% of the students, while 12.9% had made a suicide plan and 3.8% had attempted suicide. Major risk factors related to anxiety and depression were physical or emotional abuse by the family, and high educational stress. As proposed solutions, nearly 80% of students suggested that the academic workload should be reduced and that confidential counselors should be appointed at schools. About half the students stated that the attitudes of their parents and teachers needed to change. A significant majority said that they would visit a website that provided mental health support for students. Anxiety, depression, and suicidal ideation are common among Vietnamese secondary school students. There are strong associations with physical and emotional abuse in the family and high educational stress. Academic curricula and attitudes of parents and teachers need to be changed from a punitive to a more supportive approach to reduce the risk of poor mental health. An internet-based mental health intervention could be a feasible and effective first step to improve students' mental health.
On approximation of Lie groups by discrete subgroups
Indian Academy of Sciences (India)
1Department of Mathematics, Faculty of Sciences at Sfax, University of Sfax,. Route Soukra ... Let S (G) denote the space of discrete co-compact subgroup of a Lie group G. We ..... For example, it suffices to apply the following fact: The mapping.
Simple Lie algebras and Dynkin diagrams
International Nuclear Information System (INIS)
Buccella, F.
1983-01-01
The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras
Adélie penguin foraging location predicted by tidal regime switching.
Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh
2013-01-01
Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.
Young Children's Self-Benefiting Lies and Their Relation to Executive Functioning and Theory of Mind
Fu, Genyue; Sai, Liyang; Yuan, Fang; Lee, Kang
2018-01-01
It is well established that children lie in different social contexts for various purposes from the age of 2 years. Surprisingly, little is known about whether very young children will spontaneously lie for personal gain, how self-benefiting lies emerge, and what cognitive factors affect the emergence of self-benefiting lies. To bridge this gap in…
Statistical and direct decay of high-lying single-particle excitations
International Nuclear Information System (INIS)
Gales, S.
1993-01-01
Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs
Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation
Zhao, Zhonglong; Han, Bo
2018-04-01
In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.
A representation independent propagator. Pt. 1. Compact Lie groups
International Nuclear Information System (INIS)
Tome, W.A.
1995-01-01
Conventional path integral expressions for propagators are representation dependent. Rather than having to adapt each propagator to the representation in question, it is shown that for compact Lie groups it is possible to introduce a propagator that is representation independent. For a given set of kinematical variables this propagator is a single function independent of any particular choice of fiducial vector, which monetheless, correctly propagates each element of the coherent state representation associated with these kinematical variables. Although the configuration space is in general curved, nevertheless the lattice phase-space path integral for the representation independent propagator has the form appropriate to flat space. To illustrate the general theory a representation independent propagator is explicitly constructed for the Lie group SU(2). (orig.)
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
Verschuere, B.; in 't Hout, W.
2016-01-01
The cognitive view on deception holds that lying typically requires additional mental effort as compared to truth telling. Psychopathy, however, has been associated with swift and even compulsive lying, leading us to explore the ease and compulsive nature of lying in psychopathic offenders. We
Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.
Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A
2009-06-01
Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.
On Concurrent Solutions in Differential Games
Directory of Open Access Journals (Sweden)
Romar Correa
2011-01-01
Full Text Available We examine solutions in which neither player is worse off from the leadership of one in a policy maker-public game. The loop model of dynamic games is used. Outcome space is dotted with equivalence classes of solutions. The Dynamic Stochastic General Equilibrium (DSGE results and their New Keynesian variants might represent one category. The economy is the neighborhood of a market-clearing equilibrium with Pareto-optimal properties modulo frictions. Our interest lies in the ‘old’ Keynesian genus where the representative state is one of involuntary unemployment. Two information sets are relevant. In the first case, agents look to the past and the present. In the second, they are bound by the information provided in the present. The standard analysis pertains to DSGE models under full information. We show, in contrast, that in a situation of structural disequilibrium and feedback information, all parties are better off reneging on the social compact to achieve a superior class of solutions.
Nucci, M. C.; Leach, P. G. L.
2007-09-01
We apply the techniques of Lie's symmetry analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng [C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997) 629-656] for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez [Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35 (1997) 523-544] to identify the combinations of parameters which lead to the existence of nontrivial symmetries. In particular we identify those combinations which lead to the possibility of the linearization of the system and provide the corresponding solutions. Many instances of additional symmetry are analyzed.
Directory of Open Access Journals (Sweden)
Singh Nahar
2008-03-01
Full Text Available Abstract Background A complexometric method based on selective masking and de-masking has been developed for the rapid determination of aluminium, lead and zinc from the same solution in glass and glass frit samples. The determination is carried out using potassium cyanide to mask zinc, and excess disodium salt of EDTA to mask lead and aluminium. The excess EDTA was titrated with standard Mn(IISO4 solution using Erichrome Black-T as the indicator. Subsequently selective de-masking agents – triethanolamine, 2,3-dimercaptopropanol and a formaldehyde/acetone mixture – were used to determine quantities of aluminium, lead and zinc in a stepwise and selective manner. Results The accuracy of the method was established by analysing glass certified reference material NBS 1412. The standard deviation of the measurements, calculated by analysing five replicates of each sample, was found to be less than 1.5% for the method proposed. Conclusion The novelty of the method lies in its simplicity and accuracy afforded by there not being a need for a prior separation or instrumentation. The proposed method was found to be highly selective for the precise determination of aluminum, zinc and lead in the routine analysis of glass batch and allied materials.
The derivation of the conventional basis for the classical Lie algebra generators
International Nuclear Information System (INIS)
Karadayi, H.R.
1982-01-01
The explicit construction of the classical Lie algebra generators in the conventional Gell-Mann basis is derived for all irreducible unitary representations of all classical groups. The main framework is based on a description of the simple roots of the classical Lie algebras such that the inter-relations implied by the Cartan matrix of the group among these simple roots are explicit within this description. (author)
On the Solutions of Two-Extended Principal Conformal Toda Theory
Chao, L.; Hou, B. Y.
1994-02-01
The solutions of the two-extended principal conformal Toda theory (2-EPCT theory, also called bosonic superconformal Toda theory) are constructed in two different ways: (1) Leznov-Saveliev algebraic analysis and (2) the associated chiral embedding surface. The first approach gives rise to the general solution in terms of appropriate matrix elements in different fundamental representations of the underlying Lie algebra, whilst the second one leads to a special solution in the form of Wronski determinants and their co-minors, and it gives an explicit geometrical interpretation of the WZNW → 2-EPCT reduction. The key points of both approaches are the chiral vectors derived recently by the authors, which constitute a closed exchange algebra of the theory.
The Watching-Eye Effect on Prosocial Lying
Directory of Open Access Journals (Sweden)
Ryo Oda
2015-07-01
Full Text Available Evidence shows that people tend to behave prosocially when they are in the presence of images depicting eyes. There are two proximate causes of the eyes effect. One involves positive motivation to gain future reward and the other involves negative motivation to avoid violating a norm. Although several studies have suggested that positive motivation is a strong candidate, these studies were unable to distinguish between adherence to norms and prosocial behavior. We investigated the watching-eyes effect in an experimental setting to determine whether the tendency of humans to violate norms voluntarily could be understood as prosocial behavior. We compared the tendency to tell “prosocial lies” in the presence of a depiction of stylized eyes (eyes condition with that involving no such depiction (control condition. Under the control condition, participants tended to tell lies that benefitted others, whereas the tendency toward prosocial lying disappeared under the eyes condition. This suggests that the desire to avoid violating norms by being honest is stronger than the desire to pursue a good reputation by demonstrating generosity when such violation might lead to serious costs.
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (author)
Institute of Scientific and Technical Information of China (English)
李凯辉; 刘汉泽; 辛祥鹏
2016-01-01
The symmetries, conservation laws and exact solutions to the nonlinear partial differential equations play a signif-icant role in nonlinear science and mathematical physics. Symmetry is derived from physics, and it is a mathematical description for invariance. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By using the symmetry method, an original nonlinear system can be reduced to a system with fewer independent variables through any given subgroup. But, since there are almost always an infinite number of such subgroups, it is usually not feasible to list all possible group invariant solutions to the system. It is anticipated to find all those equivalent group invariant solutions, that is to say, to construct the one-dimensional optimal system for the Lie algebra. Construction of explicit forms of conservation laws is meaningful, as they are used for developing the appropriate numerical methods and for making mathematical analyses, in particular, of existence, uniqueness and stability. In addition, the existence of a large number of conservation laws of a partial differential equation (system) is a strong indication of its integrability. The similarity solutions are of importance for investigating the long-time behavior, blow-up profile and asymptotic phenomena of a non-linear system. For instance, in some circumstance, the asymptotic behaviors of finite-mass solutions of non-linear diffusion equation with non-linear source term are described by an explicit self-similar solution, etc. However, how to tackle these matters is a complicated problem that challenges researchers to be solved. In this paper, by using the symmetry method, we obtain the symmetry reduction, optimal systems, and many new exact group invariant solution of a fifth-order nonlinear wave equation. By Lie symmetry analysis method, the point symmetries and an optimal system of the equation are obtained. The exact power
Directory of Open Access Journals (Sweden)
Voicu Răzvan
2016-04-01
Full Text Available The fish fauna of the Hârtibaciu River has experienced a disrupted connectivity due to the hydrotechnical works and the Brădeni/Retiş Dam located across the Hârtibaciu watercourse being one of this significant obstacles. The newly proposed constructed wetlands can improve the habitat quality for the fish species of conservative interest sampled in the Brădeni/Retiş Dam proximity Rhodeus amarus, and can increase the individuals’ number of this population. Also can benefit the local populations of Phoxinus phoxinus and Gobio obtusirostris. Using gravitational force and also the underground layout, a proposed technical solution gives maximum safety regarding the water supply for the newly proposed to be created wetlands.
Lie group structures on automorphism groups of real-analytic CR manifolds
ZAITSEV, DMITRI
2008-01-01
PUBLISHED Given any real-analytic CR manifold M, we provide general conditions on M guar- anteeing that the group of all its global real-analytic CR automorphisms AutCR(M) is a Lie group (in an appropriate topology). In particular, we obtain a Lie group structure for AutCR(M) when M is an arbitrary compact real-analytic hypersurface embedded in some Stein manifold. The first author was supported by the Austrian Science Fund FWF, Project P17111 and Project P19667. The second ...
A program for computing cohomology of Lie superalgebras of vector fields
International Nuclear Information System (INIS)
Kornyak, V.V.
1998-01-01
An algorithm and its C implementation for computing the cohomology of Lie algebras and superalgebras is described. When elaborating the algorithm we paid primary attention to cohomology in trivial, adjoint and coadjoint modules for Lie algebras and superalgebras of the formal vector fields. These algebras have found many applications to modern supersymmetric models of theoretical and mathematical physics. As an example, we present 3- and 5-cocycles from the cohomology in the trivial module for the Poisson algebra Po (2), as found by computer
International Nuclear Information System (INIS)
Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.
1995-01-01
The study is continued on noncommutative integration of linear partial differential equations in application to the exact integration of quantum-mechanical equations in a Riemann space. That method gives solutions to the Klein-Gordon equation when the set of noncommutative symmetry operations for that equation forms a quadratic algebra consisting of one second-order operator and of first-order operators forming a Lie algebra. The paper is a continuation of, where a single nontrivial example is used to demonstrate noncommutative integration of the Klein-Gordon equation in a Riemann space not permitting variable separation
Directory of Open Access Journals (Sweden)
Hernández Fernández, Isabel
2008-01-01
Full Text Available En este artículo, los autores pretenden mostrar y explicar cómo la Teoría de Lie se puede aplicar a la resolución de algunos problemas relativos a la Economía y a las Finanzas. Concretamente, se realiza un análisis de dos de esos problemas y se discuten tanto sus aspectos matemáticos como el acercamiento hecho desde la Teoría de Lie para su resolución. Igualmente, se indican los avances más recientes existentes en esta línea de investigación, mencionando también algunos problemas abiertos que pueden ser tratados en futuros trabajos. = This paper shows and explains two problems in Economics and Finance, both dealt with a Lie Theory approach. So, mathematical aspects for these approaches are put forward and discussed in several economic problems which have been previously considered in the literature. Besides, some advances on this topic are also shown, mentioning some open problems for future research.
Analytic factorization of Lie group representations
DEFF Research Database (Denmark)
Gimperlein, Heiko; Krötz, Bernhard; Lienau, Christoph
2012-01-01
For every moderate growth representation (p,E)(p,E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E¿E¿. There exists a natural algebra of superexponentially decreasing analytic functions A(G)A(G), such that E......¿=¿(A(G))E¿E¿=¿(A(G))E¿. As a corollary we obtain that E¿E¿ coincides with the space of analytic vectors for the Laplace–Beltrami operator on G....
Construction on the solution of osp(1/4) Toda model
International Nuclear Information System (INIS)
Yang Zhanying; Zhen Yi
2000-01-01
The Leznov-Saveliev algebraic analysis method and Drinfeld-Sokolov construction are applied to the supersymmetric case. In this approach, the authors obtained the solution of the osp(1/4) Toda model on the base of the Lie super algebra osp(1/4) and its highest weight by introducing chiral vectors. Therefore, the authors generalized this method to two rank case
An optimized formulation for Deprit-type Lie transformations of Taylor maps for symplectic systems
International Nuclear Information System (INIS)
Shi, Jicong
1993-01-01
An optimized iterative formulation is presented for directly transforming a Taylor map of a symplectic system into a Deprit-type Lie transformation, which is a composition of a linear transfer matrix and a single Lie transformation, to an arbitrary order
Fu, Genyue; Xu, Fen; Cameron, Catherine Ann; Leyman, Gail; Lee, Kang
2007-01-01
This study examined cross-cultural differences and similarities in children's moral understanding of individual- or collective-oriented lies and truths. Seven-, 9-, and 11-year-old Canadian and Chinese children were read stories about story characters facing moral dilemmas about whether to lie or tell the truth to help a group but harm an…
25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...
Sweet, Monica A; Heyman, Gail D; Fu, Genyue; Lee, Kang
2010-07-01
This study explored the effects of collectivism on lying to conceal a group transgression. Seven-, 9-, and 11-year-old US and Chinese children (N = 374) were asked to evaluate stories in which protagonists either lied or told the truth about their group's transgression and were then asked about either the protagonist's motivations or justification for their own evaluations. Previous research suggests that children in collectivist societies such as China find lying for one's group to be more acceptable than do children from individualistic societies such as the United States. The current study provides evidence that this is not always the case: Chinese children in this study viewed lies told to conceal a group's transgressions less favourably than did US children. An examination of children's reasoning about protagonists' motivations for lying indicated that children in both countries focused on an impact to self when discussing motivations for protagonists to lie for their group. Overall, results suggest that children living in collectivist societies do not always focus on the needs of the group.
Damping mechanisms of high-lying single-particle states in 91Nb
International Nuclear Information System (INIS)
Molen, H. K. T. van der; Berg, A. M. van den; Harakeh, M. N.; Hunyadi, M.; Kalantar-Nayestanaki, N.; Akimune, H.; Daito, I.; Fujimura, H.; Ihara, F.; Inomata, T.; Ishibashi, K.; Yoshida, H.; Yosoi, M.; Fujita, Y.; Fujiwara, M.; Jaenecke, J.; O'Donnell, T. W.; Laurent, H.; Lhenry, I.; Rodin, V. A.
2007-01-01
Decay by proton emission from high-lying states in 91 Nb, populated in the 90 Zr(α,t) reaction at E α =180 MeV, has been investigated. Decay to the ground state and semidirect decay to the low-lying (2 + ,5 - , and 3 - ) phonon states in 90 Zr were observed. It was found that these phonon states play an important role in the damping process of the single-particle states. An optical-model coupled-channel approach was used successfully to describe the direct and semidirect parts of the decay
Coproduct and star product in field theories on Lie-algebra noncommutative space-times
International Nuclear Information System (INIS)
Amelino-Camelia, Giovanni; Arzano, Michele
2002-01-01
We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times
Cluster X-varieties, amalgamation, and Poisson-Lie groups
DEFF Research Database (Denmark)
Fock, V. V.; Goncharov, A. B.
2006-01-01
In this paper, starting from a split semisimple real Lie group G with trivial center, we define a family of varieties with additional structures. We describe them as cluster χ-varieties, as defined in [FG2]. In particular they are Poisson varieties. We define canonical Poisson maps of these varie...
Versal deformation of the Lie algebra $L_2$
Fialowski, A.; Post, Gerhard F.
1999-01-01
We investigate deformations of the infinite dimensional vector field Lie algebra spanned by the fields $e_i = z^{i+1}d/dz$, where $i \\ge 2 $. The goal is to describe the base of a ``versal'' deformation; such a versal deformation induces all the other nonequivalent deformations and solves the
Versal deformation of the Lie algebra L_2
Post, Gerhard F.; Fialowski, Alice
2001-01-01
We investigate deformations of the infinite-dimensional vector-field Lie algebra spanned by the fields ei = zi + 1d/dz, where i ≥ 2. The goal is to describe the base of a “versal” deformation; such a versal deformation induces all the other nonequivalent deformations and solves the deformation
On the structure of graded transitive Lie algebras
Post, Gerhard F.
2000-01-01
We study finite-dimensional Lie algebras ${\\mathfrak L}$ of polynomial vector fields in $n$ variables that contain the vector fields $\\dfrac{\\partial}{\\partial x_i} \\; (i=1,\\ldots, n)$ and $x_1\\dfrac{\\partial}{\\partial x_1}+ \\dots + x_n\\dfrac{\\partial}{\\partial x_n}$. We show that the maximal ones
Structure of Lie point and variational symmetry algebras for a class of odes
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Radiotherapy physics research in the UK: challenges and proposed solutions.
Mackay, R I; Burnet, N G; Green, S; Illidge, T M; Staffurth, J N
2012-10-01
In 2011, the Clinical and Translational Radiotherapy Research Working Group (CTRad) of the National Cancer Research Institute brought together UK radiotherapy physics leaders for a think tank meeting. Following a format that CTRad had previously and successfully used with clinical oncologists, 23 departments were asked to complete a pre-meeting evaluation of their radiotherapy physics research infrastructure and the strengths, weaknesses, opportunities and threats within their own centre. These departments were brought together with the CTRad Executive Group and research funders to discuss the current state of radiotherapy physics research, perceived barriers and possible solutions. In this Commentary, we summarise the submitted materials, presentations and discussions from the meeting and propose an action plan. It is clear that there are challenges in both funding and staffing of radiotherapy physics research. Programme and project funding streams sometimes struggle to cater for physics-led work, and increased representation on research funding bodies would be valuable. Career paths for academic radiotherapy physicists need to be examined and an academic training route identified within Modernising Scientific Careers; the introduction of formal job plans may allow greater protection of research time, and should be considered. Improved access to research facilities, including research linear accelerators, would enhance research activity and pass on developments to patients more quickly; research infrastructure could be benchmarked against centres in the UK and abroad. UK National Health Service departments wishing to undertake radiotherapy research, with its attendant added value for patients, need to develop a strategy with their partner higher education institution, and collaboration between departments may provide enhanced opportunities for funded research.
Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces
Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea
2017-07-01
This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-07-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.
Lie-transformed action principle for classical plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1984-06-01
The Lie transform for a single particle in a wave is embedded in a Lagrangian action principle for self-consistent plasma dynamics. Variation of the action then yields the Vlasov equation for the oscillation-center distribution, the ray equations and amplitude transport for the wave, and the Poisson equation for the quasistatic field
Decay properties of high-lying single-particles modes
Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A
1996-01-01
The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular
Riesz transforms and Lie groups of polynomial growth
Elst, ter A.F.M.; Robinson, D.W.; Sikora, A.
1999-01-01
Let G be a Lie group of polynomial growth. We prove that the second-order Riesz transforms onL2(G; dg) are bounded if, and only if, the group is a direct product of a compact group and a nilpotent group, in which case the transforms of all orders are bounded.
Lectures on Lie algebras and their representations: 1
International Nuclear Information System (INIS)
Dobrev, V.K.
1988-05-01
The paper is based on sixteen lectures given by the author in April-June 1988 at the International Centre for Theoretical Physics, Trieste. It covers the basic material on the structure, classification and representations of Lie algebras G associated with a (generalized) Cartan matrix, or Kac-Moody algebras for short. 16 refs, tabs
Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian
International Nuclear Information System (INIS)
Edelstein, Jose D.; Hassaine, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2006-01-01
Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincare group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions
International Nuclear Information System (INIS)
Zhi Hongyan
2009-01-01
In this paper, based on the symbolic computing system Maple, the direct method for Lie symmetry groups presented by Sen-Yue Lou [J. Phys. A: Math. Gen. 38 (2005) L129] is extended from the continuous differential equations to the differential-difference equations. With the extended method, we study the well-known differential-difference KP equation, KZ equation and (2+1)-dimensional ANNV system, and both the Lie point symmetry groups and the non-Lie symmetry groups are obtained.
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
International Nuclear Information System (INIS)
Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan
2008-01-01
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively
Effect of sand and rubber surface on the lying behavior of lame dairy cows in hospital pens
DEFF Research Database (Denmark)
Bak, Anne Sandgrav; Herskin, Mette S.; Jensen, Margit Bak
2016-01-01
Housing lame cows in designated hospital pens with a soft surface may lessen the pain the animals feel when lying and changing position. This study investigated the effect of the lying surface on the behavior of lame cows in hospital pens. Thirty-two lame dairy cows were kept in individual hospital...... pens, provided with either 30-cm deep-bedded sand or 24-mm rubber mats during 24 h in a crossover design. On each surface, the lying behavior of each cow was recorded during 18 h. On deep-bedded sand, cows lay down more and changed position more often than when housed on the rubber surface. Furthermore......, a shorter duration of lying down and getting up movements and a shorter duration of lying intention movements were observed. These results suggest that lame dairy cows are more reluctant to change position on rubber compared with sand, and that sand is more comfortable to lie on. Thus, deep bedding...
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.
2016-09-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
On the General Analytical Solution of the Kinematic Cosserat Equations
Michels, Dominik L.; Lyakhov, Dmitry; Gerdt, Vladimir P.; Hossain, Zahid; Riedel-Kruse, Ingmar H.; Weber, Andreas G.
2016-01-01
Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
Fu, Genyue; Brunet, Megan K; Lv, Yin; Ding, Xiaopan; Heyman, Gail D; Cameron, Catherine Ann; Lee, Kang
2010-10-01
The present study examined Chinese children's moral evaluations of truths and lies about one's own pro-social acts. Children ages 7, 9, and 11 were read vignettes in which a protagonist performs a good deed and is asked about it by a teacher, either in front of the class or in private. In response, the protagonist either tells a modest lie, which is highly valued by the Chinese culture, or tells an immodest truth, which violates the Chinese cultural norms about modesty. Children were asked to identify whether the protagonist's statement was the truth or a lie, and to evaluate how 'good' or 'bad' the statement was. Chinese children rated modest lies more positively than immodest truths, with this effect becoming more pronounced with age. Rural Chinese children and those with at least one nonprofessional parent rated immodest truths less positively when they were told in public rather than in private. Furthermore, Chinese children of parents with high collectivism scores valued modest lies more than did children of parents with low collectivism scores. These findings suggest that both macro- and micro-cultural factors contribute significantly to children's moral understanding of truth and lie telling.
Approximate analytical solution of two-dimensional multigroup P-3 equations
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1981-01-01
Iterative solution of multigroup spherical harmonics equations reduces, in the P-3 approximation and in two-dimensional geometry, to a problem of solving an inhomogeneous system of eight ordinary first order differential equations. With appropriate boundary conditions, these equations have to be solved for each energy group and in each iteration step. The general solution of the corresponding homogeneous system of equations is known in analytical form. The present paper shows how the right-hand side of the system can be approximated in order to derive a particular solution and thus an approximate analytical expression for the general solution of the inhomogeneous system. This combined analytical-numerical approach was shown to have certain advantages compared to the finite-difference method or the Lie-series expansion method, which have been used to solve similar problems. (orig./RW) [de
Massé, Raymond
2002-08-01
A constructivist approach in medical anthropology suggests that the boundary between lies and truth in sickness narratives is thin. Based on fieldwork in the French (Martinique) and English (Saint-Lucia) Carribbean with gadé and quimboiseurs (local folk healers), this paper addresses the gap between naïve romanticism and radical cynicism in the anthropological analysis of patient-healer encounters. Is the sick person lying when she accuses evil spirits for her behaviour or sickness? Is the quimboiseur who is building a meaningful explanation or diagnosis simply a liar taking advantage of his client's credulity? The challenge for anthropology is not to determine whether or not a person is lying when attributing their ill fortune to witchcraft. Instead, in this paper, the author approaches lying as a language-game played by both patients and folk healers. Concepts of lying as games, tactical lies, pragmatic creativity, and constructive lies are introduced here as a perspective for a reconsideration of lying as a pertinent research object.
Lie algebra lattices and strings on T-folds
Energy Technology Data Exchange (ETDEWEB)
Satoh, Yuji [Institute of Physics, University of Tsukuba,Ibaraki 305-8571 (Japan); Sugawara, Yuji [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)
2017-02-06
We study the world-sheet conformal field theories for T-folds systematically based on the Lie algebra lattices representing the momenta of strings. The fixed point condition required for the T-duality twist restricts the possible Lie algebras. When the T-duality acts as a simple chiral reflection, one is left with the four cases, A{sub 1},D{sub 2r},E{sub 7},E{sub 8}, among the simple simply-laced algebras. From the corresponding Englert-Neveu lattices, we construct the modular invariant partition functions for the T-fold CFTs in bosonic string theory. Similar construction is possible also by using Euclidean even self-dual lattices. We then apply our formulation to the T-folds in the E{sub 8}×E{sub 8} heterotic string theory. Incorporating non-trivial phases for the T-duality twist, we obtain, as simple examples, a class of modular invariant partition functions parametrized by three integers. Our construction includes the cases which are not reduced to the free fermion construction.
Quantization and harmonic analysis on nilpotent Lie groups
International Nuclear Information System (INIS)
Wildberger, N.J.
1983-01-01
Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho 0 of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L 1 (G) → functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho 0 in subspaces of L 2 (O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example
Topological Poisson Sigma models on Poisson-Lie groups
International Nuclear Information System (INIS)
Calvo, Ivan; Falceto, Fernando; Garcia-Alvarez, David
2003-01-01
We solve the topological Poisson Sigma model for a Poisson-Lie group G and its dual G*. We show that the gauge symmetry for each model is given by its dual group that acts by dressing transformations on the target. The resolution of both models in the open geometry reveals that there exists a map from the reduced phase of each model (P and P*) to the main symplectic leaf of the Heisenberg double (D 0 ) such that the symplectic forms on P, P* are obtained as the pull-back by those maps of the symplectic structure on D 0 . This uncovers a duality between P and P* under the exchange of bulk degrees of freedom of one model with boundary degrees of freedom of the other one. We finally solve the Poisson Sigma model for the Poisson structure on G given by a pair of r-matrices that generalizes the Poisson-Lie case. The Hamiltonian analysis of the theory requires the introduction of a deformation of the Heisenberg double. (author)
Identification of dynamical Lie algebras for finite-level quantum control systems
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S.G.; Pullen, I.C.H.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; I.C.H.Pullen@open.ac.uk; A.I.Solomon@open.ac.uk
2002-03-08
The problem of identifying the dynamical Lie algebras of finite-level quantum systems subject to external control is considered, with special emphasis on systems that are not completely controllable. In particular, it is shown that the dynamical Lie algebra for an N-level system with symmetrically coupled transitions, such as a system with equally spaced energy levels and uniform transition dipole moments, is a subalgebra of so(N) if N=2l+1, and a subalgebra of sp(l) if N=2l. General criteria for obtaining either so(2l+1) or sp(l) are established. (author)
International Nuclear Information System (INIS)
Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong
2011-01-01
In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.