WorldWideScience

Sample records for propionic acid production

  1. Microbial Propionic Acid Production

    Directory of Open Access Journals (Sweden)

    R. Axayacatl Gonzalez-Garcia

    2017-05-01

    Full Text Available Propionic acid (propionate is a commercially valuable carboxylic acid produced through microbial fermentation. Propionic acid is mainly used in the food industry but has recently found applications in the cosmetic, plastics and pharmaceutical industries. Propionate can be produced via various metabolic pathways, which can be classified into three major groups: fermentative pathways, biosynthetic pathways, and amino acid catabolic pathways. The current review provides an in-depth description of the major metabolic routes for propionate production from an energy optimization perspective. Biological propionate production is limited by high downstream purification costs which can be addressed if the target yield, productivity and titre can be achieved. Genome shuffling combined with high throughput omics and metabolic engineering is providing new opportunities, and biological propionate production is likely to enter the market in the not so distant future. In order to realise the full potential of metabolic engineering and heterologous expression, however, a greater understanding of metabolic capabilities of the native producers, the fittest producers, is required.

  2. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production

    Directory of Open Access Journals (Sweden)

    Laura Navone

    2018-06-01

    Full Text Available Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP, Zwf (glucose-6-phosphate 1-dehydrogenase and Pgl (6-phosphogluconolactonase. Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK and sodium-pumping methylmalonyl-CoA decarboxylase (MMD was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  3. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production.

    Science.gov (United States)

    Navone, Laura; McCubbin, Tim; Gonzalez-Garcia, Ricardo A; Nielsen, Lars K; Marcellin, Esteban

    2018-06-01

    Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp . shermanii and the pan- Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp . shermanii , two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in

  4. 21 CFR 582.3081 - Propionic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propionic acid. 582.3081 Section 582.3081 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Propionic acid. (a) Product. Propionic acid. (b) Conditions of use. This substance is generally recognized...

  5. Co-cultivation of Lactobacillus zeae and Veillonella cricetifor the production of propionic acid

    Science.gov (United States)

    2013-01-01

    In this work a defined co-culture of the lactic acid bacterium Lactobacillus zeae and the propionate producer Veillonella criceti has been studied in continuous stirred tank reactor (CSTR) and in a dialysis membrane reactor. It is the first time that this reactor type is used for a defined co-culture fermentation. This reactor allows high mixing rates and working with high cell densities, making it ideal for co-culture investigations. In CSTR experiments the co-culture showed over a broad concentration range an almost linear correlation in consumption and production rates to the supply with complex nutrients. In CSTR and dialysis cultures a strong growth stimulation of L. zeae by V. criceti was shown. In dialysis cultures very high propionate production rates (0.61 g L-1h-1) with final titers up to 28 g L-1 have been realized. This reactor allows an individual, intracellular investigation of the co-culture partners by omic-technologies to provide a better understanding of microbial communities. PMID:23705662

  6. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor.

    Science.gov (United States)

    Feng, Xiaohai; Chen, Fei; Xu, Hong; Wu, Bo; Li, Hui; Li, Sha; Ouyang, Pingkai

    2011-05-01

    Propionic acid production by Propionibacterium freudenreichii from molasses and waste propionibacterium cells was studied in plant fibrous-bed bioreactor (PFB). With non-treated molasses as carbon source, 12.69 ± 0.40 g l(-1) of propionic acid was attained at 120 h in free-cell fermentation, whereas the PFB fermentation yielded 41.22 ± 2.06 g l(-1) at 120 h and faster cells growth was observed. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed molasses in PFB, giving 91.89 ± 4.59 g l(-1) of propionic acid at 254 h. Further studies were carried out using hydrolyzed waste propionibacterium cells as substitute nitrogen source, resulting in a propionic acid concentration of 79.81 ± 3.99 g l(-1) at 302 h. The present study suggests that the low-cost molasses and waste propionibacterium cells can be utilized for the green and economical production of propionic acid by P. freudenreichii. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015.

    Science.gov (United States)

    Chen, Fei; Feng, Xiaohai; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2012-12-15

    A plant fibrous-bed bioreactor (PFB) was constructed for propionic acid production. Sugar cane bagasse was applied to the PFB as immobilizing material. Starting at a concentration of 80g/L of glucose, Propionibacterium freudenreichii CCTCC M207015 produced 41.20±2.03g/L of propionic acid at 108h in the PFB. The value was 21.07% higher than that produced by free cell fermentation. Intermittent and constant fed-batch fermentations were performed in the PFB to optimize the fermentation results. The highest propionic acid concentration obtained from constant fed-batch fermentation was 136.23±6.77g/L, which is 1.40 times higher than the highest concentration (97.00g/L) previously reported. Scanning electron microscopy analysis showed that cells exhibited striking changes in morphology after PFB domestication. Compared with free cell fermentation, the fluxes of propionic acid synthesis and the pentose phosphate pathway in PFB fermentation increased by 84.65% and 227.62%, respectively. On the other hand, a decrease in succinic and acetic acid fluxes was also observed. The metabolic flux distributions of the two PFB fed-batch fermentation strategies also demonstrated that constant fed-batch fermentation is a more beneficial method for the immobilized production of propionic acid. The relevant key enzyme activities and metabolic flux variations of the batch cultures showed good consistency. These results suggest that the PFB was effective in high-concentration propionic acid production. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. An overview of biotechnological production of propionic acid: From upstream to downstream processes

    Directory of Open Access Journals (Sweden)

    Negin Ahmadi

    2017-07-01

    Full Text Available The increasing demand for propionic acid (PA production and its wide applications in several industries, especially the food industry (as a preservative and satiety inducer, have led to studies on the low-cost biosynthesis of this acid. This paper gives an overview of the biotechnological aspects of PA production and introduces Propionibacterium as the most popular organism for PA production. Moreover, all process variables influencing the production yield, different simple and complex carbon sources, the metabolic pathway of production, engineered mutants with increased productivity, and modified tolerance against high concentrations of acid have been described. Furthermore, possible methods of extraction and analysis of this organic acid, several applied bioreactors, and different culture systems and substrates are introduced. It can be concluded that maximum biomass and PA production may be achieved using metabolically engineered microorganisms and analyzing the most significant factors influencing yield. To date, the maximum reported yield for PA production is 0.973 g·g-1, obtained from Propionibacterium acidipropionici in a three-electrode amperometric culture system in medium containing 0.4 mM cobalt sepulchrate. In addition, the best promising substrate for PA bioproduction may be achieved using glycerol as a carbon source in an extractive continuous fermentation. Simultaneous production of PA and vitamin B12 is suggested, and finally, the limitations of and strategies for competitive microbial production with respect to chemical process from an economical point of view are proposed and presented. Finally, some future trends for bioproduction of PA are suggested.

  9. Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici.

    Science.gov (United States)

    Zhang, An; Sun, Jianxin; Wang, Zhongqiang; Yang, Shang-Tian; Zhou, Haiying

    2015-01-01

    The effects of CO2 on propionic acid production and cell growth in glycerol or glucose fermentation were investigated in this study. In glycerol fermentation, the volumetric productivity of propionic acid with CO2 supplementation reached 2.94g/L/day, compared to 1.56g/L/day without CO2. The cell growth using glycerol was also significantly enhanced with CO2. In addition, the yield and productivity of succinate, the main intermediate in Wood-Werkman cycle, increased 81% and 280%, respectively; consistent with the increased activities of pyruvate carboxylase and propionyl CoA transferase, two key enzymes in the Wood-Werkman cycle. However, in glucose fermentation CO2 had minimal effect on propionic acid production and cell growth. The carbon flux distributions using glycerol or glucose were also analyzed using a stoichiometric metabolic model. The calculated maintenance coefficient (mATP) increased 100%, which may explain the increase in the productivity of propionic acid in glycerol fermentation with CO2 supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products.

    Science.gov (United States)

    Dagnas, Stéphane; Gauvry, Emilie; Onno, Bernard; Membré, Jeanne-Marie

    2015-09-01

    The combined effect of undissociated lactic acid (0 to 180 mmol/liter), acetic acid (0 to 60 mmol/liter), and propionic acid (0 to 12 mmol/liter) on growth of the molds Aspergillus niger, Penicillium corylophilum, and Eurotium repens was quantified at pH 3.8 and 25°C on malt extract agar acid medium. The impact of these acids on lag time for growth (λ) was quantified through a gamma model based on the MIC. The impact of these acids on radial growth rate (μ) was analyzed statistically through polynomial regression. Concerning λ, propionic acid exhibited a stronger inhibitory effect (MIC of 8 to 20 mmol/liter depending on the mold species) than did acetic acid (MIC of 23 to 72 mmol/liter). The lactic acid effect was null on E. repens and inhibitory on A. niger and P. corylophilum. These results were validated using independent sets of data for the three acids at pH 3.8 but for only acetic and propionic acids at pH 4.5. Concerning μ, the effect of acetic and propionic acids was slightly inhibitory for A. niger and P. corylophilum but was not significant for E. repens. In contrast, lactic acid promoted radial growth of all three molds. The gamma terms developed here for these acids will be incorporated in a predictive model for temperature, water activity, and acid. More generally, results for μ and λ will be used to identify and evaluate solutions for controlling bakery product spoilage.

  11. A new highly productive Propionibacterium acidipropionici FL-48 strain with increased resistance to propionic acid and the scaling up of its production for industrial bioreactors

    Directory of Open Access Journals (Sweden)

    M. A. Kartashov

    2016-09-01

    Full Text Available Propionic acid bacteria, including Propionibacterium acidipropionici, are widely used in the chemical industry to produce propionic acid and also for food and feed preservation. However, the efficiency of the industrial production of these bacteria is limited by their sensitivity to high concentrations of propionic acid excreted into the cultivation medium. Therefore, the development of new biotechnological processes and strains able to overcome this limitation and to improve the profitability of the microbiological production remains  a relevant problem. A new P. acidipropionici FL-48 strain characterized by an increased resistance to 10 g/L of propionic acid (the number of viable cells after 24-h cultivation reached 1.05 × 106 was developed by a two-step induced mutagenesis using UV and diethyl sulphate from the P. acidipropionici VKPM B-5723 strain. The mutant strain exceeded the parental strain in the biomass accumulation rate and the amount of produced propionic and acetic acids by 35%, 20%, and 16%, respectively. The stability of such important characteristics as the biomass accumulation rate and the viability on media containing heightened concentrations of propionic acid was confirmed by three sequential monoclonal subculturings on a medium supplemented with 10 g/L of propionic acid. The optimization of the cultivation technology made it possible to determine the optimum seed inoculum dose (10% of the fermentation medium volume and the best pH level for the active growth stage (6.1 ± 0.1. The scaling up of the fermentation to a 100-L bioreactor under observance of optimum cultivation conditions demonstrated a high biomass growth rate with a sufficient reproducability; after 20 h of fermentation, the number of viable cells in the culture broth exceeded 1 × 1010 CFU/mL. The new strain could be interesting as the component of silage and haylage biopreservatives and also could be used as an efficient producer of propionic acid.

  12. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  13. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase.

    Science.gov (United States)

    Gonzalez-Garcia, Ricardo Axayacatl; McCubbin, Tim; Wille, Annalena; Plan, Manuel; Nielsen, Lars Keld; Marcellin, Esteban

    2017-07-17

    Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway

  14. 21 CFR 184.1081 - Propionic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propionic acid. 184.1081 Section 184.1081 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1081 Propionic acid. (a) Propionic acid (C3H6O2, CAS Reg. No. 79-09-4) is...

  15. Effect of using propionic acid bacteria as an adjunct culture in yogurt production.

    Science.gov (United States)

    Ekinci, F Y; Gurel, M

    2008-03-01

    Propionibacteria are able to produce a wide variety of food components beneficial to human health. In this study, yogurt was produced by using the adjunct starter cultures Propionibacterium jensenii B1264 and Propionibacterium thoenii (jensenii) P126. Although the total solids and protein contents of the yogurts did not show any significant differences, titratable acidity of the control sample (YC-380) remained lower than that of Propionibacterium spp.-supplemented yogurts during 15 d of storage. The yogurts produced by YC-380 + P126 cultures had the firmest structure (0.26 N). The highest acetaldehyde (29.35 mg/kg) content was obtained with yogurt made with YC-380 + P126 + B1264 on d 1. The addition of propionibacteria to yogurt did not have any negative effect on the counts of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in yogurt. During the first week of storage, propionibacteria counts remained high, suggesting that yogurt provided a good environment for these organisms. This new product would provide not only beneficial health effects, but also a new alternative product to plain set-type yogurt.

  16. Regulation of adipokine production in human adipose tissue by propionic acid

    NARCIS (Netherlands)

    Al-Lahham, Sa'ad H.; Roelofsen, Han; Priebe, Marion; Weening, Desiree; Dijkstra, Martijn; Hoek, Annemieke; Rezaee, Farhad; Venema, Koen; Vonk, Roel J.

    P>Background Dietary fibre (DF) has been shown to be protective for the development of obesity, insulin resistance and type 2 diabetes. Short-chain fatty acids, produced by colonic fermentation of DF might mediate this beneficial effect. Adipose tissue plays a key role in the regulation of energy

  17. Regulation of adipokine production in human adipose tissue by propionic acid

    NARCIS (Netherlands)

    Al-Lahham, S.H.; Roelofsen, H.; Priebe, M.; Weening, D.; Dijkstra, M.; Hoek, A.; Rezaee, F.; Venema, K.; Vonk, R.J.

    2010-01-01

    Background Dietary fibre (DF) has been shown to be protective for the development of obesity, insulin resistance and type 2 diabetes. Short-chain fatty acids, produced by colonic fermentation of DF might mediate this beneficial effect. Adipose tissue plays a key role in the regulation of energy

  18. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  19. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    International Nuclear Information System (INIS)

    Aiello, R.J.; Armentano, L.E.

    1987-01-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from [2- 14 C] propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic [2- 14 C]-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from [2- 14 C] propionate into [ 14 C] glucose by 22%. Butyrate inhibited [2- 14 C] propionate metabolism and increased the apparent Michaelis constant for [2- 14 C] propionate incorporation into [ 14 C] glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on [ 14 C] glucose production but decreased 14 CO 2 production to 57, 61, and 54% of the control [2- 14 C] propionate (1.25 mM). This inhibition on 14 CO 2 was not competitive. Isovalerate had no effect on either [2- 14 C] propionate incorporation into glucose of CO 2 . An increase in ratio of [ 14 C] glucose to 14 CO 2 from [2- 14 C]-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes

  20. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    With sufficient research and clinical trials in future, this could prove to be successful in treatment or management of autism as a neurodevelopmental disorder recently related to PA neurotoxicity. Keywords: Propionic acid, creatine, SH-SY5Y, comet assay, DNA fragmentation assay, apoptosis, neuroprotection. African Journal ...

  1. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... Full Length Research Paper. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afaf El-Ansary*, Ghada Abu-Shmais and Abeer Al-Dbass. Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Zip code 11495, Riyadh, ...

  2. Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates

    International Nuclear Information System (INIS)

    Mohamad, NurRoyhaila; Mahat, Naji Arafat; Wahab, Roswanira Abdul; Huyop, Fahrul; Aboul-Enein, Hassan Youssef

    2015-01-01

    Terpene esters of short-chain fatty acids are essential oils that have big importance in food, cosmetic and pharmaceutical industries as flavours and fragrances. Geraniol and citronellol are the most important substances. Considering the everincreasing demand for such products, their enzymatic production from natural raw materials by using environmentally friendly and economically attractive processes may prove advantageous. In this contribution, we would like to present an alternative option for the production of geranyl propionate using nanobioconjugates consisting of Candida rugosa lipase adsorbed onto multi-walled carbon nanotubes (CRL-MWCNTs). We investigated the effects of incubation time, temperature, solvent log P and substrate molar ratio, and determined the optimum conditions. The yield of geranyl propionate catalysed by CRL-MWCNTs nanobioconjugates was significantly influenced by two factors, namely, temperature and time of the reaction. Under the optimum reaction conditions of 55 C, solvent n-heptane (log P D 4.0), geraniol to propionic acid molar ratio of 5:1 and reaction time of 6 h, the use of CRL-MWCNTs resulted in 51.3% production of geranyl propionate. Therefore, the investigation revealed that geranyl propionate was successfully synthesized under mild conditions with reasonably high yield within a short period of time. The CRL-MWCNTs nanobioconjugates demonstrated a potential as economical and environmentally smarter biocatalysts for the production of geranyl propionate. Keywords: nanobioconjugates

  3. Inhibition of Listeria monocytogenes by propionic acid-based ingredients in cured deli-style Turkey.

    Science.gov (United States)

    Glass, Kathleen A; McDonnell, Lindsey M; Von Tayson, Roxanne; Wanless, Brandon; Badvela, Mani

    2013-12-01

    Listeria monocytogenes growth can be controlled on ready-to-eat meats through the incorporation of antimicrobial ingredients into the formulation or by postlethality kill steps. However, alternate approaches are needed to provide options that reduce sodium content but maintain protection against pathogen growth in meats after slicing. The objective of this study was to determine the inhibition of L. monocytogenes by propionic acid-based ingredients in high-moisture, cured turkey stored at 4 or 7°C. Six formulations of sliced, cured (120 ppm of NaNO2 ), deli-style turkey were tested, including control without antimicrobials, 3.2% lactate-diacetate blend (LD), 0.4% of a liquid propionate-benzoate-containing ingredient, or 0.3, 0.4, and 0.5% of a liquid propionate-containing ingredient. Products were inoculated with 5 log CFU L. monocytogenes per 100-g package (3 log CFU/ml rinsate), vacuum-sealed, and stored at 4 or 7°C for up to 12 weeks; and populations were enumerated by plating on modified Oxford agar. As expected, the control without antimicrobials supported rapid growth, with >2 log average per ml rinsate increase within 4 weeks of storage at 4°C, whereas growth was observed at 6 weeks for the LD treatment. For both replicate trials, all treatments that contained liquid propionate or propionate-benzoate limited L. monocytogenes growth to an increase of 1-log increase) was observed in individual samples for all propionate-containing treatments at weeks 10, 11, and 12. As expected, L. monocytogenes grew more rapidly when products were stored at 7°C, but trends in relative inhibition were similar to those observed at 4°C. These results verify that propionate-based ingredients inhibit growth of L. monocytogenes on sliced, high-moisture, cured turkey and can be considered as an alternative to reduce sodium-based salts while maintaining food safety.

  4. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  5. Enhancement of Esterification of Propionic Acid with Isopropyl Alcohol by Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Ajit P. Rathod

    2014-01-01

    Full Text Available With increasing cost of raw materials and energy, there is an increasing inclination of chemical process industries toward new processes that result in lesser waste generation, greater efficiency, and substantial yield of the desired products. Esterification is a chemical reaction in which two reactants carboxylic acid and alcohol react to form an ester and water. This reaction is a reversible reaction and the equilibrium conversion can be altered by varying the process parameters. Pervaporation reactor can enhance the conversion by shifting the equilibrium of reversible esterification reactions. Polyvinyl alcohol-polyether sulfone composite hydrophilic membrane was used for pervaporation-assisted esterification of propionic acid with isopropyl alcohol. The experiments were carried out in the presence of sulphuric acid as a catalyst at 50°C to 80°C with various reactants ratios. The esterification was carried out for catalyst loadings of 0.089 kmol/m3 to 0.447 kmol/m3. The molar ratios of isopropyl to propionic acid used for the experiment were 1 to 1.5. Maximum conversion was obtained for the ratio of 1.4. Also effect of other parameters such as process temperature and catalyst concentration was discussed. It was found that the use of pervaporation reactor increased the conversion of the propionic acid considerably.

  6. Determination of dissociation constants or propionic acid and lactic acid (2-hydroxypropionic acid) by potentiometry and conductometry

    International Nuclear Information System (INIS)

    Saeeduddin; Khanzada, A.W.K.

    2004-01-01

    Dissociation constants of propionic acid and 2-hydroxypropionic acid (lactic acid) have been studied at different temperatures between 25 to 50 deg. C interval. Propionic acid is analyzed by conductometry while 2-hydroxypropionic acid is analyzed by potentiometry. Both investigated compounds are symmetrical carboxylic acids having same length of carbon chain but are markedly different in ionic behavior. We were interested to see how the hydroxyl group (-OH) induction in propionic acid affects on pKa values of 2-hydroxypropionic acid. We observed that as temperature increases pKa values increase. The increase is observed for both the investigated compounds. PKa values of 2-hydroxypropionic acid are lower as compared to propionic acid because of electron withdrawing (-OH). (author)

  7. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  8. 75 FR 78243 - Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review...

    Science.gov (United States)

    2010-12-15

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0650; FRL-8855-5] Propionic Acid and Salts, Urea.... 4078, urea sulfate, case no. 7213, methidathion, case no. 0034, and methyl parathion, case no. 0153... pesticides in the table below--propionic acid and salts, case 4078, urea sulfate, case no. 7213, methidathion...

  9. Oxidation of propionic acid-3-14C with alkaline permanganate

    International Nuclear Information System (INIS)

    Zielinski, M.

    1981-01-01

    The mechanism of oxidation of propionic acid with permanganate in alkaline medium was reinvestigated using methyl- 14 C labelled propionate. The preferential rupture of the αC-βC bond in propionate in highly concentrated alkaline solutions of NaOH (and KOH) was confirmed and the appearance of 14 C-labelled oxalate explained by the formation of the symmetrical intermediate which decomposes in two different modes. (author)

  10. Induction of the p75NTR by Aryl Propionic Acids in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Quann, Emily

    2007-01-01

    .... I have found that treatment of prostate cancer cells with the aryl propionic acids R-flurbiprofen and ibuprofen induces reexpression of p75NTR, decreases cell survival, and increases apoptosis...

  11. Easy method for the preparation of L (+) 2-amino 3-sulfino propionic acid (cysteine sulfinic acid)

    International Nuclear Information System (INIS)

    Emiliozzi, Romeo; Pichat, Louis

    1960-01-01

    Description of a new method of preparing cystine disulphoxide by oxidising cystine hydrochloride with a mixture of formic acid and hydrogen peroxide. Yield; 85 per cent. The disproportionation of cystine disulphoxide by ammonia gives 2-amino 3-sulfino propionic acid with a yield of 93 per cent. The method had been applied to the preparation of 35 S DL cysteine sulfinic acid. Reprint of a paper published in Bulletin de la Societe Chimique de France, no. 2653, 4. quarter 1959, p. 1887-1888 [fr

  12. Magnetic Vinylphenyl Boronic Acid Microparticles for Surface Catalytic Performance in Esterification of Propionic Acid with Methanol

    Directory of Open Access Journals (Sweden)

    Ali Kara

    2016-12-01

    Full Text Available Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate-vinylphenyl boronic acid [m-poly(EGDMA-VPBA], produced by suspension polymerization, was found to be efficient solid acid catalyst for the esterification of methanol and propionic acid. Characterization techniques such as FT-IR, Elemental analyses, ICP-AES, ESR, SEM and N2 sorption showed that both of Fe3O4 and H2SO4 are bonded to the polymer successfully. Esterification was studied for different molar percentages of H2SO4 at temperature range of 50-70 oC. The apparent activation energy was found to be 27.7 kj.mol-1 for 10% H2SO4 doped m-poly(EGDMA-VPBA. Combining of strong acid H2SO4 with m-poly(EGDMA-VPBA, leads to materials with different functional properties. In addition, H2SO4 species could be introduced into the structure as acid centers, therefore this micro-dimensional catalyst has potential candidate for applications in the catalytic esterifications such as propionic acid with methanol.

  13. Responses of Blood Glucose, Insulin, Glucagon, and Fatty Acids to Intraruminal Infusion of Propionate in Hanwoo

    Directory of Open Access Journals (Sweden)

    Y. K. Oh

    2015-02-01

    Full Text Available This study was carried out to investigate the effects of intraruminal infusion of propionate on ruminal fermentation characteristics and blood hormones and metabolites in Hanwoo (Korean cattle steers. Four Hanwoo steers (average body wt. 270 kg, 13 month of age equipped with rumen cannula were infused into rumens with 0.0 M (Water, C, 0.5 M (37 g/L, T1, 1.0 M (74 g/L, T2 and 1.5 M (111 g/L, T3 of propionate for 1 hour per day and allotted by 4×4 Latin square design. On the 5th day of infusion, samples of rumen and blood were collected at 0, 60, 120, 180, and 300 min after intraruminal infusion of propionate. The concentrations of serum glucose and plasma glucagon were not affected (p>0.05 by intraruminal infusion of propionate. The serum insulin concentration at 60 min after infusion was significantly (p<0.05 higher in T3 than in C, while the concentration of non-esterified fatty acid (NEFA at 60 and 180 min after infusion was significantly (p<0.05 lower in the propionate treatments than in C. Hence, intraruminal infusion of propionate stimulates the secretion of insulin, and decreases serum NEFA concentration rather than the change of serum glucose concentration.

  14. Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids.

    Science.gov (United States)

    Fujita, M; Ike, M; Tachibana, S; Kitada, G; Kim, S M; Inoue, Z

    2000-01-01

    A bacterial strain, TKF04, capable of producing a bioflocculant from acetic and/or propionic acids was isolated from a biofilm formed in inside a kitchen drain. It was identified as a Citrobacter based on its morphological and physiological characteristics and the partial sequences of its 16S rRNA. TKF04 produced the bioflocculant during the logarithmic phase of growth, and the optimum temperature and pH for the bioflocculant production were 30 degrees C and 7.2-10.0, respectively. It could utilize some organic acids and sugars for its growth as the sole carbon sources when yeast extract was supplemented; however, only acetate and propionate were found to be good substrates for the bioflocculant production. The crude bioflocculant could be recovered from the supernatant of the culture broth by ethanol precipitation and dialysis against deionized water. It was found to be effective for flocculation of a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (approximately 3-95 degrees C), while the co-presence of cations (Na+, K+, Ca2+, Mg2+, Fe2+, Al3+ or Fe3+) did not enhance the flocculating activity. It could efficiently flocculate a variety of inorganic and organic suspended particles, including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. It contained glucosamine as the major component, and the molecular weight was estimated to be between 232 and 440 kDa by gel filtration. The observation that the flocculating activity was completely lost following chitinase treatment and its analysis with a Fourier transform infrared spectrometer suggested that the bioflocculant is a biopolymer structurally-similar to chitin or chitosan.

  15. THE EFFECT OF METHANOGENIC INHIBITOR FEED ON PROPIONIC ACID AND LAMB MEAT CHEMICAL QUALITY

    Directory of Open Access Journals (Sweden)

    E. Suryanto

    2012-09-01

    Full Text Available This study aimed to determine the effect of medium chain fatty acids (MCFA on propionic acids and lamb meat chemical quality. The treatment given was R1: feed without medium chain fatty acids (MCFA, while R2 dan R3 were the feed contained 1.0% and 1.5% of MCFA, respectively. The twelve heads of lambs yearling weight of 16-17 kg were used as materials. Biological trial was done for three months and then was slaughtered. Before being slaughtered, the animal was taken rumen fluid to be analyzed for propionic acid. The carcass was sampled to be analyzed for chemical composition, cholesterol and fatty acids content. This study showed that methanogenic inhibitor feed with 1.0-1.5% MCFA could be used as sheep feed, and the results: the propionic acid content in rumen increased 29.59 – 36.11%. The cholesterol content decreased 7.14-10.06%. For the meat fatty acids composition, unsaturated fatty acids increased 9.05 – 17.96%. while saturated fatty acid decreased 6.59 – 11.88%.

  16. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone cou...

  18. 2-Amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Janin, Yves L; Nielsen, Birgitte

    2002-01-01

    In order to identify new subtype-selective (S)-glutamate (Glu) receptor ligands we have synthesized (RS)-2-amino-3-(3-hydroxy-1,2,5-thiadiazol-4-yl)propionic acid [(RS)-TDPA]. Resolution of (RS)-TDPA by chiral chromatography was performed using a Crownpac CR(+) column affording (R)- and (S......)-TDPA of high enantiomeric purity (enantiomeric excess=99.9%). An X-ray crystallographic analysis revealed that the early eluting enantiomer has R-configuration. Both enantiomers showed high affinity as well as high agonist activity at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA...... a remarkably low AMPA receptor stereoselectivity, (S)-TDPA showing the highest affinity and (R)-TDPA the most potent agonist activity. In addition, (S)-TDPA was shown to interact with synaptosomal Glu uptake sites displacing [(3)H](R)-aspartic acid (IC(50 ) approximately 390 microM). An enantiospecific...

  19. Response of methane production via propionate oxidation to carboxylated multiwalled carbon nanotubes in paddy soil enrichments

    Directory of Open Access Journals (Sweden)

    Jianchao Zhang

    2018-01-01

    Full Text Available Carboxylated multiwalled carbon nanotubes (MWCNTs-COOH have become a growing concern in terms of their fate and toxicity in aqueous environments. Methane (CH4 is a major product of organic matter degradation in waterlogged environments. In this study, we determined the effect of MWCNTs-COOH on the production of CH4 from propionate oxidation in paddy soil enrichments. The results showed that the methanogenesis from propionate degradation was accelerated in the presence of MWCNTs-COOH. In addition, the rates of CH4 production and propionate degradation increased with increasing concentrations of MWCNTs-COOH. Scanning electron microscopy (SEM observations showed that the cells were intact and maintained their structure in the presence of MWCNTs-COOH. In addition, SEM and fluorescence in situ hybridization (FISH images revealed that the cells were in direct contact with the MWCNTs and formed cell-MWCNTs aggregates that contained both bacteria and archaea. On the other hand, nontoxic magnetite nanoparticles (Fe3O4 had similar effects on the CH4 production and cell integrity as the MWCNTs-COOH. Compared with no nanomaterial addition, the relative abundances of Geobacter and Methanosarcina species increased in the presence of MWCNTs-COOH. This study suggests that MWCNTs-COOH exerted positive rather than cytotoxic effects on the syntrophic oxidation of propionate in paddy soil enrichments and affected the bacterial and archaeal community structure at the test concentrations. These findings provide novel insight into the consequences of nanomaterial release into anoxic natural environments.

  20. Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

    Directory of Open Access Journals (Sweden)

    Chonticha Mamimin

    2017-09-01

    Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.

  1. SYNTHESIS AND STUDY OF ANTIOXIDANT ACTIVITY OF [(1-ARYL-5-FORMYL-1H-IMIDAZOLE-4-ILTHIO]PROPIONIC ACIDS

    Directory of Open Access Journals (Sweden)

    A. O. Palamar

    2014-12-01

    Full Text Available Introduction. Derivatives of imidazole belong to the promising group of compounds for antioxidant activity study, due to the series of recent publications. This is defined by special features of their structure, specific reactivity and significant potential of pharmacological action. Earlier during process of looking for new antioxidants we studied significant amount of imidazole derivatives, among which the [(1-aryl-5-formylimidazole-4-ilthio]acetic acids structurally modified by the formyl group and thioacetic acid fragment, are especially worth noting. The purpose of the study. Synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids and comparison of their antioxidant effect with [(1-aryl-5-formylimidazole-4-ilthio]acetic acids with to identify prospects of in-depth study of the most active compounds as antioxidants. Materials and methods. The method based on interaction of available 4-chloro-5-formylimidazoles with thiopropionic acid was proposed for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids. The reaction takes place in ethanol in presence of potassium hydroxide and leads to the target compounds with yields of 81-86%. The study of antioxidant activity of synthesized compounds was conducted in vitro by speed inhibition value of rats’ liver endogenous lipids ascorbate-dependent peroxide oxidation. It was determined by concentration of one of the final products of free radical oxidation of lipids (FROL – maleic aldehyde (MA in the investigated sample. Concentrations of synthesized compounds were chosen within concentrations which were studied for thiotriazolin (manufactured by corporation “Arterium”, Ukraine, solution for injection, 25 mg/ml. The results of the study and their discussion. Preparative method for the synthesis of [(1-aryl-5-formylimidazole-4-ilthio]propionic acids has been designed. Imidazolylthiopropionic acids have been synthesized; they are crystalline compounds, of light

  2. Monitoring of clobetasol propionate and betamethasone dipropionate as undeclared steroids in cosmetic products manufactured in Korea.

    Science.gov (United States)

    Nam, Yun Sik; Kwon, Il Keun; Lee, Kang-Bong

    2011-07-15

    Some cosmetic products manufactured in Korea have been suspected to contain anti-inflammatory corticosteroids, such as clobetasol propionate and betamethasone dipropionate, for the treatment of eczema, seborrhea and psoriasis, without any indication on the label of the cosmetic products. Due to their severe side effects, such as permanent skin atopy, these two corticosteroids in cosmetic products need to be monitored from a forensic point of view. Cosmetic product samples (number of samples=47) of manufacturers charged by consumers have been collected in local and online markets of Korea, and they were validated and analyzed by a simple high performance liquid chromatography (HPLC) method with ultraviolet diode array (UV-DAD). LC-MS/MS and LC-MS were used to confirm these steroids in cosmetic samples with diagnostic ions (m/z) and isotope ratio. Linearity was studied with 0.5-10μg/mL range in both steroids. Good correlation coefficients (r(2)≥0.999) were found, and their limits of quantifications were 0.59μg/mL and 0.66μg/mL in clobetasol propionate and betamethasone dipropionate, respectively. At three different concentrations spanning the linear dynamic ranges, mean recoveries were always higher than 93%, and precisions for intra-day and inter-day analyses were both less than 3.5%. The results show 32-96.4μg/g levels of clobetasol propionate in five different cosmetic products. Also, betamethasone dipropionate in a sample was monitored at the level of 195.1μg/g. This fact reveals that some manufacturers have added these steroids in their cosmetic products to advertise the treatment effect for skin atopy. Thus, these cosmetic products need to be monitored carefully, and ultimately removed from the market. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Digestibility by lambs offered alfalfa hay treated with a propionic acid hay preservative and baled at different concentrations of moisture

    Science.gov (United States)

    Eighteen crossbred wether lambs (76.1 ± 8.18 lb initial BW) were used for a 2 period digestion study to evaluate the effect of hay preservative concentration (0, 0.56, or 0.98% buffered propionic acid) and hay moisture concentration at baling (19.6, 23.8, or 27.4% moisture) on digestibility of alfal...

  4. Plasma total odd-chain fatty acids in the monitoring of disorders of propionate, methylmalonate and biotin metabolism

    NARCIS (Netherlands)

    Coker, M.; de Klerk, J. B.; Poll-The, B. T.; Huijmans, J. G.; Duran, M.

    1996-01-01

    Total plasma odd-numbered long-chain fatty acids were analysed in patients with methylmalonic acidaemia (vitamin B12-responsive and unresponsive), combined methylmalonic acidaemia/homocystinuria (CblC), propionic acidaemia (both neonatal-onset and late-onset), biotinidase deficiency and

  5. Physical-chemical properties of the surface of B2O3-P2O5-MeOx/SiO2 catalysts and its effect on the parameters of the process of aldol condensation of propionic acid with formaldehyde

    International Nuclear Information System (INIS)

    Yivasyiv, V.V.; Pyikh, Z.G.; Zhiznevs'kij, V.M.; Nebesnij, R.V.

    2011-01-01

    Effect of catalyst B 2 O 3 -P 2 O 5 -MeO x /SiO 2 composition on its physical-chemical properties has been investigated. Relations between physical-chemical and catalytic properties of catalysts in the gas-phase reaction of propionic acid with formaldehyde to methacrylic acid have been found. Effect of the specific surface area and the specific surface acidity on the propionic acid conversion has been determined. Effect of the acidic active site's strength on the selectivity of reaction products has been determined. It has been pointed that methacrylic acid is formed on the moderate strength acidic active sites, whereas the by-product (diethyl ketone) - on the strong acidic active sites of the catalyst.

  6. Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-03-01

    Full Text Available The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM was ensiled with four different treatments: no additive (control, molasses (M, propionic acid (P, and molasses+propionic acid (PM, in laboratory silos (250 mL and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN, and high lactic acid (LA content and V-scores. M silage showed the highest (p105 cfu/g FM, however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (<105 cfu/g FM (p<0.05 and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

  7. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE

    Directory of Open Access Journals (Sweden)

    Dilek ÖZMEN

    2005-02-01

    Full Text Available The experimental liquid-liquid equilibrium (LLE data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It is concluded that n-amyl alcohol and n-amyl acetate are suitable separating agents for dilute aqueous propionic acid solutions.

  8. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    Directory of Open Access Journals (Sweden)

    El-Gezeery Amina R

    2011-08-01

    Full Text Available Abstract Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA, serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA, serotonin (5HT and dopamine (DA as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6, tumor necrosis factor-α (TNF-α as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE, phosphatidylserine (PS and phosphatidylcholine (PC. Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as

  9. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system

    International Nuclear Information System (INIS)

    Bilgin, V.; Guthrie, J.T.

    1990-01-01

    A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)

  10. Modulation of Immunological Pathways in Autistic and Neurotypical Lymphoblastoid Cell Lines by the Enteric Microbiome Metabolite Propionic Acid.

    Science.gov (United States)

    Frye, Richard E; Nankova, Bistra; Bhattacharyya, Sudeepa; Rose, Shannon; Bennuri, Sirish C; MacFabe, Derrick F

    2017-01-01

    Propionic acid (PPA) is a ubiquitous short-chain fatty acid which is a fermentation product of the enteric microbiome and present or added to many foods. While PPA has beneficial effects, it is also associated with human disorders, including autism spectrum disorders (ASDs). We previously demonstrated that PPA modulates mitochondrial dysfunction differentially in subsets of lymphoblastoid cell lines (LCLs) derived from patients with ASD. Specifically, PPA significantly increases mitochondrial function in LCLs that have mitochondrial dysfunction at baseline [individuals with autistic disorder with atypical mitochondrial function (AD-A) LCLs] as compared to ASD LCLs with normal mitochondrial function [individuals with autistic disorder with normal mitochondrial function (AD-N) LCLs] and control (CNT) LCLs. PPA at 1 mM was found to have a minimal effect on expression of immune genes in CNT and AD-N LCLs. However, as hypothesized, Panther analysis demonstrated that 1 mM PPA exposure at 24 or 48 h resulted in significant activation of the immune system genes in AD-A LCLs. When the effect of PPA on ASD LCLs were compared to the CNT LCLs, both ASD groups demonstrated immune pathway activation, although the AD-A LCLs demonstrate a wider activation of immune genes. Ingenuity Pathway Analysis identified several immune-related pathways as key Canonical Pathways that were differentially regulated, specifically human leukocyte antigen expression and immunoglobulin production genes were upregulated. These data demonstrate that the enteric microbiome metabolite PPA can evoke atypical immune activation in LCLs with an underlying abnormal metabolic state. As PPA, as well as enteric bacteria which produce PPA, have been implicated in a wide variety of diseases which have components of immune dysfunction, including ASD, diabetes, obesity, and inflammatory diseases, insight into this metabolic modulator may have wide applications for both health and disease.

  11. Effects of calcium propionate by different numbers of applications in first week postpartum of dairy cows on hypocalcemia, milk production and reproductive disorders

    Directory of Open Access Journals (Sweden)

    Arda Kovanlıkaya

    2010-01-01

    Full Text Available This study was conducted to evaluate effects of calcium propionate on hypocalcemia, dry matter intake, body condition score, milk production and reproductive disorders in dairy cows. Twenty four multiparous Holstein cows were sorted by parity, body condition score (BCS in close-up period and season of calving and assigned to one of the three treatments. The cows in treatment 1 (T1 received two drenches at calving and 24h after calving. The cows in treatment 2 (T2 received three drenches at calving, 24h after calving and 7 days after calving. The cows in treatment 3 (T3 were the control. Each drench contained 143g of calcium as calcium propionate (0.68kg. Parameters studied were serum calcium, glucose and nonesterified fatty acid (NEFA concentrations, dry matter intake (DMI, BCS, milk production (MP, incidence of retained placenta (RP and metritis. Milk fever developed in 5 of 8 cows, in 3 of 8 cows and in 3 of 8 cows in T1, T2 and T3, respectively, at calving. There was no cow with milk fever in T1 and T2 at 4h after second drench (about 28h after calving but 3 of 8 cows in T3 had still milk fever at this time. The cows receiving two drenches recovered from milk fever in a shorter term as compared to the cows in T3. There were no differences among treatments for DMI, BCS, MP, RP, serum glucose and NEFA concentrations during the experimental period. There was no difference for metritis between T1 and T3 but incidence of metritis in T2 was significantly lower as compared to T3 (P<0.05. Two drenches of calcium propionate were beneficial in treating milk fever and three drenches of calcium propionate were considered to have had a preventive effect for metritis.

  12. Comparison of the effect of acetic, propionic and butyric acids on ...

    African Journals Online (AJOL)

    番茄花园

    2011-05-23

    May 23, 2011 ... Graded levels of mixed VFA sodium salt (the molar proportion of acetate, propionate, and butyrate was 65:25:10), i.e. 0, 5, ... be more associated with the VFA energy level (Ma and. Zhao, 2010) and mediated by IGF-I, insulin ..... Influence of nutrition and bovine growth hormone (GH) on hepatic GH binding, ...

  13. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH (4.5-5.5).

    Science.gov (United States)

    Guynot, M E; Ramos, A J; Sanchis, V; Marín, S

    2005-05-25

    A hurdle technology approach has been applied to control common mold species causing spoilage of intermediate moisture bakery products (Eurotium spp., Aspergillus spp., and Penicillium corylophilum), growing on a fermented bakery product analogue (FBPA). The factors studied included a combination of different levels of weak acid preservatives (potassium sorbate, calcium propionate, and sodium benzoate; 0-0.3%), pH (4.5-5.5), and water activity (a(w); 0.80-0.90). Potassium sorbate was found to be the most effective in preventing fungal spoilage of this kind of products at the maximum concentration tested (0.3%) regardless of a(w). The same concentration of calcium propionate and sodium benzoate was effective only at low a(w) levels. On the other hand, potassium sorbate activity was slightly reduced at pH 5.5, the 0.3% being only effective at 0.80 a(w). These findings indicate that potassium sorbate may be a suitable preserving agent to inhibit deterioration of a FBPA of slightly acidic pH (near 4.5) by xerophilic fungi. Further studies have to be done in order to adjust the minimal inhibitory concentration necessary to obtain a product with the required shelf life.

  14. Comparison of Clobetasol Propionate Generics Using Simplified in Vitro Bioequivalence Method for Topical Drug Products.

    Science.gov (United States)

    Soares, Kelen Carine Costa; de Souza, Weidson Carlos; de Souza Texeira, Leonardo; da Cunha-Filho, Marcilio Sergio Soares; Gelfuso, Guilherme Martins; Gratieri, Tais

    2017-11-20

    The aim of this paper is to propose a simple in vitro skin penetration experiment in which the drug is extracted from the whole skin piece as a test valid for formulation screening and optimization during development process, equivalence assessment during quality control or post-approval after changes to the product. Twelve clobetasol propionate (CP) formulations (six creams and six ointments) from the local market were used as a model to challenge the proposed methodology in comparison to in vitro skin penetration following tape-stripping for drug extraction. To support the results, physicochemical tests for pH, viscosity, density and assay, as well as in vitro release were performed. Both protocols, extracting the drug from the skin using the tape-stripping technique or extracting from the full skin were capable of differentiating CP formulations. Only one formulation did not present statistical difference from the reference drug product in penetration tests and only other two oitments presented equivalent release to the reference. The proposed protocol is straightforward and reproducible. Results suggest the bioinequavalence of tested CP formulations reinforcing the necessity of such evaluations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Resolution, configurational assignment, and enantiopharmacology at glutamate receptors of 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and demethyl-ACPA

    DEFF Research Database (Denmark)

    Johansen, T N; Stensbøl, T B; Nielsen, B

    2001-01-01

    We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution...... of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC...... columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid...

  16. Regioselectively nucleus and/or side-chain fluorinated 2-(Phenanthryl)propionic acids by an effective combination of radical and organometallic chemistry.

    Science.gov (United States)

    Ricci, Giacomo; Ruzziconi, Renzo

    2005-01-21

    Regioselectively nucleus and/or side-chain fluorinated 2-(phenanthr-1-yl)- and 2-(phenanthr-2-yl)propionic acids 1-5 were prepared using phenanthren-1(2H)-ones 6a-c as key intermediates. Thus, ethyl 2-(fluorophenanthryl)propionates 11 were obtained in good yields by Reformatsky reaction of 6a-c with ethyl 2-bromopropionate followed by dehydratation and DDQ-promoted aromatization of the resulting beta-hydroxyesters. Side-chain alkyl 2-hydroxy-2-(phenanthr-1-yl)propionates 14 were obtained by bromine/lithium permutation of dihydrophenanthryl bromides 12a-c with butyllithium followed by quenching of the lithiated intermediates with methyl pyruvate or ethyl 3,3,3-trifluoropyruvate and subsequent DDQ-promoted aromatization. The alkyl 2-hydroxy-2-(phenanthr-1-yl)propionates 25 were prepared by reacting 8-bromo-1,3-difluorophenanthrene 24 with butyllithium for 10 seconds at -110 degrees C and subsequent addition of the suitable pyruvate to the lithiated intermediates. Alkyl 2-hydroxy-2-(phenanthr-2-yl)propionates 26 and 29 were suitably obtained by site-selective metalation of 1,3-difluorophenanthrene 28 and the bromophenanthrene 24, respectively, with LDA followed by quenching of the metalated intermediates with the suitable alkyl pyruvate. Fluorination of the above alpha-hydroxypropionates with DAST, followed by the alkaline hydrolysis, allowed the expected 2-(phenanthryl)propionic acids 1-5 to be obtained in satisfactory overall yields.

  17. Synthesis of a cleavable heterobifunctional photolabelling reagent: ring-labelled 3-((4-azidophenyl)dithio)propionic acid- sup 14 C

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswami, Varadarajan (Carnegie-Mellon Univ., Pittsburgh, PA (USA). Dept. of Chemistry); Tirrell, D.A. (Massachusetts Univ., Amherst, MA (USA). Dept. of Polymer Science and Engineering)

    1989-08-01

    An efficient synthesis of ring-labelled 3-((4-azidophenyl)dithio)propionic acid-{sup 14}C is described. Chlorosulfonation of uniformly ring-labelled acetanilide-{sup 14}C followed by reductive dimerization of the sulfonyl chloride with HI afforded 4-acetamidophenyl disulfide. Hydrolysis and diazotization then gave 4-azidophenyl disulfide, which was converted to the title compound via the sulfur transfer reagent N-(4-azidophenylthio)phthalimide. The overall yield of 3-((4-azidophenyl)dithio)propionic acid-{sup 14}C was 22%. 3-((4-Azidophenyl)dithio)propionic acid-{sup 14}C is a cleavable heterobifunctional photolabelling reagent of potential utility in studies of biomembrane structure and intermacromolecular interaction. (author).

  18. Effects of a propionic-acid based preservative on storage characteristics of alfalfa-orchardgrass hay in large-rectangular bales

    Science.gov (United States)

    For many years, various formulations of organic acids have been marketed as preservatives, most specifically for use on hays that could not be field-dried to moisture concentrations low enough to reduce or eliminate spontaneous heating during storage. These preservatives are often propionic-acid-bas...

  19. Excitatory amino acid receptor ligands: resolution, absolute stereochemistry, and enantiopharmacology of 2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid

    DEFF Research Database (Denmark)

    Johansen, T N; Ebert, B; Bräuner-Osborne, Hans

    1998-01-01

    (RS)-2-Amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid (Bu-HIBO, 6) has previously been shown to be an agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors and an inhibitor of CaCl2-dependent [3H]-(S)-glutamic acid binding (J. Med. Chem. 1992, 35, 3512......-3519). To elucidate the pharmacological significance of this latter binding affinity, which is also shown by quisqualic acid (3) but not by AMPA, we have now resolved Bu-HIBO via diastereomeric salt formation using the diprotected Bu-HIBO derivative 11 and the enantiomers of 1-phenylethylamine (PEA). The absolute...... equipotent as inhibitors of CaCl2-dependent [3H]-(S)-glutamic acid binding, neither enantiomer showed significant affinity for the synaptosomal (S)-glutamic acid uptake system(s). AMPA receptor affinity (IC50 = 0.48 microM) and agonism (EC50 = 17 microM) were shown to reside exclusively in the S...

  20. (Liquid + liquid) equilibria for ternary mixtures of (water + propionic acid + organic solvent) at T = 303.2 K

    International Nuclear Information System (INIS)

    Ghanadzadeh, H.; Ghanadzadeh Gilani, A.; Bahrpaima, Kh.; Sariri, R.

    2010-01-01

    Experimental tie-line results and phase diagrams were obtained for the ternary systems of {water + propionic acid + organic solvent (cyclohexane, toluene, and methylcyclohexane)} at T = 303.2 K and atmospheric pressure. The organic solvents were two cycloaliphatic hydrocarbons (i.e., cyclohexane and methylcyclohexane) and an aromatic hydrocarbon (toluene). The experimental tie-lines values were also compared with those calculated by the UNIQUAC and NRTL models. The consistency of the values of the experimental tie-lines was determined through the Othmer-Tobias and Hands plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients and separation factors. The Kamlet LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems. The LSER model values showed a good regression to the experimental results.

  1. Mechanism of reactivation of the UV-inactivated cells of Escherichia coli by cell extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Khodzhaev, E.Y.; Ponomareva, G.M.

    1995-01-01

    Two mechanisms of reactivation of UV-inactivated Escherichia coli cells - photoreactivation (PhR) and reactivation by the dialyzate of cell extract of propionic acid bacteria - are shown to be different but not completely additive. PhR displays an insignificant negative effect on the reactivaton by active substances (peptides) of the dialyzate, whereas reactivation by dialyzate inhibits PhR. The maximal reactivation can be attained under complete PhR followed by the protective action of dialyzate. The dialyzate protects UV-irradiated E. coli cells with PolA, UvrA, and RecA mutations and Salmonella typhimurium TA 100 (UvrB) cells, and also exerts an antimutagenic effect on S. typhimurium TA 100. Protection by dialyzate is suggested to be due to restoration of the cell division mechanism damaged by UV irradiation. 14 refs., 3 figs., 5 tabs

  2. Effects of a propionic acid-based preservative on storage characteristics, nutritive value, and energy content for alfalfa hays packaged in large, round bales

    Science.gov (United States)

    During 2009 and 2010, alfalfa (Medicago sativa L.) hays from two cuttings that were harvested from the same field site were used to evaluate the effects of a propionic acid-based preservative on the storage characteristics and nutritive value of hays stored as large, round bales. A total of 87 large...

  3. Using a feed-grade zinc propionate to achieve molt induction in laying hens and retain postmolt egg production and quality.

    Science.gov (United States)

    Park, S Y; Kim, W K; Birkhold, S G; Kubena, L F; Nisbet, D J; Ricke, S C

    2004-11-01

    A commercial-feed-grade form of zinc propionate was examined as a potential feed amendment at a concentration of 1% zinc to induce molt in 90-wk-old hens. Dietary treatments consisted of 4 treatment groups of 28 birds each randomly assigned to either (1) molted conventionally by feed withdrawal, (2) 1% zinc as Zn acetate, (3) 1% zinc as Zn propionate, or (4) nonmolted control for 9 d. Ovary weights of hens fed Zn acetate or Zn propionate were not significantly different from each other, but hens fed Zn acetate or Zn propionate were significantly (phens. Zinc concentrations in the kidney and liver were significantly (phens when compared to either nonmolted control-fed hens or feed-withdrawal molted hens. Over the entire 3-mo postmolt period, there were no significant differences in interior or exterior egg qualities among the four treatments. Egg production of hens fed Zn acetate was significantly lower than feed-withdrawal hens, Zn propionate-fed hens, or nonmolted control hens (pfeeding a feed grade of Zn propionate (1% Zn)-supplemented diet can induce molt and retain postmolt egg quality and production comparable to hens molted by feed withdrawal.

  4. Feeding of the water extract from Ganoderma lingzhi to rats modulates secondary bile acids, intestinal microflora, mucins, and propionate important to colon cancer.

    Science.gov (United States)

    Yang, Yongshou; Nirmagustina, Dwi Eva; Kumrungsee, Thanutchaporn; Okazaki, Yukako; Tomotake, Hiroyuki; Kato, Norihisa

    2017-09-01

    Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.

  5. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  6. Molecular structure, spectroscopic and docking analysis of 1,3-diphenylpyrazole-4-propionic acid: A good prostaglandin reductase inhibitor

    Science.gov (United States)

    Kavitha, T.; Velraj, G.

    2018-03-01

    The molecule 1,3-diphenylpyrazole-4-propionic acid (DPPA) was optimized to its minimum energy level using density functional theory (DFT) calculations. The vibrational frequencies of DPPA were calculated along with their potential energy distribution (PED) and the obtained values are validated with the help of experimental calculations. The reactivity nature of the molecule was investigated with the aid of various DFT methods such as global reactivity descriptors, local reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbitals (NBOs), etc. The prediction of activity spectra for substances (PASS) result forecast that, DPPA can be more active as a prostaglandin (PG) reductase inhibitor. The PGs are biologically synthesized by the cyclooxygenase (COX) enzyme which exists in COX1 and COX2 forms. The PGs produced by COX2 enzyme induces inflammation and fungal infections and hence the inhibition of COX2 enzyme is indispensable in anti-inflammation and anti-fungal activities. The docking analysis of DPPA with COX enzymes (both COX1 and COX2) were carried out and eventually, it was found that DPPA can selectively inhibit COX2 enzyme and can serve as a PG reductase inhibitor thereby acting as a lead compound for the treatment of inflammation and fungal diseases.

  7. PROSPECTS FOR THE APPLICATION OF ULTRASONIC MEMBRANE EXTRACTORS IN THE SUBMERGED CULTIVATION OF LACTIC ACID AND PROPIONIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    D. A. Durnikin

    2016-08-01

    Due to the maintenance of optimum pH, the final concentration of L. lactis, L. plantarum, and P. acidipropionici cells increased in 5.8, 3.6, and 3.2 times, respectively. The equipping of a membrane extractor with ultrasonic transducers accelerated the removal of organic acids from fermentation broth of L. lactis, L. plantarum, and P. acidipropionici in 5.25, 5, and 6.25 times, respectively, i.e., provided a more rapid and efficient fermentation. The proposed technology improves the economical efficiency of the process and provides the required diversity of technical solutions for its use in a microbiological production.

  8. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  9. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor

    International Nuclear Information System (INIS)

    Rameil, Steffen; Schubert, Peter; Grundmann, Peter; Dietrich, Richard; Maertlbauer, Erwin

    2010-01-01

    We developed a potentiometric aflatoxin M 1 -immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M 1 antibody (pAb-AFM 1 ), a Ag/AgCl reference electrode and a HRP-aflatoxin B 1 conjugate (HRP-AFB 1 conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL -1 and allowed detection of 500 pg mL -1 (FDA action limit) aflatoxin M 1 (AFM 1 ) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL -1 AFM 1 .

  10. Reactivation in UV inactivated Escherichia coli by cell-free extracts of propionic acid bacteria

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1993-01-01

    For the first time reactivation of cell extraction of three strains of Propionibacterium shermanii in UV inactivated not filament-forming strain Escherichia colli AB 1157 is shown. Reactivation was demonstrated in prencubated and postincubated test-culture and increased as survival of E.coli decreased in a range 1,8-0,006%. The factor (factores) of defense in dialysable, thermolable and is present as in a fraction of nucleoproteins and nucleic acids so in a fraction of soluble proteins. The extracts were inactivated by incubation with proteinase K and trypsin, partly decreased activity by incubation with alpha-amylase and selected nuclease but not with lipase. Polypeltide nature of reactivative factor is supposed

  11. Cell extracts of propionic acid bacteria reactivate cells of Escherichia coli inactivated by ultraviolet radiation

    International Nuclear Information System (INIS)

    Vorob'eva, L.I.; Nikitenko, G.V.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1994-01-01

    Cell extracts of three Propionibacterium shermanii strains were shown to exert a reactivating effect on cells of E. coli AB 1157 inactivated by ultraviolet radiation. The reactivating effect was revealed after both preincubation and postincubation of the irradiated cells with the extracts. The effect increased with a decrease of the survival rate within the range of 1.8-0.006%. The protective factor (or factors) is dialyzable and thermolabile; it was detected both in the fraction of soluble proteins and in the fraction of nucleoproteins and nucleic acids. The protective properties of dialyzate disappear after incubation with proteinase K and trypsin, decrease after incubation with α-amylase, deoxyribonuclease-1, or ribonuclease, and do not change under the influence of lipase. The reactivating factor is believed to be of a polypeptide nature

  12. Quantification of Propionic Acid in the Bovine Spinal Disk After Infection of the Tissue With Propionibacteria acnes Bacteria.

    Science.gov (United States)

    Magnitsky, Sergey; Dudli, Stefan; Tang, Xinyan; Kaur, Jaskanwaljeet; Diaz, Joycelyn; Miller, Steve; Lotz, Jeffrey C

    2018-06-01

    Research. The goal of this study was to investigate whether Propionibacteria acnes infection of the intervertebral disc can be detected noninvasively by nuclear magnetic resonance (NMR) spectroscopy. Microbiological studies of surgical samples suggest that a significant subpopulation of back pain patients may have occult disc infection with P. acnes bacteria. This hypothesis is further supported by a double-blind clinical trial showing that back pain patients with Modic type 1 changes may respond to antibiotic treatment. Because significant side effects are associated with antibiotic treatment, there is a need for a noninvasive method to detect whether specific discs in back pain patients are infected with P acnes bacteria. P. acnes bacteria were obtained from human patients. NMR detection of a propionic acid (PA) in the bacteria extracts was conducted on 500 MHz high-resolution spectrometer, whereas in vivo NMR spectroscopy of an isolated bovine disk tissue infected with P. acnes was conducted on 7 T magnetic resonance imaging scanner. NMR spectra of P. acnes metabolites revealed a distinct NMR signal with identical chemical shits (1.05 and 2.18 ppm) as PA (a primary P. acne metabolite). The 1.05 ppm signal does not overlap with other bacteria metabolites, and its intensity increases linearly with P. acnes concentration. Bovine disks injected with P. acnes bacteria revealed a very distinct NMR signal at 1.05 ppm, which linearly increased with P. acnes concentration. The 1.05 ppm NMR signal from PA can be used as a marker of P. acnes infection of discs. This signal does not overlap with other disc metabolites and linearly depends on P. acnes concentration. Consequently, NMR spectroscopy may provide a noninvasive method to detect disc infection in the clinical setting. N/A.

  13. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mihyang; Han, Jaehong [Chung-Ang Univ., Seoul (Korea, Republic of)

    2014-06-15

    We have elucidated stereochemistry of (-)-2-HPPA. Determination of (R)-2-HPPA stereochemistry also provided stereochemical information of genistein metabolism. Considering the stereochemistry of 2-HPPA, the precursor of (R)-2-HPPA should be (R)-6'-hydroxy-O-DMA. Besides, it is clear that only (S)-dihydrogenistein is the possible precursor of (R)-6'-hydroxy-O-DMA. Therefore, genistein metabolism is suggested to follow the same stereochemical pathway like daidzein. Biotransformation of natural products by human intestinal bacteria has recently drawn a significant interest, due to the emerging strong correlation between gut microbiota and human health. Microbial metabolism of natural products by intestinal bacteria in small intestine and colon proceeds the phase I and II xenobiotic metabolisms in the liver. The metabolites were found to exhibit different biological activities, and affect human etiology. For example, many beneficial effects of dietary polyphenols in human health are attributed to the microbial metabolites produced by intestinal bacteria and the modulation of gut microbiota composition.

  14. Absolute Configuration of (-)-2-(4-Hydroxyphenyl)propionic acid: Stereochemistry of Soy Isoflavone Metabolism

    International Nuclear Information System (INIS)

    Kim, Mihyang; Han, Jaehong

    2014-01-01

    We have elucidated stereochemistry of (-)-2-HPPA. Determination of (R)-2-HPPA stereochemistry also provided stereochemical information of genistein metabolism. Considering the stereochemistry of 2-HPPA, the precursor of (R)-2-HPPA should be (R)-6'-hydroxy-O-DMA. Besides, it is clear that only (S)-dihydrogenistein is the possible precursor of (R)-6'-hydroxy-O-DMA. Therefore, genistein metabolism is suggested to follow the same stereochemical pathway like daidzein. Biotransformation of natural products by human intestinal bacteria has recently drawn a significant interest, due to the emerging strong correlation between gut microbiota and human health. Microbial metabolism of natural products by intestinal bacteria in small intestine and colon proceeds the phase I and II xenobiotic metabolisms in the liver. The metabolites were found to exhibit different biological activities, and affect human etiology. For example, many beneficial effects of dietary polyphenols in human health are attributed to the microbial metabolites produced by intestinal bacteria and the modulation of gut microbiota composition

  15. Autism in patients with propionic acidemia

    NARCIS (Netherlands)

    Witters, P.; Debbold, E.; Crivelly, K.; Kerckhove, K. Vande; Corthouts, K.; Debbold, B.; Andersson, H.; Vannieuwenborg, L.; Geuens, S.; Baumgartner, M.; Kozicz, L.T.; Settles, L.; Morava, E.

    2016-01-01

    Certain inborn errors of metabolism have been suggested to increase the risk of autistic behavior. In an animal model, propionic acid ingestion triggered abnormal behavior resembling autism. So far only a few cases were reported with propionic acidemia and autistic features. From a series of twelve

  16. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  17. Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid - induced neurotoxicity in rodent model of autism.

    Science.gov (United States)

    Al-Ghamdi, Mashael; Al-Ayadhi, Laila; El-Ansary, Afaf

    2014-02-25

    Exposures to environmental toxins are now thought to contribute to the development of autism spectrum disorder. Propionic acid (PA) found as a metabolic product of gut bacteria has been reported to mimic/mediate the neurotoxic effects of autism. Results from animal studies may guide investigations on human populations toward identifying environmental contaminants that produce or drugs that protect from neurotoxicity. Forty-eight young male Western Albino rats were used in the present study. They were grouped into six equal groups 8 rats each. The first group received a neurotoxic dose of buffered PA (250 mg/Kg body weight/day for 3 consecutive days). The second group received only phosphate buffered saline (control group). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for one week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for one week prior to PA (protected groups). Heat shock protein70 (Hsp70), Gamma amino-butyric acid (GABA), serotonin, dopamine, oxytocin and interferon γ-inducible protein 16 together with Comet DNA assay were measured in brain tissues of the six studied groups. The obtained data showed that PA caused multiple signs of brain toxicity revealed in depletion of GABA, serotonin, and dopamine, are which important neurotransmitters that reflect brain function, interferon γ-inducible protein 16 and oxytocin. A high significant increase in tail length, tail DNA% damage and tail moment was reported indicating the genotoxic effect of PA. Administration of melatonin or coenzyme Q showed both protective and therapeutic effects on PA-treated rats demonstrated in a remarkable amelioration of most of the measured parameters. In conclusion, melatonin and coenzyme Q have potential protective and restorative effects against PA-induced brain injury, confirmed by improvement in

  18. Synthesis and Antiradical/Antioxidant Activities of Caffeic Acid Phenethyl Ester and Its Related Propionic, Acetic, and Benzoic Acid Analoguesc

    Directory of Open Access Journals (Sweden)

    Mohamed Touaibia

    2012-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is a bioactive component isolated from propolis. A series of CAPE analogues was synthesized and their antiradical/antioxidant effects analyzed. The effect of the presence of the double bond and of the conjugated system on the antioxidant effect is evaluated with the analogues obtained from 3-(3,4-dihydroxyphenyl propanoic acid. Those obtained from 2-(3,4-dihydroxyphenyl acetic acid and 3,4-dihydroxybenzoic acid allow the evaluation of the effect of the presence of two carbons between the carbonyl and aromatic system.

  19. Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub-acute neurotoxicity of orally administered propionic acid.

    Science.gov (United States)

    Al-Salem, Huda S; Bhat, Ramesa Shafi; Al-Ayadhi, Laila; El-Ansary, Afaf

    2016-04-23

    It is now well documented that postnatal exposure to certain chemicals has been reported to increase the risk of autism spectrum disorder. Propionic acid (PA), as a metabolic product of gut microbiotaandas a commonly used food additive, has been reported to mediate the effects of autism. Results from animal studies may help to identify environmental neurotoxic agents and drugs that can ameliorate neurotoxicity and may thereby aid in the treatment of autism. The present study investigated the ameliorative effects of natural bee pollen against acute and sub-acute brain intoxication induced by (PA) in rats. Twenty-four young male Western Albino ratswere enrolled in the present study. They were classified into four equal groups, eachwith6 rats. The control group received only phosphate buffered saline; the oral buffered PA-treated groups (II and III) received a neurotoxic dose of 750 mg/kg body weight divided in 3 dose of 250 mg/kg body weight/day serving asthe acute group and 750 mg/kg body weight divided in 10 equal dose of 75 mg/kg body weight/day as the sub-acute group. The fourth group received 50 mg bee pollen for 30 days after PA-acute intoxication. The obtained data showed that the PA-treated groups demonstrated multiple signs of brain toxicity, as indicated by a depletion of serotonin (5HT), dopamine and nor-adrenaline, together withan increase in IFN-γ and caspase 3. Bee pollen was effective in ameliorating the neurotoxic effect of PA. All measured parameters demonstrated minimal alteration in comparison with thecontrol animal than did those of acute and sub-acute PA-treated animals. In conclusion, bee pollen demonstrates anti-inflammatory and anti-apoptotic effects while ameliorating the impaired neurochemistry of PA-intoxicated rats.

  20. Biopropionic acid production via molybdenumcatalyzed deoxygenation of lactic acid

    NARCIS (Netherlands)

    Korstanje, T.J.; Kleijn, H.; Jastrzebski, J.T.B.H.; Klein Gebbink, R.J.M.

    2013-01-01

    As the search for non-fossil based building blocks for the chemical industry increases, new methods for the deoxygenation of biomass-derived substrates are required. Here we present the deoxygenation of lactic acid to propionic acid, using a catalyst based on the non-noble and abundant metal

  1. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    International Nuclear Information System (INIS)

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-01-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate

  2. Isobaric (vapour + liquid) equilibria for the (1-pentanol + propionic acid) binary mixture at (53.3 and 91.3) kPa

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Memarzadeh, M.R.

    2010-01-01

    Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.

  3. Development of Quantitative Structure-Property Relationship Models for Self-Emulsifying Drug Delivery System of 2-Aryl Propionic Acid NSAIDs

    Directory of Open Access Journals (Sweden)

    Chen-Wen Li

    2011-01-01

    Full Text Available We developed the quantative structure-property relationships (QSPRs models to correlate the molecular structures of surfactant, cosurfactant, oil, and drug with the solubility of poorly water-soluble 2-aryl propionic acid nonsteroidal anti-inflammatory drugs (2-APA-NSAIDs in self-emulsifying drug delivery systems (SEDDSs. The compositions were encoded with electronic, geometrical, topological, and quantum chemical descriptors. To obtain reliable predictions, we used multiple linear regression (MLR and artificial neural network (ANN methods for model development. The obtained equations were validated using a test set of 42 formulations and showed a great predictive power, and linear models were found to be better than nonlinear ones. The obtained QSPR models would greatly facilitate fast screening for the optimal formulations of SEDDS at the early stage of drug development and minimize experimental effort.

  4. Effects of concentrate type and chromium propionate on insulin sensitivity, productive and reproductive parameters of lactating dairy cows consuming excessive energy.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Pardelli, U; Rodrigues, R O; Corrá, F N; Vasconcelos, J L M

    2017-03-01

    This experiment compared insulin sensitivity parameters, milk production and reproductive outcomes in lactating dairy cows consuming excessive energy, and receiving in a 2×2 factorial arrangement design: (1) concentrate based on ground corn (CRN; n=13) or citrus pulp (PLP; n=13), and (2) supplemented (n=14) or not (n=12) with 2.5 g/day of chromium (Cr)-propionate. During the experiment (day 0 to 182), 26 multiparous, non-pregnant, lactating Gir×Holstein cows (initial days in milk=80±2) were offered corn silage for ad libitum consumption, and individually received concentrate formulated to allow diets to provide 160% of their daily requirements of net energy for lactation. Cow BW and body condition score (BCS) were recorded weekly. Milk production was recorded daily and milk samples collected weekly. Blood samples were collected weekly before the morning concentrate feeding. Glucose tolerance tests (GTT; 0.5 g of glucose/kg of BW) were performed on days -3, 60, 120 and 180. Follicle aspiration for in vitro embryo production was performed via transvaginal ovum pick-up on days -1, 82 and 162. No treatment differences were detected (P⩾0.25) for BW and BCS change during the experiment. Within weekly blood samples, concentrations of serum insulin and glucose, as well as insulin : glucose ratio were similar among treatments (P⩾0.19), whereas CRN had less (Pinsulin : glucose ratio. Serum insulin concentrations were less (P=0.04) in CRN supplemented with Cr-propionate compared with non-supplemented CRN (8.2 v. 13.5 µIU/ml, respectively; SEM=1.7), whereas Cr-propionate supplementation did not impact (P=0.70) serum insulin within PLP cows. Milk production, milk fat and solid concentrations were similar (P⩾0.48) between treatments. However, CRN had greater (Pdairy cows consuming excessive energy did not improve insulin sensitivity, milk production and reproductive outcomes, whereas Cr-propionate supplementation only enhanced insulin sensitivity in cows receiving a

  5. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  6. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  7. Molecular pharmacology of the AMPA agonist, (S)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, (R)-APPA

    DEFF Research Database (Denmark)

    Ebert, B; Madsen, U; Lund, Trine Meldgaard

    1994-01-01

    )-APPA, whereas (R)-APPA is a non-N-methyl-D-aspartic acid (non-NMDA) receptor antagonist showing preferential AMPA blocking effects. In agreement with classical theories for competitive interaction between agonists and antagonists, the efficacy of depolarizations produced by (S)-APPA in the rat cortical wedge......The heterocyclic analogue of (S)-glutamic acid, (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [(S)-AMPA] is a potent and selective AMPA receptor agonist, whereas the enantiomeric compound, (R)-AMPA, is virtually inactive. We have previously characterized (RS)-2-amino-3-(3-hydroxy-5......-phenyl-4-isoxazolyl)propionic acid [(RS)-APPA] as a partial AMPA receptor agonist showing about 60% of the efficacy of (RS)-AMPA. This partial agonism produced by (RS)-APPA is, however, only apparent, since resolution of (RS)-APPA has now been shown to provide the full AMPA receptor agonist, (S...

  8. The role of apitoxin in alleviating propionic acid-induced neurobehavioral impairments in rat pups: The expression pattern of Reelin gene.

    Science.gov (United States)

    Daghestani, Maha H; Selim, Manar E; Abd-Elhakim, Yasmina M; Said, Enas N; El-Hameed, Noura E Abd; Khalil, Samah R; El-Tawil, Osama S

    2017-09-01

    The efficacy of apitoxin (bee venom; BV) in ameliorating propionic acid (PPA) -induced neurobehavioral impacts was studied. Sixty rat pups were enrolled in a split litter design to six groups: a control group, a PPA-treated group, a BV-treated group, a BV/PPA protective group, a PPA/BV therapeutic group, and a BV/PPA/BV protective and therapeutic group. Exploratory, social, locomotor, and repetitive/stereotype-like activities were assessed and prosocial, empathy, and acquired behavior were evaluated. Levels of neurotransmitter including serotonin, dopamine, and gamma-aminobutyric acid (GABA) were determined and a quantitative analysis of Reelin gene expression was performed. PPA treatment induced several behavioral alterations, as reduced exploratory activity and social behaviors, increased repetitive/stereotypic behaviors, and hyperactivity. In addition, a marked decline of neurotransmitters and down-regulation of Reelin mRNA expression were observed. BV exhibited high efficiency in ameliorating the PPA-induced neurobehavioral alterations, particularly when applied both before and after PPA administration. Overall, the results implied that BV has merit as a candidate therapeutic treatment to alleviate PPA-induced neurobehavioral disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Acidic organic compounds in beverage, food, and feed production.

    Science.gov (United States)

    Quitmann, Hendrich; Fan, Rong; Czermak, Peter

    2014-01-01

    Organic acids and their derivatives are frequently used in beverage, food, and feed production. Acidic additives may act as buffers to regulate acidity, antioxidants, preservatives, flavor enhancers, and sequestrants. Beneficial effects on animal health and growth performance have been observed when using acidic substances as feed additives. Organic acids could be classified in groups according to their chemical structure. Each group of organic acids has its own specific properties and is used for different applications. Organic acids with low molecular weight (e.g. acetic acid, lactic acid, and citric acid), which are part of the primary metabolism, are often produced by fermentation. Others are produced more economically by chemical synthesis based on petrochemical raw materials on an industrial scale (e.g. formic acid, propionic and benzoic acid). Biotechnology-based production is of interest due to legislation, consumer demand for natural ingredients, and increasing environmental awareness. In the United States, for example, biocatalytically produced esters for food applications can be labeled as "natural," whereas identical conventional acid catalyst-based molecules cannot. Natural esters command a price several times that of non-natural esters. Biotechnological routes need to be optimized regarding raw materials and yield, microorganisms, and recovery methods. New bioprocesses are being developed for organic acids, which are at this time commercially produced by chemical synthesis. Moreover, new organic acids that could be produced with biotechnological methods are under investigation for food applications.

  10. The glutamate receptor GluR5 agonist (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid and the 8-methyl analogue

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Naur, Peter; Kristensen, Anders Skov

    2009-01-01

    The design, synthesis, and pharmacological characterization of a highly potent and selective glutamate GluR5 agonist is reported. (S)-2-Amino-3-((RS)-3-hydroxy-8-methyl-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid (5) is the 8-methyl analogue of (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H......-cyclohepta[d]isoxazol-4-yl)propionic acid ((S)-4-AHCP, 4). Compound 5 displays an improved selectivity profile compared to 4. A versatile stereoselective synthetic route for this class of compounds is presented along with the characterization of the binding affinity of 5 to ionotropic glutamate receptors (i......GluRs). Functional characterization of 5 at cloned iGluRs using a calcium imaging assay and voltage-clamp recordings show a different activation of GluR5 compared to (S)-glutamic acid (Glu), kainic acid (KA, 1), and (S)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl)propionic acid ((S)-ATPA, 3) as previously...

  11. Rapid measurement of 13C-enrichment of acetic, propionic and butyric acids in plasma with solid phase microextraction coupled to gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Moreau, N.M.; Delepee, R.; Maume, D.; Le Bizec, B.; Nguyen, P.G.; Champ, M.M.; Martin, L.J.; Dumon, H.J.

    2004-01-01

    An analytical procedure based on solid phase microextraction (SPME) has been developed to quantify [1- 13 C]-labelled short-chain fatty acids (SCFAs)--mainly acetic, propionic and butyric acids--in a small volume (120 μl) of deproteinised plasma (corresponding to 200 μl of raw plasma) by gas chromatography-mass spectrometry (GC-MS) analysis. Simultaneous SCFA extraction was optimal after 5 min using a 75 μm Carboxen/polydimethylsiloxane-coated fiber. The base peak of the three analytes has been characterised by middle-resolution mass spectrometry (R>6000). All these data allowed the specificity reinforcement of the measure. The validation of the method also considered the linearity and the repeatability of the [ 13 C]SCFA measurements by SPME-GC-MS. Results were linear in a range from 5 to 100 mol% of [ 13 C]SCFA enrichment and the method provided a good intra-day (R.S.D. 13 C]butyric acid) by cecal infusion before blood sampling in portal vein. Results of [1- 13 C]butyric acid enrichment showed an excellent correlation (r 2 =0.9832; n=30) with data obtained on the same samples using a previously published procedure based on diethyl extraction and derivatisation before GC-MS analyses. SPME coupled to GC-MS appears to be a powerful analytical tool for the direct isotopic measurements of low deproteinised plasma volume avoiding consequently preliminary treatment such as extraction or derivatisation. The presented method could be of great interest for real time [ 13 C]SCFA plasma determination of in metabolic in vivo studies in small animal models

  12. Regulation and optimization of the biogas process: Propionate as a key parameter

    International Nuclear Information System (INIS)

    Nielsen, Henrik Bangso; Uellendahl, Hinrich; Ahring, Birgitte Kiaer

    2007-01-01

    The use of volatile fatty acids (VFA) as process indicators in biogas reactors treating manure together with industrial waste was studied. At a full-scale biogas plant, an online VFA sensor was installed in order to study VFA dynamics during stable and unstable operation. During stable operation acetate increased significantly during the feeding periods from a level of 2-4 to 12-17 mM, but the concentration generally dropped to about the same level as before feeding. The fluctuations in the propionate were more moderate than for acetate but the average level rose during 1 week of operation from 0.6 to 2.9 mM. A process disturbance caused by overloading with industrial waste was reflected by a significant increase in all VFA concentrations. During the recovery of the process, the return of propionate back to the steady-state level was 2-3 days slower than any other VFA and propionate could best describe the normalizing of the process. In a lab-scale continuously stirred tank reactor experiment, with manure as main substrate, the prospective of using either propionate concentration or methane production as single process indicators was studied. Propionate was found to be the best indicator. Thus, a process breakdown caused by organic overloading with meat and bone meal and lipids was indicated by changes in propionate concentration 12-18 days before a decrease in methane production was observed. Furthermore, a more efficient and stable utilization of the substrate was observed when propionate was used as process indicator

  13. Effects of fluticasone propionate inhalation on levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gert T. Verhoeven

    2001-01-01

    Full Text Available Background: In smoking COPD patients the bronchoalveolar lavage (BAL fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA metabolites, which contribute to inflammation and an increased bronchomotor tone.

  14. Kinetics of propionate conversion in anaerobic continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2008-01-01

    The kinetic parameters of anaerobic propionate degradation by biomass from 7 continuously stirred tank reactors differing in temperature, hydraulic retention time and substrate composition were investigated. In substrate-depletion experiments (batch) the maximum propionate degradation rate, A......-m, was estimated. The results demonstrate that the rate of endogenous substrate (propionate) production should be taken into account when estimating kinetic parameters in biomass from manure-based anaerobic reactors....

  15. Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes-poly(pyrrole propionic acid) hybrids.

    Science.gov (United States)

    Serafín, V; Agüí, L; Yáñez-Sedeño, P; Pingarrón, J M

    2014-02-15

    An amperometric immunosensor for the determination of the hormone insulin-like growth factor 1 (IGF1) is reported for the first time in this work. As electrochemical transducer, a multiwalled carbon nanotubes-modified glassy carbon electrode on which poly(pyrrole propionic acid) was electropolymerized was prepared. This approach provided a high content of surface confined carboxyl groups suitable for direct covalent binding of anti-IGF1 monoclonal antibody. A sandwich-type immunoassay using a polyclonal antibody labeled with peroxidase, hydrogen peroxide as the enzyme substrate and catechol as redox mediator was employed to monitor the affinity reaction. All the variables involved in the preparation of the modified electrode were optimized and the electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Moreover, the different experimental variables affecting the amperometric response of the immunosensor were also optimized. The calibration graph for IGF1 showed a range of linearity extending from 0.5 to 1000 pg/mL, with a detection limit, 0.25 pg/mL, more than 100 times lower than the lowest values reported for the ELISA immunoassays available for IGF1 (30 pg/mL, approximately). Excellent reproducibility for the measurements carried out with different immunosensors and selectivity against other hormones were also evidenced. A commercial human serum spiked with IGF1 at different levels between 0.01 and 10.0 ng/mL was analyzed with good results. © 2013 Elsevier B.V. All rights reserved.

  16. Effects of supplemental calcium salts of palm oil and chromium-propionate on insulin sensitivity and productive and reproductive traits of mid- to late-lactating Holstein × Gir dairy cows consuming excessive energy.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Bertin, R D; Colombo, E A; Miranda, V F B; Lourenço, L A C; Rodrigues, S M B; Vasconcelos, J L M

    2018-01-01

    This experiment compared insulin sensitivity, milk production, and reproductive outcomes in dairy cows consuming excessive energy during mid to late lactation and receiving in a 2 × 2 factorial design (1) concentrate based on ground corn (CRN; n = 20) or including 8% (DM basis) of Ca salts of palm oil (CSPO; n = 20), and (2) supplemented (n = 20) or not (n = 20) with 2.5 g/d of Cr-propionate. During the experiment (d 0-203), 40 multiparous, nonpregnant, lactating 3/4 Holstein × 1/4 Gir cows (initial days in milk = 81 ± 2; mean ± SE) were offered corn silage for ad libitum consumption, and individually received concentrate formulated to allow diets to provide 160% of their daily net energy for lactation requirements. From d -15 to 203, milk production was recorded daily, blood samples collected weekly, and cow body weight (BW) and body condition score (BCS) recorded on d 0 and 203. For dry matter intake evaluation, cows from both treatments were randomly divided in 5 groups of 8 cows each, and allocated to 8 individual feeding stations for 3 d. Intake was evaluated 6 times/group. Glucose tolerance tests (GTT; 0.5 g of glucose/kg of BW) were performed on d -3, 100, and 200. Follicle aspiration for in vitro embryo production was performed via transvaginal ovum pick-up on d -1, 98, and 198. Mean DMI, net energy for lactation intake, as well as BW and BCS change were similar across treatments. On average, cows gained 40 kg of BW and 0.49 BCS during the experiment. Within weekly blood samples, CRN cows had lower serum concentrations of glucose, insulin, fatty acids, and insulin-to-glucose ratio compared with CSPO cows, suggesting increased insulin sensitivity in CRN cows. During the GTT, insulin-sensitivity traits were also greater in CRN versus CSPO cows. Supplemental Cr-propionate resulted in lower serum insulin concentrations and insulin-to-glucose ratio within CRN cows only, indicating that Cr-propionate improved basal insulin sensitivity in CRN but not in CSPO

  17. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin.

    Science.gov (United States)

    Boets, Eef; Deroover, Lise; Houben, Els; Vermeulen, Karen; Gomand, Sara V; Delcour, Jan A; Verbeke, Kristin

    2015-10-28

    Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 μmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  18. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin

    Directory of Open Access Journals (Sweden)

    Eef Boets

    2015-10-01

    Full Text Available Short chain fatty acids (SCFA, including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-13C]acetate, [1-13C]propionate and [1-13C]butyrate (12, 1.2 and 0.6 μmol·kg−1·min−1, respectively was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg−1·min−1, respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  19. Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M{sub 1}-immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rameil, Steffen, E-mail: s.rameil@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Schubert, Peter, E-mail: p.schubert@r-biopharm.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Grundmann, Peter, E-mail: peter.grundmann@jennewein-biotech.de [R-Biopharm AG, An der neuen Bergstrasse 17, 64297 Darmstadt (Germany); Dietrich, Richard, E-mail: R.Dietrich@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany); Maertlbauer, Erwin, E-mail: E.Maertlbauer@mh.vetmed.uni-muenchen.de [Department of Veterinary Sciences, University of Munich, Schoenleutner Str 8, 85764 Oberschleissheim (Germany)

    2010-02-19

    We developed a potentiometric aflatoxin M{sub 1}-immunosensor which utilizes 3-(4-hydroxyphenyl)propionic acid (p-HPPA) as electron donating compound for horseradish peroxidase (HRP; EC 1.11.1.7). The assay system consists of a polypyrrole-surface-working electrode coated with a polyclonal anti-M{sub 1} antibody (pAb-AFM{sub 1}), a Ag/AgCl reference electrode and a HRP-aflatoxin B{sub 1} conjugate (HRP-AFB{sub 1} conjugate). To optimize the potentiometric measuring system p-HPPA as well as related compounds serving as electron donating compounds were compared. Also the influence of different buffer systems, varying pH and substrate concentrations on signal intensity was investigated. Our results suggest that reaction conditions that favor the formation of Pummerer's type ketones lead to an increase in signal intensity rather than formation of fluorescent dye. Comparison with commercial ready-to-use HRP electron donating compounds such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), o-phenylenediamine (OPD) or 3,3',5,5'-tetramethylbenzidine (TMB) showed that only 34%, 77% and 49% of the signal intensity of p-HPPA were reached, respectively. The optimized assay had a detection limit of 40 pg mL{sup -1} and allowed detection of 500 pg mL{sup -1} (FDA action limit) aflatoxin M{sub 1} (AFM{sub 1}) in pasteurized milk and UHT-milk containing 0.3-3.8% fat within 10 min without any sample treatment. The working range was between 250 and 2000 pg mL{sup -1} AFM{sub 1}.

  20. Gold nanoparticle/nickel oxide/poly(pyrrole-N-propionic acid hybrid multilayer film: Electrochemical study and its application in biosensing

    Directory of Open Access Journals (Sweden)

    T. Karazehir

    2017-06-01

    Full Text Available The present study describes the fabrication of Indium Tin Oxide /gold nanoparticles/nickel oxide/poly(Pyrrole-N-propionic acid (ITO/GNPs/NiO/poly(PPA multilayered film, and its modification with Tyrosinase (Ty. The ITO/GNPs/NiO/poly(PPA electrode was fabricated by sequential electrochemical assembly onto ITO substrate which electrochemical deposition provides a facile, inexpensive technique for synthesis of multilayered film within the adherent morphology with controllable film thickness. Cyclic voltammetry (CV, Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR, scanning electron microcopy (SEM, and atomic force microcopy (AFM were used to characterize the film assembly processes. The properties of a semiconductor/electrolyte interface were investigated based on the Mott–Schottky (M-S approach for the modified electrodes, with the flat band potential (EFB according to the potential intercept and the carrier density (ND according to the linear slopes. The ND and EFB of ITO/GNPs/NiO/poly(PPA were obtained as 2.48·1021 cm–3 and 0.26 V, respectively. Tyrosinase was immobilized using carbodiimide coupling reaction. The bioelectrode was characterized by FTIR-ATR, SEM, AFM, electrochemical impedance spectroscopy (EIS. A Randles equivalent circuit was introduced for modeling the performance of impedimetric biosensing for the detection of the dopamine (DP and the interface of bioelectrode/electrolyte. The EIS of the ITO/GNPs/NiO/poly(PPA-Ty exhibited significant changes in the charge transfer resistance (RCT value toward the detection of dopamine over a linear range of 80 µM to 0.2 mM with a limit of detection (LOD of 5.46 µM.

  1. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling.

    Science.gov (United States)

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-09-01

    Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    Science.gov (United States)

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  3. Development of [3H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([3H]PSB-12150): A Useful Tool for Studying GPR17

    Science.gov (United States)

    2014-01-01

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [3H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities. PMID:24900835

  4. Development of [(3)H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([(3)H]PSB-12150): A Useful Tool for Studying GPR17.

    Science.gov (United States)

    Köse, Meryem; Ritter, Kirsten; Thiemke, Katharina; Gillard, Michel; Kostenis, Evi; Müller, Christa E

    2014-04-10

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.

  5. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  6. Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

    KAUST Repository

    Rao, Hari Ananda

    2016-01-01

    for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system

  7. A Systematic Analysis of the Sensitivity of Plasma Pharmacokinetics to Detect Differences in the Pulmonary Performance of Inhaled Fluticasone Propionate Products Using a Model-Based Simulation Approach.

    Science.gov (United States)

    Weber, Benjamin; Hochhaus, Guenther

    2015-07-01

    The role of plasma pharmacokinetics (PK) for assessing bioequivalence at the target site, the lung, for orally inhaled drugs remains unclear. A validated semi-mechanistic model, considering the presence of mucociliary clearance in central lung regions, was expanded for quantifying the sensitivity of PK studies in detecting differences in the pulmonary performance (total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics) between test (T) and reference (R) inhaled fluticasone propionate (FP) products. PK bioequivalence trials for inhaled FP were simulated based on this PK model for a varying number of subjects and T products. The statistical power to conclude bioequivalence when T and R products are identical was demonstrated to be 90% for approximately 50 subjects. Furthermore, the simulations demonstrated that PK metrics (area under the concentration time curve (AUC) and C max) are capable of detecting differences between T and R formulations of inhaled FP products when the products differ by more than 20%, 30%, and 25% for total lung deposition, central-to-peripheral lung deposition ratio, and pulmonary dissolution characteristics, respectively. These results were derived using a rather conservative risk assessment approach with an error rate of <10%. The simulations thus indicated that PK studies might be a viable alternative to clinical studies comparing pulmonary efficacy biomarkers for slowly dissolving inhaled drugs. PK trials for pulmonary efficacy equivalence testing should be complemented by in vitro studies to avoid false positive bioequivalence assessments that are theoretically possible for some specific scenarios. Moreover, a user-friendly web application for simulating such PK equivalence trials with inhaled FP is provided.

  8. Production of organic acids in an immobilized cell reactor using ...

    African Journals Online (AJOL)

    Immobilized cell reactor (ICR) was developed as a novel bioreactor to convert hydrolyzed sugars to organic acids. Sugar fermentation by Propionibacterium acid-propionici entraped by calcium alginate was carried out in continuous mode to produce propionic and acetic acids. In continuous fermentation, more than 90 ...

  9. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    Science.gov (United States)

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.

  10. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    dominated by relatives of Clostridium kluyveri. VFA could also be reduced to alcohols. Acetic, propionic and butyric acids were biohydrogenated with hydrogen and acetic acid also with an electrode. Observed alcohol concentrations were 0.62 g L{sup -1} ethanol, 0.49 g L{sup -1} propanol and 0.27 g L{sup -1} n-butanol. Methanogenesis was successfully inhibited after thermal pre-treatment incubated at pH 6, while acetate reduction was enhanced. In the second study, ethanol (0.084 g L{sup -1}) was produced at the cathodic compartment of a bioelectrochemical system, in which the electron transport was mediated by methyl viologen. The ethanol production activity at the cathode was only of very short term, since the mediator irreversibly reacted at the surface of the cathode. Of the two VFA conversion processes, biohydrogenation and chain elongation, the latter was a more dominant process that consumes ethanol with acetate to medium chain fatty acids. With this technology, wet organic waste can be converted to biofuels carbon and energy efficient. The technology is promising due to the good fuel and separation properties of medium chain fatty acids, and the possibility to produce them at high concentrations and specific production rates comparable to other anaerobic conversions.

  11. PERUBAHAN PROFIL LIPIDA, KOLESTEROL DIGESTA DAN ASAM PROPIONAT PADA TIKUS DENGAN DIET TEPUNG RUMPUT LAUT [Change in the profiles lipid, digesta cholesterol and propionic acid of rats fed with of seaweed powder-based diets

    Directory of Open Access Journals (Sweden)

    Herpandi1

    2006-12-01

    Full Text Available Community’s consumption pattern with high fat-low fiber has caused the prevalence of degenerative disease, i.e.cardivascular disease. Coronary Heart Disease (CHD is the first cause of death in Indonesia. Seaweed is a fiber rich food and has a hypocholesterolemic effect. Objectives of the research were to investigate the changes of lipid profiles, digesta cholesterol and propionic acid of rats fed with seaweed powder-based diet. Five groups of six male Sprague Dawley hypercolesterolemia rats were feed by 0% cholesterol and 0% seaweed powder (negative control; 1% cholesterol and 10% Eucheuma cottonii, 1% cholesterol and 10% Gelidium sp,1% cholesterol and 10% Sargassum sp, and 1% cholesterol and 0% seaweed powder (positive control for 31 days. The experiment result showed that the seaweed powder did not have a significant effect (P>0,05 on the growth and feed consumption, and serum HDL (Hight Density Lipoprotein but has a significant effect (P<0,05 on reduction of cholesterol total, LDL (Low Density Lipoprotein, triglycerides, and the increase in digested cholesterol. The seaweed powder effected the level of propionate acids, though were significantly different only for the group with 1% cholesterol and 10% Gelidium sp. The addition of E. cottonii produced a better hypocholesterolemic effect than that of Gelidium sp and Sargassum sp.

  12. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  13. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    Science.gov (United States)

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  15. [Fatty acids in confectionery products].

    Science.gov (United States)

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  16. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Surahmanto

    2012-09-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermented with some types of microorganisms at different temperatures. The experiment was designed as Split Plot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and the sub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis, Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productions was in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L. fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Control treatment at 35°C (0.37 g/kg DM.

  17. ORGANIC ACIDS PRODUCTION OF RICE STRAW FERMENTED WITH SEVERAL TYPES OF MICROORGANISM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Y. Yanti

    2014-10-01

    Full Text Available The experiment was carried out to examine the organic acids production of rice straw fermentedwith some types of microorganisms at different temperatures. The experiment was designed as SplitPlot-Completely Randomized Design. The main plot was temperatures treatments (25, 35, 45°C and thesub plot were microorganisms (Control, Control+Mollases, Lactobacillus fermentum, Bacillus subtilis,Bacillus coagulant, Saccharomyces cerevisiae, Aspergillus niger. The highest lactic acid productionswas in B. coagulans treatment at 35°C (53.79 g/kg DM. The highest acetic acid productions was in L.fermentum at 35°C (13.20 g/kg DM, while the highest propionic acid productions were in Controltreatment at 35°C (0.37 g/kg DM.

  18. Liquid-liquid equilibrium data in aqueous solutions of propionic and butyric acids with 1-heptanol at T=(298.15, 308.15, and 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Ali Ghanadzadeh; Gilani, Hossein Ghanadzadeh; Saadat, Seyedeh Laleh Seyed; Nasiri-Touli, Elham; Peer, Mahrokh [Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-04-15

    Liquid-liquid phase equilibrium (LLE) data were determined for the (water+propionic or butyric acid+1- heptanol) ternary systems at T=(298.15, 308.15, and 318.15) K and p=101.3 kPa. For both systems, a type-1 LLE phase diagram was obtained. The quality of the experimental LLE data was determined through the Othmer-Tobias and Bancroft equations. The experimental tie-lines were fitted using the UNIQUAC and NRTL correlation models. For the studied systems, a comparison was made between the experimental and correlated distribution coefficients and separation factors. The LSER model of Katritzky was applied to obtain the contributions of intermolecular interactions in these systems.

  19. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Nielsen, Per Væggemose

    2004-01-01

    moisture sponge cake types (a(w) 0.80-0.95, pH 4.7-7.4). Initially, rye bread conditions (a(w) 0.94-0.97 and pH 4.4-4.8) in combination with calcium propionate were investigated. Results showed that the highest concentration of propionate (0.3%) at all conditions apart from high a(w) (0.97) and high pH (4...... enhanced at high water activity levels. The effect of propionate on production of secondary metabolites (mycophenolic acid, rugulovasine, echinulin, flavoglaucin) was also studied, and variable or isolate dependent results were found. Subsequently, a screening experiment representing a wider range...

  20. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    Science.gov (United States)

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  1. Organic acid production from potato starch waste fermentation by rumen microbial communities from Dutch and Thai dairy cows.

    Science.gov (United States)

    Palakawong Na Ayudthaya, Susakul; van de Weijer, Antonius H P; van Gelder, Antonie H; Stams, Alfons J M; de Vos, Willem M; Plugge, Caroline M

    2018-01-01

    Exploring different microbial sources for biotechnological production of organic acids is important. Dutch and Thai cow rumen samples were used as inocula to produce organic acid from starch waste in anaerobic reactors. Organic acid production profiles were determined and microbial communities were compared using 16S ribosomal ribonucleic acid gene amplicon pyrosequencing. In both reactors, lactate was the main initial product and was associated with growth of Streptococcus spp. (86% average relative abundance). Subsequently, lactate served as a substrate for secondary fermentations. In the reactor inoculated with rumen fluid from the Dutch cow, the relative abundance of Bacillus and Streptococcus increased from the start, and lactate, acetate, formate and ethanol were produced. From day 1.33 to 2, lactate and acetate were degraded, resulting in butyrate production. Butyrate production coincided with a decrease in relative abundance of Streptococcus spp. and increased relative abundances of bacteria of other groups, including Parabacteroides , Sporanaerobacter , Helicobacteraceae, Peptostreptococcaceae and Porphyromonadaceae. In the reactor with the Thai cow inoculum, Streptococcus spp. also increased from the start. When lactate was consumed, acetate, propionate and butyrate were produced (day 3-4). After day 3, bacteria belonging to five dominant groups, Bacteroides, Pseudoramibacter _ Eubacterium , Dysgonomonas , Enterobacteriaceae and Porphyromonadaceae, were detected and these showed significant positive correlations with acetate, propionate and butyrate levels. The complexity of rumen microorganisms with high adaptation capacity makes rumen fluid a suitable source to convert organic waste into valuable products without the addition of hydrolytic enzymes. Starch waste is a source for organic acid production, especially lactate.

  2. Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

    KAUST Repository

    Rao, Hari Ananda

    2016-11-01

    Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal

  3. Regulation and optimization of the biogas process: Propionate as a key parameter

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2007-01-01

    .6 to 2.9 mM. A process disturbance caused by overloading with industrial waste was reflected by a significant increase in all VFA concentrations. During the recovery of the process, the return of propionate back to the steady-state level was 2-3 days slower than any other VFA and propionate could best......, a process breakdown caused by organic overloading with meat and bone meal and lipids was indicated by changes in propionate concentration 12-18 days before a decrease in methane production was observed. Furthermore, a more efficient and stable utilization of the substrate was observed when propionate...

  4. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  5. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  6. Clinical Spectrum of Propionic Acidaemia

    Directory of Open Access Journals (Sweden)

    Muhammad Rafique

    2013-01-01

    Full Text Available Objectives. To evaluate the clinical features, physical findings, diagnosis, and laboratory parameters of the patients with propionic acidaemia (PA. Methods. The records of diagnosed cases of propionic acidaemia were reviewed, retrospectively. Results. Twenty-six patients with PA had 133 admissions. The majority (85% of the patients exhibited clinical manifestations in the 1st week of life. Regarding clinical features, lethargy, fever, poor feeding, vomiting, dehydration, muscular hypotonia, respiratory symptoms, encephalopathy, disturbance of tone and reflexes, and malnutrition were observed in 51–92% admissions. Metabolic crises, respiratory diseases, hyperammonaemia, metabolic acidosis, hypoalbuminaemia, and hypocalcaemia were observed in 30–96% admissions. Pancytopenia, ketonuria, hypoproteinemia, hypoglycaemia, and mildly disturbed liver enzymes were found in 12–41% admissions. Generalised brain oedema was detected in 17% and cerebral atrophy in 25% admissions. Gender-wise odd ratio analysis showed value of 1.9 for lethargy, 1.99 for respiratory diseases, 0.55 for anaemia, and 1.82 for hypocalcaemia. Conclusion. Propionic acidaemia usually presents with wide spectrum of clinical features and disturbances of laboratory parameters in early neonatal age. It is associated with significant complications which deteriorate the patients’ quality of life. Perhaps with early diagnosis of the disease and in time intervention, these may be preventable.

  7. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-[3-(1-adamantyl)-4-substituted-5-thioxo-1,2,4-triazolin-1-yl] acetic acids, 2-[3-(1-adamantyl)-4-substituted-5-thioxo-1,2,4-triazolin-1-yl]propionic acids and related derivatives.

    Science.gov (United States)

    Al-Deeb, Omar A; Al-Omar, Mohamed A; El-Brollosy, Nasser R; Habib, Elsayed E; Ibrahim, Tarek M; El-Emam, Ali A

    2006-01-01

    The reaction of 3-(1-adamantyl)-4-substituted-1,2,4-triazoline-5-thiones 3a-g with sodium chloroacetate, in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivatives 4a-g. The interaction of 3a-g with ethyl 2-bromopropionate in acetone, in the presence of potassium carbonate, yielded the corresponding N1-ethyl propionate derivatives 5a-g, which upon hydrolysis with aqueous sodium hydroxide afforded the corresponding propionic acid derivatives 6a-g. Similarly, the reaction of 3-(1-adamantyl)-4-amino-1,2,4-triazoline-5-thione 7 with sodium chloroacetate in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivative 8. On the other hand, the reaction of 2-(1-adamantyl)-1,3,4-oxadiazoline-5-thione 9 with sodium chloroacetate yielded the corresponding S-acetic acid derivative 10. Compounds 4a-g, 5b, 5c, 5g, 6a-g, 8 and 10 were tested for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Several derivatives produced good or moderate activities particularly against Bacillus subtilis. In addition, the in vivo anti-inflammatory activities of these compounds were determined using the carrageenin-induced paw oedema method in rats. Compounds 4a, 4b, 4e, 4f, 6f, 6g and 10 produced good dose-dependent anti-inflammatory activities.

  8. Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    Directory of Open Access Journals (Sweden)

    Jorge Wenzel

    2018-04-01

    Full Text Available This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES were fed with pure CO2 (cells A and B. The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.

  9. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement.

    Science.gov (United States)

    Boe, Kanokwan; Steyer, Jean-Philippe; Angelidaki, Irini

    2008-01-01

    Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main control parameter, rather than propionate can give a more stable process, since propionate was very persistent and only responded very slowly to the decrease of the feed flow which lead to high fluctuation of biogas production. Propionate, however, was still an excellent parameter to indicate process stress under gradual overload and thus recommended as an alarm in the control algorithm. Copyright IWA Publishing 2008.

  10. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    International Nuclear Information System (INIS)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A.

    1989-01-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by 86 Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes

  11. Propionate induces cell swelling and K+ accumulation in shark rectal gland

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, G.M.; Ziyadeh, F.N.; Mills, J.W.; Booz, G.W.; Kleinzeller, A. (Mount Desert Island Biological Laboratory, Salsbury Cove, ME (USA))

    1989-08-01

    Small organic anions have been reported to induce cell solute accumulation and swelling. To investigate the mechanism of swelling, we utilized preparations of rectal gland cells from Squalus acanthias incubated in medium containing propionate. Propionate causes cells to swell by diffusing across membranes in its nonionic form, acidifying cell contents, and activating the Na+-H+ antiporter. The Na+-H+ exchange process tends to correct intracellular pH (pHi), and thus it maintains a favorable gradient for propionic acid diffusion and allows propionate to accumulate. Activation of the Na+-H+ antiport also facilitates Na+ entry into the cell and Nai accumulation. At the same time Na+-K+-ATPase activity, unaffected by propionate, replaces Nai with Ki, whereas the K+ leak rate, decreased by propionate, allows Ki to accumulate. As judged by {sup 86}Rb+ efflux, the reduction in K+ leak was not due to propionate-induced cell acidification or reduction in Cli concentration. Despite inducing cell swelling, propionate did not disrupt cell structural elements and F actin distribution along cell membranes.

  12. (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology

    DEFF Research Database (Denmark)

    Brehm, Lotte; Greenwood, Jeremy R; Hansen, Kasper B

    2003-01-01

    )propionic acid (AMPA) but inactive at NMDA receptors. However, 4-AHCP was found to be much weaker than AMPA as an inhibitor of [(3)H]AMPA binding and to have limited effect in a [(3)H]kainic acid binding assay using rat cortical membranes. To shed light on the mechanism(s) underlying this quite enigmatic......, activated cloned AMPA receptor subunits GluR1o, GluR3o, and GluR4o with EC(50) values in the range 4.5-15 microM and the coexpressed kainate-preferring subunits GluR6 + KA2 (EC(50) = 6.4 microM). Compound 6, but not 7, proved to be a very potent agonist (EC(50) = 0.13 microM) at the kainate-preferring GluR5...... subunit, equipotent with (S)-2-amino-3-(5-tert-butyl-3-hydroxyisothiazol-4-yl)propionic acid [(S)-Thio-ATPA, 4] and almost 4 times more potent than (S)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionic acid [(S)-ATPA, 3]. Compound 6 thus represents a new structural class of GluR5 agonists...

  13. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  14. Microbial production of citric acid

    Directory of Open Access Journals (Sweden)

    Luciana P. S Vandenberghe

    1999-01-01

    Full Text Available Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch based media. However, other fermentation techniques, e.g. solid state fermentation and surface fermentation, and alternative sources of carbon such as agro-industrial residues have been intensively studied showing great perspective to its production. This paper reviews recent developments on citric acid production by presenting a brief summary of the subject, describing micro-organisms, production techniques, and substrates, etc.O ácido cítrico é o ácido mais produzido em termos de tonagem e é extensivamente utilizado pelas indústrias alimentícia e farmacêutica. É produzido principalmente por fermentação submersa utilizando o fungo Aspergillus niger e leveduras do gênero Candida sp. à partir de diferentes fontes de carbono, como a glicose e meios à base de amido. No entanto, outras técnicas de fermentação, e.g. fermentação no estado sólido e em superfície, e fontes alternativas de carbono tem sido intensamente estudadas mostrando grande perspectivas para o processo. O presente trabalho apresenta um resumo dos últimos avanços sobre a produção do ácido cítrico, descrevendo de maneira sucinta os trabalhos mais recentes, descrevendo microrganismos, técnicas de produção e substratos empregados, etc.

  15. Gas chromatographic determination of calcium propionate added as preservative to bread.

    Science.gov (United States)

    Lamkin, W M; Unruh, N C; Pomeranz, Y

    1987-01-01

    A simple and rapid gas chromatographic procedure was developed for determining low concentrations of propionate added as a preservative to bread. A bread sample to be analyzed was ground in a meat grinder with a 3 mm hole plate and finely divided by rubbing through a No. 8 sieve. The propionate was then extracted into 0.050M formic acid in a blender at low speed for 5 min, and an aliquot of a filtrate was analyzed directly by gas chromatography. Chromatographic separation was accomplished on a Carbopack C column coated with 0.3% (w/w) Carbowax 20M and 0.1% (w/w) phosphoric acid. Less than 0.2 ppm propionic acid could be detected in the aqueous extract. Over the range of 0.03-0.23% calcium propionate, average relative error was -1.20% with an average coefficient of variation of 2.02%.

  16. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  17. The effect of dietary supplementation of salts of organic acid on production performance of laying hens

    Directory of Open Access Journals (Sweden)

    Ravinder Dahiya

    2016-12-01

    Full Text Available Aim: An experiment was conducted to evaluate the effect of supplementing different levels of salts of organic acid in the laying hen’s diet on their production performance and egg quality parameters during a period of 16-week. Materials and Methods: A total of 140 white leghorn laying hens at 24 weeks of age were randomly distributed to seven dietary treatment groups, i.e. T1 (control, T2 (0.5% sodium-butyrate, T3 (1.0% sodium-butyrate, T4 (1.5% sodium-butyrate, T5 (0.5% calcium-propionate, T6 (1.0% calcium-propionate and T7 (1.5% calcium-propionate consisting of 5 replications of 4 birds each in each treatment and housed in individual cages from 24 to 40 weeks of age. Feed intake, percent hen-day egg production, egg weight, egg mass production, feed conversion ratio (FCR, and economics of supplementation of salts of organic acids in layers’ ration were evaluated. Results: The dietary supplementation of salts of organic acids did not significantly affect the feed intake (g/day/hen and body weight gain (g. Different levels of supplementation significantly (p<0.05 improved production performance (percent hen-day egg production and egg mass production as compared to control group. FCR in terms of feed intake (kg per dozen eggs was lowest (1.83±0.05 in T4 and feed intake (kg per kg egg mass was lowest (2.87±0.05 in T5 as comparison to control (T1 group. Salts of organic acids supplementation resulted in significant (p<0.05 improvement in FCR. Egg weight was significantly (p<0.05 increased at 0.5% level of salts of organic acids in the diet. The cumulative mean values of feed cost per dozen egg production were Rs. 44.14, 42.40, 42.85, 43.26, 42.57, 43.29 and 43.56 in treatment groups T1, T2, T3, T4, T5, T6 and T7, respectively, and reduction in feed cost per kg egg mass production for Rs. 0.52 and 0.99 in groups T2 and T5, respectively, in comparison to T1 group. Conclusions: It can be concluded that supplementation of salts of organic acids

  18. Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR.

    Science.gov (United States)

    Li, Qian; Li, Yu-You; Qiao, Wei; Wang, Xiaochang; Takayanagi, Kazuyuki

    2015-06-01

    This study was conducted to investigate the effects of sulfate on propionate degradation and higher organic loading rate (OLR) achievement in a thermophilic AnMBR for 373days using coffee grounds, milk and waste activated sludge (WAS) as the co-substrate. Without the addition of sulfate, the anaerobic system failed at an OLR of 14.6g-COD/L/d, with propionate accumulating to above 2.23g-COD/L, and recovery by an alkalinity supplement was not successful. After sulfate was added into substrates at a COD/SO4(2-) ratio of 200:1 to 350:1, biogas production increased proportionally with OLR increasing from 4.06 to 15.2g-COD/L/d. Propionic acid was maintained at less than 100mg-COD/L due to the effective conversion of propionic acid to methane after the sulfate supplement was added. The long-term stable performance of the AnMBR indicated that adding sulfate was beneficial for the degradation of propionate and achieving a higher OLR under the thermophilic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  20. DIFFERENCES IN PROPIONATE-INDUCED INHIBITION OF CHOLESTEROL AND TRIACYLGLYCEROL SYNTHESIS BETWEEN HUMAN AND RAT HEPATOCYTES IN PRIMARY CULTURE

    NARCIS (Netherlands)

    LIN, YG; VONK, RJ; SLOOFF, MJH; KUIPERS, F; SMIT, MJ

    Propionate is a short-chain fatty acid formed in the colon and supposedly involved in the cholesterol-lowering effect of soluble fibre. To explore the underlying mechanism(s) of this fibre action, we have used human hepatocytes in primary culture to study the effects of propionate on hepatic lipid

  1. Succinic acid production from Jerusalem artichoke

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Karakashev, Dimitar Borisov; Angelidaki, Irini

    In this work, A. succinogenes 130Z was used to produce succinic acid from Jerusalem artichoke tuber hydrolysate. Results showed that both fructose and glucose in the tuber hydrolysate were utilized for succinic acid production. The sugar utilization was found to be dependent on process control...... that Jerusalem artichoke tubers could be utilized for production of bio-succinic acid....

  2. Pathway of propionate formation in Desulfobulbus propionicus

    NARCIS (Netherlands)

    Stams, A.J.M.; Kremer, D.R.; Nicolaij, K.; Weenk, G.; Hansen, T.A.

    1984-01-01

    Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high

  3. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  4. Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum

    OpenAIRE

    Stams, Alfons J. M.; Grolle, Katja C. F.; Frijters, Carla T. M.; Van Lier, Jules B.

    1992-01-01

    Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55°C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using the usual enrichment procedures. Stable and reproducible cultivation was possible by enrichment in hydrogen-p...

  5. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  6. Fast and simple method for semiquantitative determination of calcium propionate in bread samples

    Directory of Open Access Journals (Sweden)

    Chutima Matayatsuk Phechkrajang

    2017-04-01

    Full Text Available Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red–brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method.

  7. Fast and simple method for semiquantitative determination of calcium propionate in bread samples.

    Science.gov (United States)

    Phechkrajang, Chutima Matayatsuk; Yooyong, Surin

    2017-04-01

    Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red-brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC) method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method. Copyright © 2016. Published by Elsevier B.V.

  8. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size.

    Science.gov (United States)

    Li, Zongjun; Liu, Nannan; Cao, Yangchun; Jin, Chunjia; Li, Fei; Cai, Chuanjiang; Yao, Junhu

    2018-01-01

    In rumen fermentation, fumaric acid (FA) could competitively utilize hydrogen with methanogenesis to enhance propionate production and suppress methane emission, but both effects were diet-dependent. This study aimed to explore the effects of FA supplementation on methanogenesis and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Four rumen-cannulated goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: low or high ratio of forage particle size: concentrate particle size (Fps:Cps), without or with FA supplementation (24 g/d). Fps:Cps was higher in the diet with chopped alfalfa hay plus ground corn than in that with ground alfalfa hay plus crushed corn. Both increasing dietary Fps:Cps and FA supplementation shifted ruminal volatile fatty acid (VFA) patterns toward more propionate and less acetate in goats. An interaction between dietary Fps:Cps and FA supplementation was observed for the ratio of acetate to propionate (A:P), which was more predominant when FA was supplemented in the low-Fps:Cps diet. Methane production was reduced by FA, and the reduction was larger in the low-Fps:Cps diet (31.72%) than in the high-Fps:Cps diet (17.91%). Fumaric acid decreased ruminal total VFA concentration and increased ruminal pH. No difference was found in ruminal DM degradation of concentrate or alfalfa hay by dietary Fps:Cps or FA. Goats presented a lower ruminal methanogen abundance with FA supplementation and a higher B. fibrisolvens abundance with high dietary Fps:Cps. Adjusting dietary Fps:Cps is an alternative dietary model for studying diet-dependent effects without changing dietary chemical composition. Fumaric acid supplementation in the low-Fps:Cps diet showed greater responses in methane mitigation and propionate increase.

  9. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    Zeikus, J.G.; Shen, Gwo-Jenn.

    1988-01-01

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H 2 consumption was linked to the inhibition of CO 2 production and an increase in the propionate/acetate rate; whereas, H 2 consumption was linked to a stimulation of CO 2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H 2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  10. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  11. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    Science.gov (United States)

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  12. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda

    2016-03-03

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57–96 %) was the largest electron sink and methane (0–2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  13. Gluconic Acid: Properties, Applications and Microbial Production

    Directory of Open Access Journals (Sweden)

    Sumitra Ramachandran

    2006-01-01

    Full Text Available Gluconic acid is a mild organic acid derived from glucose by a simple oxidation reaction. The reaction is facilitated by the enzyme glucose oxidase (fungi and glucose dehydrogenase (bacteria such as Gluconobacter. Microbial production of gluconic acid is the preferred method and it dates back to several decades. The most studied and widely used fermentation process involves the fungus Aspergillus niger. Gluconic acid and its derivatives, the principal being sodium gluconate, have wide applications in food and pharmaceutical industry. This article gives a review of microbial gluconic acid production, its properties and applications.

  14. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc; Schmidt, Ingo

    2005-02-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.

  15. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    In this research we demonstrated a new method to produce alcohols. It was experimentally feasible to produce ethanol, propanol and butanol from solely volatile fatty acids (VFAs) with hydrogen as electron donor. In batch tests, VFAs such as acetic, propionic and butyric acids were reduced by mixed

  16. Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature

    International Nuclear Information System (INIS)

    Luo, Jingyang; Feng, Leiyu; Zhang, Wei; Li, Xiang; Chen, Hong; Wang, Dongbo; Chen, Yinguang

    2014-01-01

    Highlights: • SRT or temperature increase benefited the hydrolysis of fermentation substrates. • SCFAs, especially propionic acid, accumulated most at SRT 8 d and 37 °C. • The activities of key enzymes were in accordance with SCFAs production. • The ratio of Bacteria to Archaea was improved at SRT 8 d and 37 °C. - Abstract: During anaerobic fermentation of waste activated sludge (WAS), the production of short-chain fatty acids (SCFAs), especially propionic acid which is considered as the most preferred carbon source for enhanced biological phosphorus removal, can be improved by controlling the suitable mass ratio of carbon to nitrogen (C/N) and pH in batch mode. In this study the influences of solids retention time (SRT) and temperature on WAS hydrolysis and acidification in the continuous-flow systems in which the C/N ratio of WAS was modified by carbohydrate addition were investigated. Experimental results showed that the increase of SRT and temperature in a pertinent range benefited the hydrolysis of fermentation substrates and the accumulation of SCFAs, and SRT 8 d and temperature 37 °C were the most preferred conditions for the production of SCFAs, especially propionic acid. As there were more consumption of protein and carbohydrate and less production of methane at SRT 8 d and temperature 37 °C, more SCFAs were accumulated. Also, both the activities of key hydrolases and acid-forming enzymes and the ratio of acidogenic bacteria to methanogens showed good agreements with SCFAs production

  17. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  18. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation.

    Science.gov (United States)

    Engels, Christina; Ruscheweyh, Hans-Joachim; Beerenwinkel, Niko; Lacroix, Christophe; Schwab, Clarissa

    2016-01-01

    Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin) with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD) to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325). Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, R. gnavus, Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal trophic chain with the potential to

  19. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation

    Directory of Open Access Journals (Sweden)

    Christina eEngels

    2016-05-01

    Full Text Available Eubacterium hallii is considered an important microbe in regard to intestinal metabolic balance due to its ability to utilize glucose and the fermentation intermediates acetate and lactate, to form butyrate and hydrogen. Recently, we observed that E. hallii is capable of metabolizing glycerol to 3-hydroxypropionaldehyde (3-HPA, reuterin with reported antimicrobial properties. The key enzyme for glycerol to 3-HPA conversion is the cobalamin-dependent glycerol/diol dehydratase PduCDE which also utilizes 1,2-propanediol (1,2-PD to form propionate. Therefore our primary goal was to investigate glycerol to 3-HPA metabolism and 1,2-PD utilization by E. hallii along with its ability to produce cobalamin. We also investigated the relative abundance of E. hallii in stool of adults using 16S rRNA and pduCDE based gene screening to determine the contribution of E. hallii to intestinal propionate formation. We found that E. hallii utilizes glycerol to produce up to 9 mM 3-HPA but did not further metabolize 3-HPA to 1,3-propanediol (1,3-PD. Utilization of 1,2-PD in the presence and absence of glucose led to the formation of propanal, propanol and propionate. E. hallii formed cobalamin and was detected in stool of 74% of adults using 16S rRNA gene as marker gene (n = 325. Relative abundance of the E. hallii 16S rRNA gene ranged from 0 to 0.59% with a mean relative abundance of 0.044%. E. hallii PduCDE was detected in 63 to 81% of the metagenomes depending on which subunit was investigated beside other taxons such as Ruminococcus obeum, Ruminococcus gnavus, Flavonifractor prautii, Intestinimonas butyriciproducens, and Veillonella spp. In conclusion, we identified E. hallii as a common gut microbe with the ability to convert glycerol to 3-HPA, a step that requires the production of cobalamin, and to utilize 1,2-PD to form propionate. Our results along with its ability to use a broad range of substrates point at E. hallii as a key species within the intestinal

  20. EVALUACIÓN DE LA CONCENTRACIÓN DE LOS ÁCIDOS ACÉTICO, BUTÍRICO Y PROPIÓNICO EN EL CO-CULTIVO: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS. EVALUATION OF THE CONCENTRATION OF THE ACETIC, BUTYRIC AND PROPIONIC ACIDS IN THE CO-CULTURE: ASPERGILLUS ORYZAE-BUTYRIVIBRIO FIBRISOLVENS

    Directory of Open Access Journals (Sweden)

    C. LARA MANTILLA

    2008-12-01

    Full Text Available Se realizó un estudio en co-cultivo entre el hongo Aspergillus oryzae y la bacteria ruminal celulolítica Butyrivibrio fibrisolvens, cuyo objetivo fue determinar "in vitro" el efecto del hongo sobre la producción de los ácidos acético, propiónico y butírico por parte de la bacteria. El medio de cultivo se preparó utilizando líquido ruminal filtrado, centrifugado, autoclavado y diluído al 40% con agua, y 0,05 p/v de pastos Angleton (Dichamthium aristatum (Córdoba, Colombia. Las condiciones de cultivo fueron en anaerobiosis, y el tiempo de incubación de 24 horas. A partir del sobrenadante fueron determinadas las concentraciones de los ácidos grasos volátiles por cromatografía de gases. Se estudiaron dos relaciones bacteria-hongo: 1:1 y 1:3. Como resultado se observó un efecto negativo de Aspergillus oryzae sobre Butyrivibrio fibrisolvens, que se reflejó en la disminución en la producción de ácidos grasos volátiles.A study in co-culture between Aspergillus oryzae with the cellulolytic ruminal bacteria Butyrivibrio fibrisolvens was carried out aiming the "in vitro" determination of the effect of the fungi on the production of acetic, propionic and butyric acids by the bacteria. The culture medium was prepared using filtered, centrifuged, autoclaved and ruminal liquid diluted to 40% with water, and 0,05 % p/v of Angleton grass [;Dichamthium aristatum]; [;Córdoba, Colombia];. Culture was performed in anaerobic conditions for 24 hours. The concentrations of volatile fatty acids in the supernatant were determined by gas chromatography. Two bacteria-fungi relations were studied: 1:1 and 1:3. The results showed a negative effect of Aspergillus oryzae on Butyrivibrio fibrisolvens which was reflected in a decrease in the production of volatile fatty acids.

  1. Towards Sustainable Production of Formic Acid.

    Science.gov (United States)

    Bulushev, Dmitri A; Ross, Julian R H

    2018-03-09

    Formic acid is a widely used commodity chemical. It can be used as a safe, easily handled, and transported source of hydrogen or carbon monoxide for different reactions, including those producing fuels. The review includes historical aspects of formic acid production. It briefly analyzes production based on traditional sources, such as carbon monoxide, methanol, and methane. However, the main emphasis is on the sustainable production of formic acid from biomass and biomass-derived products through hydrolysis and oxidation processes. New strategies of low-temperature synthesis from biomass may lead to the utilization of formic acid for the production of fuel additives, such as methanol; upgraded bio-oil; γ-valerolactone and its derivatives; and synthesis gas used for the Fischer-Tropsch synthesis of hydrocarbons. Some technological aspects are also considered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    Science.gov (United States)

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Randomised clinical study: inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon.

    Science.gov (United States)

    Polyviou, T; MacDougall, K; Chambers, E S; Viardot, A; Psichas, A; Jawaid, S; Harris, H C; Edwards, C A; Simpson, L; Murphy, K G; Zac-Varghese, S E K; Blundell, J E; Dhillo, W S; Bloom, S R; Frost, G S; Preston, T; Tedford, M C; Morrison, D J

    2016-10-01

    Short-chain fatty acids (SCFA) produced through fermentation of nondigestible carbohydrates by the gut microbiota are associated with positive metabolic effects. However, well-controlled trials are limited in humans. To develop a methodology to deliver SCFA directly to the colon, and to optimise colonic propionate delivery in humans, to determine its role in appetite regulation and food intake. Inulin SCFA esters were developed and tested as site-specific delivery vehicles for SCFA to the proximal colon. Inulin propionate esters containing 0-61 wt% (IPE-0-IPE-61) propionate were assessed in vitro using batch faecal fermentations. In a randomised, controlled, crossover study, with inulin as control, ad libitum food intake (kcal) was compared after 7 days on IPE-27 or IPE-54 (10 g/day all treatments). Propionate release was determined using (13) C-labelled IPE variants. In vitro, IPE-27-IPE-54 wt% propionate resulted in a sevenfold increase in propionate production compared with inulin (P inulin (439.5 vs. 703.9 kcal, P = 0.025) and IPE-54 (439.5 vs. 659.3 kcal, P = 0.025), whereas IPE-54 was not significantly different from inulin control. IPE-27 significantly reduced food intake suggesting colonic propionate plays a role in appetite regulation. Inulin short-chain fatty acid esters provide a novel tool for probing the diet-gut microbiome-host metabolism axis in humans. © 2016 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.

  5. Methylmalonic and propionic acidemias: lipid profiles of normal and affected human skin fibroblasts incubated with [1-14C]propionate

    International Nuclear Information System (INIS)

    Giudici, T.A.; Chen, R.G.; Oizumi, J.; Shaw, K.N.; Ng, W.G.; Donnell, G.N.

    1986-01-01

    Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1- 14 C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines

  6. Reactivity of tributyl phosphate degradation products with nitric acid: Relevance to the Tomsk-7 accident

    International Nuclear Information System (INIS)

    Barney, G.S.; Cooper, T.D.

    1995-01-01

    The reaction of a degraded tributyl phosphate (TBP) solvent with nitric acid is thought to have caused the chemical explosion at the Tomsk-7 reprocessing plant at Tomsk, Russia in 1993. The estimated temperature of the organic layer was not high eneough to cause significant reaction of nitric acid with TBP or hydrocarbon diluent compounds. A more reactive organic compound was likely present in the organic layer that reacted with sufficient heat generation to raise the temperature to the point where an autocatalytic oxidation of the organic solvent was initiated. Two of the most likely reactive compounds that are present in degraded TBP solvents are n-butanol and n-butyl nitrate. The reactions of these compounds with nitric acid are the subject of this study. The objective of laboratory-scale tests was to identify chemical reactions that occur when n-butanol and n-butyl nitrate contact heated nitric acid solutions. Reaction products were identified and quantitified, the temperatures at which these reactions occur and heats of reaction were measured, and reaction variables (temperature, nitric acid concentration, organic concentration, and reaction time) were evaluated. Data showed that n-butyl nitrate is less reactive than n-butanol. An essentially complete oxidation reaction of n-butanol at 110-120 C produced four major reaction products. Mass spectrometry identified the major inorganic oxidation products for both n-butanol and n-butyl nitrate as nitric oxide and carbon dioxide. Calculated heats of reaction for n-butanol and n-butyl nitrate to form propionic acid, a major reaction product, are -1860 cal/g n-butanol and -953 cal/g n-butyl nitrate. These heats of reaction are significant and could have raised the temperature of the organic layer in the Tomsk-7 tank to the point where autocatalytic oxidation of other organic compounds present resulted in an explosion

  7. Using clobetasol propionate in the form of a shampoo for the treatment of patients suffering from psoriasis localized in the scalp area

    Directory of Open Access Journals (Sweden)

    A. L. Bakulev

    2016-01-01

    Full Text Available The study involved 80 adult psoriatic patients with scalp affections at the dermatosis progressing stage. The authors compared scalp psoriasis topical treatment options such as using 0.05% clobetasol propionate in the form of a shampoo, and successive administration of the 2% salicylic acid ointment and aforesaid short-term topical product in patients with vulgar or exudative dermatoses using dynamic scores such as mPASI, DLQI and itching intensity degree. It was demonstrated that 0.05% clobetasol propionate used in the form of a shampoo is characterized by a high efficacy and safety profile for patients with vulgar or exudative psoriasis of the scalp. At the same time, in case of exudative dermatosis successive topical treatment with the use of the 2% salicylic acid ointment and 0.05% clobetasol propionate in the form of a shampoo contributes to the clearance of psoriatic foci from accumulated scales and enables a potent topical corticosteroid such as clobetasol to efficiently reduce principal clinical symptoms of scalp psoriasis such as erythema, infiltration, exfoliation and itching. Using the clobetasol shampoo reduces the scalp itching intensity as the key psoriatic symptom preventing an isomorphic reaction as a result of foci traumatization related to scratching.

  8. Evaluating the potential impact of proton carriers on syntrophic propionate oxidation

    Science.gov (United States)

    Juste-Poinapen, Natacha M. S.; Turner, Mark S.; Rabaey, Korneel; Virdis, Bernardino; Batstone, Damien J.

    2015-12-01

    Anaerobic propionic acid degradation relies on interspecies electron transfer (IET) between propionate oxidisers and electron acceptor microorganisms, via either molecular hydrogen, formate or direct transfers. We evaluated the possibility of stimulating direct IET, hence enhancing propionate oxidation, by increasing availability of proton carriers to decrease solution resistance and reduce pH gradients. Phosphate was used as a proton carrying anion, and chloride as control ion together with potassium as counter ion. Propionic acid consumption in anaerobic granules was assessed in a square factorial design with ratios (1:0, 2:1, 1:1, 1:2 and 0:1) of total phosphate (TP) to Cl-, at 1X, 10X, and 30X native conductivity (1.5 mS.cm-1). Maximum specific uptake rate, half saturation, and time delay were estimated using model-based analysis. Community profiles were analysed by fluorescent in situ hybridisation and 16S rRNA gene pyrosequencing. The strongest performance was at balanced (1:1) ratios at 10X conductivity where presumptive propionate oxidisers namely Syntrophobacter and Candidatus Cloacamonas were more abundant. There was a shift from Methanobacteriales at high phosphate, to Methanosaeta at low TP:Cl ratios and low conductivity. A lack of response to TP, and low percentage of presumptive electroactive organisms suggested that DIET was not favoured under the current experimental conditions.

  9. Folic Acid Production by Engineered Ashbya gossypii.

    Science.gov (United States)

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Solubility of ethylene in methyl propionate

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Florusse, L.J.; Peters, C.J.

    2015-01-01

    In this work, the solubility of ethylene in methyl propionate was measured within a temperature range of 283.5–464.8 K and pressures up to 10.7 MPa. Experiments were carried out using the Cailletet apparatus, which uses a synthetic method for the experiments. The critical points of several isopleths

  11. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    International Nuclear Information System (INIS)

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  13. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms

    NARCIS (Netherlands)

    Müller, N.; Worm, P.; Schink, B.; Stams, A.J.M.; Plugge, C.M.

    2010-01-01

    In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion

  14. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death

    OpenAIRE

    Tang, Y; Chen, Y; Jiang, H; Nie, D

    2010-01-01

    Short-chain fatty acids (SCFAs) are the major by-products of bacterial fermentation of undigested dietary fibers in the large intestine. SCFAs, mostly propionate and butyrate, inhibit proliferation and induce apoptosis in colon cancer cells, but clinical trials had mixed results regarding the anti-tumor activities of SCFAs. Herein we demonstrate that propionate and butyrate induced autophagy in human colon cancer cells to dampen apoptosis whereas inhibition of autophagy potentiated SCFA induc...

  15. Biotechnological applications for rosmarinic acid production in plant ...

    African Journals Online (AJOL)

    Biotechnological applications for rosmarinic acid production in plant. ... rosmarinic acid in medicinal plants, herbs and spices has beneficial and health promoting ... of rosmarinic acid starts with the amino acids phenylalanine and tyrosine.

  16. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  17. Optimal sulphuric acid production using Acidithiobacillus caldus ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... oxygen uptake rate of 1.35 g/L.day (OUR), 52% sulphur conversion at a rate of 0.83 ... achieving a sulphuric acid production rate of 2.76 g/L.day (dP/dt), while the ...

  18. Triacetic acid lactone production from Saccharomyces cerevisiae

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  19. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults

    Science.gov (United States)

    Chambers, Edward S; Viardot, Alexander; Psichas, Arianna; Morrison, Douglas J; Murphy, Kevin G; Zac-Varghese, Sagen E K; MacDougall, Kenneth; Preston, Tom; Tedford, Catriona; Finlayson, Graham S; Blundell, John E; Bell, Jimmy D; Thomas, E Louise; Mt-Isa, Shahrul; Ashby, Deborah; Gibson, Glen R; Kolida, Sofia; Dhillo, Waljit S; Bloom, Stephen R; Morley, Wayne; Clegg, Stuart; Frost, Gary

    2015-01-01

    Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans. Trial registration number NCT00750438. PMID:25500202

  20. Glutamic acid production from wheat by-products using enzymatic and acid hydrolysis

    NARCIS (Netherlands)

    Sari, Y.W.; Alting, A.C.; Floris, R.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Glutamic acid (Glu) has potential as feedstock for bulk chemicals production. It has also been listed as one of the top twelve chemicals derived from biomass. Large amounts of cheaper Glu can be made available by enabling its production from biomass by-products, such as wheat dried distillers grains

  1. Fumaric Acid Production: A Biorefinery Perspective

    Directory of Open Access Journals (Sweden)

    Victor Martin-Dominguez

    2018-05-01

    Full Text Available The increasing scarcity of fossil raw materials, together with the need to develop new processes and technology based on renewable sources, and the need to dispose of an increasing amount of biomass-derived waste, have boosted the concept of biorefineries. Both 1G and 2G biorefineries are focused on the obtention of biofuels, chemicals, materials, food and feed from biomass, a renewable resource. Fumaric acid, and most compounds involved in the Kreb cycle, are considered key platform chemicals, not only for being acidulants and additives in the food industry, but also for their prospective use as monomers. This review is focused on the biotechnological processes based on fungi, mainly of the Rhizopus genus, whose main product is fumaric acid, on the process conditions, the bioreactors and modes of operation and on the purification of the acid once it is produced.

  2. Production of Butyric Acid and Butanol from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, David E. [Environmental Energy Inc., Blacklick, OH (United States); Yang, Shang-Tian [The Ohio State Univ., Columbus, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2005-08-25

    prices as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.

  3. Volatile fatty acids production in the rumen of young heifers given diets containing a large proportion of concentrate

    International Nuclear Information System (INIS)

    Oshio, Shuichi; Tahata, Ichiro; Kobayashi, Haruo; Ami, Tsuyako

    1977-01-01

    The rate of production of volatile fatty acids (VFA) in the rumen of animals on high concentrate feeding was studied with eighteen young heifers fitted with a permanent rumen fistula, using a single injection method of 14 C-acetate and polyethylene glycol (PEG) in order to get some basic informations of rumen fermentation on concentrate diets. The results obtained were as follows; 1) The pH value, total VFA concentration, and proportion of each acid on all-concentrate diets showed distinguished differences in comparison with those of the animals fed a large proportion of hay, but varied widely between days and heifers. 2) VFA proportions were significantly correlated with pH. At the pH value of about 5.2, acetic acid was minimum, and propionic acid and valeric acid were maximum in molar proportion. 3) It was suggested that, in the case of all-concentrate feeding for a long period, the VFA production in the rumen was depressed to 33.5-41% of digestible energy. In the animals fed hay and concentrate, the percentage was about 50%. (auth.)

  4. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures

    Directory of Open Access Journals (Sweden)

    Reis Maria AM

    2008-07-01

    Full Text Available Abstract Background This paper presents a metabolic model describing the production of polyhydroxyalkanoate (PHA copolymers in mixed microbial cultures, using mixtures of acetic and propionic acid as carbon source material. Material and energetic balances were established on the basis of previously elucidated metabolic pathways. Equations were derived for the theoretical yields for cell growth and PHA production on mixtures of acetic and propionic acid as functions of the oxidative phosphorylation efficiency, P/O ratio. The oxidative phosphorylation efficiency was estimated from rate measurements, which in turn allowed the estimation of the theoretical yield coefficients. Results The model was validated with experimental data collected in a sequencing batch reactor (SBR operated under varying feeding conditions: feeding of acetic and propionic acid separately (control experiments, and the feeding of acetic and propionic acid simultaneously. Two different feast and famine culture enrichment strategies were studied: (i either with acetate or (ii with propionate as carbon source material. Metabolic flux analysis (MFA was performed for the different feeding conditions and culture enrichment strategies. Flux balance analysis (FBA was used to calculate optimal feeding scenarios for high quality PHA polymers production, where it was found that a suitable polymer would be obtained when acetate is fed in excess and the feeding rate of propionate is limited to ~0.17 C-mol/(C-mol.h. The results were compared with published pure culture metabolic studies. Conclusion Acetate was more conducive toward the enrichment of a microbial culture with higher PHA storage fluxes and yields as compared to propionate. The P/O ratio was not only influenced by the selected microbial culture, but also by the carbon substrate fed to each culture, where higher P/O ratio values were consistently observed for acetate than propionate. MFA studies suggest that when mixtures of

  5. Effects of culture conditions on acetic acid production by bacteria ...

    African Journals Online (AJOL)

    SARAH

    2015-11-30

    Nov 30, 2015 ... acid under certain culture conditions similar to cocoa fermentation stress. However ... Keywords: Acetic acid bacteria, acetic acid production, Cocoa fermentation, culture conditions ..... American Society Microbiology Press, pp.

  6. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  8. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  9. Natural products as potential anticonvulsants: caffeoylquinic acids.

    Science.gov (United States)

    Kim, Hyo Geun; Oh, Myung Sook

    2012-03-01

    Current anticonvulsant therapies are generally directed at symptomatic treatment by suppressing excitability within the brain. Consequently, they have adverse effects such as cognitive impairment, dependence, and abuse. The need for more effective and less toxic anticonvulsants has generated renewed interest in natural products for the treatment of convulsions. Caffeoylquinic acids (CQs) are naturally occurring phenolic acids that are distributed widely in plants. There has been increasing interest in the biological activities of CQs in diseases of the central nervous system. In this issue, Nugroho et al. give evidence for the anticonvulsive effect of a CQ-rich extract from Aster glehni Franchet et Sckmidt. They optimized the extract solvent conditions, resulting in high levels of CQs and peroxynitrite-scavenging activity. Then, they investigated the sedative and anticonvulsive effects in pentobarbital- and pentylenetetrazole-induced models in mice. The CQ-rich extract significantly inhibited tonic convulsions as assessed by onset time, tonic extent, and mortality. They suggested that the CQ-rich extract from A. glehni has potential for treating convulsions. This report provides preclinical data which may be used for the development of anticonvulsants from natural products.

  10. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  11. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  12. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia

    DEFF Research Database (Denmark)

    Baumgartner, Matthias R; Hörster, Friederike; Dionisi-Vici, Carlo

    2014-01-01

    Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~...... recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity.......:100'000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA...

  13. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    Science.gov (United States)

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  14. Biohydrogen production from purified terephthalic acid (PTA) processing wastewater by anaerobic fermentation using mixed microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ge-Fu; Wu, Peng; Wei, Qun-Shan; Lin, Jian-yi; Liu, Hai-Ning [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Gao, Yan-Li [China University of Geosciences, Wuhan 430074 (China)

    2010-08-15

    Purified terephthalic acid (PTA) processing wastewater was evaluated as a fermentable substrate for hydrogen (H{sub 2}) production with simultaneous wastewater treatment by dark-fermentation process in a continuous stirred-tank reactor (CSTR) with selectively enriched acidogenic mixed consortia under continuous flow condition in this paper. The inoculated sludge used in the reactor was excess sludge taken from a second settling tank in a local wastewater treatment plant. Under the conditions of the inoculants not less than 6.3 gVSS/L, the organic loading rate (OLR) of 16 kgCOD/m{sup 3} d, hydraulic retention time (HRT) of 6 h and temperature of (35 {+-} 1) C, when the pH value, alkalinity and oxidation-reduction potential (ORP) of the effluent ranged from 4.2 to 4.4, 280 to 350 mg CaCO{sub 3}/L, and -220 to -250 mV respectively, soluble metabolites were predominated by acetate and ethanol, with smaller quantities of propionate, butyrate and valerate. Stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 70.31% to the total liquid products after 25 days operation. The H{sub 2} volume content was estimated to be 48-53% of the total biogas and the biogas was free of methane throughout the study. The average biomass concentration was estimated to be 10.82 gVSS/L, which favored H{sub 2} production efficiently. The rate of chemical oxygen demand (COD) removal reached at about 45% and a specific H{sub 2} production rate achieved 0.073 L/gMLVSS d in the study. This CSTR system showed a promising high-efficient bioprocess for H{sub 2} production from high-strength chemical wastewater. (author)

  15. Effect of the Novel Polysaccharide PolyGlycopleX® on Short-Chain Fatty Acid Production in a Computer-Controlled in Vitro Model of the Human Large Intestine

    Directory of Open Access Journals (Sweden)

    Raylene A. Reimer

    2014-03-01

    Full Text Available Many of the health benefits associated with dietary fiber are attributed to their fermentation by microbiota and production of short chain fatty acids (SCFA. The aim of this study was to investigate the fermentability of the functional fiber PolyGlyopleX® (PGX® in vitro. A validated dynamic, computer-controlled in vitro system simulating the conditions in the proximal large intestine (TIM-2 was used. Sodium hydroxide (NaOH consumption in the system was used as an indicator of fermentability and SCFA and branched chain fatty acids (BCFA production was determined. NaOH consumption was significantly higher for Fructooligosaccharide (FOS than PGX, which was higher than cellulose (p = 0.002. At 32, 48 and 72 h, acetate and butyrate production were higher for FOS and PGX versus cellulose. Propionate production was higher for PGX than cellulose at 32, 48, 56 and 72 h and higher than FOS at 72 h (p = 0.014. Total BCFA production was lower for FOS compared to cellulose, whereas production with PGX was lower than for cellulose at 72 h. In conclusion, PGX is fermented by the colonic microbiota which appeared to adapt to the substrate over time. The greater propionate production for PGX may explain part of the cholesterol-lowering properties of PGX seen in rodents and humans.

  16. Determination of propionate in bread using capillary zone electrophoresis

    NARCIS (Netherlands)

    Ackermans, M.T.; Ackermans-Loonen, J.C.J.M; Beckers, J.L.

    1992-01-01

    A method for the determination of propionate in bread is described. The propionate was extracted from the bread with a repeated extraction procedure and measured using capillary zone electrophoresis in the indirect UV mode applying a background electrolyte of 0.005 M Tris adjusted at pH 4.6 by

  17. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    Science.gov (United States)

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  18. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development.

    Science.gov (United States)

    Beiranvand, H; Ghorbani, G R; Khorvash, M; Nabipour, A; Dehghan-Banadaky, M; Homayouni, A; Kargar, S

    2014-01-01

    The objective of this experiment was to investigate the effects of different levels of alfalfa hay (AH) and sodium propionate (Pro) added to starter diets of Holstein calves on growth performance, rumen fermentation characteristics, and rumen development. Forty-two male Holstein calves (40±2kg of birth weight) were used in a complete randomized design with a 3×2 factorial arrangement of treatments. Dietary treatments were as follows: (1) control = concentrate only; (2) Pro = concentrate with 5% sodium propionate [dry matter (DM) basis]; (3) 5% AH = concentrate + 5% alfalfa hay (DM basis); (4) 5% AH + Pro = concentrate + 5% alfalfa hay + 5% sodium propionate (DM basis); (5) 10% AH = concentrate + 10% alfalfa hay (DM basis); and (6) 10% AH + Pro = concentrate + 10% alfalfa hay + 5% sodium propionate (DM basis). All calves were housed in individual pens bedded with sawdust until 10wk of age. They were given ad libitum access to water and starter throughout the experiment and were fed 2L of milk twice daily. Dry matter intake was recorded daily and body weight weekly. Calves from the control, 10% AH, and 10% AH + Pro treatments were euthanized after wk 10, and rumen wall samples were collected. Feeding of forage was found to increase overall dry matter intake, average daily gain, and final weight; supplementing sodium propionate had no effect on these parameters. Calves consuming forage had lower feed efficiency than those on the Pro diet. Rumen fluid in calves consuming forage had higher pH and greater concentrations of total volatile fatty acids and molar acetate. Morphometric parameters of the rumen wall substantiated the effect of AH supplementation, as plaque formation decreased macroscopically. Overall, the interaction between forage and sodium propionate did not affect calf performance parameters measured at the end of the experiment. Furthermore, inclusion of AH in starter diets positively enhanced the growth performance of male Holstein calves and influenced

  19. Indução de alterações morfológicas e anatômicas em folhas de abacaxizeiro 'Pérola' pelo ácido 2-(3-clorofenoxi propiônico Induction of leaf morphological and anatomical alterations on 'Pérola' pineapple leaves by the 2-(3-chlorophenoxy propionic acid

    Directory of Open Access Journals (Sweden)

    Nathália Maria Laranjeira Barbosa

    2003-12-01

    Full Text Available Em estudo que visou controlar a floração natural do abacaxizeiro 'Pérola' com fitorreguladores, nas plantas pulverizadas com 50 e 100 mg L-1 (3 aplicações do ácido 2-(3-clorofenoxi propiônico (ACP, foram observadas alterações internas e externas nas folhas. O limbo foliar apresentou ligeiro estrangulamento na porção mediana das folhas 'E' e 'F' e próximo ao ponto de inserção no caule nas C' e 'D'. A cerca de 5-10 cm desse ponto surgiram estruturas similares a calos, que originaram raízes adventícias. A roseta central das plantas apresentou-se torcida, com as folhas mais curtas e largas. Cortes anatômicos permitiram observar, sob microscópio óptico (40X, que as raízes adventícias foram formadas a partir de meristemas nos feixes vasculares (xilema e floema, e que a estrutura anatômica foliar nos pontos de estrangulamento do limbo não foi alterada. Parênquima assimilador formou-se no córtex dessas raízes adventícias, indicando a realização de fotossíntese nesse tecido. A localização das raízes adventícias nas folhas correspondeu às áreas de provável acúmulo do produto pulverizado sobre as plantas. Os efeitos causados pelo ACP neste trabalho sugerem o seu uso em estudos relacionados à indução de enraizamento na propagação vegetativa (convencional e micropropagação e na formação de calos "in vitro". E servem, também, para orientar novos estudos sobre a inibição da floração natural e seu uso prático, a fim de se evitar danos às plantas.In a study w ith the objective of controlling the natural precocious flowering in pineapple 'Perola', the plants treated with the 2-(3-chlorophenoxy propionic acid - CPA (50 and 100 mg L-1, 3 applications showed some internal and external modifications in the leaves. The young 'E' and 'F' leaves presented small constrictions on the central portion of their limbs, while on the 'C' and 'D' ones, those constrictions were observed near to their bases. At about 5-10 cm

  20. Níveis críticos dos ácidos acético, propiônico e butírico para estudos de toxicidade em arroz em solução nutritiva Critical levels of acetic, propionic and butyric acids for toxicity studies of rice in nutrient solution

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2007-03-01

    and 20 mM, propionic acid (0; 3; 6; 9; 12; and 15 mM and butyric acid (0; 2; 4; 6; 8 and 10 mM and two genotypes of high divergence (BRS-7-TAIM and SAIBAN were used. The results indicate that the most appropriate concentration ranges for studies of rice tolerance to organic acids are: 8.4 and 15.8; 4.2 and 9.1 and 3.7 and 7.7 mM for acetic, propionic and butyric acids, respectively, and the most responsive variable was root length.

  1. Microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Sirisansaneeyakul, Sarote; Cao, Mingfeng; Kongklom, Nuttawut; Chuensangjun, Chaniga; Shi, Zhongping; Chisti, Yusuf

    2017-09-05

    Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on L-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid L-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.

  2. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor.

    Science.gov (United States)

    Fujita, M; Ike, M; Jang, J H; Kim, S M; Hirao, T

    2001-01-01

    We propose the bioproduction of a bioflocculant from lower-molecular fatty acids as an innovative strategy for utilizing waste sludge digestion liquor. Fundamental studies on the production, characterization and application of a novel bioflocculant were performed. Citrobactersp. TKF04 was screened out of 1,564 natural isolates as a bacterial strain capable of a bioflocculant from acetic and propionic acids. TKF04 produced the bioflocculant during the logarithmic growth in the batch cultivation, and it could be recovered from the culture supernatant by ethanol precipitation. The fed-batch cultivation with feeding of acetic acid: ammonium 10;1 (mole) to maintain pH 8.5 led to the hyper-production of the bioflocculant. The bioflocculant was found to be effective for flocculating a kaolin suspension, when added at a final concentration of 1-10 mg/l, over a wide range of pHs (2-8) and temperatures (3-95 degrees C), while the addition of cations was not required. It could flocculate a variety of inorganic and organic suspended particles including kaolin, diatomite, bentonite, activated carbon, soil and activated sludge. These indicated that the bioflocculant possesses flocculating activity comparable or superior to that of synthetic flocculants. The bioflocculation was identified as a chitosan-like biopolymer.

  3. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Science.gov (United States)

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  4. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2012-08-01

    Full Text Available Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs. Propionic acid (PPA and its related short-chain fatty acids (SCFAs are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio. SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible

  5. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.

    Science.gov (United States)

    Li, Xiang Z; Gao, Qing S; Yan, Chang G; Choi, Seong H; Shin, Jong S; Song, Man K

    2015-08-01

    We hypothesized that manipulating metabolism with fish oil and malate as a hydrogen acceptor would affect the biohydrogenation process of α-linolenic acid by rumen microbes. This study was to examine the effect of fish oil and/or malate on the production of conjugated fatty acids and methane (CH4 ) by rumen microbes when incubated with linseed oil. Linseed oil (LO), LO with fish oil (LO-FO), LO with malate (LO-MA), or LO with fish oil and malate (LO-FO-MA) was added to diluted rumen fluid, respectively. The LO-MA and LO-FO-MA increased pH and propionate concentration compared to the other treatments. LO-MA and LO-FO-MA reduced CH4 production compared to LO. LO-MA and LO-FO-MA increased the contents of c9,t11-conjugated linoleic acid (CLA) and c9,t11,c15-conjugated linolenic acid (CLnA) compared to LO. The content of malate was rapidly reduced while that of lactate was reduced in LO-MA and LO-FO-MA from 3 h incubation time. The fold change of the quantity of methanogen related to total bacteria was decreased at both 3 h and 6 h incubation times in all treatments compared to the control. Overall data indicate that supplementation of combined malate and/or fish oil when incubated with linseed oil, could depress methane generation and increase production of propionate, CLA and CLnA under the conditions of the current in vitro study. © 2015 Japanese Society of Animal Science.

  6. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which...... increased, reaching 67 g L-fermenter−1h−1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s−1 and 0...

  7. Optimization of Citric Acid Production through Manipulation of ...

    African Journals Online (AJOL)

    An Aspergillus niger isolate was screened for citric acid production from glucose and the cultural conditions were manipulated for optimum citric acid production. Optimization studies improved citric acid yield by 13.34% from 12.81 g/l obtained during the screening test to 14.52 g/l obtained at the end of the optimization ...

  8. Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature.

    Science.gov (United States)

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2016-06-01

    Production of probiotic food supplements that are shelf-stable at room temperature has been developed for consumer's convenience, but information on the stability in acid and bile environment is still scarce. Viability and acid and bile tolerance of microencapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplements were evaluated. Bifidobacterium and L. acidophilus were encapsulated with casein-based emulsion using spray drying. Water activity (aw ) of the microspheres containing Bifidobacterium or L. acidophilus (SD GM product) was adjusted to 0.07 followed by storage at 25 °C for 10 wk. Encapsulated Bifidobacterium spp. and Lactobacillus acidophilus and 4 commercial probiotic supplement products (AL, GH, RE, and BM) were tested. Since commercial probiotic products contained mixed bacteria, selective media MRS-LP (containing L-cysteine and Na-propionate) and MRS-clindamycin agar were used to grow Bifidobacterium spp. or L. acidophilus, respectively, and to inhibit the growth of other strains. The results showed that aw had a strong negative correlation with the viability of dehydrated probiotics of the 6 products. Viable counts of Bifidobacterium spp. and L. acidophilus of SD GM, AL, and GH were between 8.3 and 9.2 log CFU/g, whereas that of BM and RE were between 6.7 and 7.3 log CFU/g. Bifidobacterium in SD GM, in AL, and in GH products and L. acidophilus in SD GM, in AL, and in BM products demonstrated high tolerance to acid. Most of dehydrated probiotic bacteria were able to survive in bile environment except L. acidophilus in RE product. Exposure to gastric juice influenced bacterial survivability in subsequent bile environment. © 2016 Institute of Food Technologists®

  9. Effect of sugar fatty acid esters on rumen fermentation in vitro

    OpenAIRE

    Wakita, M.; Hoshino, S.

    1987-01-01

    1.The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro.2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate: propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent p...

  10. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    Directory of Open Access Journals (Sweden)

    Rosemary Vuković

    2015-01-01

    Full Text Available Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefi ts. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid.

  11. Counter current extraction of phosphoric acid: Food grade acid production

    International Nuclear Information System (INIS)

    Shlewit, H.; AlIbrahim, M.

    2009-01-01

    Extraction, scrubbing and stripping of phosphoric acid from the Syrian wet-phosphoric acid was carried out using Micro-pilot plant of mixer settler type of 8 l/h capacity. Tributyl phosphate (TBP)/di-isopropyl ether (DIPE) in kerosene was used as extractant. Extraction and stripping equilibrium curves were evaluated. The number of extraction and stripping stages to achieve the convenient and feasible yield was determined. Detailed flow sheet was suggested for the proposed continuous process. Data obtained include useful information for the design of phosphoric acid extraction plant. The produced phosphoric acid was characterized using different analytical techniques. (author)

  12. Studies on the Bio production of Gibberellic Acid from Fungi

    International Nuclear Information System (INIS)

    Sleem, D.A.E.

    2013-01-01

    Gibberellic acid is a natural plant growth hormone which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. At present gibberellic acid is produced throughout the world by fermentation technique using the fungus Gibberella fujikuroi (recently named Fusarium moniliforme). The aim of the current study is the isolation of local F. moniliforme isolate have the ability to produce gibberellic acid on specific production media. The submerged fermentation technique for the production of gibberellic acid is influenced to a great extent by a variety of physical factors (incubation time, temperature, ph, agitation speed) also, gibberellic acid production by F. moniliforme depends upon the nature and concentrations of carbon and nitrogen sources. The optimization of these factors is prerequisite for the development of commercial process. The addition of some elements in a significant quantities to the production media stimulate gibberellic acid production. The use of seed culture inocula (24 h) age at rate of (2% v/v) also enhance the production. Working volume 50 ml in 250 ml Erlenmeyer flask was found to be the best volume for the production. Low doses of gamma radiation (0.5 kGy) stimulate gibberellic acid production and microbial growth by the local F. moniliforme isolate. Immobilized cell fermentation technique had also been developed as an alternative to obtain higher yield of gibberellic acid. Milk permeate (cheap dairy by- product) was found suitable to used as main production medium for gibberellic acid production by the fungus under investigation. The influence of gibberellic acid on enhancement growth of Aspergillus niger and chitosan production was also studied, the addition of 2 mg/l of gibberellic acid to chitosan production medium stimulate its production in comparison with media without gibberellic acid

  13. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  14. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  15. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products.

    Science.gov (United States)

    Valerio, Francesca; Favilla, Mara; De Bellis, Palmira; Sisto, Angelo; de Candia, Silvia; Lavermicocca, Paola

    2009-09-01

    Thirty samples of Italian durum wheat semolina and whole durum wheat semolina, generally used for the production of Southern Italy's traditional breads, were subjected to microbiological analysis in order to explore their lactic acid bacteria (LAB) diversity and to find strains with antifungal activity. A total of 125 presumptive LAB isolates (Gram-positive and catalase-negative) were characterized by repetitive extragenic palindromic-PCR (REP-PCR) and sequence analysis of the 16S rRNA gene, leading to the identification of the following species: Weissella confusa, Weissella cibaria, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus rossiae and Lactobacillus plantarum. The REP-PCR results delineated 17 different patterns whose cluster analysis clearly differentiated W. cibaria from W. confusa isolates. Seventeen strains, each characterized by a different REP-PCR pattern, were screened for their antifungal properties. They were grown in a flour-based medium, comparable to a real food system, and the resulting fermentation products (FPs) were tested against fungal species generally contaminating bakery products, Aspergillus niger, Penicillium roqueforti and Endomyces fibuliger. The results of the study indicated a strong inhibitory activity - comparable to that obtained with the common preservative calcium propionate (0.3% w/v) - of ten LAB strains against the most widespread contaminant of bakery products, P. roqueforti. The screening also highlighted the unexplored antifungal activity of L. citreum, L. rossiae and W. cibaria (1 strain), which inhibited all fungal strains to the same or a higher extent compared with calcium propionate. The fermentation products of these three strains were characterized by low pH values, and a high content of lactic and acetic acids.

  16. Diagnosis of propionic acidemia by gas chromatography coupled to mass spectrometry in a case analysis

    International Nuclear Information System (INIS)

    Camayd Viera, Ivette; Robaina Jimenez, Zoe; Contreras Roura, Jiovanna

    2011-01-01

    Propionic acidemia is an inherited metabolic disease caused by a deficiency in the propionyl-CoA carboxilase, a biotin-dependent mitochondrial enzyme. The disorder is a clinically heterogeneous disease and one of the most frequently occurring organic acidurias. We report the first Cuban case with a severe form of propionic acidemia followed by acidosis and death. The diagnosis was carried out by gas chromatography coupled to mass spectrometry. Our aim is to highlight the importance of organic acids urine analysis as part of the first laboratory tests in undiagnosed seriously ill children. The definitive diagnosis is important as it serves as a clear guideline to establish a suitable treatment and allows geneticists to provide patients with a proper genetic counseling

  17. Suitability of combination of calcium propionate and chitosan for preserving minimally processed banana quality.

    Science.gov (United States)

    Mirshekari, Amin; Madani, Babak; Golding, John B

    2017-08-01

    The marketability of fresh-cut banana slices is limited by the rapid rate of fruit softening and browning. However, there is no scientific literature available about the role of postharvest calcium propionate and chitosan treatment on the quality attributes of fresh-cut banana. Therefore, the aim of the present study was to investigate these effects. The application of calcium propionate plus chitosan (CaP+Chit) retained higher firmness, higher ascorbic acid content, higher total antioxidant activity and higher total phenolic compounds, along with lower browning, lower polyphenol oxidase, lower peroxidase, lower polygalacturonase and lower pectin methyl esterase activities and microbial growth, compared to control banana slices after 5 days of cold storage. The results of the present study show that CaP+Chit could be used to slow the loss of quality at the same time as maintaining quality and inhibiting microbial loads. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Design, synthesis, and pharmacology of a highly subtype-selective GluR1/2 agonist, (RS)-2-amino-3-(4-chloro-3-hydroxy-5-isoxazolyl)propionic acid (Cl-HIBO)

    DEFF Research Database (Denmark)

    Bjerrum, Esben J; Kristensen, Anders S; Pickering, Darryl S

    2003-01-01

    On the basis of structural studies, chloro-homoibotenic acid (Cl-HIBO) was designed and synthesized. Cl-HIBO was characterized in binding and electrophysiology experiments on native and cloned subtypes of GluRs. Electrophysiological selectivities ranged from 275 to 1600 for GluR1/2 over GluR3/4. ...

  19. Biotechnological Production of Lactic Acid and Its Recent Applications

    Directory of Open Access Journals (Sweden)

    Young-Jung Wee

    2006-01-01

    Full Text Available Lactic acid is widely used in the food, cosmetic, pharmaceutical, and chemical industries and has received increased attention for use as a monomer for the production of biodegradable poly(lactic acid. It can be produced by either biotechnological fermentation or chemical synthesis, but the former route has received considerable interest recently, due to environmental concerns and the limited nature of petrochemical feedstocks. There have been various attempts to produce lactic acid efficiently from inexpensive raw materials. We present a review of lactic acid-producing microorganisms, raw materials for lactic acid production, fermentation approaches for lactic acid production, and various applications of lactic acid, with a particular focus on recent investigations. In addition, the future potentials and economic impacts of lactic acid are discussed.

  20. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.

    Science.gov (United States)

    Li, Tianzhen; Zhou, Wei; Bi, Huiping; Zhuang, Yibin; Zhang, Tongcun; Liu, Tao

    2018-07-01

    To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli. We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coli-E. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L. Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.

  1. Microbial granulation for lactic acid production.

    Science.gov (United States)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  2. Chicoric acid: chemistry, distribution, and production

    Science.gov (United States)

    Lee, Jungmin; Scagel, Carolyn

    2013-12-01

    Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  3. Chicoric acid: chemistry, distribution, and production

    Directory of Open Access Journals (Sweden)

    Jungmin eLee

    2013-12-01

    Full Text Available Though chicoric acid was first identified in 1958, it was largely ignored until recent popular media coverage cited potential health beneficial properties from consuming food and dietary supplements containing this compound. To date, plants from at least 63 genera and species have been found to contain chicoric acid, and while the compound is used as a processing quality indicator, it may also have useful health benefits. This review of chicoric acid summarizes research findings and highlights gaps in research knowledge for investigators, industry stakeholders, and consumers alike. Additionally, chicoric acid identification and quantification methods, biosynthesis, processing improvements to increase chicoric acid retention, and potential areas for future research are discussed.

  4. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    Science.gov (United States)

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Production of polyhydroxy alkanoates by Ralstonia eutropha from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jung Hyun; Sawant, Shailesh S.; Kim, Beom Soo [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-12-15

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible thermoplastics that can be synthesized in various microorganisms. Volatile fatty acids (VFAs) are produced by anaerobic treatment of organic wastes that can be utilized as inexpensive substrates for PHA synthesis. In this study, several Ralstonia eutropha strains were grown on the mixture of VFAs (acetic, propionic, and butyric acid) as its carbon and energy source for growth and PHA synthesis. R. eutropha KCTC 2658 accumulated PHAs up to 50% of dry cell weight from total 5 g/L of mixed VFAs (acetic acid : propionic acid : butyric acid=1 : 2 : 2). In batch culture of R. eutropha KCTC2658 in a 5 L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from 20 g/L glucose as a sole carbon source with dry cell weight of 8.4 g/L and PHA content of 30%. In fed-batch culture, two feeding strategies, pulse or pH-stat, were applied to add VFAs to the fermentor. When VFAs were fed using pH-stat feeding strategy after 40 h, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced with dry cell weight of 8.1 g/L, PHA content of 50%, and 3HV fraction of 20 mol%.

  6. Production of polyhydroxy alkanoates by Ralstonia eutropha from volatile fatty acids

    International Nuclear Information System (INIS)

    Yun, Jung Hyun; Sawant, Shailesh S.; Kim, Beom Soo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible thermoplastics that can be synthesized in various microorganisms. Volatile fatty acids (VFAs) are produced by anaerobic treatment of organic wastes that can be utilized as inexpensive substrates for PHA synthesis. In this study, several Ralstonia eutropha strains were grown on the mixture of VFAs (acetic, propionic, and butyric acid) as its carbon and energy source for growth and PHA synthesis. R. eutropha KCTC 2658 accumulated PHAs up to 50% of dry cell weight from total 5 g/L of mixed VFAs (acetic acid : propionic acid : butyric acid=1 : 2 : 2). In batch culture of R. eutropha KCTC2658 in a 5 L fermentor, a homopolymer of poly(3-hydroxybutyrate) [P(3HB)] was produced from 20 g/L glucose as a sole carbon source with dry cell weight of 8.4 g/L and PHA content of 30%. In fed-batch culture, two feeding strategies, pulse or pH-stat, were applied to add VFAs to the fermentor. When VFAs were fed using pH-stat feeding strategy after 40 h, a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was produced with dry cell weight of 8.1 g/L, PHA content of 50%, and 3HV fraction of 20 mol%

  7. Possibility of using apple pomaces in the process of propionic-acetic fermentation

    Directory of Open Access Journals (Sweden)

    Kamil Piwowarek

    2016-09-01

    Conclusions: Utilization of by-products is a significant challenge for manufacturing sites and the natural environment. The solution to this problem may involve the use of pomace as a medium component for microorganism cultivation, which is a source of industrially useful metabolites. This study examined the possibility of using apple pomace as a carbon source in the process of propionic-acetic fermentation via wild strain Propionibacterium freudenreichii T82 bacteria.

  8. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  9. Method for production of dicarbonic acid anhydrides

    International Nuclear Information System (INIS)

    Mistr, A.; Necas, J.; Polak, V.

    1975-01-01

    A method is described of producing dicarboxylic acid anhydrides by the reaction of maleic acid anhydride with olefins. The synthesis is initiated by gamma radiation at a total dose of 10 4 to 10 6 rads in the presence of an organic solvent. The addition reactions of maleic acid anhydride to 1-hexadecene, 1-octene and cyclohexene with yields of 43%, 17% and 11%, respectively, are specified. (L.K.)

  10. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  11. ruminants by amino acid analysis of the products of

    African Journals Online (AJOL)

    reveals that in all cases histidine is the limiting amino acid for milk production. Comparison of the milk production potential predicted from the duodenal amino acid supply with that predicted from ... also recognized, in ruminants, as'a critical point in the chain .... be used to model the in vivo situation and measurement of.

  12. Optimising the Effect of Stimulants on Citric Acid Production from ...

    African Journals Online (AJOL)

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of Aspergillus niger for the purpose of improved citric acid production from cocoyam starch.

  13. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  14. [Hydrocyanic acid content in cerals and cereal products].

    Science.gov (United States)

    Lehmann, G; Zinsmeister, H D; Erb, N; Neunhoeffer, O

    1979-03-01

    In the above paper for the first time a systematic study of the amount of hydrocyanic acid in grains and cereal products is reported. Among 24 analysed wheat, rye, maize and oats types, the presence of hydrocyanic acid could be identified in 19 cases in their Karyopses. Similar is the result with 28 among 31 analysed cereal products. The content of hydrocyanic acid lies between 0.1 and 45 microgram/100 gr dried mass.

  15. Significant thermal energy reduction in lactic acid production process

    International Nuclear Information System (INIS)

    Mujtaba, Iqbal M.; Edreder, Elmahboub A.; Emtir, Mansour

    2012-01-01

    Lactic acid is widely used as a raw material for the production of biodegradable polymers and in food, chemical and pharmaceutical industries. The global market for lactic acid is expected to reach 259 thousand metric tons by the year 2012. For batch production of lactic acid, the traditional process includes the following steps: (i) esterification of impure lactic acid with methanol in a batch reactor to obtain methyl lactate (ester), (ii) separation of the ester in a batch distillation, (iii) hydrolysis of the ester with water in a batch reactor to produce lactic acid and (iv) separation of lactic acid (in high purity) in a batch distillation. Batch reactive distillation combines the benefit of both batch reactor and batch distillation and enhances conversion and productivity (Taylor and Krishna, 2000 ; Mujtaba and Macchietto, 1997 ). Therefore, the first and the last two steps of the lactic acid production process can be combined together in batch reactive distillation () processes. However, distillation (batch or continuous) is an energy intensive process and consumes large amount of thermal energy (via steam). This paper highlights how significant (over 50%) reduction in thermal energy consumption can be achieved for lactic acid production process by carefully controlling the reflux ratio but without compromising the product specification. In this paper, only the simultaneous hydrolysis of methyl lactate ester and the separation of lactic acid using batch reactive distillation is considered.

  16. Effect of hydraulic retention time on biohydrogen and volatile fatty acids production during acidogenic digestion of dephenolized olive mill wastewaters

    International Nuclear Information System (INIS)

    Scoma, Alberto; Bertin, Lorenzo; Fava, Fabio

    2013-01-01

    The influence of Hydraulic Retention Time (HRT) on the performances of a recently developed biotechnological anaerobic acidogenic process fed with dephenolized Olive Mill Wastewater (OMW) was investigated. The study was carried out under mesophilic conditions in Packed Bed Biofilm Reactors (PBBRs), filled with ceramic cubes and inoculated with a characterized and acclimated acidogenic microbial consortium. The PBBRs were fed with a HRT of 7, 5, 3 or 1 day, which corresponded to Organic Loading Rates (OLRs) of about 5.5, 7.8, 12.9 and 38.8 g L −1 d −1 , respectively. A significant production of a H 2 -rich biogas was observed when shorter HRTs were applied: in particular, H 2 relative amount and productivity increased from 3% to 32% and from 0.20 to 6.10 dm 3 m −3 h −1 , respectively, by decreasing the HRT from 7 to 1 day. On the contrary, shorter HRTs turned into a lower accumulation of Volatile Fatty Acids (VFAs), whose highest amounts were found with HRTs of 7 and 5 days (about 18.4 and 19.7 g L −1 COD equivalents, respectively). The highest conversion yield of COD into VFAs (36%) was obtained with a HRT of 5 days, when VFAs represented about 78% of the effluent COD. HRT also influenced the composition of the VFA mixture: acetic, propionic and butyric acid were the most prominent VFAs, being their relative amounts higher when PBBRs were operated with shorter HRTs (up to 19, 12 and 42% of the whole mixture, respectively, when HRT was 1 day). -- Highlights: ► HRT affects the acidogenic digestion of dephenolized olive mill wastewater. ► A significant production of bioH 2 can be coupled to that of volatile fatty acids. ► Higher H 2 and lower VFA productions were obtained by shortening the HRT

  17. Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification.

    Science.gov (United States)

    Wang, Quan; Jiang, Jianguo; Zhang, Yujing; Li, Kaimin

    2015-01-01

    The effect of initial total solids (TS) concentration on volatile fatty acid (VFAs) production from food waste under mesophilic conditions (35 °C) was determined. VFAs concentration and composition, biogas production, soluble chemical oxygen demand concentration, TS and volatile solids (VS) reduction, and ammonia nitrogen [Formula: see text] release were investigated. The VFAs concentrations were 26.10, 39.68, 59.58, and 62.64 g COD/L at TS contents of 40, 70, 100, and 130 g/L, respectively. While the VFAs' yields ranged from 0.467 to 0.799 g COD/g VSfed, decreased as initial TS increased. The percentage of propionate was not affected by TS concentration, accounting for 30.19-34.86% of the total VFAs, while a higher percentage of butyrate and lower percentage of acetate was achieved at a higher TS concentration. Biogas included mainly hydrogen and carbon dioxide and the maximum hydrogen yield of 148.9 ml/g VSfed was obtained at 130 g TS/L. [Formula: see text] concentration, TS and VS reductions increased as initial TS increased. Considering the above variables, we conclude that initial TS of 100 g/L shall be the most appropriate to VFAs production.

  18. Production of highly unsaturated fatty acids using agro-processing by-products

    CSIR Research Space (South Africa)

    Jacobs, A

    2008-11-01

    Full Text Available The South African agro-processing industry generates millions of tons of cereal derived by-products annually. The by-products from biofuel production are expected to increase these volumes dramatically. Highly unsaturated fatty acids (HUFA...

  19. Production of extracellular fatty acid using engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-04-01

    Full Text Available Abstract Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3 improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired

  20. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  1. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  2. Separation of caesium-137 from fission products using phosphotungstic acid

    International Nuclear Information System (INIS)

    Murthy, T.S.; Balasubramaniam, K.R.; Ananthakrishnan, M.; Varma, R.N.

    1977-01-01

    Separation of caesium 137 from fission products using phosphotungstic acid is reported. Phosphotungstate caesium is precipitated as caesium from fission product waste solution in acid medium and subsequently purified. Separation of phosphate and tungstate ions has been done using a typical hydrous oxide like alumina. The exchange capacity of alumina for phosphate and tungstate ions, and the purity of the product are determined. Results are discussed. Based on the findings a procedure is recommended for caesium 137 separation. (A.K.)

  3. Effects of total replacement of soybean meal and corn on ruminal fermentation, volatile fatty acids, protozoa concentration, and gas production

    Directory of Open Access Journals (Sweden)

    A. Bahri

    2018-03-01

    Full Text Available The main purpose of this study is to evaluate the effect of total replacement of soybean meal and corn with triticale and faba bean or field pea on rumen fermentation, protozoa counts, and gas production of lactating ewes. A total of 30 Sicilo-Sarde ewes were randomly allocated into three groups and were fed 1.8 kg drymatter of oat hay plus 500 g of one of three concentrates: the first concentrate (CS was mainly composed of soybean meal, corn, and barley; the second (TFB was formed by triticale and faba bean; and the third (TFP was composed of triticale and field pea. The type of concentrate did not affect ruminal pH or ammonia nitrogen concentration (P  >  0.05. The individual concentrations of volatile fatty acids showed a significant interaction between the type of concentrate and sampling time (P  <  0.05, except for Butyric and Isobutyric acids. Within a post-feeding time, the pattern of evolution of total volatile fatty, acetic, and propionic acids differed significantly at 2 h post feeding (P  <  0.05, while butyric and valeric acid changed at 0 and 4 h post feeding. The type of concentrate affected the total number of ciliate protozoa and the Isotricha species (P  <  0.05, whereas Entodinium, Ophryoscolex, and Polyplastron were similar among concentrates (P  >  0.05. The cumulative gas production from the in vitro fermentation, the time of incubation, and their interaction was affected by concentrate (P  <  0.001. The substitution of soybean meal and corn in the concentrate with faba bean or field peas and triticale might maintain rumen parameters of dairy ewes.

  4. L-rhamnose as a source of colonic propionate inhibits insulin secretion but does not influence measures of appetite or food intake.

    Science.gov (United States)

    Darzi, Julia; Frost, Gary S; Swann, Jonathan R; Costabile, Adele; Robertson, M Denise

    2016-03-01

    Activation of free fatty acid receptor (FFAR)2 and FFAR3 via colonic short-chain fatty acids, particularly propionate, are postulated to explain observed inverse associations between dietary fiber intake and body weight. Propionate is reported as the predominant colonic fermentation product from l-rhamnose, a natural monosaccharide that resists digestion and absorption reaching the colon intact, while effects of long-chain inulin on appetite have not been extensively investigated. In this single-blind randomized crossover study, healthy unrestrained eaters (n = 13) ingested 25.5 g/d l-rhamnose, 22.4 g/d inulin or no supplement (control) alongside a standardized breakfast and lunch, following a 6-d run-in to investigate if appetite was inhibited. Postprandial qualitative appetite, breath hydrogen, and plasma glucose, insulin, triglycerides and non-esterified fatty acids were assessed for 420 min, then an ad libitum meal was provided. Significant treatment x time effects were found for postprandial insulin (P = 0.009) and non-esterified fatty acids (P = 0.046) with a significantly lower insulin response for l-rhamnose (P = 0.023) than control. No differences between treatments were found for quantitative and qualitative appetite measures, although significant treatment x time effects for meal desire (P = 0.008) and desire to eat sweet (P = 0.036) were found. Breath hydrogen was significantly higher with inulin (P = 0.001) and l-rhamnose (P = 0.009) than control, indicating colonic fermentation. These findings suggest l-rhamnose may inhibit postprandial insulin secretion, however neither l-rhamnose or inulin influenced appetite. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enantioselective radical addition/trapping reactions with alpha,beta-disubstituted unsaturated imides. Synthesis of anti-propionate aldols.

    Science.gov (United States)

    Sibi, Mukund P; Petrovic, Goran; Zimmerman, Jake

    2005-03-02

    This manuscript describes a highly diastereo- and enantioselective intermolecular radical addition/hydrogen atom transfer to alpha,beta-disubstituted enoates. Additionally, we show that anti-propionate aldol-like products can be easily prepared from alpha-methyl-beta-acyloxyenoates in good yields and high diastereo- and enantioselectivities.

  6. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    Science.gov (United States)

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation.

  7. Malic acid production from thin stillage by Aspergillus species.

    Science.gov (United States)

    West, Thomas P

    2011-12-01

    The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l(-1). Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l(-1). The highest malic acid yield (0.8 g g(-1)) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains. © Springer Science+Business Media B.V. 2011

  8. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  9. Glutamic acid and folic acid production in aerobic and anaerobic probiotics

    Directory of Open Access Journals (Sweden)

    Zohre Taghi Abadi

    2018-03-01

    Full Text Available Introduction:From an industrial application or commercial point of view, glutamic acid is one of the most important amino acids and its microbial production has been reported from some bacteria. Regarding the role of probiotics to modulate human health and the ever-increasing demand of prebiotics in the food industry, in the current study, production of glutamic acid and folic acid from three probiotic bacteria (Bifidobacterium, Bifidobacterium bifidum, Sporolactobacillus was evaluated for the first time. Materials and methods: MRS broth and exclusive media was used for probiotic culture. The glutamic acid was identified using thin-layer chromatography and folic acid production was measured by folate kit. Each bacterium in terms of quality and quantity were measured by high pressure liquid chromatography. Results: Production of glutamic acid confirmed is based on the thin layer chromatography analysis and high pressure liquid chromatography results. In addition, it was observed that all three probiotics produce folic acid. The prevalence of folate in Bifidobacterium was measured as 315 mg/ml that was more than two other bacteria. Discussion and conclusion: To the best of our knowledge, this is the first report of microbial production of glutamic acid and folate from the probiotic bacteria. These beneficial bacteria can be used as a good source for mass production of these valuable compounds.

  10. Production and Recovery of Pyruvic Acid: Recent Advances

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  11. Fungal Biotransormation Products of Dehydroabietic Acid

    NARCIS (Netherlands)

    Beek, van T.A.; Claassen, F.W.; Dorado, J.; Godejohann, M.; Sierra-Alvarez, R.; Wijnberg, J.B.P.A.

    2007-01-01

    Dehydroabietic acid (DHA) (1) is one of the main compounds in Scots pine wood responsible for aquatic and microbial toxicity. The degradation of 1 by Trametes versicolor and Phlebiopsis gigantea in liquid stationary cultures was followed by HPLC-DAD-ELSD. Both fungi rapidly degraded DHA relative to

  12. Retention of short chain fatty acids under drying and storage conditions

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Souza

    2011-09-01

    Full Text Available Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.

  13. Antifungal properties of fermentates and their potential to replace sorbate and propionate in pound cake.

    Science.gov (United States)

    Samapundo, S; Devlieghere, F; Vroman, A; Eeckhout, M

    2016-11-21

    The major objective of this study was to assess the antifungal activities of commercially available 'clean label' fermentates and their potential to replace the preservative function of sorbate and propionate in cake. This study was performed in two parts. In the first part of the study the inhibitory activities of selected fermentates - FA, FB, FC and FD - towards Aspergillus tritici and Aspergillus amstelodami were assessed as a function of pH (5.0-6.5) on malt extract agar (MEA). In the second part of the study, challenge, shelf-life and sensorial tests were used to determine the suitability of these fermentates to replace potassium sorbate and calcium propionate in quarter pound cake. All the fermentates evaluated in this study all had significant (prange for application in bakery products. In all cases, the inhibitory activity of the fermentates increased with a decrease in the pH and an increase in concentration. FC was generally the most inhibitory whilst FD was the least inhibitory. Significant (p0.05) in flavour from the reference cake (0.5% calcium propionate and 0.54% potassium sorbate). However, the challenge and shelf-life tests showed that cakes produced with ≤1% FC were not as microbiologically shelf-stable as the reference cake, especially when sliced. Therefore, it can be concluded that whilst fermentates have appreciable antifungal effects, their use could potentially result in reduced shelf-stabilities. Robust challenge and shelf-life tests would be recommended before the marketing of cakes were propionate and/or sorbate has been replaced to ensure accurate shelf-lives are stated. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recovery of fission products from acidic waste solutions thereof

    International Nuclear Information System (INIS)

    Carlin, W.W.; Darlington, W.B.; Dubois, D.W.

    1975-01-01

    Fission products, e.g., palladium, ruthenium and technetium, are removed from aqueous, acidic waste solutions thereof. The acidic waste solution is electrolyzed in an electrolytic cell under controlled cathodic potential conditions and technetium, ruthenium, palladium and rhodium are deposited on the cathode. Metal deposit is removed from the cathode and dissolved in acid. Acid insoluble rhodium metal is recovered, dissolved by alkali metal bisulfate fusion and purified by electrolysis. In one embodiment, the solution formed by acid dissolution of the cathode metal deposit is treated with a strong oxidizing agent and distilled to separate technetium and ruthenium (as a distillate) from palladium. Technetium is separated from ruthenium by organic solvent extraction and then recovered, e.g., as an ammonium salt. Ruthenium is disposed of as waste by-product. Palladium is recovered by electrolysis of an acid solution thereof under controlled cathodic potential conditions. Further embodiments wherein alternate metal recovery sequences are used are described. (U.S.)

  15. Batch fermentative production of lactic acid from green- sugarcane juices

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2004-07-01

    Full Text Available Juice from the CC85-92 variety of green (unburned sugar cane was tested as a suitable substrate in lactic-acid production. Fermentations were carried out with a homo-fermentative strain isolated from crops of the same variety of cane. Both the centrifugation pre-treatment and concentrated-nitrogen effects on substrate conversion, lactic-acid concentration and yield were evaluated. After a fermentation time of 48 h at 32° C with 5% of yeast extract as nitrogen source, 40,78 g/L of lactic-acid concentration, 0.58 g/g of product yield and 33% of substrate conversion were obtained. Centrifugation did not affect lactic acid production. Key words: Lactic acid, green sugar cane, Lactococcus lactis subs. lactis.

  16. A new approach to microbial production of gallic acid.

    Science.gov (United States)

    Bajpai, Bhakti; Patil, Shridhar

    2008-10-01

    In a new approach to microbial gallic acid production by Aspergillus fischeri MTCC 150, 40gL(-1) of tannic acid was added in two installments during the bioconversion phase of the process (25gL(-1) and 15gL(-1) at 32 and 44h respectively). The optimum parameters for the bioconversion phase were found to be temperature: 35°C, pH: slightly acidic (3.3-3.5), aeration: nil and agitation: 250 rpm. A maximum of 71.4% conversion was obtained after 71h fermentation with 83.3% product recovery. The yield was 7.35 g of gallic acid per g of biomass accumulated and the fermenter productivity was 0.56 g of gallic acid produced per liter of medium per hour.

  17. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Opportunities, perspectives and limits in lactic acid production from waste and industrial by-products

    Directory of Open Access Journals (Sweden)

    Mladenović Dragana D.

    2016-01-01

    Full Text Available In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized fermentation have been investigated.

  19. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon

    2013-01-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  20. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  1. Docosahexaenoic acid production by the marine algae Crypthecodinium cohnii

    NARCIS (Netherlands)

    De Swaaf, M.E.

    2003-01-01

    This thesis focuses on the production of docosahexaenoic acid (DHA; 22:6), an w-3 polyunsaturated fatty acid with applications in foods and pharmaceuticals, by Crypthecodinium cohnii. This chloroplastless heterotrophic marine microalga has been studied since the end of the nineteenth century and has

  2. Fermentatative production of itaconic acid by Aspergillus terreus ...

    African Journals Online (AJOL)

    Fermentation process for the production of itaconic acid was carried out using jatropha seed cake. Itaconic acid is commercially produced by the cultivation of Aspergillus terreus with molasses. Jatropha seed cake is one of the best carbon sources among various carbohydrates, because it is pure, inexpensive and available ...

  3. Effect of exogenously added rhamnolipids on citric acid production ...

    African Journals Online (AJOL)

    Effect of exogenously added rhamnolipids on citric acid production yield. Wojciech Białas, Roman Marecik, Alicja Szulc, Łukasz Ławniczak, Łukasz Chrzanowski, Filip Ciesielczyk, Teofil Jesionowski, Andreas Aurich ...

  4. Computer Aided Synthesis of Innovative Processes: Renewable Adipic Acid Production

    DEFF Research Database (Denmark)

    Rosengarta, Alessandro; Bertran, Maria-Ona; Manenti, Flavio

    2017-01-01

    A promising biotechnological route for the production of adipic acid from renewables has been evaluated, applying a systematic methodology for process network synthesis and optimization. The method allows organizing in a structured database the available knowledge from different sources (prelimin...

  5. Radiolytic products of irradiated authentic fatty acids and triacylglycerides

    International Nuclear Information System (INIS)

    Kim, K.-S.; Lee, Jeong-Min; Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Byun, Myung-Woo; Kwon, Joong-Ho

    2004-01-01

    Radiolytic products of authentic fatty acids (palmitic, stearic, oleic, linoleic and linolenic acids) and triacylglycerides (tripalmitin, tristearin, triolein, trilinolein and trilinolenin) were determined. Concentrations of hydrocarbons from the saturated fatty acids were higher than the unsaturated fatty acids. Authentic fatty acids were mainly decomposed in the α-carbon position and C n-1 hydrocarbons occurred in higher than C n-2 hydrocarbons. Concentrations of 2-alkylcyclobutanones from the saturated fatty acids were lower than the unsaturated fatty acids. Concentrations of hydrocarbons from tripalmitin and tristearin were not a significant change compared with triolein, trilinolein and trilinolenin. For all triacylglycerides except triolein, C n-1 hydrocarbons were higher than C n-2 hydrocarbons. Radioproduction rates of 2-alkylcyclobutanones from tripalmitin and tristearin were higher than triolein, trilinolein and trilinolenin

  6. The Cellulolytic Activity And Volatile Fatty Acid Product Of Rumen Bacteria Of Buffalo And Cattle On Rice Straw, Elephant Grass, and Sesbania Leaves Substrates

    Directory of Open Access Journals (Sweden)

    Caribu Hadi Prayitno

    1999-01-01

    Full Text Available Experiment on The Cellulolytic Activity and Volatile Fatty Acid Product of Rumen Bacteria of Buffalo and Cattle on Rice Straw, Elephant Grass, and Sesbania Leaves Substrates had been conducted at Feedstuff Laboratory of Animal Science Soedirman University. The basic design  that was used in this experiment was Completely Randomized Design (CRD with factorial pattern of 6 x 3, three replications. The bacteria isolate as the factors were cellulolytic rumen bacteria isolate of buffalo (A1, A2, and A3 and cattle (A4, A5 and A6 while the substrates (second factor  were NDF rice straw (S1, elephant grass (S2, and sesbania leaves (S3 Cell walls. The result of this experiment showed that the interaction between bacteria isolate and substrate  type were significant on pH, NDF digestibility, cellulase activity, pH was  6.28 until 6.43.  The NDF digestibility range was 12.27 until 55.61 percent. The lowers of cellulase activity was 5.11 IU/ml and the higher was 24.47 IU/ml. The range of acetic acid yield was 63.37 to 307.467 mg/100 ml. Range of  propionic production was 15.17 to 352.20 mg/ 100 ml. The production of butiric acid was 8.77 to 40.87 mg/ 100 ml. The cellulase activity  of cellulolytic rumen bacteria of buffalo was higher than cattle, and also their effect on NDF digestibility of rice straw, elephant grass, and sesbania leaves cell walls. The A3 of cellulolytic rumen bacteria isolate of  buffalo changed cell walls substrat to volatile fatty  acid was more effective than cattle, especially on cell elephant grass. Propionic and butiric  acid that was produced by cellulolytic rumen bacteria isolate of buffalo more higher than cattle (Animal Production 1 (1 : 1-9 (1999 Key Words: Cellulolytic, VFA, Rumen Bacteria, Buffalo, Cattle.

  7. Availability of lignocellulosic feedstocks for lactic acid production - Feedstock availability, lactic acid production potential and selection criteria

    NARCIS (Netherlands)

    Bakker, R.R.C.

    2013-01-01

    The overall objective of this study is to assess the worldwide availability and suitability of agricultural residues for lactic acid production, based on fermentation of carbohydrates. The study focuses on lignocellulosic biomass that is produced as a by-product of agricultural production. The

  8. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  9. The use of in vitro gas production technique to evaluate molasses supplementation to mulberry (morus alba and rice straw mixed diets

    Directory of Open Access Journals (Sweden)

    Dwi Yulistiani

    2007-12-01

    Full Text Available Mulberry foliages have high nutritive value (protein content, digestibility and degradability, therefore it is potential to be used as a supplement to poor quality roughages. The objective of this experiment was to evaluate the effect of addition of fermentable energy in the mixed of mulberry and rice straw basal diet. A control diet consisted of either rice straw (RS or urea treated rice straw mixed with mulberry foliage (URS with ratio of 60 : 40%. Treatment was formulated by supplementation of control diet with molasses (as sources of fermentable energy at 3 levels (5, 10 and 15%. The study was conducted in a 2 x 4 factorial experiment, consisted of 2 levels rice straw (untreated and urea treated and 4 levels molasses supplementation (control and 3 levels for molasses. Diets were evaluated using in vitro gas production. The fermentation kinetics was determined from the incubation of 200 mg sample during 96 hours. The calculation of the kinetics based on exponential equation P = A+ B (1-e-ct. A shorter gas production test was carried out to determine truly degradable fermented substrates (in vitro true organic matter degradability/IVTOMD by incubating 500 mg of samples 24 hours. The result showed that there was no significant interaction between rice straw treatment and molasses supplementation on fermentation characteristics, in vitro true dry matter digestibility, fermented substrate and total volatile fatty acid (VFA production. However there was a significant interaction between rice straw treatment on partitioning factor (PF, gas produced, propionic acid production and ratio between acetic acid and propionic acid. Molasses supplementation significantly (P<0.05 decreased gas production and ratio of acetic to propionic acid, and increase PF, propionic acid production in untreated rice straw mulberry (RSM basal diet. It is concluded that molasses supplementation to RSM diet decreased gas production and ratio of C2/C3, and increased PF and

  10. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    Science.gov (United States)

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  12. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  13. Effects of acetic, propionic and butyric acids given intraruminally at ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... such hormones like insulin, insulin-like growth factor-I. (IGF-I) and epidermal ... insulin and IGF-I and IGFBP-3 in plasma, liver and rumen tissues in growing ..... J. Dairy Sci. 87 (Suppl.): ... infusion of nutrients in cattle. Br. J. Nutr.

  14. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  15. Response of preschool children with asthma symptoms to fluticasone propionate

    DEFF Research Database (Denmark)

    Roorda, R J; Mezei, G; Bisgaard, H

    2001-01-01

    with after placebo (7% to 35%, P =.002) and a significantly higher proportion of exacerbation-free patients (61% to 76%, P =.02). Children with less frequent symptoms, no family history of asthma, or both showed no significant treatment effect. There seemed to be no association between response...... to fluticasone propionate and history of rhinitis or eczema or the number of previous exacerbations. CONCLUSIONS: Children with frequent symptoms, a family history of asthma, or both showed the greatest response to fluticasone propionate treatment. These findings may help to predict treatment outcome and guide...

  16. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  17. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  18. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  19. Organic acid production in Aspergillus niger and other filamentous fungi

    NARCIS (Netherlands)

    Odoni, Dorett I.

    2017-01-01

    The aim of the thesis was to increase the understanding of organic acid production in Aspergillus niger and other filamentous fungi, with the ultimate purpose to improve A. niger as biotechnological production host.

    In Chapter 1, the use of microbial

  20. Enhancement of clavulanic acid production by Streptomyces sp MU ...

    African Journals Online (AJOL)

    Purpose: To enhance clavulanic acid production using UV-mutagenesis on Streptomyces sp. NRC77. Methods: UV-mutagenesis was used to study the effect of Streptomyces sp. NRC77 on CA production. Phenotypic and genotypic identification methods of the promising mutant strain were characterized. Optimization of the ...

  1. Rice genotypes evaluate under the interactive phytotoxic effect of acetic, propionic and butyric acidsAvaliação de genótipos de arroz sob o efeito fitotóxico interativo dos ácidos acético, propiônico e butírico

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    2012-05-01

    Full Text Available The objective of this work was to evaluate the development of 20 rice genotypes to acetic, pripionic and butyric acid, a phytotoxic compounds produced in low drainage soils with high organic matter content. This work was performed in hydroponics with four acid doses (0; 3; 6 e 9 mM and 6:3:1 relationship acetic, propionic and butyric respectively. A factorial random block design with three replications were performed. The variables measured were root (CR and shoot (CPA length, number of roots (NR and root (MSR and shoot (MSPA dry matter. The data relative to the measured variables were subjected to an analysis of variance in a factorial model (4x20 and regression fitting, considering dose and genotype as fixed factors. Significance for the interaction (genotype vs. dose was found only for CR and CPA. The variable CR was the most influenced by the acid and the regression stablished for the variables CR and CPA revealed 2 genotypes with root length stability and 3 with shoot length stability front to organic acid stress. Genotypes with higher rusticity and developed for irrigated systems were more tolerant. O objetivo do trabalho foi avaliar o desenvolvimento de 20 genótipos de arroz aos ácidos acético, propiônico e butírico, compostos fitotóxicos produzidos em solos de deficiente drenagem e alto teor de matéria orgânica. O trabalho foi executado em sistema de hidroponia com 4 doses (0; 3; 6 e 9 mM dos ácidos na relação 6:3:1 acético, propiônico e butírico respectivamente. O delineamento utilizado foi blocos casualizados com 3 repetições num esquema fatorial. As variáveis mensuradas foram comprimento de raízes (CR e parte aérea (CPA, número de raízes (NR e massa seca de raízes (MSR e parte aérea (MSPA. Os dados relativos às variáveis mensuradas foram submetidos à análise de variância em um modelo fatorial (4x20, considerando dose e genótipo como fatores fixos e ajuste de regressões. A variável CR foi a mais afetada

  2. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    Science.gov (United States)

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Role of formate and hydrogen in the syntrophic degradation of propionate and butyrate

    NARCIS (Netherlands)

    Xiuzhu Dong,

    1994-01-01

    Under methanogenic conditions, complex organic matter is mineralized by fermentative, acetogenic and methanogenic bacteria. Propionate and butyrate are two important intermediates; they account for 35% and 8% of the total methane formation, respectively. Propionate and butyrate are

  4. Precipitation of fluticasone propionate microparticles using supercritical antisolvent

    Directory of Open Access Journals (Sweden)

    A Vatanara

    2009-03-01

    Full Text Available ABSTRACT Background: The ability of supercritical fluids (SCFs, such as carbon dioxide, to dissolve and expand or extract organic solvents and as result lower their solvation power, makes it possible the use of SCFs for the precipitation of solids from organic solutions. The process could be the injection of a solution of the substrate in an organic solvent into a vessel which is swept by a supercritical fluid. The aim of this study was to ascertain the feasibility of supercritical processing to prepare different particulate forms of fluticasone propionate (FP, and to evaluate the influence of different liquid solvents and precipitation temperatures on the morphology, size and crystal habit of particles. Method: The solution of FP in organic solvents, was precipitated by supercritical carbon dioxide (SCCO2 at two pressure and temperature levels. Effects of process parameters on the physicochemical characteristics of harvested microparticles were evaluated. Results: Particle formation was observed only at the lower selected pressure, whilst at the higher pressure, no precipitation of particles was occurred due to dissolution of FP in supercritical antisolvent. The micrographs of the produced particles showed different morphologies for FP obtained from different conditions. The results of thermal analysis of the resulted particles showed that changes in the processing conditions didn't influence thermal behavior of the precipitated particles. Evaluation of the effect of temperature on the size distribution of particles showed that increase in the temperature from 40 oC to 50 oC, resulted in reduction of the mean particle size from about 30 µm to about 12 μm. ‍Conclusion: From the results of this study it may be concluded that, processing of FP by supercritical antisolvent could be an approach for production of diverse forms of the drug and drastic changes in the physical characteristics of microparticles could be achieved by changing the

  5. Interaction of propionate and carnitine metabolism in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Brass, E.P.; Beyerinck, R.A.

    1987-01-01

    Propionate (P) and its metabolic products P-CoA and methylmalonyl-CoA can disrupt normal hepatic metabolism. Carnitine (Cn) has been shown to partially restore cellular function in the presence of P. This effect of Cn may result from removal of propionyl groups as propionylcarnitine (P-Cn). The present study examined the kinetics of P-Cn formation in rat hepatocytes, and the consequence of P-Cn formation on P and Cn metabolism. 14 C-P was converted to CO 2 , glucose and P-Cn in the hepatocyte system. Increasing concentrations of Cn up to 10.0 mM increased P-Cn formation from P without affecting CO 2 or glucose formation. Thus, 10.0 mM Cn increased total P metabolism by 40%. Metabolism of P was associated with a decrease in Cn concentration and an increase in short chain acylcarnitines (SCCn). In the absence of added Cn, 60 min incubation with P decreased Cn from 6.8 to 2.5 μM with a corresponding increase in SCCn. This effect of P to deplete free Cn was not seen to the same degree with butyrate in place of P. Similar increases in the formation of SCCn in the presence of P at the expense of free Cn were seen when the incubation Cn concentration was increased to 50 μM or 150 μM. HPLC methodologies to study specific acylcarnitines demonstrated the accumulation of large amounts of P-Cn in the incubations containing P, accounting for the depletion of free Cn

  6. Citric acid production from whey by fermentation using Aspergillus spp.

    Directory of Open Access Journals (Sweden)

    Óscar Julián Sánchez Toro

    2004-01-01

    Full Text Available Whey has become the main dairy-industry waste product, despite continuous efforts aimed at finding a way to use it. The aim of this research was to investigate citric acid production by submerged fermentation using Aspergillus genus fungi, using whey as substrate to take economical advantage of it and to reduce the environmental impact caused by discharging this by-product into nearby streams. The following three strains were used: A. carbonarius NRRL 368, A. carbonarius NRRL 67 and A. niger NRRL 3. The best adaptation medium for inoculum propagation was selected. Proposed experimental design for evaluating citric acid biosynthesis from whey modified through different treatments showed that the two A. carbonarius strains did not present significant differences in acid production whereas A. niger NRRL 3 reached higher concentration when evaporated, deproteinised and p-galactosidase lactose-hydrolysed whey was used. However, A. carbonarius gave higher average citric acid titres than those found for A. niger. This suggests the need for carrying out further research on it as a potential producing strain. Cell growth, substrate consumption and acid production kinetics in a 3-L stirred-tank bioreactor with aeration were developed in the case of A. niger; kinetics were simulated through non-structured mathematical models. Key words: Aspergilluscarbonarius, Aspergillus niger, bioreactor, simulation, p-galactosidase.

  7. Electrochemical reduction of Eu (III) in propionic media

    International Nuclear Information System (INIS)

    Brotto, M.E.; Rabockai, T.

    1988-01-01

    Some chronopotentiometric studies of Eu (III) electro-reducion in propionic media that suggests the presence of two parallel rections: Eu (III) → Eu (II) and Eu (III) → Eu (II) → Y are presented. Some experimental data, such Eu (III) reducion, electrolysis of solutions and ionic power of the system are discussed. (M.J.C.) [pt

  8. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod; Alabbad, Mohammed; Farooq, Aamir

    2016-01-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored

  9. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier

    NARCIS (Netherlands)

    Heijink, I. H.; Jonker, M.R.; Vries, de Maaike; van Oosterhout, A. J. M.; Telenga, E.; ten Hacken, N. H. T.; Postma, D. S.; van den Berge, M.

    2016-01-01

    Background: COPD patients have a higher risk of pneumonia when treated with fluticasone propionate (FP) than with placebo, and a lower risk with budesonide (BUD). We hypothesized that BUD and FP differentially affect the mucosal barrier in response to viral infection and/or cigarette smoke. Methods:

  10. Interspecies electron transfer in methanogenic propionate degrading consortia

    NARCIS (Netherlands)

    Bok, de F.A.M.; Plugge, C.M.; Stams, A.J.M.

    2004-01-01

    Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of this compound requires obligate syntrophic consortia of acetogenic proton- and bicarbonate reducing bacteria and methanogenic archaea. Although H-2 acts as an electron-carrier in

  11. Enhanced vanillin production from ferulic acid using adsorbent resin.

    Science.gov (United States)

    Hua, Dongliang; Ma, Cuiqing; Song, Lifu; Lin, Shan; Zhang, Zhaobin; Deng, Zixin; Xu, Ping

    2007-03-01

    High vanillin productivity was achieved in the batch biotransformation of ferulic acid by Streptomyces sp. strain V-1. Due to the toxicity of vanillin and the product inhibition, fed-batch biotransformation with high concentration of ferulic acid was unsuccessful. To solve this problem and improve the vanillin yield, a biotransformation strategy using adsorbent resin was investigated. Several macroporous adsorbent resins were chosen to adsorb vanillin in situ during the bioconversion. Resin DM11 was found to be the best, which adsorbed the most vanillin and the least ferulic acid. When 8% resin DM11 (wet w/v) was added to the biotransformation system, 45 g l(-1) ferulic acid could be added continually and 19.2 g l(-1) vanillin was obtained within 55 h, which was the highest vanillin yield by bioconversion until now. This yield was remarkable for exceeding the crystallization concentration of vanillin and therefore had far-reaching consequence in its downstream processing.

  12. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  13. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    Science.gov (United States)

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Materials and methods for efficient lactic acid production

    Science.gov (United States)

    Zhou, Shengde; Ingram, Lonnie O& #x27; Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  15. Lactic Acid and Probiotic Bacteria from Fermented and Probiotic Dairy Products

    Directory of Open Access Journals (Sweden)

    B.K.L. Karna

    2007-12-01

    Full Text Available Lactic acid and probiotic bacteria were enumerated and isolated from commercially available yoghurt andprobiotic milk products. Lactobacillus delbrueckii ssp. bulgaricus were enumerated and isolated usingMRS agar incubated anaerobically at 37oC for 72 hrs. M17 agar was used for the enumeration andisolation of Streptococcus thermophilus incubated aerobically at 37oC for 48 hrs. MRS agar and modifiedMRS agar (MRS + L-cysteine + LiCl + Na propionate were used for the enumeration and isolation ofprobiotic bacteria. Both were incubated anaerobically at 37oC for 72 hrs. Morphological, physiologicaland biochemical reactions were used to characterize the isolates.Str. thermophilus counts ranged from 2.6 x 1011 to 2.9 x 1020 CFU/g with Fruit Yoghurt (FY having thehighest count and Yoghurt Natural (YN with the lowest count. Highest Lactobacillus delbrueckii ssp.bulgaricus count was obtained in Duo Yoghurt (DY, 1.1 x 109 and lowest in Yoghurt Drink (YD, 8.0 x 107CFU/g. The highest probiotic bacterial count of 2.3 x 108 was obtained in Yakult (YK and Neslac (Nesshowed the lowest, 1.6 x 102 CFU/g. The viable counts of all the products examined met the prescribedminimum viable count of 105 to 106CFU/g for the claimed health benefits for the consumer except forChamyto Plain (CP, Nes and Nan-2 (Nan.Morphological, physiological and biochemical characteristics showed that the following genera andspecies were present Pediococcus acidilactici (YN, P. pentosaceus (FY, Lactobacillus delbrueckiidelbrueckii and L. brevis in Non Fat High Calcium Yoghurt (NC, L. acidophilus and L. delbrueckiidelbrueckii (DY, YD, P. damnosus and P. pentosaceus in Chamyto Orange (CO, L. delbrueckii bulgaricus,L. acidophilus, and L. delbrueckii delbrueckii (CP, L. para. paracasei (YK and Bifidobacterium ssp.(Nes and Nan.Of the 28 isolates characterized in this study, 15 were Lactobacillus (5 species, 5 werePediococcus (3 species, 6 were Bifidobacterium (species not identified, and 2 were

  16. Effect of inhibitors on acid production by baker's yeast.

    Science.gov (United States)

    Sigler, K; Knotková, A; Kotyk, A

    1978-01-01

    Glucose-induced acid extrusion, respiration and anaerobic fermentation in baker's yeast was studied with the aid of sixteen inhibitors. Uranyl(2+) nitrate affected the acid extrusion more anaerobically than aerobically; the complexing of Mg2+ and Ca2+ by EDTA at the membrane had no effect. Inhibitors of glycolysis (iodoacetamide, N-ethylmaleimide, fluoride) suppressed acid production markedly, and so did the phosphorylation-blocking arsenate. Fluoroacetate, inhibiting the citric-acid cycle, had no effect. Inhibition by uncouplers depended on their pKa values: 2,4,6-trinitrophenol (pKa 0.4) less than 2,4-dinitrophenol (4.1) less than azide (4.7) less than 3-chlorophenylhydrazonomalononitrile (6.0). Inhibition by trinitrophenol was only slightly increased by its acetylation. Cyanide and nonpermeant oligomycin showed practically no effect; inhibition by dicyclohexylcarbodiimide was delayed but potent. The concentration profiles of inhibition of acid production differed from those of respiration and fermentation. Thus, though the acid production is a metabolically dependent process, it does not reflect the intensity of metabolism, except partly in the first half of glycolysis.

  17. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping

    2018-04-30

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.

  19. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Effect of sugar fatty acid esters on rumen fermentation in vitro.

    Science.gov (United States)

    Wakita, M; Hoshino, S

    1987-11-01

    1. The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro. 2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate:propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent propionate enhancer and rumen gas depressor, the effective dose being as low as 1 g/l in a final concentration. Fatty acid esters other than SFEs had little, if any, effect on rumen VFA production and their molar proportions. 3. Approximately 50% of laurate sugar ester was hydrolysed by in vitro incubation with rumen fluid for 2 h. The addition of fatty acids and sucrose was also effective in the alterations of rumen VFA and gas production. However, the effect of SFEs on in vitro rumen fermentation was significantly greater than that of their constituent fatty acids or sucrose, or both. Accordingly, the effect appeared to be ascribed to the complex action of SFE itself and to its constituents, free fatty acids and sucrose. 4. SFEs, at the level of 4 g/l, reduced substantially the froth formation (ingesta volume increase) and seemed to be effective for the prevention of bloat.

  1. Fermentative production of butyric acid from wheat straw: Economic evaluation

    DEFF Research Database (Denmark)

    Baroi, G. N.; Gavala, Hariklia N.; Westermann, P.

    2017-01-01

    2014) at 3.50 and 3.95 $ per kg product (for S1 and S2 respectively) and a plant capacity of 10,000 tonnes indicated an internal rate of return of 14.92% and 12.42% and payback time of 4.28 and 4.70 years for S1 and S2 respectively. Sensitivity analysis showed that under the assumptions of the present......The economic feasibility of biochemical conversion of wheat straw to butyric acid was studied in this work. Basic process steps included physicochemical pretreatment, enzymatic hydrolysis and saccharification, fermentation with in-situ acids separation by electrodialysis and product purification...

  2. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  3. 2012: no trans fatty acids in Spanish bakery products.

    Science.gov (United States)

    Ansorena, Diana; Echarte, Andrea; Ollé, Rebeca; Astiasarán, Iciar

    2013-05-01

    Trans fatty acids (TFA) are strongly correlated with an increased risk of cardiovascular and other chronic diseases. Current dietary recommendations exclude bakery products from frequent consumption basically due to their traditionally high content of TFA. The aim of this work was to analyse the lipid profile of different bakery products currently commercialised in Spain and with a conventionally high fat and TFA content. Premium and store brands for each product were included in the study. No significant amounts of TFA were found in any of the analysed products, regardless the brand. TFA content ranged between 0.17 g and 0.22 g/100 g product (mean=0.19 g/100 g product). Expressed on percentage of fatty acids, the maximum value was 0.87 g/100 g fatty acids and the mean value was 0.68%. These data are significantly lower than those observed in previously published papers for these types of products, and highlighted the importance of updating food composition databases in order to accurately estimate the real and current intake of TFA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Inhibition of methane production by Methanobacterium formicicum

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, P N; Shaw, B G

    1976-01-01

    The effects of volatile fatty acids, ammonia and copper on methane production by growing cultures of Methanobacterium formicicum were studied. Acetate and butyrate were not inhibitory, but propionate was inhibitory above certain concentrations, as was ammonia. Copper was inhibitory, but inhibitory concentrations are difficult to define as varying amounts may be precipitated as the sulphide. The results are compared with those from piggery-waste digesters and it is suggested that failure of farm-waste digesters from such inhibitions is unlikely.

  5. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris.

    Science.gov (United States)

    Witthuhn, R Corli; van der Merwe, Enette; Venter, Pierre; Cameron, Michelle

    2012-06-15

    Alicyclobacilli are thermophilic, acidophilic bacteria (TAB) that spoil fruit juice products by producing guaiacol. It is currently believed that guaiacol is formed by Alicyclobacillus in fruit juices as a product of ferulic acid metabolism. The aim of this study was to identify the precursors that can be metabolised by Alicyclobacillus acidoterrestris to produce guaiacol and to evaluate the pathway of guaiacol production. A. acidoterrestris FB2 was incubated at 45°C for 7days in Bacillus acidoterrestris (BAT) broth supplemented with ferulic acid, vanillin or vanillic acid, respectively. The samples were analysed every day to determine the cell concentration, the supplement concentration using high performance liquid chromatography with UV-diode array detection (HPLC-DAD) and the guaiacol concentration, using both the peroxidase enzyme colourimetric assay (PECA) and HPLC-DAD. The cell concentration of A. acidoterrestris FB2 during the 7days in all samples were above the critical cell concentration of 10(5)cfu/mL reportedly required for guaiacol production. The guaiacol produced by A. acidoterrestris FB2 increased with an increase in vanillin or vanillic acid concentration and a metabolic pathway of A. acidoterrestris FB2 directly from vanillin to guaiacol was established. The high concentration of vanillic acid (1000mg/L) resulted in an initial inhibitory effect on the cells, but the cell concentration increased after day 2. Guaiacol production did not occur in the absence of either a precursor or A. acidoterrestris FB2 and guaiacol was not produced by A. acidoterrestris FB2 in the samples supplemented with ferulic acid. The presence of Alicyclobacillus spp. that has the ability to produce guaiacol, as well as the substrates vanillin or vanillic acid is prerequisite for production of guaiacol. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  7. THE EFFECTS OF ORAL ADMINISTRATION OF PROPYLENE GLYCOL AND CALCIUM PROPIONATE IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    C. GAVAN

    2009-10-01

    Full Text Available This study was designed to determine the effects of the oral administration of propylene glycol and calcium propionate on performance of dairy cows. Treatments were 10 l water (control, 10 l water+300 ml propylene glycol (GP and 10 l water+500 g calcium propionate (CP. Animals were mainly of Holstein breeds and were fed and managed in a commercial setting. The cows were divided randomly into an experimental group, n=24 (n=12 with PG and n=12 with CP and a control group, n=11. Cows received the assigned treatment within 10 hours of calving and 24 hours after calving. Health events were recorded during calving and for the first 21 days in milk (DIM. Health examinations were performed on cows that appeared not well. The cows were milked three times daily and milk production was recorded electronically. Milk solid content and somatic cell score were determinate from three consecutive milking weekly till 20 DIM and than monthly till 110 DIM. Retained placenta, hypocalcaemia, displaced abomasums, ketosis and metritis were low in treatment groups (with PG and CP. The cows receiving PG had 2.8 Kg/day grater milk production than control group. The cows receiving CP had 1.7 kg/day grater milk production than control group. Prophylactic administration of PG and CP drenches to Holstein cows may be justified by potentially higher milk yields and reduced health complications.

  8. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    possible role in maintaining functional stability of MECs fed with low and high concentrations of acetate and propionate. Taken together, these results provide new insights on the microbial community dynamics and its correlation to performance in MECs fed with different concentrations of acetate and propionate, which are important volatile fatty acids in wastewater.

  9. Potential Use of Gelidium amansii Acid Hydrolysate for Lactic Acid Production by Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2013-01-01

    Full Text Available Galactose and glucose are the main monosaccharides produced from the saccharification of Gelidium amansii. They were hydrolysed with 3 % (by volume H2SO4 at 140 °C for 5 min and obtained at concentrations of 19.60 and 10.21 g/L, respectively. G. amansii hydrolysate (5 %, by mass per volume was used as a substrate for L(+-lactic acid production by Lactobacillus rhamnosus. The maximum lactic acid yield (YP/S was 42.03 % with optical purity of 84.54 %. Lactic acid produced from G. amansii hydrolysate can be applicable, among others, for the production of lactic acid esters, like ethyl or methyl lactate, and disinfectant in seaweed cultivation.

  10. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  11. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2013-01-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions

  12. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  13. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  14. Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci

    NARCIS (Netherlands)

    Houte, J. van; Winkler, K.C.; Jansen, H.M.

    The relation between iodophilic polysaccharide formation, acid production and growth in α-haemolytic streptococci, isolated from human dental plaque, was studied. In experiments with resting cell suspensions, or with cells growing at a low rate, all strains synthesizing iodophilic polysaccharide

  15. Acid production by oral strains of Candida albicans and Lactobacilli

    NARCIS (Netherlands)

    Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Forster, A.; Klimm, W.

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed,

  16. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    This study was undertaken to test the effects of enrichment products. Red pepper paste (ZA), AlgaMac 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively cultured on a mixture of ω3 algae and ω3 yeast. Enriched rotifers were seen to have higher level of ...

  17. Integrated production of lactic acid and biomass on distillery stillage.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra P; Mojović, Ljiljana V; Vukašinović-Sekulić, Maja S; Nikolić, Svetlana B; Pejin, Jelena D

    2013-09-01

    The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L(-1) h(-1) were achieved in batch fermentation with initial sugar concentration of 55 g L(-1). A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 10(9) CFU ml(-1) was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.

  18. Promotion of ganoderic acid production in Ganoderma sinense by ...

    African Journals Online (AJOL)

    To screen stimulators from Chinese medicinal insects for mycelial growth and ganoderic acid (GA) production by Ganoderma sinense, the fungus was inoculated into the media with and without supplementation of a medicinal insect extract. The results show that all the water and ether extracts from the medicinal insects had ...

  19. Conjugated Linoleic Acid Production by Bifidobacteria: Screening, Kinetic, and Composition

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2016-01-01

    Full Text Available Conjugated linoleic acids (CLA are positional and geometric isomers of linoleic acid involved in a number of health aspects. In humans, CLA production is performed by gut microbiota, including some species of potential probiotic bifidobacteria. 128 strains of 31 Bifidobacterium species were screened with a spectrophotometric assay to identify novel CLA producers. Most species were nonproducers, while producers belonged to B. breve and B. pseudocatenulatum. GC-MS revealed that CLA producer strains yielded 9cis,11trans-CLA and 9trans,11trans-CLA, without any production of other isomers. Hydroxylated forms of LA were absent in producer strains, suggesting that the myosin-cross-reactive antigen (MCRA protein that exerts hydratase activity is not involved in LA isomerization. Moreover, both CLA producer and nonproducer species bear a MCRA homologue. The strain B. breve WC 0421 was the best CLA producer, converting LA into 68.8% 9cis,11trans-CLA and 25.1% 9trans,11trans-CLA. Production occurred mostly during the lag and the exponential phase. For the first time, production and incorporation of CLA in biomass were assessed. B. breve WC 0421 stored CLA in the form of free fatty acids, without changing the composition of the esterified fatty acids, which mainly occurred in the plasmatic membrane.

  20. Statistical optimization of lactic acid production by Lactococcus lactis ...

    African Journals Online (AJOL)

    The individual and interactive effects of a total inoculums size (% v/v), fermentation temperature and skim milk dry matter added (% w/v) on the lactic acid production by Lactococcus lactis LCL strain were studied by quadratic response surface methodology. The central composite design (CCD) was employed to determine ...

  1. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Essential to these roles is their rapid transport across the plasma membrane, which is catalyzed ... The aim of this review is to critically discuss short-chain fatty acids production and the functional ... Two major functions of monocarboxylate transporter proteins, namely the facilitation of the ...

  2. Citric acid production from whey with sugars and additives by ...

    African Journals Online (AJOL)

    Citric acid (CA) production by Aspergillus niger ATCC9642 from whey with different concentrations of sucrose, glucose, fructose, galactose riboflavin, tricalcium phosphate and methanol in surface culture process was studied. It was found that whey with 15% (w/v) sucrose with or without 1% methanol was the most ...

  3. Efficient production of free fatty acids from soybean meal carbohydrates.

    Science.gov (United States)

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  4. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    Science.gov (United States)

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  5. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    Science.gov (United States)

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. improving citric acid production from some carbohydrates by-products using irradiated aspergillus niger

    International Nuclear Information System (INIS)

    Farag, S.S.

    2011-01-01

    Twenty strains of A. niger were isolated from different sources, screened for their capacity to produce citric acid. All the isolated strains were able to produce citric acid in different quantities at different time intervals i.e. 4, 8 and 12 days on indicator medium. The best incubation period for production for all isolates was 12 days. The most potent strains for production were A 1 , A 4 and A 5 , while A 8 , A 1 6, A 18 and A 19 recorded weak production on that medium. Citric acid productivity were obtained by all strains when using different concentrations of four carbohydrate by-products (maize straw, potato peel wastes, sugar beet pulp and molasses) when each used alone without any additions after 12 days incubation and the production enhanced when the fermentation medium amended with the same concentrations of the mentioned substrates. Type and concentration of carbohydrate by-product affect the production of citric acid by A. niger strains under the study. Increasing substrate concentration led to increase in production, the best concentration for production was 25% for all carbohydrate by-products. As recorded with indicator medium, A 1 , A 4 and A 5 are also the most potent strains for production when growing on the four carbohydrate by-products supplemented to the basal medium, while A 8 , A 6 , A 18 and A 19 recorded the weak production with the carbohydrate by-products used.production of the parental isolates A 1 , A 4 and A 5 on indicator medium were: 0.96, 0.95 and 0.99 (mg/ml) respectively after 12 days incubation, while maximum production by the obtaining resulting isolates (Treated by UV irradiation) were: 1.78, 1.70 and 1.73 (mg/ml) from A 4 T 2 (5 min.), A 4 T 1 (10 min.) and A 1 T 1 (5 min.), respectively.

  7. Concurrent non-ketotic hyperglycinemia and propionic acidemia in an eight year old boy

    Directory of Open Access Journals (Sweden)

    Paul S. Kruszka

    2014-01-01

    Full Text Available This is the first reported case of a patient with both non-ketotic hyperglycinemia and propionic acidemia. At 2 years of age, the patient was diagnosed with non-ketotic hyperglycinemia by elevated glycine levels and mutations in the GLDC gene (paternal allele: c.1576_1577insC delT and c.1580delGinsCAA; p.S527Tfs*13, and maternal allele: c.1819G>A; p.G607S. At 8 years of age after having been placed on ketogenic diet, he became lethargic and had severe metabolic acidosis with ketonuria. Urine organic acid analysis and plasma acylcarnitine profile were consistent with propionic acidemia. He was found to have an apparently homozygous mutation in the PCCB gene: c.49C>A; p.Leu17Met. The patient was also treated with natural protein restriction, carnitine, biotin, and thiamine and had subjective and biochemical improvement.

  8. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  9. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  10. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    Science.gov (United States)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  11. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  12. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    Science.gov (United States)

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  13. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    Directory of Open Access Journals (Sweden)

    Liu Long

    2011-11-01

    Full Text Available Abstract Hyaluronic acid (HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.

  14. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...

  15. Yarrowia lipolytica: a model yeast for citric acid production.

    Science.gov (United States)

    Cavallo, Ema; Charreau, Hernán; Cerrutti, Patricia; Foresti, María Laura

    2017-12-01

    Every year more than 2 million tons of citric acid (CA) are produced around the world for industrial uses. Although initially extracted from citrus, the low profitability of the process and the increasing demand soon stimulated the search for more efficient methods to produce CA. Currently, most world CA demand (99%) is satisfied by fermentations with microorganisms, especially filamentous fungi and yeasts. CA production with yeasts has certain advantages over molds (e.g. higher productivity and easier cultivation), which in the last two decades have triggered a clear increase in publications and patents devoted to the use of yeasts in this field. Yarrowia lipolytica has become a model yeast that proved to be successful in different production systems. Considering the current interest evidenced in the literature, the most significant information on CA production using Y. lipolytica is summarized. The relevance on CA yields of key factors such as strains, media formulation, environmental conditions and production regimes is thoroughly discussed, with particular focus on increasing CA productivity. Besides, the possibility of tuning the mentioned variables to reduce concomitant isocitric acid production-the biggest disadvantage of using yeasts-is analyzed. Available methods for CA purification/quantification are also discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Strain-related acid production by oral streptococci

    DEFF Research Database (Denmark)

    de Soet, JJ; Nyvad, Bente; Kilian, Mogens

    2000-01-01

    Acid production, in particular at low pH, is thought to be an important ecological determinant in dental caries. The aim of the present study was to determine the acid producing capability at different pH levels of 47 streptococcal strains, representing 9 species, isolated from human dental plaque....... The bacteria were grown until mid log-phase under anaerobic conditions and acid production was measured in a pH-stat system at pH 7.0, 6.0, 5.5 and 5.0. At all pH values, the mean velocity of acid production (V(ap)) by Streptococcus mutans and S. sobrinus was significantly higher (p... that of the other oral streptococci, including S. mitis, S. oralis, S. gordonii, S. sanguis, S. intermedius, S. anginosus, S. constellatus, and S. vestibularis. However, the V(ap) of some strains of S. mitis biovar 1 and S. oralis, particularly at pH values of 7.0 and 6.0, exceeded that of some strains of S. mutans...

  17. Natural Radiation in byproducts of the production of phosphoric acid

    International Nuclear Information System (INIS)

    Silveira, Marcilei A. Guazzelli da; Cardoso, L.L.; Medina, N.H.

    2014-01-01

    Natural radiation is the largest source of radiation exposure to which man is subject. It is formed basically by cosmic radiation and the radionuclides present in the Earth crust, as 40 K and the elements of the decay series of 232 Th and 238 U. Phosphate ores, which constitutes the raw material for the production of phosphoric acid, have a high rate of natural radiation from the decay series of 232 Th and 238 U. Phosphogypsum, which is naturally radioactivity, is a by-product of the production of phosphoric acid by the wet method. For each ton of phosphoric acid it is produced about 4.5 tons of phosphogypsum. This work presents the analysis of samples collected in all stages of the manufacturing process of phosphoric acid, which generates the phosphogypsum. Gamma-ray spectrometry was used to measure the concentration of the elements of the decay series of 232 Th and 238 U. All analyzed samples showed a high concentration of radionuclides, promoting the need for further steps in the process in order to reduce the presence of such radionuclides in the phosphogypsum. The results indicate the radionuclide 238 U has higher contribution in some samples of the intermediate stages of the process. All samples exceeded the international average range of human exposure to terrestrial gamma radiation, which is 0.3 to 1.0 mSv/year. (author)

  18. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  19. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  20. Technology and economic assessment of lactic acid production and uses

    Energy Technology Data Exchange (ETDEWEB)

    Datta, R.; Tsai, S.P.

    1996-03-01

    Lactic acid has been an intermediate-volume specialty chemical (world production {approximately}50,000 tons/yr) used in a wide range of food-processing and industrial applications. Potentially, it can become a very large-volume, commodity-chemical intermediate produced from carbohydrates for feedstocks of biodegradable polymers, oxygenated chemicals, environmentally friendly ``green`` solvents, and other intermediates. In the past, efficient and economical technologies for the recovery and purification of lactic acid from fermentation broths and its conversion to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. Development and deployment of novel separations technologies, such as electrodialysis with bipolar membranes, extractive and catalytic distillations, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The emerging technologies can use environmentally sound lactic acid processes to produce environmentally useful products, with attractive process economics. These technology advances and recent product and process commercialization strategies are reviewed and assessed.

  1. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Short-contact clobetasol propionate shampoo 0.05% improves quality of life in patients with scalp psoriasis.

    Science.gov (United States)

    Tan, Jerry; Thomas, Richard; Wang, Béatrice; Gratton, David; Vender, Ronald; Kerrouche, Nabil; Villemagne, Hervé

    2009-03-01

    Scalp psoriasis has a considerable impact on the quality of life (QOL) of patients, and most patients are dissatisfied with available treatments. Clobetasol propionate shampoo 0.05% has been shown to be effective and safe for moderate to severe scalp psoriasis. We evaluated the effect of clobetasol propionate shampoo on QOL and the degree of participant satisfaction with the product. Participants received once-daily treatment for up to 4 weeks. Their QOL and degree of satisfaction were evaluated by questionnaires. The mean (standard deviation) Dermatology Life Quality Index (DLQI) score decreased significantly from 7.0 (4.9) at baseline to 3.2 (3.2) at week 4 (Pshampoo improved the QOL of participants and resulted in high satisfaction.

  3. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    Science.gov (United States)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  4. Electrochemical monitoring of citric acid production by Aspergillus niger

    International Nuclear Information System (INIS)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E.; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-01-01

    Highlights: • Citric acid fermentation process (production) by Aspergillus niger. • Qualitative/quantitative monitoring of standard culture and culture infected with yeast. • Electronic tongue based on potentiometric and voltammetric sensors. • Evaluation of the progress and the correctness of the fermentation process. • The highest classification abilities of the hybrid electronic tongue. - Abstract: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process

  5. Electrochemical monitoring of citric acid production by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E.; Ciosek, Patrycja; Wróblewski, Wojciech, E-mail: wuwu@ch.pw.edu.pl

    2014-05-01

    Highlights: • Citric acid fermentation process (production) by Aspergillus niger. • Qualitative/quantitative monitoring of standard culture and culture infected with yeast. • Electronic tongue based on potentiometric and voltammetric sensors. • Evaluation of the progress and the correctness of the fermentation process. • The highest classification abilities of the hybrid electronic tongue. - Abstract: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  6. Effect of reaction products on cathodic reduction of iodic acid

    International Nuclear Information System (INIS)

    Shtejnberg, G.V.; Urisson, N.A.; Revina, A.A.; Volod'ko, V.L.

    1988-01-01

    The effect of reaction products on kinetics of iodic acid reduction is investigated; reaction products are identified by the optical method. It is shown that although being similar from the qualitative viewpoint the effect on HIO 3 reduction of dissolved crystal and ''reduced'' iodine, certain quantitative differences take place, which are explained by the difference in their surface concentration. Explanation of certain sections of complex lgI, E-curve of HIO 3 reduction is given, in particular, advanced wave is related to the reduction from solution of unstable electroactive complex HIO 3 ) x (I 1 ) y or (HIO 3 ) x (I 2 ) y

  7. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  8. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  9. Production of gluconic acid by using some irradiated microorganisms

    Directory of Open Access Journals (Sweden)

    Ashraf S. Ahmed

    2015-07-01

    Full Text Available The objective of this study was to isolate the potential fungal isolates have the ability for gluconic acid production by using some agro industrial byproducts as sugarcane molasses, banana-must and grape-must. The effect of gamma-irradiation on the most potent isolates and the fermentation conditions as pH, incubation temperature and incubation period was also investigated. Results showed that the most potential fungal isolates were Aspergillus niger, Penicillium puberulum and Penicillium frequentans whereas their gluconic acid production was 62.17, 56.25 and 39.69 g/L, respectively on Czapek's Dox media at 28 ± 1 °C, pH 6 for 7 days fermentation period. Irradiation of the three most potential isolates at 0.1, 0.2, 0.3, 0.4 and 0.5 kGy doses of gamma ray showed that 0.1 kGy dose caused an increase in gluconic acid production whereas it was 69.35, 60.17 and 40.31 g/L by the three potential isolates respectively. Data showed that utilization of sugarcane molasses, banana-must and grape-must as a sole carbon source in gluconic acid production by the three potential (0.1 kGy irradiated isolates at pH 6, 30 °C for a 7 days incubation period caused increasing in gluconic acid production whereas the productivity of the three (0.1 kGy irradiated isolates (A. niger, P. puberulum and P. frequentans was 69.87, 63.14 and 51.28 g/L by utilizing sugarcane molasses, 61.28, 56.37, 47.15 g/L by utilizing banana-must and 54.25, 52.75 and 44.75 g/L by utilizing grape-must.

  10. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  11. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.C.; Callaway, T.R.; Schultz, C.L.; Edrington, T.S.; Harvey, R.B.; Nisbet, D.J. [United States Department of Agriculture, Agricultural Research Service, Food and Feed Safety Research Unit, College Station, TX (United States); Carstens, G.E.; Miller, R.K. [Texas A and M University, College Station, TX (United States). Department of Animal Science

    2006-12-15

    Strategies are sought to reduce economic and environmental costs associated with ruminant methane emissions. The effect of oral nitroethane or 2-nitropropanol administration on ruminal methane-producing activity and volatile fatty acid production was evaluated in mature ewes. Daily administration of 24 and 72 mg nitroethane/kg body weight reduced (P < 0.05) methane-producing activity by as much as 45% and 69% respectively, when compared to control animals given no nitroethane. A daily odes of 120 mg 2-nitropropanol/kg body weight was needed to reduce (P < 0.05) methane-producing activity by 37% from that of untreated control animals. Reductions in methane-producing activity may have been diminished by the last day (day 5) of treatment, presumably due to ruminal adaptation. Oral administration of nitroethane or 2-nitropropanol had little or no effect on accumulations or molar proportions of volatile fatty acids in ruminal contents collected from the sheep. These results demonstrate that nitroethane was superior to 2-nitropropanol as a methane inhibitor and that both nitrocompounds reduced ruminal methanogenesis in vivo without redirecting the flow of reductant generated during fermentation to propionate and butyrate. (author)

  12. Fumaric acid production using renewable resources from biodiesel and cane sugar production processes.

    Science.gov (United States)

    Papadaki, Aikaterini; Papapostolou, Harris; Alexandri, Maria; Kopsahelis, Nikolaos; Papanikolaou, Seraphim; de Castro, Aline Machado; Freire, Denise M G; Koutinas, Apostolis A

    2018-04-13

    The microbial production of fumaric acid by Rhizopus arrhizus NRRL 2582 has been evaluated using soybean cake from biodiesel production processes and very high polarity (VHP) sugar from sugarcane mills. Soybean cake was converted into a nutrient-rich hydrolysate via a two-stage bioprocess involving crude enzyme production via solid state fermentations (SSF) of either Aspergillus oryzae or R. arrhizus cultivated on soybean cake followed by enzymatic hydrolysis of soybean cake. The soybean cake hydrolysate produced using crude enzymes derived via SSF of R. arrhizus was supplemented with VHP sugar and evaluated using different initial free amino nitrogen (FAN) concentrations (100, 200, and 400 mg/L) in fed-batch cultures for fumaric acid production. The highest fumaric acid concentration (27.3 g/L) and yield (0.7 g/g of total consumed sugars) were achieved when the initial FAN concentration was 200 mg/L. The combination of VHP sugar with soybean cake hydrolysate derived from crude enzymes produced by SSF of A. oryzae at 200 mg/L initial FAN concentration led to the production of 40 g/L fumaric acid with a yield of 0.86 g/g of total consumed sugars. The utilization of sugarcane molasses led to low fumaric acid production by R. arrhizus, probably due to the presence of various minerals and phenolic compounds. The promising results achieved through the valorization of VHP sugar and soybean cake suggest that a focused study on molasses pretreatment could lead to enhanced fumaric acid production.

  13. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  14. Production of ascorbic acid releasing biomaterials for pelvic floor repair.

    Science.gov (United States)

    Mangır, Naşide; Bullock, Anthony J; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better integrate into sites of implantation both biologically and mechanically. The impact of

  15. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  16. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  17. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  18. The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread.

    Science.gov (United States)

    Belz, Markus C E; Mairinger, Regina; Zannini, Emanuele; Ryan, Liam A M; Cashman, Kevin D; Arendt, Elke K

    2012-10-01

    The consumption of low-salt bread represents an efficient way to improve public health by decreasing cardiovascular health issues related to increased intakes of sodium chloride (NaCl). The reduction of NaCl influences the bread quality characteristics, in particular the shelf-life. Calcium propionate (CP) is commonly used in bread as an antifungal agent. Alternatively, sourdough can be used as a natural preservative. This work addresses the feasibility of NaCl reduction in wheat bread focussing on shelf-life and the compensation using sourdough as well as chemical preservatives. The impact of NaCl reduction and the addition of preservative agents in conjunction with different NaCl concentrations on the shelf-life of bread were tested under 'environmental' conditions in a bakery as well as using challenge tests against selected fungi. The challenge tests were performed using fungi commonly found in the bakery environment such as Penicillium expansum, Fusarium culmorum and Aspergillus niger. NaCl reduction decreased the shelf-life by 1-2 days. The addition of sourdough with antifungal activity prolonged the shelf-life to 12-14 days whereas the addition of 0.3 % calcium propionate prolonged the shelf-life to 10-12 days only. The fungal challenge tests revealed differences in the determined shelf-life between the different fungi based on their resistance. Similar antifungal performance was observed in sourdough breads and calcium propionate breads when tested against the different indicator moulds. The findings of this study indicate that addition of sourdough fermented using a specifically selected antifungal Lactobacillus amylovorus DSM 19280 can replace the chemical preservative calcium propionate addition and compensate for the reduced level and, therefore, guarantee the product safety of low-salt bread.

  19. Growth and characterization of organic NLO material: Clobetasol propionate

    Science.gov (United States)

    Purusothaman, R.; Rajesh, P.; Ramasamy, P.

    2015-06-01

    Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.

  20. Agglomerate behaviour of fluticasone propionate within dry powder inhaler formulations.

    Science.gov (United States)

    Le, V N P; Robins, E; Flament, M P

    2012-04-01

    Due to their small size, the respirable drug particles tend to form agglomerates which prevent flowing and aerosolisation. A carrier is used to be mixed with drug in one hand to facilitate the powder flow during manufacturing, in other hand to help the fluidisation upon patient inhalation. Depending on drug concentration, drug agglomerates can be formed in the mixture. The aim of this work was to study the agglomeration behaviour of fluticasone propionate (FP) within interactive mixtures for inhalation. The agglomerate phenomenon of fluticasone propionate after mixing with different fractions of lactose without fine particles of lactose (smaller than 32 μm) was demonstrated by the optical microscopy observation. A technique measuring the FP size in the mixture was developed, based on laser diffraction method. The FP agglomerate sizes were found to be in a linear correlation with the pore size of the carrier powder bed (R(2)=0.9382). The latter depends on the particle size distribution of carrier. This founding can explain the role of carrier size in de-agglomeration of drug particles in the mixture. Furthermore, it gives more structural information of interactive mixture for inhalation that can be used in the investigation of aerosolisation mechanism of powder. According to the manufacturing history, different batches of FP show different agglomeration intensities which can be detected by Spraytec, a new laser diffraction method for measuring aerodynamic size. After mixing with a carrier, Lactohale LH200, the most cohesive batch of FP, generates a lower fine particle fraction. It can be explained by the fact that agglomerates of fluticasone propionate with very large size was detected in the mixtures. By using silica-gel beads as ball-milling agent during the mixing process, the FP agglomerate size decreases accordingly to the quantity of mixing aid. The homogeneity and the aerodynamic performance of the mixtures are improved. The mixing aid based on ball

  1. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  2. Citric acid production and citrate synthase genes in distinct strains of ...

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... synthase in lactic acid production by A. niger and with the ... A number of microorganisms, including both bacteria and fungi, possess the capacity ..... citric acid production by solid-state fermentation from cassava bagasse and ...

  3. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    Science.gov (United States)

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  4. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    Science.gov (United States)

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  5. Uranium problem in production of wet phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Gorecka, H; Gorecki, H [Politechnika Wroclawska (Poland)

    1980-01-01

    The balance of the uranium in the wet dihydrate method was presented. This balance shows that a large quantity of the uranium compounds shift from mineral phosphate rock to liquid phase of decomposition pulp (about 70-85% U) and the rest moves to phosphogypsum (about 15-25% U). The contents of uranium in phosphate rock imported for our country and in products and by-products of the fertilizer industry, were determined. Concentration of uranium in the phosphogypsum is dependent on the type of mineral rock and the process of phosphogypsum crystallization. Analysis of the uranium contents in phosphogypsum samples and results of the sedimentation analysis indicated influence of the specific surface of phosphogypsum crystals on the uranium concentration. Investigation of the sets of samples obtained in the industrial plant proved that phosphogypsum cake washed counter-currently on the filter contained from 10 to 20 ..mu..g U/g. The radioactivity of these samples fluctuated from 35 to 60 pCi/g. Using solution sulphuric acid of concentration in range 2-4% by weight H/sub 2/SO/sub 4/ to washing and repulpation of the phosphogypsum enables to reduce its radioactivity to level below 25 pCi/g. This processing makes possible to utilize this waste material in the building industry. Extraction of uranium from the wet phosphoric acid using kerosen solution of the reaction product between octanol -1 and phosphorus pentaoxide showed possibility to recover over 80% of uranium contained in phosphate rock.

  6. Volatile fatty acids influence on the structure of microbial communities producing PHAs

    Directory of Open Access Journals (Sweden)

    Slawomir Ciesielski

    2014-06-01

    Full Text Available Polyhydroxyalkanoates (PHAs can be produced by microorganisms and are a biodegradable alternative to fossil-fuel based plastics. Currently, the focus is on reducing production costs by exploring alternative substrates for PHAs production, and on producing copolymers which are less brittle than monomers. Accordingly, this study used a substrate consisting of wastewater from waste-glycerol fermentation, supplemented with different amounts of acetic and propionic acids. These substrates were used to feed mixed microbial communities enriched from activated sludge in a sequencing batch reactor. A reactor supplemented with 2 mL of acetic acid produced 227.8 mg/L of a homopolymer of hydroxybutyrate (3HB; 4 mL of acetic acid produced 279.8 mg/L 3HB; whereas 4 mL of propionic acid produced 673.0 mg/L of a copolymer of 3HB and 3HV (hydroxyvalerate. Ribosomal Intergenic Spacer Analysis (RISA was used to show the differences between the communities created in the reactors. Thauera species predominated in biomass that produced 3HB; Paracoccus denitrificans in the biomass that produced 3HB-co-3HV. Because P. denitrificans produced the more desirable copolymer, it may be advantageous to promote its growth in PHAs-producing reactors by adding propionate.

  7. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  8. Acid production in dental plaque after exposure to probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Keller Mette K

    2012-10-01

    Full Text Available Abstract Background The increasing interest in probiotic lactobacilli in health maintenance has raised the question of potential risks. One possible side effect could be an increased acidogenicity in dental plaque. The aim of this study was to investigate the effect of probiotic lactobacilli on plaque lactic acid (LA production in vitro and in vivo. Methods In the first part (A, suspensions of two lactobacilli strains (L. reuteri DSM 17938, L. plantarum 299v were added to suspensions of supragingival dental plaque collected from healthy young adults (n=25. LA production after fermentation with either xylitol or fructose was analyzed. In the second part (B, subjects (n=18 were given lozenges with probiotic lactobacilli (L. reuteri DSM 17938 and ATCC PTA 5289 or placebo for two weeks in a double-blinded, randomized cross-over trial. The concentration of LA in supragingival plaque samples was determined at baseline and after 2 weeks. Salivary counts of mutans streptococci (MS and lactobacilli were estimated with chair-side methods. Results Plaque suspensions with L. reuteri DSM 17938 produced significantly less LA compared with L. plantarum 299v or controls (p Conclusion Lactic acid production in suspensions of plaque and probiotic lactobacilli was strain-dependant and the present study provides no evidence of an increase in plaque acidity by the supply of selected probiotic lactobacilli when challenged by fructose or xylitol. The study protocol was approved by The Danish National Committee on Biomedical Research Ethics (protocol no H-2-2010-112. Trial registration NCT01700712

  9. Primary Screening of 10 - Hydroxy - 2 - Decenoic Acid Productive Strains

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, eleven strains, which vere screened strictly from raw royal.jelly, soil and honeycomb etc. by means of dilution plate and spread plate methods, were cultured at 28°C for60 h with shaking. To determine whether they could yield 10-Hydroxy-2-decenoic acid during fermentation, gas chromatography and gas chromatography-mass spectrometry methods were used. The results showed that the strains BH002 and BH004. were both identified as Crvtococcaceae. where BH002 was primarily classified into Candida for possessing the abilities. The 10-HDA productivity of Candida BH002 and that of BH004 were 0.327% and 0.2648% respectively.

  10. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows.

    Science.gov (United States)

    Faciola, A P; Broderick, G A

    2014-01-01

    The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at

  11. Selection of oleaginous yeasts for fatty acid production.

    Science.gov (United States)

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  12. Aspergillus oryzae nrtA affects kojic acid production.

    Science.gov (United States)

    Sano, Motoaki

    2016-09-01

    We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate.

  13. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  14. Radiotracer investigation of phosphoric acid and phosphatic fertilizers production process

    International Nuclear Information System (INIS)

    Ben Abdelouahed, H.; Reguigui, N.

    2011-01-01

    In the phosphoric acid production process, the time a particle spends inside the chemical reactor (residence time) is of paramount importance to process engineers. Residence time distribution (RTD) gives information on the efficiency of the chemical reactor, on the efficiency of the process, and also the availabilities of the reactive volume for the reaction (active volume vs. dead volume). Traditionally, chemical engineers used chemical tracer to determine the RTD. However, first disadvantage is that the chemical tracer could not allow an online diagnosis: the samples containing chemical tracer have to go to a lab for analysis, second disadvantage is that the chemical tracer is less sensitive than radioactive ones because of its adsorption onto strata or its retention in rocks. Consequently, chemical tracer results are not always precise and cannot convincingly explain the multiple flow-path model. Radioactive tracers are the only tracers capable of measuring the active RTD with high degree of precision and give information on the internal recirculation rate. In this work, we will describe the application of radiotracer method for RTD measurement in the phosphoric acid production process and give results and discussion of each case encountered. (author)

  15. Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Аntonina A. Stepacheva

    2016-08-01

    Full Text Available This paper is devoted to the production of second generation biodiesel via catalytic hydrodeoxygenation of fatty acids. Pd/C catalysts with different metal loading were used. The palladium catalysts were characterized using low-temperature nitrogen physisorption and X-ray photoelectron spectroscopy. It was revealed that the most active and selective catalyst was 1%-Pd/C which allowed reaching up 97.5% of selectivity (regarding to n-heptadecane at 100% conversion of substrate. Moreover, the chosen catalyst is more preferable according to lower metal content that leads the decrease of the process cost. The analysis of the catalysts showed that 1%-Pd/C had the highest specific surface area compared with 5%-Pd/C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 31st July 2015; Revised: 9th December 2015; Accepted: 30th December 2015 How to Cite: Stepacheva, A.A., Sapunov, V.N., Sulman, E.M., Nikoshvili, L.Z., Sulman, M.G., Sidorov, A.I., Demidenko, G.N., Matveeva, V.G. (2016. Catalytic Hydrodeoxygenation of Fatty Acids for Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 125-132 (doi:10.9767/bcrec.11.2.538.125-132 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.538.125-132

  16. Biotechnological advances and perspectives of gamma-aminobutyric acid production.

    Science.gov (United States)

    Xu, Ning; Wei, Liang; Liu, Jun

    2017-03-01

    Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that is widely distributed among various organisms. Since GABA has several well-known physiological functions, such as mediating neurotransmission and hypotensive activity, as well as having tranquilizer effects, it is commonly used as a bioactive compound in the food, pharmaceutical and feed industries. The major pathway of GABA biosynthesis is the irreversible decarboxylation of L-glutamate catalyzed by glutamate decarboxylase (GAD), which develops a safe, sustainable and environmentally friendly alternative in comparison with traditional chemical synthesis methods. To date, several microorganisms have been successfully engineered for high-level GABA biosynthesis by overexpressing exogenous GADs. However, the activity of almost all reported microbial GADs sharply decreases at physiological near-neutral pH, which in turn provokes negative effects on the application of these GADs in the recombinant strains for GABA production. Therefore, ongoing efforts in the molecular evolution of GADs, in combination with high-throughput screening and metabolic engineering of particular producer strains, offer fascinating new prospects for effective, environmentally friendly and economically viable GABA biosynthesis. In this review, we briefly introduce the applications in which GABA is used, and summarize the most important methods associated with GABA production. The major achievements and present challenges in the biotechnological synthesis of GABA, focusing on screening and enzyme engineering of GADs, as well as metabolic engineering strategy for one-step GABA biosynthesis, will be extensively discussed.

  17. Production of conjugated linoleic acid-rich potato chips.

    Science.gov (United States)

    Jain, Vishal P; Proctor, Andrew

    2007-01-01

    Conjugated linoleic acid (CLA) is found primarily in diary and beef products, but the health benefits of CLA can only be realized if they are consumed at much greater levels than a normal healthy dietary intake. We have recently shown that a CLA-rich soy oil can be produced by simple isomerization of linoleic acid in soy oil by photoirradiation. This oil may allow greatly increased dietary CLA without significantly elevating fat intake. The objective of this study was to prepare CLA-rich potato chips by frying in CLA-rich soy oil. Soy oil was photoisomerized in the presence of iodine catalyst with UV/visible light. The irradiated oil was clay processed to remove the residual iodine and this oil was then used to fry potato chips. Oil was extracted from fried chips and analyzed for its CLA content with gas chromatography. A 1-oz serving of CLA-rich potato chips contained approximately 2.4 g CLA as compared to 0.1 g CLA in 3-oz serving of steak fillet and 0.06 g CLA in 8-oz serving of whole milk. The peroxide value of the oil extracted from potato chips was found to be 1 meq/1000 g sample, which was within the acceptable commercial standards. This study may lead to the commercialization of CLA-rich food products.

  18. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Establishing a Method for Measuring Serum Methylmalonic Acid and Application to Women with a History of Breast Cancer

    National Research Council Canada - National Science Library

    Hauge, Ileana

    2002-01-01

    Serum concentrations of methylmalonic acid (MMA), a dicarboxylic acid and intermediate in the conversion of propionic acid to succinic acid, are elevated if there is deficiency of cobalamin (vitamin B12...

  20. Production of amino acids by mucor geophillus using sugar cane waste as a substrate

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, U.

    2006-01-01

    In this study Mucor geophillus was used for amino acid production from acid/base hydrolysates of sugar cane bagasse. The Effects of substrate as well as influence of hydrolyzing agent on amino acid production by Mucor geophillus were investigated. Result reveals that higher amount of amino acids were accumulated when acid hydrolysates of sugar cane bagasse were used as substrate in comparison to NH/sub 4/OH and H/sub 2/O/sub 2/ hydrolysates. (author)

  1. Bubble point pressures of binary system of methanol and methyl propionate

    NARCIS (Netherlands)

    Shariati, A.; Florusse, L.J.; Kroon, M.C.; Peters, C.J.

    2016-01-01

    In this work, bubble point pressures of the system of methanol + methyl propionate were measured for several isopleths within temperature and pressure ranges of 382-444 K and 0.437-2.285 MPa, respectively. The vapor pressures of pure methanol and methyl propionate were also measured. The two-suffix

  2. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Steyer, J.P.; Angelidaki, Irini

    2008-01-01

    Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold...

  3. Interspecies electron transfer in suspended and aggregated methanogenic propionate-degrading consortia

    NARCIS (Netherlands)

    Bok, de F.A.M.; Plugge, C.M.; Stams, A.J.M.

    2002-01-01

    Propionate is a key intermediate in the conversion of complex organic matter under methanogenic conditions. Oxidation of propionate to acetate is energetically unfavorable under standard conditions. Therefore, micro organisms are only able to gain energy from this conversion if the concentrations of

  4. Preconcentration and extraction of copper(II) on activated carbon using ethyl-2-quinolyl-β (p-carboxyphenyl hydrazone)dioxo propionate

    OpenAIRE

    Mehrorang Ghaedi; Farshid Ahmadi; M.R. Baezat; J. Safari

    2008-01-01

    Activated carbon modified method was used for the preconcentration and determination of copper content in real samples such as tap water, wastewater and a synthetic water sample by flame atomic absorption spectrometry. The copper(II) was adsorbed quantitatively on activated carbon due to its complexation with ethyl-2-quinolyl-β(p-carboxyphenyl hydrazone)dioxo propionate (EQCPDP). The adsorbed copper(II) ion on solid phase was eluted quantitatively by using nitric acid. The important parameter...

  5. The production of lactic acid on liquid distillery stillage by Lactobacillus rhamnosus ATCC 7469

    OpenAIRE

    Đukić-Vuković, Aleksandra; Mojović, Ljiljana; Pejin, Dušanka; Vukašinović-Sekulić, Maja; Rakin, Marica; Nikolić, Svetlana; Pejin, Jelena

    2011-01-01

    The production of lactic acid on a liquid distillery stillage remaining after the bioethanol production on a mixture of waste bread and waste water from the production of wheat gluten was studied in this work. The lactic acid fermentation was performed with a probiotic lactic acid bacteria Lactobacillus rhamnosus ATCC 7469. During the fermentation, parameters such as the concentration of lactic acid (according to Taylor method), the concentration of reducing sugars (spectrophotometric method ...

  6. Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.

    Science.gov (United States)

    Biernacki, Mateusz; Riechen, Jan; Hähnel, Urs; Roick, Thomas; Baronian, Kim; Bode, Rüdiger; Kunze, Gotthard

    2017-12-01

    (R)-3-hydroxybutyric acid can be used in industrial and health applications. The synthesis pathway comprises two enzymes, β-ketothiolase and acetoacetyl-CoA reductase which convert cytoplasmic acetyl-CoA to (R)-3-hydroxybutyric acid [(R)-3-HB] which is released into the culture medium. In the present study we used the non-conventional yeast, Arxula adeninivorans, for the synthesis enantiopure (R)-3-HB. To establish optimal production, we investigated three different endogenous yeast thiolases (Akat1p, Akat2p, Akat4p) and three bacterial thiolases (atoBp, thlp, phaAp) in combination with an enantiospecific reductase (phaBp) from Cupriavidus necator H16 and endogenous yeast reductases (Atpk2p, Afox2p). We found that Arxula is able to release (R)-3-HB used an existing secretion system negating the need to engineer membrane transport. Overexpression of thl and phaB genes in organisms cultured in a shaking flask resulted in 4.84 g L -1 (R)-3-HB, at a rate of 0.023 g L -1  h -1 over 214 h. Fed-batch culturing with glucose as a carbon source did not improve the yield, but a similar level was reached with a shorter incubation period [3.78 g L -1 of (R)-3-HB at 89 h] and the rate of production was doubled to 0.043 g L -1  h -1 which is higher than any levels in yeast reported to date. The secreted (R)-3-HB was 99.9% pure. This is the first evidence of enantiopure (R)-3-HB synthesis using yeast as a production host and glucose as a carbon source.

  7. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    Parsons, G.J.

    2001-01-01

    Full text: The production of the radioisotope molybdenum-99 by the fission process began at ANSTO in the late 1960's. Molybdenum-99, with a half life of 66 hours, decays by beta emission to produce technetium-99m, a metastable isotope. Technetium-99m is the most widely used medical radioisotope due to its near ideal properties, particularly the radioactive half life of only 6 hours. ANSTO has been producing generators for around 30 years for distribution to hospitals and nuclear medicine centres. These generators produce technetium-99m for medical use by decay of the contained molybdenum-99. To produce molybdenum-99, uranium dioxide pellets enriched to 2.2% 235 U are irradiated in ANSTO's HIFAR reactor for about one week. The irradiated pellets are subsequently dissolved in nitric acid to allow the recovery of the molybdenum. An acidic intermediate level liquid waste results from this processing. A primary waste results from the raw leach solution (after removal of the molybdenum onto a packed alumina column) and a weaker secondary waste is produced from a series of column washing steps. The waste solution contains uranium, the majority of the other fission products and low levels of ammonia in a nitric acid solution. This liquid waste had been accumulating and stored in specially designed shielded tanks in a storage facility. A process has been developed at ANSTO to convert this intermediate level liquid waste into a crystalline solid form of considerably less volume and mass, for improved storage. The operation comprises three processing steps. The lower strength secondary waste solution first requires concentration, with the removal of water and some acid into a condensate. The condensate is chemically neutralised and treated through the conventional water treatment plant. Concentrated solution is then treated in a batch chemical process to reduce the low levels of ammonia to very low levels. The final evaporation process removes further water and acid and

  8. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    Science.gov (United States)

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  9. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda; Katuri, Krishna; Gorron, Eduardo; Logan, Bruce E.; Saikaly, Pascal

    2016-01-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths

  10. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pretreatment of macroalgae for volatile fatty acid production.

    Science.gov (United States)

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.

    Science.gov (United States)

    Joshi, V D; Sreekantiah, K R; Manjrekar, S P

    1996-01-01

    A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.

  13. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    Science.gov (United States)

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  14. Cellulose acetate propionate coated titanium: characterization and biotechnological application

    Directory of Open Access Journals (Sweden)

    Guilherme da Silva Gomes

    2007-12-01

    Full Text Available Surfaces of pure titanium and Ti coated with cellulose acetate propionate (CAP have been characterized by means of scanning electron microscopy X ray coupled with elemental microanalysis (SEM-EDS, ellipsometry, atomic force microscopy (AFM and contact angle measurements. Coating Ti surfaces with CAP ultrathin films reduced original surface roughness. Surface energy and wettability of CAP covered Ti surfaces pure Ti surfaces were similar. The adsorption of lysozyme (LYZ, an antibacterial protein, onto Ti and CAP-coated Ti surfaces has been studied by means of ellipsometry and atomic force microscopy (AFM. The adsorption of LYZ was mainly driven by hydrophobic interaction between protein hydrophobic residues and CAP propyl groups. Pure Ti and CAP coated Ti surfaces presented no cytotoxicity effect and proved to be adequate substrates for cell adhesion. The biocompatibility of CAP coated Ti surfaces was attributed to the surface enrichment in glucopyranosyl residues and short alkyl side groups.

  15. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  16. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  17. Radioactivity Content in Phosphoric Acid Used for Fertilizer Production

    International Nuclear Information System (INIS)

    Ibrahiem, N.M.; Hamed, A.A.

    2003-01-01

    Uranium content in phosphoric acid used fertilizer production was measured by alpha spectrometry, laser fluorimetry high resolution gamma spectrometry. Also, polonium-210 content was determined in phosphoric acid by alpha spectrometry. Uranium-234 and uranium-238 concentrations, measured by alpha spectroscopy, were found to be 601 and 507 Bq I -1 , respectively. Total uranium content obtained by laser fluorimetry was about 545 BqI - (45.4ppm). Gamma spectroscopy analysis gave the concentrations of 40 K, 238 U, 235 U, 214 Pb, 214 Bi and 208 TI, as 17,644,19.5, 1.2,1.3 and 9.4 Bq I -1 , respectively. Polonium-210 concentration was found to be about 3.1 Bq I -1 . Uranium-232 and polonium-208 were used as yield tracers, for alpha measurements of uranium and polonium, respectively. Samples of the tri-super phosphate (TSP) and single-super phosphate (SSP) fertilizers and the phosphogypsum produced were also analyzed by gamma spectroscopy. Uranium content in both phosphate fertilizers was 3205 and 1440 Bq Kg -1 for 238 U and 83 and 35 Bq Kg -1 for, 235 U respectively

  18. Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.

    Science.gov (United States)

    Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos

    2016-08-01

    Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Directory of Open Access Journals (Sweden)

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  20. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  1. Biotechnology for improved hHydroxy fatty acid production in oilseed lesquerella

    Science.gov (United States)

    The conventional source of hydroxy fatty acid (HFA) is from castor (Ricinus communis), 90% of castor oil is ricinoleic acid (18:1OH). Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. The production of ca...

  2. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion

    Science.gov (United States)

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite cellulosic hydrolysates contain xylose as well as glucose....

  3. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose.

    Science.gov (United States)

    Yamada, Ryosuke; Yoshie, Toshihide; Wakai, Satoshi; Asai-Nakashima, Nanami; Okazaki, Fumiyoshi; Ogino, Chiaki; Hisada, Hiromoto; Tsutsumi, Hiroko; Hata, Yoji; Kondo, Akihiko

    2014-05-18

    Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals.

  4. Trans Fatty Acids in Bakery Products from 14 European Countries: The TRANSFAIR Study

    NARCIS (Netherlands)

    Erp van - Baart, M.-A.; Couet, C.; Cuadrado, C.; Kafatos, A.; Stanley, J.; Poppel, G. van

    1998-01-01

    The fatty acid composition of bakery products from 14 European countries was analyzed with particular emphasis ontransfatty acids. The proportion oftransfatty acids in cookies and biscuits ranged from <1 to 28%.Transfatty acids content in sweet pastry ranged from practically 0 to 33%. Croissants and

  5. Trans fatty acids in dairy and meat products from 14 European countries : the TRANSFAIR study

    NARCIS (Netherlands)

    Aro, A.; Antoine, J.M.; Pizzoferrato, L.; Reykdal, O.; Poppel, G. van

    1998-01-01

    The fatty acid composition of dairy products and meat from 14 European countries was analyzed with particular emphasis ontransfatty acids. In cow's milk, butter, and cheese the proportions oftransfatty acids ranged between 3.2 and 6.2% of fatty acids. C18:1 isomers comprised about 60% and C16:1 and

  6. Esterification of free fatty acids in biodiesel production with sulphonated pyrolysed carbohydrate catalysts

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Riisager, Anders; Fehrmann, Rasmus

    The pre-treatment of free fatty acids in oils and fats in biodiesel production is of pivotal importance, and esterification in acidic medium must be done prior to basic transesterification of glycerides. The free fatty acids may be converted over an acidic catalyst of sulphonated pyrolysed...

  7. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the......-isomer and a simple nutrition requirement by the fungus. Production of-L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency...... of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were...

  8. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (pAVS production was sufficient in all NA treatments to achieve ∑SEM:AVS AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  11. Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium

    NARCIS (Netherlands)

    Worm, P.; Fermoso, F.G.; Lens, P.N.L.; Plugge, C.M.

    2009-01-01

    The composition and dynamics of the propionate degrading community in a propionate-fed upflow anaerobic sludge bed (UASB) reactor with sludge originating from an alcohol distillery wastewater treating UASB reactor was studied. The rather stable propionate degrading microbial community comprised

  12. Vinegar production from post-distillation slurry deriving from rice shochu production with the addition of caproic acid-producing bacteria consortium and lactic acid bacterium.

    Science.gov (United States)

    Yuan, Hua-Wei; Tan, Li; Chen, Hao; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-12-01

    To establish a zero emission process, the post-distillation slurry of a new type of rice shochu (NTRS) was used for the production of health promoting vinegar. Since the NTRS post-distillation slurry contained caproic acid and lactic acid, the effect of these two organic acids on acetic acid fermentation was first evaluated. Based on these results, Acetobacter aceti CICC 21684 was selected as a suitable strain for subsequent production of vinegar. At the laboratory scale, acetic acid fermentation of the NTRS post-distillation slurry in batch mode resulted in an acetic acid concentration of 41.9 g/L, with an initial ethanol concentration of 40 g/L, and the acetic acid concentration was improved to 44.5 g/L in fed-batch mode. Compared to the NTRS post-distillation slurry, the vinegar product had higher concentrations of free amino acids and inhibition of angiotensin I converting enzyme activity. By controlling the volumetric oxygen transfer coefficient to be similar to that of the laboratory scale production, 45 g/L of acetic acid was obtained at the pilot scale, using a 75-L fermentor with a working volume of 40 L, indicating that vinegar production can be successfully scaled up. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Analytical study of fatty acids in bioreactor of an anaerobic treatment of distillery effluent

    International Nuclear Information System (INIS)

    Shah, F.A.; Pathan, M.I.

    2005-01-01

    An anaerobic digestion in bioreactors, offers a two-fold benefit: pollution potential reduction and biogas production. In this study, fatty acids in an anaerobic reactor are studied. The reactor exhibits a notable variation at different corks (1-6). The concentrations for both acetic acid and propionic acid are at maximum range at cork 2 and 5. For isobutyric acid; it is maximum at 1 and 2 corks. Butyric acid is maximum at 5; isovaleric acid is maximum at cork-2. This shows that cork-2 location has its maximum activity for fatty acids. Being nearest to the agitator this location has maximum agitation and resulted more formation of the fatty acids. This acidic effect will ultimately affect the reactor output for Biogas generation. (author)

  14. Optimization of β-galactosidase production from lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Carević Milica

    2015-01-01

    Full Text Available β-galactosidase, commonly known as lactase, represents commercially important enzyme that is prevalently used for lactose hydrolysis in milk and whey. To the date, it has been isolated from various sources. In this study different strains of lactic acid bacteria were assessed for their β-galactosidase productivity, and Lactobacillus acidophilus ATCC 4356 resulted with the highest production potential. Thereafter, optimal conditions for accomplishing high yields of β-galactosidase activity were determined. Maximal specific activity (1.01 IU mL-1 was accomplished after 2 days shake flask culture fermentation (150 rpm at 37ºC, with modified Man Rogosa Sharpe culture broth using lactose (2.5% as sole carbon source. Finally, in order to intensify release of intracellular β-galactosidase different mechanical and chemical methods were conducted. Nevertheless, vortexing with quartz sand (150 μm as abrasive was proven to be the most efficient method of cell disruption. The optimum temperature of obtained β-galactosidase was 45°C and the optimum range pH 6.5-7.5.

  15. Sunflower press cake as a substrate for eicosapentaenoic acid production by representatives of the genus Mortierella

    CSIR Research Space (South Africa)

    Jacobs, A

    2010-05-01

    Full Text Available Long chain omega-3 fatty acids such as eicosapentaenoic acid (EPA) are essential for the regulation of critical biological functions in humans and other mammals. EPA production via solid state fermentation of sunflower press cake was investigated...

  16. Role of chlorophylls, amino acids and sugars in tea

    International Nuclear Information System (INIS)

    Dev Choudhury, M.N.

    1980-01-01

    Plucked tea shoots from clones of different varieties of tea were withered, rolled, fermented and fired by CTC and orthodox methods of manufacture. Quantitative changes in the levels of chlorophylls, amino acids and water soluble sugars during different stages of processing of tea and also changes in the contents of their degradation products were studied by feeding 14 C-labelled phenylalanine, glucose, sodium carbonate and sodium propionate to the excised shoots and subsequently analysing the products. Results are discussed and suggestions have been made about adjusting the conditions of manufacture so that the teas with desired chemical constituents are produced. (M.G.B.)

  17. External radiation assessment in a wet phosphoric acid production plant

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, J.P.; Perez-Moreno, J.P. [Dept. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21012 Huelva (Spain); Mas, J.L. [Dept. Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, 41012 Sevilla (Spain)], E-mail: ppmasb@us.es; Martin, J.E.; San Miguel, E.G. [Dept. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21012 Huelva (Spain); Garcia-Tenorio, R. [Dept. Fisica Aplicada II, Escuela Tecnica Superior de Arquitectura, Universidad de Sevilla, 41012 Sevilla (Spain)

    2009-10-15

    The factories dedicated to the production of phosphoric acid by the so-called wet acid method are usually considered typical NORM industries, because the phosphate rock used as raw material usually contains high concentrations of {sup 238}U-series radionuclides. The magnitude and behaviour of the radionuclides involved in the production process revealed the need to determine its dosimetric impact on workers. This work aims to partially compensate this lack of knowledge through the determination of external effective dose rates at different zones in the process at a typical plant located in the southwest of Spain. To this end, two dosimetric sampling campaigns have been carried out at this phosphoric acid production plant. The first sampling was carried out when phosphate rocks originating in Morocco were processed, and the second one when phosphate rock processed came from the Kola Peninsula (Russia Federation). This differentiation was necessary because the activity concentrations are almost one order of magnitude higher in Moroccan phosphate rock than in Kola phosphate rock. The results obtained have reflected external dose rate enhancements as high as 1.4 {mu}Sv h{sup -1} (i.e., up to thirty times the external exposition due to radionuclides in unperturbed soils) at several points in the facility, particularly where the digested rock (pulp) is filtered. However, the most problematic points are characterised by a small occupation factor. That means that the increment in the annual effective external gamma dose received by the most-exposed worker is clearly below 1 mSv (European Commission limit for the general population) under normal production. Nevertheless, special care in the design and schedule of cleaning and maintaining work in the areas with high doses should be taken in order to avoid any possibility of exceeding the previously mentioned general population limit. In addition, the results of the dosimetric campaign showed no clear correlation between {sup

  18. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  19. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  20. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    Science.gov (United States)

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    OpenAIRE

    Auta, Helen Shnada; Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced...

  2. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kaushik Raj

    2018-06-01

    Full Text Available Adipic acid is an important industrial chemical used in the synthesis of nylon-6,6. The commercial synthesis of adipic acid uses petroleum-derived benzene and releases significant quantities of greenhouse gases. Biocatalytic production of adipic acid from renewable feedstocks could potentially reduce the environmental damage and eliminate the need for fossil fuel precursors. Recently, we have demonstrated the first enzymatic hydrogenation of muconic acid to adipic acid using microbial enoate reductases (ERs - complex iron-sulfur and flavin containing enzymes. In this work, we successfully expressed the Bacillus coagulans ER in a Saccharomyces cerevisiae strain producing muconic acid and developed a three-stage fermentation process enabling the synthesis of adipic acid from glucose. The ability to express active ERs and significant acid tolerance of S. cerevisiae highlight the applicability of the developed yeast strain for the biocatalytic production of adipic acid from renewable feedstocks. Keywords: Biosynthesis, Renewable resources, Yeast, Adipic acid, Synthetic biology

  3. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed...

  4. Free-radical-mediated conjugate additions. Enantioselective synthesis of butyrolactone natural products: (-)-enterolactone, (-)-arctigenin, (-)-isoarctigenin, (-)-nephrosteranic acid, and (-)-roccellaric acid.

    Science.gov (United States)

    Sibi, Mukund P; Liu, Pingrong; Ji, Jianguo; Hajra, Saumen; Chen, Jian-xie

    2002-03-22

    Lewis acid-mediated conjugate addition of alkyl radicals to a differentially protected fumarate 10 produced the monoalkylated succinates with high chemical efficiency and excellent stereoselectivity. A subsequent alkylation or an aldol reaction furnished the disubstituted succinates with syn configuration. The chiral auxiliary, 4-diphenylmethyl-2-oxazolidinone, controlled the stereoselectivity in both steps. Manipulation of the disubstituted succinates obtained by alkylation furnished the natural products (-)-enterolactone, (-)-arctigenin, and (-)-isoarctigenin. The overall yields for the target natural products were 20-26% over six steps. Selective functionalization of the disubstituted succinates obtained by aldol condensation gave the paraconic acid natural products (-)-nephrosteranic acid (8) and (-)-roccellaric acid (9). The overall yield of the natural products 8 and 9 over four steps was 53% and 42%, respectively.

  5. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro.

    Science.gov (United States)

    Llewellyn-Jones, C G; Hill, S L; Stockley, R A

    1994-03-01

    Corticosteroids are widely used in the treatment of many inflammatory conditions but the exact mode of action on neutrophil function is uncertain. Fluticasone propionate is a new topically active synthetic steroid which can be measured in body fluids and which undergoes first pass metabolism. The effects of fluticasone propionate on the function of neutrophils isolated from normal, healthy control subjects and on the chemotactic activity of sputum sol phase were assessed. Preincubation of neutrophils with fluticasone propionate reduced the chemotactic response to 10(-8) mol/l F-Met-Leu-Phe (FMLP) and to a 1:5 dilution of sputum sol phase in a dose dependent manner. Furthermore, when fluticasone propionate was added to sputum from eight patients with stable chronic obstructive bronchitis the chemotactic activity of a 1:5 dilution of the sol phase fell from a mean (SE) value of 22.2 (1.21) cells/field to 19.6 (0.89), 17.1 (0.74), and 11.9 (0.6) cells field at 1 mumol/l, 10 mumol/l, and 100 mumol/l, respectively. In further experiments fluticasone propionate preincubated with neutrophils inhibited fibronectin degradation by resting cells and by cells stimulated by FMLP (15.2% inhibition of resting cells, 5.1% inhibition of stimulated cells with 1 mumol/l fluticasone propionate, 24% and 18.7% inhibition respectively at 100 mumol/l fluticasone propionate. Fluticasone propionate had no effect on generation of superoxide anion by resting or stimulated cells. These results indicate that fluticasone propionate has a direct suppressive effect on several aspects of neutrophil function and may suggest a role for this agent in the modulation of neutrophil mediated damage to connective tissue.

  6. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    Science.gov (United States)

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were substrates.

  7. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  8. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  9. Studies on bio-hydrogen production of different biomass fermentation types using molasses wastewater as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Jiao, A.Y.; Rao, P.H. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering; Li, W. [Beijing Normal Univ., Beijing (China)

    2010-07-01

    Anaerobic fermentation technology was used to treat molasses wastewater. This study compared the hydrogen production capability of different fermentation types involving dark fermentation hydrogen production. The paper discussed the experiment including the results. It was found that the fermentation type changed by changing engineered control parameters in a continuous stirred tank reactor (CSTR). It was concluded that ethanol-type fermentation resulted in the largest hydrogen production capability, while butyric acid-type fermentation took second place followed by propionic acid-type fermentation.

  10. Volatile fatty acids production in ruminants and the role of ...

    African Journals Online (AJOL)

    Yomi

    organic volatile fatty acids (VFAs) and microbial protein then become available to the host. .... BE, Drewes LR (2003). Molecular features, regulation and ... Dynamics of ruminal volatile fatty acids in black and white bulls before and after feeding ...

  11. Effects of commercial enrichment products on fatty acid components ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... 3050 (ZB) and Spresso (ZC) on fatty acid compositions in rotifers (Brachionus plicatilis) which were intensively ... docosahexaenoic acid (DHA) and the ratio of n–3/n–6 in enriched rotifers groups were higher (p < 0.05). The level of ...... acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis ...

  12. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  13. Production of arachidonic and linoleic acid metabolites by guinea pig tracheal epithelial cells

    International Nuclear Information System (INIS)

    Oosthuizen, M.J.; Engels, F.; Van Esch, B.; Henricks, P.A.; Nijkamp, F.P.

    1990-01-01

    Pulmonary epithelial cells may be responsible for regulating airway smooth muscle function, in part by release of fatty acid-derived mediators. Incubation of isolated guinea pig tracheal epithelial cells with radiolabeled arachidonic acid (AA) leads to the production of 5- and 15-hydroxyeicosatetraenoic acid (5- and 15-HETE) and smaller amounts of leukotriene (LT) B4 and C4 and 12-hydroxyheptadecatrienoic acid (HHT). Epithelial cells also are able to release linoleic acid (LA) metabolites. Incubation with radiolabeled linoleic acid leads to the formation of 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE). The biological significance of these mediators produced by epithelial cells is discussed

  14. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  15. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    Science.gov (United States)

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  16. Protective Effects of Lepidium meyenii (Maca) Aqueous Extract and Lycopene on Testosterone Propionate-Induced Prostatic Hyperplasia in Mice.

    Science.gov (United States)

    Zou, Ying; Aboshora, Waleed; Li, Jing; Xiao, Tiancun; Zhang, Lianfu

    2017-08-01

    The inhibitory effect of maca extractant, lycopene, and their combination was evaluated in benign prostatic hyperplasia (BPH) mice induced by testosterone propionate. Mice were divided into a saline group, solvent control group and testosterone propionate-induced BPH mice [BPH model group, solvent BPH model group, benzyl glucosinolate group (1.44 mg/kg), maca group (60 mg/kg), lycopene treated (15, 5, and 2.5 mg/kg), maca (30 mg/kg) combine lycopene treated (7.5, 2.5, and 1.25 mg/kg), and finasteride treated]. Benzyl glucosinolate was used in order to evaluate its pharmacological activity on BPH to find out whether it is the major active component of maca aqueous extract. Finasteride was used as positive control. The compounds were administered once for 30 successive days. Compared with solvent BPH model group, BPH mice fed with maca (30 mg/kg) and lycopene (7.5 mg/kg) combination exhibited significant reductions in the prostatic index, prostatic acid phospatase, estradiol, testosterone, and dihydrotestosterone levels in serum. They also had similar histological compared with those aspects observed in the mice in the solvent control group. The results indicated that combination of maca and lycopene synergistically inhibits BPH in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Acid hydrolysis of kallar grass (leptochloa fusca) for the production

    International Nuclear Information System (INIS)

    Chughtai, F.A.; Shah, M.H.

    1993-01-01

    Acid hydrolysis of kallar grass (leptochloa fusca) was carried of with various concentrations of sulphuric acid, ortho phosphoric acid and hydrochloric acid to produce furfural. The study revealed that activity of various hydrolysing acids to produce furfural from kallar grass was of the following order H/sub 2/SO/sub 4/ > H/sub 3/PO/sub 4/ > HCl. Optimum yield (4.78%) of the produce was obtained when the material was digested with 19% H/sub 2/SO/sub 4/ for a period of 20 minutes. (author)

  18. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P.V. GURGEL

    1998-09-01

    Full Text Available Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolyzate recovery (in volume is greatly affected by the utilized base. Treatment using Al(OH3 and NaOH showed the best hydrolyzate recovery (87.5%, while the others presented a recovery of about 45% of the original hydrolyzate volume. Considering the whole process, best results were achieved by treatment using Al(OH3 and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolyzate.

  19. Application of Acid Whey in Orange Drink Production

    Directory of Open Access Journals (Sweden)

    Grażyna Jaworska

    2013-01-01

    Full Text Available The aim of this study is to compare qualitative changes in orange and orange beverages containing whey during 12 months of storage. The beverages contained 12 % extract, half of which was orange concentrate, the rest was sugar or sugar and whey extract. Acid whey was used in the production of beverages, added at a rate of 50 % of the used water. Orange beverages with whey contained more protein, ash, glucose, lactose and vitamin B2 than the orange beverages, but less sucrose, fructose and vitamin C, and also showed lower antioxidant activity against the DPPH radical. No significant differences between the two types of beverages were found in the polyphenolic content or activity against the ABTS cation radical. The type of beverage had a significant effect on the colour parameter values under the CIELAB system, although no significant differences were found between the beverages in the sensory evaluation of colour desirability. The overall sensory evaluation of orange beverages with whey was 2–10 % lower than of other orange beverages. The intensity of orange, sweet and refreshing taste was greater in orange beverages, while that of sour and whey taste was greater in orange beverages containing whey. There were significant decreases in sucrose, lactose, all indicators of antioxidant activity and sensory quality during storage. Levels of glucose and fructose rose with the storage period, while the intensity of sour, orange and refreshing taste decreased.

  20. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    Science.gov (United States)

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. © 2014 Japanese Society of Animal Science.

  1. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  2. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    Science.gov (United States)

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-10-01

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  3. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    Science.gov (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  4. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    Science.gov (United States)

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  5. Propionate supplementation improves nitrogen use by reducing urea flux in sheep.

    Science.gov (United States)

    Agarwal, U; Hu, Q; Bequette, B J

    2015-10-01

    Feeding and postruminal infusion of propionate is known to increase N retention in ruminants. Our aim was to determine the role of rumen propionate on urea N recycling and gluconeogenesis in growing sheep. In Exp. 1, wether sheep ( = 6; 32.5 ± 3.57 kg BW) fitted with a rumen cannula were fed to 1.8 × ME requirement a concentrate-type ration (172 g CP/kg DM and 10.4 MJ ME/kg DM) and continuously infused into the rumen with isoenergetic (10% of dietary ME intake) solutions of either sodium acetate (control) or sodium propionate for 9-d periods in a crossover design. In Exp. 2, a different group of wether sheep ( = 5; 33.6 ± 3.70 kg BW) fitted with a rumen cannula were fed, on an isonitrogenous basis, either a control (151 g CP/kg DM and 8.4 MJ ME/kg DM) or sodium propionate-supplemented (139 g CP/kg DM and 8.9 MJ ME/kg DM) diet at 2-h intervals. [N] urea was continuously infused intravenously for the last 5 d of each period, and total urine was collected by vacuum and feces were collected by a harness bag. Over the last 12 h, [C]glucose was continuously infused intravenously and hourly blood samples were collected during the last 5 h. Propionate treatments increased ( urea entry (synthesis) rate (UER) in Exp. 1; however, sodium propionate infusion tended ( urea elimination (UUE). In Exp. 2, feeding propionate increased ( urea N/d, leading to a reduction ( urea N/d). Between the 2 experiments, the proportion of UER recycled to the gut was greater with the forage-type diet in Exp. 2 (approximately 60%) compared with the concentrate-type diet in Exp. 1 (approximately 40%), although urea N fluxes across the gut remained unchanged in both experiments. In Exp. 1, glucose entry and gluconeogenesis were greater ( < 0.05) and plasma glucose tended ( < 0.1) to be greater with sodium propionate infusion than with sodium acetate infusion, but there was no difference in Cori cycling. In Exp. 2, glucose entry, gluconeogenesis, Cori cycling, and plasma glucose increased ( < 0

  6. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    Science.gov (United States)

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  7. On the isolation of single basic amino acids with electrodialysis for the production of biochemicals

    NARCIS (Netherlands)

    Kattan Readi, O.M.; Girones nogue, Miriam; Wiratha, W.; Nijmeijer, Dorothea C.

    2013-01-01

    Amino acids from biobased feeds are an interesting feedstock for the production of biobased chemicals from cheap protein sources, as amino acids already have the required functionalities. Amino acids are zwitterionic molecules whose charge is determined by the surrounding pH. This makes the use of

  8. Inhibitory Properties of Lactic Acid Bacteria against Moulds Associated with Spoilage of Bakery Products

    OpenAIRE

    I. A. Adesina; A. O. Ojokoh; D. J. Arotupin

    2017-01-01

    Aim: To evaluate the potentiality of LAB strains isolated from different fermented products to inhibit moulds associated with spoilage of bakery products. Methodology: Lactic acid bacterial (LAB) strains obtained from fermented products (“burukutu”, “pito”, yoghurt, and “iru”) were screened for antifungal activity against moulds (Aspergillus flavus, Aspergillus fumigatus, Aspergillus repens and Penicillium sp.) isolated from spoilt bakery products. Inhibitory activities of the lactic acid...

  9. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Production of lactic acid from C6-polyols by alkaline hydrothermal reactions

    International Nuclear Information System (INIS)

    Zhou Huazhen; Jin Fangming; Wu Bing; Cao Jianglin; Duan Xiaokun; Kishita, Atsushi

    2010-01-01

    Production of lactic acid from C6-polyols (Mannitol) under alkaline hydrothermal conditions was investigated. Experiments were performed to examine the difference in the production of lactic acid between C6-polyols and C3-polyols (glycerine), as well as C6-aldoses (glucose). Results showed that the yield of lactic acid from C6-polyols was lower than that from both glycerine and glucose. It indicated that long chain polyols might follow a different reaction pathway from that of glycerine. Further investigation is needed to clarify the reaction mechanism and improve the relatively low lactic acid acid yield from C6-polyols.

  11. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    Science.gov (United States)

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  12. Modeling gallic acid production rate by empirical and statistical analysis

    Directory of Open Access Journals (Sweden)

    Bratati Kar

    2000-01-01

    Full Text Available For predicting the rate of enzymatic reaction empirical correlation based on the experimental results obtained under various operating conditions have been developed. Models represent both the activation as well as deactivation conditions of enzymatic hydrolysis and the results have been analyzed by analysis of variance (ANOVA. The tannase activity was found maximum at incubation time 5 min, reaction temperature 40ºC, pH 4.0, initial enzyme concentration 0.12 v/v, initial substrate concentration 0.42 mg/ml, ionic strength 0.2 M and under these optimal conditions, the maximum rate of gallic acid production was 33.49 mumoles/ml/min.Para predizer a taxa das reações enzimaticas uma correlação empírica baseada nos resultados experimentais foi desenvolvida. Os modelos representam a ativação e a desativativação da hydrolise enzimatica. Os resultados foram avaliados pela análise de variança (ANOVA. A atividade máxima da tannase foi obtida após 5 minutos de incubação, temperatura 40ºC, pH 4,0, concentração inicial da enzima de 0,12 v/v, concentração inicial do substrato 0,42 mg/ml, força iônica 0,2 M. Sob essas condições a taxa máxima de produção ácido galico foi de 33,49 µmoles/ml/min.

  13. Release of mineral ions in dental plaque following acid production.

    Science.gov (United States)

    Tanaka, M; Margolis, H C

    1999-03-01

    The release of appreciable amounts of calcium, phosphate and fluoride found in whole plaque into the plaque-fluid phase, following bacterial acid production, can potentially reduce the driving force for tooth demineralization. However, limited information is available on this topic, particularly on the release of fluoride. This study sought to determine the change in calcium, phosphate and fluoride concentrations in plaque fluid after sucrose exposure. 48 h overnight-fasted supragingival plaque samples were collected from all tooth surfaces (with the exception of the lower lingual anterior teeth) of one half of an individual mouth, following a 1 min water rinse. Plaque samples were then collected from the other half of the same mouth, following a 292 mM sucrose rinse. Plaque fluid was isolated by centrifugation and analysed for total calcium and phosphate (ion chromatography) and for free fluoride (ion-specific electrode). Samples were collected from seven individuals. Following sucrose exposure, plaque-fluid pH decreased significantly from 6.5+/- 0.3 to 5.4+/-0.2; calcium concentrations (mmol/l) also increased significantly (p Fluoride and phosphate concentrations in plaque fluid, however, did not increase significantly after sucrose exposure: mean concentrations (mmol/l) of fluoride after the water and sucrose rinses were 0.006+/-0.003 and 0.005+/-0.002, respectively, and mean phosphate concentrations (mmol/l) were 11.0+/-2.0 and 12.0+/-3.0, respectively. When results were expressed per wet plaque weight, phosphate concentrations were also found to increase significantly. The same trends were observed when additional plaque samples were treated in vitro with sucrose: fluoride-ion activity did not increase in plaque under in vivo-like conditions.

  14. Effect of some metabolic inhibitors on citric acid production Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.K.; Bhatt, C.S.; Viswanathan, L.

    1983-09-01

    Stationary cultures of Aspergillus niger grown on a synthetic medium have been used to study the effect of some metabolic inhibitors on citric acid production. Addition of 0.05 to 1 mM sodium malonate or 0.01 to 0.1 mM potassium ferricyanide, iodoacetate, sodium azide, soldium arsenate or sodium fluoride stimulated citric acid production (3.6 to 45%), but not total titratable acids. Addition of higher concentrations (0.2 to 10 mM) of later inhibitors caused a marked inhibition of fungal growth and citric acid production. The implications of these preliminary findings are discussed. (Refs. 25).

  15. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature...... of continuous fermentation mode and in-situ acids removal by Reverse Enhanced Electro Dialysis (REED) resulted to enhanced sugars consumption rates when 60% PHWS was fermented. Specifically, glucose and xylose consumption rate increased by a factor of 6 and 39, respectively, while butyric acid productivity...

  16. Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives

    Directory of Open Access Journals (Sweden)

    Bashir Sajo Mienda

    2017-10-01

    Full Text Available Escherichia coli (E. coli has been established to be a native producer of succinic acid (a platform chemical with different applications via mixed acid fermentation reactions. Genome-scale metabolic models (GEMs of E. coli have been published with capabilities of predicting strain design strategies for the production of bio-based succinic acid. Proof-of-principle strains are fundamentally constructed as a starting point for systems strategies for industrial strains development. Here, we review for the first time, the use of E. coli GEMs for construction of proof-of-principles strains for increasing succinic acid production. Specific case studies, where E. coli proof-of-principle strains were constructed for increasing bio-based succinic acid production from glucose and glycerol carbon sources have been highlighted. In addition, a propose systems strategies for industrial strain development that could be applicable for future microbial succinic acid production guided by GEMs have been presented.

  17. Detection and Quantification of Valerenic Acid in Commercially Available Valerian Products

    Science.gov (United States)

    Douglas, Ruth H.; Muldowney, Ciaran A.; Mohamed, Rabab; Keohane, Fiona; Shanahan, Catherine; Walsh, John J.; Kavanagh, Pierce V.

    2007-01-01

    Several valerian-containing products sold in pharmacies were evaluated to verify the presence of Valeriana officinalis by identifying the presence of valerenic acid found only in species of Valeriana. The content of valerenic acid was found to vary considerably in the products analyzed, thus emphasizing the importance of standardizing herbal…

  18. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  19. Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Gangarapu, S.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2012-01-01

    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely

  20. Intracellular product recycling in high succinic acid producing yeast at low pH

    NARCIS (Netherlands)

    Wahl, S.A.; Bernal Martinez, C.; Zhao, Zheng; van Gulik, W.M.; Jansen, Mickel L.A.

    2017-01-01

    Background: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering

  1. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds

    DEFF Research Database (Denmark)

    Burniol Figols, Anna; Cenian, Katarzyna; Skiadas, Ioannis V.

    2016-01-01

    Spent coffee grounds (SCG) are an abundant by-product of the coffee industry with a complex composition that makes them a promising feedstock for a biorefinery. The objective of this study was to evaluate SCG as a substrate for combined chlorogenic acid and bioethanol production after dilute acid...

  2. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  3. A new strategy to enhance polysialic acid production by controlling ...

    African Journals Online (AJOL)

    Polysialic acid (PSA) is a new pharmaceutical material used in control release of protein drugs and as scaffold material in biomedical applications. It is also a vital source of sialic acid and its derivatives. In this paper, we demonstrated that the substrate sorbitol has significant effect on bacterial growth and PSA formation in ...

  4. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  5. Optimization of lactic acid production with immobilized Rhizopus ...

    African Journals Online (AJOL)

    sule

    2012-04-26

    Apr 26, 2012 ... Lactic acid is the most widely utilized organic acid in the food, pharmaceutical, cosmetics and chemical industries. One of its most promising applications is for used biodegradable and ... polymer supports, by embedding with natural polymers like alginate gels and synthetic polymers (Tamada et al.,. 1992).

  6. Determination of amino acids in grape-derived products: a review.

    Science.gov (United States)

    Callejón, R M; Troncoso, A M; Morales, M L

    2010-06-15

    The amino acids present in foods and beverages affect the quality of these products and they play an important role in enology. Amino acids are consumed by yeasts as a source of nitrogen during alcoholic fermentation and are precursors of aroma compounds. In this review various chromatographic methodologies for the determination of amino acids are described, and specific applications for the analysis of amino acid content are discussed. Amino acids usually need to be derivatized to make them more detectable. Several derivatizing reagents have been employed for the determination of amino acids in enological applications, and each has its advantages and disadvantages.

  7. Utilisation of sugarcane trash and other cellulosic wastes for production of oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mane, J D; Modak, H M; Ramaiah, N A; Jadhav, S J

    1988-01-01

    The nitric acid oxidation process was developed for the production of oxalic acid from sugarcane trash, groundnut shells, corn cobs and rice husks. Good yields of oxalic acid from the above raw materials were obtained under optimum conditions, with sugarcane trash as the preferable raw material. The absorption of waste nitrogen oxide gases in aqueous NaOH to get a valuable by-product, sodium nitrite, was also successful.

  8. Synthesis of 1-[11c]methylpiperidin-4-yl propionate ([11c]pmp) for in vivo measurements of acetylcholinesterase activity

    International Nuclear Information System (INIS)

    Snyder, Scott E.; Tluczek, Louis; Jewett, Douglas M.; Nguyen, Thinh B.; Kuhl, David E.; Kilbourn, Michael R.

    1998-01-01

    Synthesis of 1-[ 11 C]methylpiperidin-4-yl propionate ([ 11 C]PMP), an in vivo substrate for acetylcholinesterase, is reported. An improved preparation of 4-piperidinyl propionate (PHP), the immediate precursor for radiolabeling, was accomplished in three steps from 4-hydroxypiperidine by (a) protection of the amine as the benzyl carbamate, (b) acylation with propionyl chloride, and (c) deprotection of the carbamate by catalytic hydrogenation. The final product was obtained in an overall 82% yield. Reaction of the free base form of PHP with [ 11 C]methyl trifluoromethanesulfonate at room temperature in N,N-dimethylformamide, followed by high performance liquid chromatography (HPLC) purification, provided [ 11 C]PMP in 57% radiochemical yield, >99% radiochemical purity, and >1500 Ci/mmol at the end of synthesis. The total synthesis time from end-of-bombardment was 35 min. [ 11 C]PMP can thus be reliably prepared for routine clinical studies of acetylcholinesterase in human brain using positron emission tomography

  9. Free amino acids production by ectomycorrhizal fungi of pine (Pinus sylvestris L.).

    Science.gov (United States)

    Rózycki, H; Strzelczyk, E

    1985-01-01

    Studies on free amino acids production by five species of ectomycorrhizal fungi (Amanita muscaria, Suillus granulatus, Suillus luteus, Suillus bovinus and Rhizopogon luteolus) show that all the fungi produced mainly: glutamic acid, leucine, lysine, ornithine, arginine and an unidentified ninhydrin-positive compound X3. Both the quality and quantity of amino acids released was different in the fungal species studied. The predominant amino acids in post-culture liquids in general did not exceed 1.5 micrograms/mg dry mass.

  10. Effect of different substrates on the production of amino acids by aspergillus niger

    International Nuclear Information System (INIS)

    Almani, F.; Memon, M. A.; Dahot, M. U.

    2006-01-01

    In the present work, attempts were made to utilize sugarcane waste as carbon source for amino acid production by Aspergillus nigher. Different concentration (0.3N and 0.6N) of H/sub 2/SO/sub 4/ and NH/sub 4/OH were used to hydrolyze lignocellulosic material of the sugar cane bagasse to release the fermentable sugar, which were incorporated with mineral medium for the growth of Aspergillus niger and amino acid production. Whereas, molasses was diluted in 2.5% and 5% and was mixed with mineral medium for amino acid production by Aspergillus niger. The results were compaired with sugar cane bagasse for amino acid production. Molasses 5% was found better substrate for higher production of amino acids in comparison to hydrolysates of sugar can bagasse. (author)

  11. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri.

    Science.gov (United States)

    Dhawan, Shikha; Kuhad, Ramesh Chander

    2002-08-01

    Various amino acids, their analogues and vitamins have shown stimulatory as well as inhibitory effects on laccase production by Cyathus bulleri. DL-methionine, DL-tryptophan, glycine and DL-valine stimulated laccase production, while L-cysteine monohydrochloride completely inhibited the enzyme production. Among vitamins tested biotin, riboflavin and pyridoxine hydrochloride were found to induce laccase production.

  12. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  13. L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863

    Directory of Open Access Journals (Sweden)

    Ana Lívia Chemeli Senedese

    2015-01-01

    Full Text Available Lactic acid has been shown to have the most promising application in biomaterials as poly(lactic acid. L. rhamnosus ATCC 10863 that produces L-lactic acid was used to perform the fermentation and molasses was used as substrate. A solution containing 27.6 g/L of sucrose (main composition of molasses and 3.0 g/L of yeast extract was prepared, considering the final volume of 3,571 mL (14.0% (v/v inoculum. Batch and fed batch fermentations were performed with temperature of 43.4°C and pH of 5.0. At the fed batch, three molasses feed were applied at 12, 24, and 36 hours. Samples were taken every two hours and the amounts of lactic acid, sucrose, glucose, and fructose were determined by HPLC. The sucrose was barely consumed at both processes; otherwise the glucose and fructose were almost entirely consumed. 16.5 g/L of lactic acid was produced at batch and 22.0 g/L at fed batch. Considering that lactic acid was produced due to the low concentration of the well consumed sugars, the final amount was considerable. The cell growth was checked and no substrate inhibition was observed. A sucrose molasses hydrolysis is suggested to better avail the molasses fermentation with this strain, surely increasing the L-lactic acid.

  14. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  15. [The fat content and fatty acids composition in selected products of the convenience food].

    Science.gov (United States)

    Drzewicka, Maria; Grajeta, Halina; Kleczkowski, Jerzy

    2012-01-01

    An increasing pace of life and a lack of time for meals preparation at home, observed in many countries worldwide, have led to an increased consumption of convenient food products. This term refers to highly processed food products that are either ready-to-eat or may be consumed after short culinary processing. Convenience foods include: dinner courses, salads, cereals, creams, broths, pizzas, roasts, as well as frozen products ready-to-eat after short heat treatment. The aim of this study was to assess the fat content and fatty acids composition of frozen products belonging to convenience food. Material for analysis comprised of 30 following food products: fish and seafood products, pizza, casseroles and meat products. The fat content was determined using Folch method and the fatty acids composition using gas chromatography technique. The analyzed products contained from 1.2% to 26.9% of fat. The saturated fatty acids (SFA) content ranged from 8.7% to 53.2%, while the monounsaturated fatty acids (MUFA)--from 24.0% to 68.7% of total fatty acids. The polyunsaturated fatty acids (PUFA) percentage accounted for 8,1% to 48,8% and trans isomers--for 0.2% to 6.1% of total fatty acids. The fat and fatty acid contents showed large differences in products depending on their composition and preparation techniques declared by the producer. Most of the analyzed fish and seafood products were characterized by the fat content ranged from 11% to 14% with the high percentage of fatty acids favorable from nutritional point of view, MUFA and PUFA. The composition of fatty acids from pizza and casseroles was less favorable, due to high proportion of SFA and also trans isomers.

  16. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Science.gov (United States)

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  18. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  19. Survival and Growth of Probiotic Lactic Acid Bacteria in Refrigerated Pickle Products.

    Science.gov (United States)

    Fan, Sicun; Breidt, Fred; Price, Robert; Pérez-Díaz, Ilenys

    2017-01-01

    We examined 10 lactic acid bacteria that have been previously characterized for commercial use as probiotic cultures, mostly for dairy products, including 1 Pediococcus and 9 Lactobacilli. Our objectives were to develop a rapid procedure for determining the long-term survivability of these cultures in acidified vegetable products and to identify suitable cultures for probiotic brined vegetable products. We therefore developed assays to measure acid resistance of these cultures to lactic and acetic acids, which are present in pickled vegetable products. We used relatively high acid concentrations (compared to commercial products) of 360 mM lactic acid and 420 mM acetic acid to determine acid resistance with a 1 h treatment. Growth rates were measured in a cucumber juice medium at pH 5.3, 4.2, and 3.8, at 30 °C and 0% to 2% NaCl. Significant differences in acid resistance and growth rates were found among the 10 cultures. In general, the acid resistant strains had slower growth rates than the acid sensitive strains. Based on the acid resistance data, selected cultures were tested for long-term survival in a simulated acidified refrigerated cucumber product. We found that one of the most acid resistant strains (Lactobacillus casei) could survive for up to 63 d at 4 °C without significant loss of viability at 10 8 CFU/mL. These data may aid in the development of commercial probiotic refrigerated pickle products. © 2016 Institute of Food Technologists®.

  20. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess.

    Science.gov (United States)

    Agematu, Hitosi; Takahashi, Takehiko; Hamano, Yoshio

    2017-11-01

    Lignocellulosic biomass is an attractive source of biofuels and biochemicals, being abundant in various plant sources. However, processing this type of biomass requires hydrolysis of cellulose. The proposed rumen-mimetic bioprocess consists of dry-pulverization of lignocellulosic biomass and pH-controlled continuous cultivation of ruminal bacteria using ammonium as a nitrogen source. In this study, ruminal bacteria were continuously cultivated for over 60 days and used to digest microcrystalline cellulose, rice straw, and Japanese cedar to produce volatile fatty acids (VFAs). The ruminal bacteria grew well in the chemically defined medium. The amounts of VFAs produced from 20 g of cellulose, rice straw, and Japanese cedar were 183 ± 29.7, 69.6 ± 12.2, and 21.8 ± 12.9 mmol, respectively. Each digestion completed within 24 h. The carbon yield was 60.6% when 180 mmol of VFAs was produced from 20 g of cellulose. During the cultivation, the bacteria were observed to form flocs that enfolded the feed particles. These flocs likely contain all of the bacterial species necessary to convert lignocellulosic biomass to VFAs and microbial protein symbiotically. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments revealed that the bacterial community was relatively stable after 1 week in cultivation, though it was different from the original community structure. Furthermore, sequence analysis of the DGGE bands indicates that the microbial community includes a cellulolytic bacterium, a bacterium acting synergistically with cellulolytic bacteria, and a propionate-producing bacterium, as well as other anaerobic bacteria. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Cost-effective production of bacterial cellulose using acidic food industry by-products.

    Science.gov (United States)

    Revin, Victor; Liyaskina, Elena; Nazarkina, Maria; Bogatyreva, Alena; Shchankin, Mikhail

    2018-03-13

    To reduce the cost of obtaining bacterial cellulose, acidic by-products of the alcohol and dairy industries were used without any pretreatment or addition of other nitrogen sources. Studies have shown that the greatest accumulation of bacterial cellulose (6.19g/L) occurs on wheat thin stillage for 3 days of cultivation under dynamic conditions, which is almost 3 times higher than on standard Hestrin and Schramm medium (2.14g/L). The use of whey as a nutrient medium makes it possible to obtain 5.45g/L bacterial cellulose under similar conditions of cultivation. It is established that the pH of the medium during the growth of Gluconacetobacter sucrofermentans B-11267 depends on the feedstock used and its initial value. By culturing the bacterium on thin stillage and whey, there is a decrease in the acidity of the waste. It is shown that the infrared spectra of bacterial cellulose obtained in a variety of environments have a similar character, but we found differences in the micromorphology and crystallinity of the resulting biopolymer. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Production of lactic acid from Starchy-based food substrates

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... are rather costly. This necessitated ... found application in many industries and various commercial ... and Sharpe (MRS) agar for total lactic acid bacteria ..... An Economic ... of Enzymes and Microbial Technology, 26: 87-. 107.

  3. Catalytic amino acid production from biomass-derived intermediates

    KAUST Repository

    Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M.; Hü lsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Beckham, Gregg T.; Dyson, Paul J.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning

    2018-01-01

    Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient

  4. Improved production of chlorogenic acid from cell suspension ...

    African Journals Online (AJOL)

    Chlorogenic acid is a free radical scavenger, antibacterial, anti- inflammatory, antiviral, hypoglycemic, and in addition to ... experiments, the effect of various strengths of B5 medium (1/4 .... Growth kinetics of L. macranthoides cell suspension ...

  5. Biotechnological applications for rosmarinic acid production in plant

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... tion and media optimization are the methods applied for improving ... lanine ammonia-lyase and tyrosine aminotransferase, the two entry point enzymes of the rosmarinic acid biosynthesis pathway. .... As determined by HPLC,.

  6. Fumaric acid production by Rhizopus oryzae and its facilitated ...

    African Journals Online (AJOL)

    Anupreet

    2014-03-05

    Mar 5, 2014 ... Currently, fumaric acid is produced from petroleum based derivative maleic ... best possible option that came up for the strip phase was an alkaline medium. .... Future directions of membrane gas separation technology. Indus.

  7. Histological and histochemical studies on the female reproductive system of rose-ringed parakeet (Psittacula krameri) after testosterone propionate treatment.

    Science.gov (United States)

    Sarker, A K; Seth, T N

    1975-01-01

    Intramuscular injections of testosterone propionate (Perandren, CIBA) at a dose level of 2.5 mg per day for 10 days into adult female parakeet caused an increment of differentiated follicles in the ovary. The histological study of the testosterone treated oviduct of the bird showed well developed villi with a significant number of tubular glands particularly in the middle and distal parts of the oviduct. The high level of alkaline phosphatase activity and ascorbic acid concentration in the distal part of the oviduct in treated birds probably increase the power of hatchable eggs which has a close relationship with the enzyme and vitamin C concentration in the uterus. The testosterone treatment causes a marked depletion of granulosal vitamins from ovary but augments the ascorbate mobilization in the thecal region to a very great extent probably due to more LH secretion from the pituitary.

  8. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation.

    Science.gov (United States)

    Luo, Hongzhen; Yang, Rongling; Zhao, Yuping; Wang, Zhaoyu; Liu, Zheng; Huang, Mengyu; Zeng, Qingwei

    2018-04-01

    Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    Science.gov (United States)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  10. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  11. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  12. Optimized Jasmonic Acid Production by Lasiodiplodia theobromae Reveals Formation of Valuable Plant Secondary Metabolites.

    Directory of Open Access Journals (Sweden)

    Felipe Eng

    Full Text Available Jasmonic acid is a plant hormone that can be produced by the fungus Lasiodiplodia theobromae via submerged fermentation. From a biotechnological perspective jasmonic acid is a valuable feedstock as its derivatives serve as important ingredients in different cosmetic products and in the future it may be used for pharmaceutical applications. The objective of this work was to improve the production of jasmonic acid by L. theobromae strain 2334. We observed that jasmonic acid formation is dependent on the culture volume. Moreover, cultures grown in medium containing potassium nitrate as nitrogen source produced higher amounts of jasmonic acid than analogous cultures supplemented with ammonium nitrate. When cultivated under optimal conditions for jasmonic acid production, L. theobromae secreted several secondary metabolites known from plants into the medium. Among those we found 3-oxo-2-(pent-2-enyl-cyclopentane-1-butanoic acid (OPC-4 and hydroxy-jasmonic acid derivatives, respectively, suggesting that fungal jasmonate metabolism may involve similar reaction steps as that of plants. To characterize fungal growth and jasmonic acid-formation, we established a mathematical model describing both processes. This model may form the basis of industrial upscaling attempts. Importantly, it showed that jasmonic acid-formation is not associated to fungal growth. Therefore, this finding suggests that jasmonic acid, despite its enormous amount being produced upon fungal development, serves merely as secondary metabolite.

  13. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    Science.gov (United States)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  14. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  15. Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling

    Directory of Open Access Journals (Sweden)

    Milad Fathi

    2013-01-01

    Full Text Available This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin in different concentrations (0.1, 0.25, and 0.5% were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models were used to describe the release and kinetic modeling in gastrointestinal solution (GIS. Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.

  16. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae.

    Science.gov (United States)

    Liaud, Nadège; Rosso, Marie-Noëlle; Fabre, Nicolas; Crapart, Sylvaine; Herpoël-Gimbert, Isabelle; Sigoillot, Jean-Claude; Raouche, Sana; Levasseur, Anthony

    2015-05-03

    Lactic acid is the building block of poly-lactic acid (PLA), a biopolymer that could be set to replace petroleum-based plastics. To make lactic acid production cost-effective, the production process should be carried out at low pH, in low-nutrient media, and with a low-cost carbon source. Yeasts have been engineered to produce high levels of lactic acid at low pH from glucose but not from carbohydrate polymers (e.g. cellulose, hemicellulose, starch). Aspergilli are versatile microbial cell factories able to naturally produce large amounts of organic acids at low pH and to metabolize cheap abundant carbon sources such as plant biomass. However, they have never been used for lactic acid production. To investigate the feasibility of lactic acid production with Aspergillus, the NAD-dependent lactate dehydrogenase (LDH) responsible for lactic acid production by Rhizopus oryzae was produced in Aspergillus brasiliensis BRFM103. Among transformants, the best lactic acid producer, A. brasiliensis BRFM1877, integrated 6 ldhA gene copies, and intracellular LDH activity was 9.2 × 10(-2) U/mg. At a final pH of 1.6, lactic acid titer reached 13.1 g/L (conversion yield: 26%, w/w) at 138 h in glucose-ammonium medium. This extreme pH drop was subsequently prevented by switching nitrogen source from ammonium sulfate to Na-nitrate, leading to a final pH of 3 and a lactic acid titer of 17.7 g/L (conversion yield: 47%, w/w) at 90 h of culture. Final titer was further improved to 32.2 g/L of lactic acid (conversion yield: 44%, w/w) by adding 20 g/L glucose to the culture medium at 96 h. This strain was ultimately able to produce lactic acid from xylose, arabinose, starch and xylan. We obtained the first Aspergillus strains able to produce large amounts of lactic acid by inserting recombinant ldhA genes from R. oryzae into a wild-type A. brasiliensis strain. pH regulation failed to significantly increase lactic acid production, but switching nitrogen source and changing culture feed

  17. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  18. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    Science.gov (United States)

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  19. Production of sugars and levulinic acid from marine biomass Gelidium amansii.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2010-05-01

    This study focused on optimization of reaction conditions for formation of sugars and levulinic acid from marine algal biomass Gelidium amansii using acid catalyst and by using statistical approach. By this approach, optimal conditions for production of sugars and levulinic acid were found as follows: glucose (reaction temperature of 139.4 degrees C, reaction time of 15.0 min, and catalyst concentration of 3.0%), galactose (108.2 degrees C, 45.0 min, and 3.0%), and levulinic acid (160.0 degrees C, 43.1 min, and 3.0%). While trying to optimize the conditions for the production of glucose and galactose, levulinic acid production was found to be minimum. Similarly, the production of glucose and galactose were found to be minimum while optimizing the conditions for the production of levulinic acid. In addition, optimized production of glucose required a higher reaction temperature and shorter reaction time than that of galactose. Levulinic acid was formed at a high reaction temperature, long reaction time, and high catalyst concentration. The combined results of this study may provide useful information to develop more economical and efficient systems for production of sugars and chemicals from marine biomass.

  20. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.