WorldWideScience

Sample records for properties of materials

  1. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  2. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  3. Properties and characterization of modern materials

    CERN Document Server

    Altenbach, Holm

    2017-01-01

    This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-...

  4. Properties of plastic filtration material

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1988-01-01

    Discusses properties of filters made of thermoplastic granulated material. The granulated plastic has a specific density of 10.3-10.6 kN/m/sup 3/ and a bulk density of about 6 kN/m/sup 3/. Its chemical resistance to acids, bases and salts is high but is it soluble in organic solvents. Filters made of this material are characterized by a porosity coefficient of 36.5% and a bulk density of 5.7-6.8 kN/m/sup 3/. Physical and mechanical properties of filter samples made of thermoplastic granulated material (50x50x50 mm) were investigated under laboratory conditions. Compression strength and influencing factors were analyzed (ambient temperature, manufacturing technology). Tests show that this filtration material developed by Poltegor is superior to other filtration materials used in Poland.

  5. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...

  6. Thermoluminescence dosimetry materials: properties and uses

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Moscovitch, M.; Townsend, P.D.

    1995-01-01

    This book selects a range of the most popular thermoluminescence dosemeter (TLD) materials in use today and provides a critical account of their thermoluminescence (TL) and dosimetric properties. The information provided includes in-depth discussions of TL mechanisms, including an account of luminescence properties, and relevant information regarding dosimetric characteristics. The book is intended for those involved in TLD materials research, and for technicians and workers involved in the practical application of these materials in TL dosimetry. The advent of modern spectroscopic methods for measuring TL emission spectra (the so-called ''3-D'' presentation) seemed to the authors to be an invitation to compile such spectra for all the major TLD materials. Further consideration led to an expansion of the initial idea to include a compilation of dosimetric properties. One intention is to provide a synopsis of the TL and dosimetric properties of the most widely used TLD materials currently available and to form a link between the solid state defect properties of these materials and their actual dosimetric properties. A second intention is to provide a solid framework from which future studies of TLD materials could be launched. Too often in the past research into TLD materials has been haphazard, to say the least. By illustrating the links between solid state physics and the radiation dosimetry properties of these materials the book points to the future and to the pressing need for enhanced research on TLD materials. (Author)

  7. Virtual materials design using databases of calculated materials properties

    International Nuclear Information System (INIS)

    Munter, T R; Landis, D D; Abild-Pedersen, F; Jones, G; Wang, S; Bligaard, T

    2009-01-01

    Materials design is most commonly carried out by experimental trial and error techniques. Current trends indicate that the increased complexity of newly developed materials, the exponential growth of the available computational power, and the constantly improving algorithms for solving the electronic structure problem, will continue to increase the relative importance of computational methods in the design of new materials. One possibility for utilizing electronic structure theory in the design of new materials is to create large databases of materials properties, and subsequently screen these for new potential candidates satisfying given design criteria. We utilize a database of more than 81 000 electronic structure calculations. This alloy database is combined with other published materials properties to form the foundation of a virtual materials design framework (VMDF). The VMDF offers a flexible collection of materials databases, filters, analysis tools and visualization methods, which are particularly useful in the design of new functional materials and surface structures. The applicability of the VMDF is illustrated by two examples. One is the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

  8. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  9. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  10. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  11. Microstructure and properties of ceramic materials

    International Nuclear Information System (INIS)

    Yen Tungsheng

    1984-01-01

    Ceramics materials study is an important field in modern materials science. Each side presented 19 papers most of which were recent investigations giving rather extensive coverage of microstructure and properties of new materials. (Auth.)

  12. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  13. Properties of auxiliary filtering materials

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, L.I.; Sklyar, V.T.

    1981-01-01

    The authors have studied the physicochemical and filtering properties of the perlites FP-1 and FP-2, kieselguhr, diatomite, asbestos, wood pulp, and the diatomite powders Spidplace and Saperaid. They propose a classification for filtering materials according to their properties when mechanical impurities are being removed from the additives.

  14. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  15. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  16. Field-Induced Texturing of Ceramic Materials for Unparalleled Properties

    Science.gov (United States)

    2017-03-01

    Texturing of Ceramic Materials for Unparalleled Properties by...influence over many properties , such as optical transparency, strength, electrical conductivity, and piezoelectricity .19 Highly textured materials are... Ceramic Materials for Unparalleled Properties by Raymond Brennan, Victoria Blair, Nicholas Ku, Krista Limmer, Tanya Chantawansri, Mahesh

  17. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  18. Diffuse scattering and the fundamental properties of materials

    CERN Document Server

    EIce, Gene; Barabash, Rozaliya

    2009-01-01

    Diffuse Scattering-the use of off-specular X-Rays and neutrons from surfaces and interfaces-has grown rapidly as a tool for characterizing the surface properties of materials and related fundamental structural properties. It has proven to be especially useful in the understanding of local properties within materials. This book reflects the efforts of physicists and materials scientists around the world who have helped to refine the techniques and applications of diffuse scattering. Major topics specifically covered include: -- Scattering in Low Dimensions -- Elastic and Thermal Diffuse Scattering from Alloys -- Scattering from Complex and Disordered Materials -- Scattering from Distorted Crystals.

  19. Characterization of temperature-dependent optical material properties of polymer powders

    Energy Technology Data Exchange (ETDEWEB)

    Laumer, Tobias [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Stichel, Thomas; Bock, Thomas; Amend, Philipp [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany); Schmidt, Michael [Bayerisches Laserzentrum GmbH, 91052 Erlangen (Germany); University of Erlangen-Nürnberg, Institute of Photonic Technologies, 91052 Erlangen (Germany); SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen (Germany); CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen (Germany)

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  20. Research of footwear lining materials thermoconductive properties

    Science.gov (United States)

    Maksudova, U.; Ilkhamova, M.; Mirzayev, N.; Pazilova, D.

    2017-11-01

    Protective properties of footwear are influenced by a number of factors and the most important of them are: design features of the top and the bottom of the footwear, it’s shape, physical and mechanical properties of the components of which they are made. In course of work there were researched thermoconductive properties of different lining membrane materials used for production of high temperature protective footwear. Research results allow to select the appropriate materials by reference to thermoconductive properties during design of protective footwear for extreme conditions to prolong the wearer’s time of comfortable stay in conditions of exposure of elevated temperatures to a stack.

  1. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  2. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  3. Materials with complex behaviour II properties, non-classical materials and new technologies

    CERN Document Server

    Oechsner, Andreas

    2012-01-01

    This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.

  4. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  5. Preparation and multi-properties determination of radium-containing rocklike material

    Science.gov (United States)

    Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan

    2018-02-01

    The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.

  6. Thermophysical properties of materials for water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA`s International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs.

  7. Thermophysical properties of materials for water cooled reactors

    International Nuclear Information System (INIS)

    1997-06-01

    The IAEA Co-ordinated Research Programme (CRP) to establish a thermophysical properties data base for light and heavy water reactor materials was organized within the framework of the IAEA's International Working Group on Advanced Technologies for Water Cooled Reactors. The work within the CRP started in 1990. The objective of the CRP was to collect and systemaize a thermophysical properties data base for light and heavy water reactor materials under normal operating, transient and accident conditions. The important thermophysical properties include thermal conductivity, thermal diffusivity, specific heat capacity, enthalpy, thermal expansion and others. These properties as well as the oxidation of zirconium-based alloys, the thermophysical characteristics of high temperature concrete-core melt interaction and the mechanical properties of construction materials are presented in this report. It is hoped that this report will serve as a useful source of thermophysical properties data for water cooled reactor analyses. The properties data are maintained on the THERSYST system at the University of Stuttgart, Germany and are internationally available. Refs, figs, tabs

  8. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud

    2011-01-01

    activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  9. Data analytics and parallel-coordinate materials property charts

    Science.gov (United States)

    Rickman, Jeffrey M.

    2018-01-01

    It is often advantageous to display material properties relationships in the form of charts that highlight important correlations and thereby enhance our understanding of materials behavior and facilitate materials selection. Unfortunately, in many cases, these correlations are highly multidimensional in nature, and one typically employs low-dimensional cross-sections of the property space to convey some aspects of these relationships. To overcome some of these difficulties, in this work we employ methods of data analytics in conjunction with a visualization strategy, known as parallel coordinates, to represent better multidimensional materials data and to extract useful relationships among properties. We illustrate the utility of this approach by the construction and systematic analysis of multidimensional materials properties charts for metallic and ceramic systems. These charts simplify the description of high-dimensional geometry, enable dimensional reduction and the identification of significant property correlations and underline distinctions among different materials classes.

  10. The influence of protective properties of packaging materials and ...

    African Journals Online (AJOL)

    The influence of protective properties of packaging materials and modified atmosphere on quality changes of dried apricot is shown in this paper. In our investigation, we used four different characteristic combinations of packaging materials with different barrier properties for packaging of dried apricot: ...

  11. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  12. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  13. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    Science.gov (United States)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  14. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  15. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  16. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  17. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  18. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  19. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  20. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  1. Thermomechanical properties of mullitic materials

    Directory of Open Access Journals (Sweden)

    Jan Urbánek

    2017-12-01

    Full Text Available Mechanical tests provide important information about the properties and behaviour of materials. Basic tests include the measurement of flexural strength and in case of refractory materials, the measurement of flexural strength at high temperatures as well. The dependence of flexural strength on the temperature of ceramic materials usually exhibits a constant progression up to a certain temperature, where the material starts to melt and so the curve begins to decline. However, it was discovered that ceramic mullitic material with a 63 wt.% of Al2O3 exhibits a relatively significant maximum level of flexural strength at about 1000 °C and refractory mullitic material with a 60 wt.% of Al2O3 also exhibits a similar maximum level at about 1100 °C. The mentioned maximum is easily reproducible, but it has no connection with the usual changes in structure of material during heating. The maximum was also identified by another measurement, for example from the progression of the dynamic Young’s modulus or from deflection curves. The aim of this work was to analyse and explain the reason for the flexural strength maximum of mullitic materials at high temperatures.

  2. Material properties characterization - concrete

    International Nuclear Information System (INIS)

    England, G.L.; MacLeod, J.S.

    1978-01-01

    A review is presented of the six contributions in the SMiRT 4 conference to Session H5 on structural analysis of prestressed concrete reactor pressure vessels. These relate to short term stress-strain aspects of concrete loaded beyond the linear range in uniaxial and biaxial stress fields, to some time and temperature dependent properties of concrete at working stress levels, and to a programme of strain-gauge testing for the assessment of concrete properties. From the information discussed, it is clear that there are difficulties in determining material properties for concrete, and these are summarised. (UK)

  3. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  4. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  5. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  6. Material Properties at Low Temperature

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes

  7. Material Properties at Low Temperature

    CERN Document Server

    Duthil, P

    2014-07-17

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  8. Material Properties at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    From ambient down to cryogenic temperatures, the behaviour of materials changes greatly. Mechanisms leading to variations in electrical, thermal, mechanical, and magnetic properties in pure metals, alloys, and insulators are briefly introduced from a general engineering standpoint. Data sets are provided for materials commonly used in cryogenic systems for design purposes.

  9. Characterization of the electromechanical properties of EAP materials

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  10. The design and modeling of periodic materials with novel properties

    Science.gov (United States)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  11. Material physical properties of 11Cr-ferritic/martensitic steel (PNC-FMS) wrapper tube materials

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Kaito, Takeji; Ohtsuka, Satoshi; Tanno, Takashi; Uwaba, Tomoyuki; Koyama, Shinichi

    2012-09-01

    It is necessary to develop core materials for fast reactors in order to achieve high-burnup. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, various physical properties of PNC-FMS wrapper materials were measured and equations and future standard measurement technique of physical properties for the design and evaluation were conducted. (author)

  12. Material property changes of stainless steels under PWR irradiation

    International Nuclear Information System (INIS)

    Fukuya, Koji; Nishioka, Hiromasa; Fujii, Katsuhiko; Kamaya, Masayuki; Miura, Terumitsu; Torimaru, Tadahiko

    2009-01-01

    Structural integrity of core structural materials is one of the key issues for long and safe operation of pressurized water reactors. The stainless steel components are exposed to neutron irradiation and high-temperature water, which cause significant property changes and irradiation assisted stress corrosion cracking (IASCC) in some cases. Understanding of irradiation induced material property changes is essential to predict integrity of core components. In the present study, microstructure and microchemistry, mechanical properties, and IASCC behavior were examined in 316 stainless steels irradiated to 1 - 73 dpa in a PWR. Dose-dependent changes of dislocation loops and cavities, grain boundary segregation, tensile properties and fracture mode, deformation behavior, and their interrelation were discussed. Tensile properties and deformation behavior were well coincident with microstructural changes. IASCC susceptibility under slow strain rate tensile tests, IASCC initiation under constant load tests in simulated PWR primary water, and their relationship to material changes were discussed. (author)

  13. Comparative study on stiffness properties of WOODCAST and conventional casting materials.

    Science.gov (United States)

    Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika

    2013-08-01

    Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.

  14. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  15. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  16. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  17. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  18. Research on technology of evaluating thermal property data of nuclear power materials

    International Nuclear Information System (INIS)

    Imai, Hidetaka; Baba, Tetsuya; Matsumoto, Tsuyoshi; Kishimoto, Isao; Taketoshi, Naoyuki; Arai, Teruo

    1997-01-01

    For the materials of first wall and diverter of nuclear fusion reactor, in order to withstand steady and unsteady high heat flux load, excellent thermal characteristics are required. It is strongly demanded to measure such thermal property values as heat conductivity, heat diffusivity, specific heat capacity, emissivity and so using small test pieces up to higher than 2000degC. As the materials of nuclear reactors are subjected to neutron irradiation, in order to secure the long term reliability of the materials, it is very important to establish the techniques for forecasting the change of the thermal property values due to irradiation effect. Also the establishment of the techniques for estimating the thermal property values of new materials like low radioactivation material is important. In National Research Laboratory of Metrology, the research on the advancement of the measuring technology for high temperature thermal properties has resulted in the considerably successful development of such technologies. In this research, the rapid measurement of thermal property values up to superhigh temperature with highest accuracy, the making of thermal property data set of high level, the analysis and evaluation of the correlation of material characters and thermal property values, and the development of the basic techniques for estimating the thermal property values of solid materials are aimed at and advanced. These are explained. (K.I.)

  19. A Reference Guide for Cryogenic Properties of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  20. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  2. Tribological and Wear Properties of Multi-Layered Materials

    Directory of Open Access Journals (Sweden)

    V. Bria

    2011-09-01

    Full Text Available The usage of fabrics as reinforcements in composites is spreading due to fabrics’ properties. The use of fabrics allows obtaining of sinuous surfaces, for instance, unlike the use of prepregs. Using fabrics as reinforcements it is also possible to obtain laminate-like materials having the same matrix in all their volume. In the case of pre-pregs usage always it is necessary to discuss about the bonding between individual plies. For this study eight materials were formed. The forming method consisted in placing the pre-polymer imbued fabric pieces into a mould to obtain plates of composites. Two types of fabric were used: one simple type of untwisted tows of carbon fibres and the second one simple type of alternated untwisted tows of carbon and aramide fibres. Both fabrics were prepared in order to ensure the matrix adherence. The polymer matrix is realised from epoxy system EPIPHEN RE 4020 / EPIPHEN DE 4020 filled with clay and talc in equal amounts of 5% (weight ratio. The use of clay and talc were meant to improve the thermal dimensional stability of final materials. Tribological properties of formed materials were studied using pin-on-disk method with steel disk and pins made of materials. Both orientation of reinforcement fibres relative to friction direction were taken into account. Results are encouraging further studies in order to identify the best solution of forming a multi-component material with more than one designable property.

  3. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  4. Magnetic materials. Properties and applications

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.

    1998-01-01

    Main theoretical and experimental results of physics of magnetic materials have been stated. Special attention was paid to the problem of creation of magnetic materials for information recording and presentation. The results of fundamental researches have been considered for their effect on creation of magnetic materials with the properties required for production as well as the reverse effect of production financing on the development of fundamental investigations. The relations between the development of high technologies and the society requirements, financing volumes and the level of NIKOR. (author)

  5. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  6. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  7. Characterisation and properties of alkali activated pozzolanic materials

    Science.gov (United States)

    Bordeian, Georgeta Simona

    Many of the waste materials produced from modem heavy industries are pozzalans, which develop cementitious properties when finely divided in the presence of free lime. This property allows a potential industrial use for this waste as a cement replacement material in concrete. An example of such a waste material is blast furnace slag from the smelting of iron and steel. The US produces 26 million tons of blast furnace slag annually. Most of the slag is slowly cooled in air and it makes a poor pozzolan. Only 1.6 million tons of the slag is available in the granulated form, which is suitable as a cementitious and pozzolanic admixture. Most European countries are well endowed with coal-fired power stations and this produces fly and bottom ash, flue gas desulphurisation (FGD) gypsum. However, less than 25% of the total ash from power stations has found an industrial use mainly in cement and concrete industry. This creates a massive waste-disposal problem. Disposal of unused fly ash in open tips and ponds, for example, creates pollution problems since the drainage of effluents from the ash in the deposit ponds threaten water supplies by polluting the ground water with traces of toxic chemicals.Recent research has concentrated on the alkali activation of waste pozzolanic materials, especially ground blast furnace slag. This thesis has investigated the alkali activation of low calcium fly ashes. These form very poor pozzolans and the alkali activation of the fly ash offers the opportunity for the large scale use of fly ash. Water glass was selected as a suitable activator for the fly ash. A comprehensive series of tests have been carried out to gain information on the effect of different parameters, such as proportion and composition of the constituent materials, curing conditions and casting methods, in developing high performance construction materials. Laboratory investigations were carried out to determine the following characteristics of alkali activated materials

  8. Evaluation of effective material properties of spiral wound gasket through homogenization

    International Nuclear Information System (INIS)

    Mathan, G.; Siva Prasad, N.

    2010-01-01

    In this paper, a homogenization methodology is proposed to determine the material properties of spiral wound gaskets (SWGs) using finite element analysis through representative volume elements (RVE) of the gaskets. The constituents of this RVE are described by elasto-plastic material properties. The RVE are subjected to six load cases and the volume averaged responses are analyzed simultaneously to predict the anisotropic properties. The mechanical behaviour is simplified to an orthotropic material model with Hill's plasticity model and the properties are verified with micro-mechanical simulation and experimental results available in the literature. Reasonable agreement is obtained between the results. Formulae for elastic properties are also derived by a simplified analytical method based on lamination theory and compared with those obtained from homogenization.

  9. Evaluation of effective material properties of spiral wound gasket through homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Mathan, G. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Siva Prasad, N., E-mail: siva@iitm.ac.i [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2010-12-15

    In this paper, a homogenization methodology is proposed to determine the material properties of spiral wound gaskets (SWGs) using finite element analysis through representative volume elements (RVE) of the gaskets. The constituents of this RVE are described by elasto-plastic material properties. The RVE are subjected to six load cases and the volume averaged responses are analyzed simultaneously to predict the anisotropic properties. The mechanical behaviour is simplified to an orthotropic material model with Hill's plasticity model and the properties are verified with micro-mechanical simulation and experimental results available in the literature. Reasonable agreement is obtained between the results. Formulae for elastic properties are also derived by a simplified analytical method based on lamination theory and compared with those obtained from homogenization.

  10. State-of-the-art review of materials properties of nuclear waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Nelson, R.D.; Turcotte, R.P.; Gray, W.J.; Merz, M.D.; Roberts, F.P.; Weber, W.J.; Westsik, J.H. Jr.; Clark, D.E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability

  11. Acquisition of material properties in production for sheet metal forming processes

    International Nuclear Information System (INIS)

    Heingärtner, Jörg; Hora, Pavel; Neumann, Anja; Hortig, Dirk; Rencki, Yasar

    2013-01-01

    In past work a measurement system for the in-line acquisition of material properties was developed at IVP. This system is based on the non-destructive eddy-current principle. Using this system, a 100% control of material properties of the processed material is possible. The system can be used for ferromagnetic materials like standard steels as well as paramagnetic materials like Aluminum and stainless steel. Used as an in-line measurement system, it can be configured as a stand-alone system to control material properties and sort out inapplicable material or as part of a control system of the forming process. In both cases, the acquired data can be used as input data for numerical simulations, e.g. stochastic simulations based on real world data

  12. Thermal Expansion Properties of Aerospace Materials

    Science.gov (United States)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  13. Metal-ceramic materials. Study and prediction of effective mechanical properties

    International Nuclear Information System (INIS)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-01-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  14. Size-Dependent Materials Properties Toward a Universal Equation

    Directory of Open Access Journals (Sweden)

    Guisbiers G

    2010-01-01

    Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.

  15. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  16. Electrical properties of materials

    CERN Document Server

    Solymar, L; Syms, R R A

    2014-01-01

    An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microele...

  17. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    Science.gov (United States)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  18. Determination of material properties for short fibre reinforced C/C-SiC

    Directory of Open Access Journals (Sweden)

    Hausherr J.-M.

    2015-01-01

    Full Text Available Determining the mechanical properties of short fibre reinforced CMC using standard sized coupons has always been a challenge due to a high statistical scattering of the measured values. Although the random orientation of short fibres results in a quasi-isotropic material behavior of 2D-structures with a sufficiently large volume, the small volume typical for test coupons usually results in a non-isotropic fibre orientation in the tested volume. This paper describes a method for manufacturing unidirectional oriented short fibre reinforced CMC materials and presents material properties of UD-C/C-SiC. After verifying the fibre orientation of the CMC using micro-computed tomography, coupons were extracted to determine the orthotropic material properties. These orthotropic material properties were then used to predict the properties of C/C-SiC with randomly distributed short fibres. To validate the method, micro-computed tomography is used to quantitatively determine the fibre orientation within coupons extracted from randomly distributed short fibre C/C-SiC. After mechanical three-point-bending tests, the measured stiffness and bending strength is compared with the predicted properties. Finally, the data are used to devise a method suited for reducing the inherent large spread of material properties associated with the measurement of CMC materials with randomly distributed short fibres.

  19. Opalescence and fluorescence properties of indirect and direct resin materials.

    Science.gov (United States)

    Song, Sang-Hoon; Yu, Bin; Ahn, Jin-Soo; Lee, Yong-Keun

    2008-08-01

    To measure the opalescence and fluorescence properties of indirect and direct resin materials before and after polymerization, and to determine the influence of the material and shade group combination on these properties. BelleGlass NG (BG, indirect resin) and Estelite Sigma (ES, direct resin), each composed in 3 shade groups (EN, OD and TL for BG; BS, AS and OP for ES) out of a total of 16 shades were investigated. Resin material was packed into a mold (the BEC condition) and polymerized with a light-polymerization unit (CWL). Secondary polymerization (CIC) was performed for BG. Color was measured in the BEC, CWL, and CIC conditions, and the opalescence parameter (OP) and fluorescence parameter (FL) were calculated. For the OP, the mean for BG material was 24.3 before polymerization, which changed to 19.9 after polymerization (CIC). In the case of ES, the mean OP before polymerization was 25.6, which changed to 12.4 after polymerization (CWL). For the FL, the mean FL for BG was 2.5 before polymerization, which changed to 0.7 after polymerization. In the case of ES, the mean FL before polymerization was 1.2, which did not change after polymerization. Material and shade group combination influenced the OP and FL values (popalescence and fluorescence properties of resin materials varied depending on the material, shade group, and polymerization. Clinically, these properties should be considered when neighboring teeth are restored with different types of material.

  20. Some functional properties of composite material based on scrap tires

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  1. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2013-12-01

    Full Text Available Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers.

  2. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  3. IMAP: Interferometry for Material Property Measurement in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  4. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  5. The research of establishing reactor materials thermophysical properties data base

    International Nuclear Information System (INIS)

    Luo Danhui; Zhong Jianguo; Zhang Lili; Zhao Yongming

    1992-01-01

    In the process of nuclear reactor design and safety analysis, the reactor materials thermophysical properties parameters are very important as the main input data of reactor design and calculation. The goal of this work is to establish a practical, reliable data base of reactor materials thermophysical properties parameters with obvious function in reactor design, operation and safety analysis. At present phase, the focal point of this data base is to collect the materials thermophysical properties data based on the need of safety analysis in light water reactor and heavy water reactor. The materials to be chosen are as follows: Uranium, U-Al alloy, UO 2 , UO 2 -PuO 2 mixture, Zr-2, Zr-4, Zr-1% Ni alloy, Inconel-625, ZrO 2 (oxidic layer), boron carbide, cadmium in stainless steel, silver-indium-cadmium alloy, light water and heavy water, etc. The following thermophysical properties parameters are mainly included in the data base: thermal conductivity, thermal diffusivity, specific heat capacity, heat of melting, coefficient of thermal expansion, emittance, density, heat of vaporization, kinematic viscosity etc. The first phase of this work has been finished, which includes the method of establishing reactor materials thermophysical properties data base, the requirement of data collection, the requirement of establishing data base and the method of the data evaluation. This data base has been established and used on PC computer

  6. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  7. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  8. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  9. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  10. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  11. Material property determination of the lining layers of a versatile helmet

    Directory of Open Access Journals (Sweden)

    Kottner Radek

    2018-01-01

    Full Text Available This paper deals with material property identification of a helmet lining consisting of an outer layer of an expanded polystyrene (EPS and inner layer of an open-closed cell foam (OCCF. A combined numerical simulation and experimental testing was used for the material property identification. Compression and drop tests were performed. The ABAQUS finite element commercial code was used for numerical simulations in which the OOCF was modelled as a rate dependent viscoelastic material, while the EPS as a crushable foam. The reaction force time histories coming from the numerical simulation and the experiment have been used as a criterion for material parameter determination. After the identification of the material properties, numerical drop-tests were used to study the behaviour of a plate and a conical composite OOCF and EPS liners to decide which of them suits more for the helmet.

  12. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    Science.gov (United States)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  13. Properties of materials

    CERN Document Server

    Kelly, P F

    2014-01-01

    Materials 'Tidings' of Rigidity's Breakdown Elastic Properties of Solids Elastic Solids in Series and Parallel Fluid Statics Eureka! Fluid Dynamics: Flux Bernoulli's Equation No Confusion, It's Just Diffusion Baby, It's Viscous Outside Gas Gas Gas Through the Earth and Back Introduction to Simple Harmonic Oscillation SHO-Time Springs in Series and Parallel SHO: Kinematics, Dynamics, and Energetics Damped Oscillation: Qualitative Damped Oscillation: Explicitly Forced Oscillations Impedance and Power Resonance The First Wave Wave Dynamics and Phenomenology Linear Superposition of Waves Linear Superposition of Rightmoving Harmonic Waves Standing Waves Transverse Waves: Speed and Energetics Speed of Longitudinal Waves Energy Content of Longitudinal Waves Inhomogeneous Media Doppler Shifts Huygens' Principle, Interference, and Diffraction Say Hello, Wave Goodbye Optics Mirror Mirror Refraction Through a Glass Darkly Temperature and Thermometry Heat Convective and Conductive Heat Flow Radiative Heat Flow More Radia...

  14. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  15. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  16. Types and properties of elastomer materials used in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    Properties and kinds of elastomer materials used in a CANDU power plant have been described. The elastomer materials have been used as a sealing material in the components f nuclear power plant since they have many excellent properties that can not be seen in other materials. It is very important to select proper elastomer materials used in the nuclear power plant are required to have resistance to temperature as well as radiation. According to the experimental results performed at some laboratories including the Chalk River Laboratory of AECL, elastomer materials with high resistance to temperature and radiation are Nitrile, Ethylene, Propylene and Butyl. These materials have been used in a lot of components of Wolsong unit 1 and Wolsong 2, 3 and 4 which are under elastomer material. Therefore, the studies on the standardization are currently under way to limit about 10 different kinds of elastomer materials to be used in the plant. 16 tabs., 1 fig., 12 refs. (Author) .new.

  17. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  18. Relationship of material properties to seismic coupling. Part I. Shock wave studies of rock and rock-like materials

    International Nuclear Information System (INIS)

    Larson, D.B.; Rodean, H.C.

    1975-01-01

    Our research seeks an understanding of the relationship of material properties to explosive-energy coupling in various earth media by integrating experimental observations with computer calculational models to obtain a predictive capability. The procedure chosen consists of: first, selecting materials exhibiting interesting values of the properties that are believed to control coupling; second, experimentally determining material behavior under various types of loading and unloading; third, development of constitutive relationships; fourth, adapting these constitutive relationships to computer calculational models; and fifth, verifying the calculational models through comparison with small-scale and field high-strain-rate experiments. The object of this report is to present the shock-wave data and to make a preliminary evaluation of the results in terms of material properties, coupling, and their interactions. (U.S.)

  19. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  20. Material Properties Analysis of Structural Members in Pumpkin Balloons

    Science.gov (United States)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  1. A Summary of the Fatigue Properties of Wind Turbine Materials

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  2. Effects of temperature on mechanical properties of SU-8 photoresist material

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soon Wan; Park, Seung Bae [State University of New York, New York (United States)

    2013-09-15

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  3. Effects of temperature on mechanical properties of SU-8 photoresist material

    International Nuclear Information System (INIS)

    Chung, Soon Wan; Park, Seung Bae

    2013-01-01

    A representative fabrication processing of SU-8 photoresist, Ultraviolet (UV) lithography is usually composed of spin coat, soft bake, UV exposure, post exposure bake (PEB), development and optional hard bake, etc. The exposed region of SU-8 is crosslinked during the PEB process and its physical properties highly depend on UV exposure and PEB condition. This work was initiated to investigate if thermal baking after fabrication can affect the mechanical properties of SU-8 photoresist material because SU-8 is trying to be used as a structural material for MEMS operated at high temperature. Since a temperature of 95 .deg. C is normally recommended for PEB process, elevated temperatures up to 200 .deg. C were considered for the optional hard bake process. The viscoelastic material properties were measured by dynamic mechanical analyses (DMA). Also, pulling tests were performed to obtain Young's modulus and Poisson's ratio as a function of strain rate in a wide temperature range. From this study, the effects of temperature on the elastic and viscoelastic material properties of SU-8 were obtained.

  4. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  5. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

    Directory of Open Access Journals (Sweden)

    Almudena Díaz-García

    2017-01-01

    Full Text Available Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  6. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties.

    Science.gov (United States)

    Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa

    2017-01-25

    Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values.

  7. The Study of the Composite Material Go/CF/PTFE Tribological Property

    Directory of Open Access Journals (Sweden)

    Wang Li-hu

    2017-01-01

    Full Text Available In this paper, the composite material Go/CF/PTFE tribological property was studied. The test of its mechanical property, and the fabrication of the filled PTEE composite material sample which is based on the technology of cold press molding and sinter molding proved that adding Go and CF moderately to the composite material was an efficient way to improve its mechanical property. Meanwhile the process of friction and wear trial and SEM analysis results of the micro-structure of wear pattern proved that the addition of the Go and CF tremendously improved the anti-wear property and that after the addition the plowing effect which took place on the material surface would turn into a kind of mixed wear effect that includes plowing effect and fatigue wear. Working as pinning and bridging, the Go which distributing uniformly in the matrix was able to improve the resistance and substantially resisted the crack propagation, therefore to a certain degree enhanced the intensity of composite material and prolong its lifespan.

  8. International Nuclear Safety Center database on thermophysical properties of reactor materials

    International Nuclear Information System (INIS)

    Fink, J.K.; Sofu, T.; Ley, H.

    1997-01-01

    The International Nuclear Safety Center (INSC) database has been established at Argonne National Laboratory to provide easily accessible data and information necessary to perform nuclear safety analyses and to promote international collaboration through the exchange of nuclear safety information. The INSC database, located on the World Wide Web at http://www.insc.anl.gov, contains critically assessed recommendations for reactor material properties for normal operating conditions, transients, and severe accidents. The initial focus of the database is on thermodynamic and transport properties of materials for water reactors. Materials that are being included in the database are fuel, absorbers, cladding, structural materials, coolant, and liquid mixtures of combinations of UO 2 , ZrO 2 , Zr, stainless steel, absorber materials, and concrete. For each property, the database includes: (1) a summary of recommended equations with uncertainties; (2) a detailed data assessment giving the basis for the recommendations, comparisons with experimental data and previous recommendations, and uncertainties; (3) graphs showing recommendations, uncertainties, and comparisons with data and other equations; and (4) property values tabulated as a function of temperature

  9. The European Fusion Material properties database

    Energy Technology Data Exchange (ETDEWEB)

    Karditsas, P.J. [UKAEA Fusion, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)]. E-mail: panos.karditsas@ukaea.org.uk; Lloyd, G. [Tessella Support Services plc, 3 Vineyard Chambers, Abingdon OX14 3PX (United Kingdom); Walters, M. [Tessella Support Services plc, 3 Vineyard Chambers, Abingdon OX14 3PX (United Kingdom); Peacock, A. [EFDA Close Support Unit, Garching D-85748 (Germany)

    2006-02-15

    Materials research represents a significant part of the European and world effort on fusion research. A European Fusion Materials web-based relational database is being developed to collect, expand and preserve for the future the data produced in support of the NET, DEMO and ITER. The database allows understanding of material properties and their critical parameters for fusion environments. The system uses J2EE technologies and the PostgreSQL relational database, and flexibility ensures that new methods to automate material design for specific applications can be easily implemented. It runs on a web server and allows users access via the Internet using their preferred web browser. The database allows users to store, browse and search raw tests, material properties and qualified data, and electronic reports. For data security, users are issued with individual accounts, and the origin of all requests is checked against a list of trusted sites. Different user accounts have access to different datasets to ensure the data is not shared unintentionally. The system allows several levels of data checking/cleaning and validation. Data insertion is either online or through downloaded templates, and validation is through different expert groups, which can apply different criteria to the data.

  10. Measurement of material mechanical properties in microforming

    Science.gov (United States)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  11. Studies of the dynamic properties of materials using neutron scattering

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Windsor, C.G.

    1985-09-01

    The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)

  12. Modern permanent magnetic materials - preparation and properties

    International Nuclear Information System (INIS)

    Rodewald, W.

    1989-01-01

    First of all, the basic properties of the classical (steel, AlNiCo) permanent magnetic materials and the modern rare-earth (RE) permanent magnetic materials are compared. Since the properties of RE permanent magnets depend on the particular production process, the fundamentals of the main industrial processes (powder metallurgy, rapid-solidification technique) are described and the typical properties are explained. Furthermore the production processes in development such as mechanical alloying, melt spinning technique and extrusion upsetting are briefly outlined. For applying the permanent magnets, they have to be completely magnetized. The magnetization behaviour of the various RE permanent magnets is discussed by means of the internal demagnetization curve. Finally the various influences on the temperature stability of RE permanent magnets are compiled. (orig./MM) [de

  13. Impact of carbonation on water transport properties of cementitious materials

    International Nuclear Information System (INIS)

    Auroy, Martin

    2014-01-01

    Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr

  14. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  15. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  16. Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.R.; Matera, R.; Roedig, M.; Smith, J.J.; Janev, R.K.

    1991-03-01

    This Report contains the proceedings, results and conclusions of the work done and the analysis performed during the IAEA Consultants' Meeting on ''Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials'', convened on December 17-21, 1990, at the IAEA Headquarters in Vienna. Although the prime objective of the meeting was to critically assess the available thermo-mechanical properties data for certain types of carbon-based fusion relevant materials, the work of the meeting went well beyond this task. The meeting participants discussed in depth the scope and structure of the IAEA material properties database, the format of data presentation, the most appropriate computerized system for data storage, retrieval, exchange and management. The existing IAEA ALADDIN system was adopted as a convenient tool for this purpose and specific ALADDIN labelling schemes and dictionaries were established for the material properties data. An ALADDIN formatted test-file for the thermo-physical and thermo-mechanical properties of pyrolytic graphite is appended to this Report for illustrative purposes. (author)

  17. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  18. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  19. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    DEFF Research Database (Denmark)

    Warner, Terence Edwin

    chosen so as to illustrate the large variety of physico-chemical properties encountered in inorganic materials, and to provide practical experience covering a wide range of preparative methods, with an emphasis on high-temperature techniques. The majority of the materials described in the book relate...... in extending their repertoire of teaching material into the realms of high-temperature synthesis. It is also of interest to professional chemists, physicists, materials scientists and technologists, ceramicists, mineralogists, geologists, geochemists, archaeologists, metallurgists, engineers, and non......-specialists, who are interested in learning more about how technological ceramic materials and artificial minerals are made. Finally, the author assumes that the reader is familiar with the basic principles and concepts of materials chemistry (or at least has access to such knowledge), such as; thermodynamic...

  20. Understanding Materials Science History · Properties · Applications

    CERN Document Server

    Hummel, Rolf E

    2005-01-01

    This introduction to materials science both for students of engineering and physics and for the interested general public examines not only the physical and engineering properties of virtually all kinds of materials, but also their history, uses, development, and some of the implications of resource depletion and recycling. It covers all topics on materials from an entirely novel perspective: the role materials have played throughout history in the development of humankind and technologies. Specifically, it shows the connection between the technical and the cultural, economic, ecological, and societal aspects of materials science. It aims to whet the appetite of its readers and inspire them to further explore the properties and applications of metals, alloys, ceramics, plastics, and electronic materials by presenting easily understandable explanations and entertaining historical facts. It is also intended to raise the reader’s awareness of their obligations to society as practicing engineers and scientists....

  1. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  2. Comparison of properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2012-01-01

    Full Text Available Changes in physical properties such as density, porosity, hardness and electrical conductivity of the Ag-SnO2 and Ag-SnO2In2O3 electrical contact materials induced by introduction of metal oxide nanoparticles were investigated. Properties of the obtained silver-metal oxide nanoparticle composites are discussed and presented in comparison to their counterparts with the micro metal oxide particles as well as comparable Ag-SnO2WO3 and Ag-ZnO contact materials. Studied silvermetal oxide composites were produced by powder metallurgy method from very fine pure silver and micro- and nanoparticle metal oxide powders. Very uniform microstructures were obtained for all investigated composites and they exhibited physical properties that are comparable with relevant properties of equivalent commercial silver based electrical contact materials. Both Ag-SnO2 and Ag- SnO2In2O3 composites with metal oxide nanoparticles were found to have lower porosity, higher density and hardness than their respective counterparts which can be attributed to better dispersion hardening i.e. higher degree of dispersion of metal oxide in silver matrix.

  3. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  4. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility

    DEFF Research Database (Denmark)

    Zdarta, Jakub; Meyer, Anne S.; Jesionowski, Teofil

    2018-01-01

    on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme...... immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use...

  5. Eu contributions to the ITER materials properties data assessment

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, A.T. [EFDA CSU, Boltzmannstrasse 2, D-85748 Garching (Germany)]. E-mail: alan.peacock@tech.efda.org; Barabash, V. [IT, ITER Joint Work Site, Boltzmannstrasse 2, D-85748 Garching (Germany)]. E-mail: barabav@itereu.de; Gillemot, F. [ASI Consulting, Budafoki ut 21, H 2040 Budaors (Hungary)]. E-mail: gillemot@sunserv.kfki.hu; Karditsas, P. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)]. E-mail: Panos.Karditsas@ukaea.org.uk; Lloyd, G. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Rensman, J.-W. [NRG Petten, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands)]. E-mail: rensman@nrg-nl.com; Tavassoli, A.-A.F. [DMN/Dir, CEA/Saclay, CEA, 91191 Gif sur Yvette Cedex (France)]. E-mail: tavassoli@cea.fr; Walters, M. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2005-11-15

    In order to fully organise the materials property data from the European next Fusion programme, a database of materials properties has been established. With the help of the database application and resulting data organisation, European materials experts have supported the recent activities within ITER aimed at updating and re-organising the ITER materials documentation. A European web based database application is described and its main features are detailed. In addition, we report on the details and the status of the work aimed at updating the ITER materials documentation. An outline of the future planned activities in the development of the European database and in the revision of the ITER materials documentation is also given.

  6. Structure and properties of permeable fine-fibrous materials fabricated of powders

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, I M; Kostornov, A G; Kirichenko, O V; Guzhva, N S [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1982-09-01

    Effect of main structural characteristics of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter.

  7. Structure and properties of permeable fine-fibrous materials fabricated of powders

    International Nuclear Information System (INIS)

    Fedorchenko, I.M.; Kostornov, A.G.; Kirichenko, O.V.; Guzhva, N.S.

    1982-01-01

    Effect of main structural characteristicf of fine fibrous materials (FFM) of nickel and Ni-Cr, Ni-Mo, Ni-Cr-Mo, Ni-Fe-Cr, Ni-Fe alloys on their hydraulic and mechanical properties was studied. FFM was produced by sintering of polymer fibers filled with metal powders and converted to felts. It was shown, that the level of permeable material properties increases with reduction of filament diameter

  8. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  9. International nuclear safety center database on material properties

    International Nuclear Information System (INIS)

    Fink, J.K.

    1996-01-01

    International nuclear safety center database on the following material properties is described: fuel, cladding,absorbers, moderators, structural materials, coolants, concretes, liquid mixtures, uranium dioxide

  10. Material modeling of biofilm mechanical properties.

    Science.gov (United States)

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Correlation between Composition and Properties of Composite Material Based on Scrap Tires

    OpenAIRE

    Mālers, L; Plēsuma, R; Ločmele, L; Kalniņš, M

    2010-01-01

    Purpose of present work is to investigate mechanical and insulation properties of the composite material based on scrap tires and polyurethane-type binder in correlation with composition of composite material. The studies of material’s hardness must be considered as an express-method for estimation of the selected mechanical properties (E and ccompressive stress) of the composite material without direct experimental testing of given parameters. It was shown that composite material must be r...

  12. Informatics derived materials databases for multifunctional properties

    International Nuclear Information System (INIS)

    Broderick, Scott; Rajan, Krishna

    2015-01-01

    In this review, we provide an overview of the development of quantitative structure–property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure–property relationships; and even more importantly we are now in a position to build materials databases based on design ‘intent’ and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications. (review)

  13. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  14. ESR dosimetric properties of some biomineral materials

    International Nuclear Information System (INIS)

    Hassan, Gamal M.; Sharaf, M.A.

    2005-01-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials

  15. ESR dosimetric properties of some biomineral materials

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Gamal M. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)]. E-mail: gamalhassan65@hotmail.com; Sharaf, M.A. [Department of Ionizing Radiation Metrology, National Institute for Standards (NIS), Tersa Street, El-Haram, El-Giza, P.O. Box 136 Giza, El-Giza (Egypt)

    2005-02-01

    Dosimetric properties of g-irradiated modern coral and bioactive glass (Bio-G) samples analyzed with electron spin resonance (ESR) have been separately reported (Hassan et al., 2004; Sharaf and Hassan, 2004) and compared with alanine. These are combined here to allow a three-way comparison between these materials.

  16. Structural material properties for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A-A. F.

    2008-10-15

    Materials properties requirements for structural applications in the forthcoming and future fusion machines are analyzed with emphasis on safety requirements. It is shown that type 316L(N) used in the main structural components of ITER is code qualified and together with limits imposed on its service conditions and neutron radiation levels, can adequately satisfy ITER vacuum vessel licensing requirements. For the in-vessel components, where nonconventional fabrication methods, such as HIPing, are used, design through materials properties, data is combined with tests on representative mockups to meet the requirements. For divertor parts, where the operating conditions are too severe for components to last throughout the reactor life, replacement of most exposed parts is envisaged. DEMO operating conditions require extension of ITER design criteria to high temperature and high neutron dose rules, as well as to compatibility with cooling and tritium breeding media, depending on the blanket concept retained. The structural material favoured in EU is Eurofer steel, low activation martensitic steel with good ductility and excellent resistance to radiation swelling. However, this material, like other ferritic / martensitic steels, requires post-weld annealing and is sensitive to low temperature irradiation embrittlement. Furthermore, it shows cyclic softening during fatigue, complicating design against fatigue and creep-fatigue. (au)

  17. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado

    2010-02-17

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached to the core, and an oppositely charged canopy. The hybrid nature of NIMs allows for their properties to be engineered by selectively varying their components. The unique properties associated with these systems can help overcome some of the issues facing the implementation of nanohybrids to various commercial applications, including carbon dioxide capture,water desalinization and as lubricants. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Geelhood, Kenneth J.

    2010-08-01

    The U.S. Nuclear Regulatory Commission (NRC) uses the computer codes FRAPCON-3 and FRAPTRAN to model steady state and transient fuel behavior, respectively, in regulatory analysis. In order to effectively model fuel behavior, material property correlations must be used for a wide range of operating conditions (e.g. temperature and burnup). In this sense, a 'material property' is a physical characteristic of the material whose quantitative value is necessary in the analysis process. Further, the property may be used to compare the benefits of one material versus another. Generally speaking, the material properties of interest in regulatory analysis of nuclear fuel behavior are mechanical or thermodynamic in nature. The issue of what is and is not a 'material property' will never be universally resolved. In this report, properties such as thermal conductivity are included. Other characteristics of the material (e.g. fission gas release) are considered 'models' rather than properties, and are discussed elsewhere. Still others (e.g., neutron absorption cross-section) are simply not required in this specific analysis. The material property correlations for the FRAPCON-3 and FRAPTRAN computer codes were documented in NUREG/CR-6534 and NUREG/CR-6739, respectively. Some of these have been modified or updated since the original code documentation was published. The primary purpose of this report is to consolidate the current material property correlations used in FRAPCON-3 and FRAPTRAN into a single document. Material property correlations for oxide fuels, including uranium dioxide (UO2) and mixed oxide (MOX) fuels, are described in Section 2. Throughout this document, the term MOX will be used to describe fuels that are blends of uranium and plutonium oxides, (U,Pu)O2. The properties for uranium dioxide with other additives (e.g., gadolinia) are also discussed. Material property correlations for cladding materials and gases are described in

  19. Stochasticity in materials structure, properties, and processing—A review

    Science.gov (United States)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  20. Study made of dielectric properties of promising materials for cryogenic capacitors

    Science.gov (United States)

    Mathes, K. N.; Minnich, S. H.

    1967-01-01

    Experimental investigations were conducted to determine dielectric properties of promising materials for cryogenic capacitors to be used in energy storage and pulse applications. The three classes of materials investigated were inorganic bonded ferroelectric materials, anodic coatings on metal foils, and polar low temperature liquids.

  1. Determination of the probability for radioactive materials on properties in Monticello, Utah

    International Nuclear Information System (INIS)

    Wilson, M.J.; Crutcher, J.W.; Halford, D.K.

    1991-01-01

    The former uranium mill site at Monticello, Utah, is a surplus facility subject to clean-up under the Surplus Facilities Management Program (SFMP). Surrounding properties contaminated with mill site material are also subject to cleanup, and are referred to as Monticello Vicinity Properties (MVP). The Pollutant Assessments Group (PAG) of Oak Ridge National Laboratory (ORNL), Grand Junction, Colorado (GJ), was directed by the US Department of Energy (DOE) in July 1988 to assess the radiological condition of properties in Monticello, Utah. Since the Monticello activities are on the National Priority List, extra measures to identify potentially contaminated properties were undertaken. Thus, the likelihood that a random property could contain radioactive materials became a concern to the DOE. The objective of this study was to determine the probability that a vicinity property not addressed under the MVP project could contain Monticello mill-related residual radioactive material in excess of the DOE guidelines. Results suggest approximately 20% of the properties in the Monticello area contain Monticello mill-related residual radioactive material in excess of the DOE guidelines. This suggested that further designation measures be taken prior to the close of the designation phase. A public relations effort that included a property-owner mailing effort, public posting, and newspaper advertisement was one measure taken to ensure that most properties were assessed. As a consequence of this study, DOE directed that radiological screening surveys be conducted on the entirety of the Monticello area

  2. The effect of material properties on the seismic performance of Arch Dams

    Directory of Open Access Journals (Sweden)

    B. Sevim

    2011-08-01

    Full Text Available The paper investigates the effect of material properties on the seismic performance of arch dam-reservoir-foundation interaction systems based on the Lagrangian approach using demand-capacity ratios. Type-5 arch dam is selected as a numerical application. The linear time history analyses of the arch dam-reservoir-foundation interaction system are carried out for different material properties. The foundation is taken into account as massless; behaviour of the reservoir is assumed to be linearly elastic, inviscid and irrotational. The north-south component of the Erzincan earthquake in 1992 is chosen as a ground motion. Dynamic equations of motions obtained from 3-D finite element modelling of the coupled system are solved by using the Newmark integration algorithm. The damage levels of the coupled system for the different material properties are demonstrated by using demand-capacity ratios and cumulative inelastic durations. The time histories and maximum values of the displacements and principal stresses, and performance curves, are obtained from linear analyses. It is clearly seen from the study that the different material properties affect the seismic behaviour of the dam.

  3. Experimental evaluation of the thermal properties of two tissue equivalent phantom materials.

    Science.gov (United States)

    Craciunescu, O I; Howle, L E; Clegg, S T

    1999-01-01

    Tissue equivalent radio frequency (RF) phantoms provide a means for measuring the power deposition of various hyperthermia therapy applicators. Temperature measurements made in phantoms are used to verify the accuracy of various numerical approaches for computing the power and/or temperature distributions. For the numerical simulations to be accurate, the electrical and thermal properties of the materials that form the phantom should be accurately characterized. This paper reports on the experimentally measured thermal properties of two commonly used phantom materials, i.e. a rigid material with the electrical properties of human fat, and a low concentration polymer gel with the electrical properties of human muscle. Particularities of the two samples required the design of alternative measuring techniques for the specific heat and thermal conductivity. For the specific heat, a calorimeter method is used. For the thermal diffusivity, a method derived from the standard guarded comparative-longitudinal heat flow technique was used for both materials. For the 'muscle'-like material, the thermal conductivity, density and specific heat at constant pressure were measured as: k = 0.31 +/- 0.001 W(mK)(-1), p = 1026 +/- 7 kgm(-3), and c(p) = 4584 +/- 107 J(kgK)(-1). For the 'fat'-like material, the literature reports on the density and specific heat such that only the thermal conductivity was measured as k = 0.55 W(mK)(-1).

  4. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  5. Processing and properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Nadežda M. Talijan

    2012-12-01

    Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.

  6. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    Science.gov (United States)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  7. Fabrication and properties of submicrometer structures of magnetic materials

    International Nuclear Information System (INIS)

    Martin, J.I.; Velez, M.; Nogues, J.; Schuller, I.K.

    1998-01-01

    The method of electron beam lithography is described. This technique allows to fabricate well defined submicrometer structures of magnetic materials, that are suitable to show and study interesting physical properties by transport measurements either in Superconductivity or in Magnetism. In particular, using these structures, we have analyzed pinning effects of the vortex lattice in superconductors and magnetization reversal processes in magnetic materials. (Author) 15 refs

  8. Beyond local effective material properties for metamaterials

    Science.gov (United States)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  9. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-11-01

    Full Text Available This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%, water/cement ratio (0.35 and 0.55 and steel fiber dosage (0.5%, 1.0% and 2.0%. The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  10. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  11. A Statistics-Based Material Property Analysis to Support TPS Characterization

    Science.gov (United States)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  12. The synthesis and properties of nanoscale ionic materials

    KAUST Repository

    Rodriguez, Robert Salgado; Herrer, Rafael; Bourlinos, Athanasios B.; Li, Ruipeng; Amassian, Aram; Archer, Lynden A.; Giannelis, Emmanuel P.

    2010-01-01

    In this article we discuss the effect of constituents on structure, flow, and thermal properties of nanoscale ionic materials (NIMs). NIMs are a new class of nanohybrids consisting of a nanometer-sized core, a charged corona covalently attached

  13. AGC 2 Irradiated Material Properties Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-01

    The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.

  14. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  15. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  16. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  17. Mechanics of advanced materials analysis of properties and performance

    CERN Document Server

    Matveenko, Valery

    2015-01-01

    The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.

  18. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  19. Overview of European Community (Activity 3) work on materials properties of fast reactor structural materials

    International Nuclear Information System (INIS)

    Wood, D.S.

    The Fast Reactor Coordinating Committee set up in 1974 the Working Group Codes and Standards, and organized its work into four main activities: Manufacturing standards, Structural analysis, Materials and Classification of components. The main purpose of materials activity is to compare and contrast existing national specifications and associated properties relevant to structural materials in fast reactors. Funds are available on a yearly basis for tasks to be carried out through Study Contracts. At present about four Study Contract Reports are prepared each year

  20. The Influence Of The Way Of Alumina Addition On Properties Improvement Of 3YSZ Material

    Directory of Open Access Journals (Sweden)

    Drożdż E.

    2015-06-01

    Full Text Available Yttria-stabilized zirconia (YSZ is the best known ceramic-oxide material employed as a component of either solid electrolyte or anode cermet material for intermediate solid oxide fuel cell (IT - SOFC. The properties of traditionally produced (by mechanical mixing of oxides Al2O3/3YSZ composite with the same composition materials obtained by citrate and impregnation methods and with properties of pure tetragonal zirconia (3YSZ were compared. The materials were characterised by X-ray diffraction, SEM observations with EDX analysis, density and impedance spectroscopy measurements. The results shown that Al2O3/3YSZ composites reveals higher conductivity than pure 3YSZ and that addition of alumina (regardless of methods improve electric properties of resulting materials. Taking into account application of this materials as anode in IT-SOFC the determined values of energy activation of conductivity and microstructural properties of composites show that materials obtained by citric method are the most promising.

  1. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    Science.gov (United States)

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  2. A review on thermophysical properties of nanoparticle dispersed phase change materials

    International Nuclear Information System (INIS)

    Kibria, M.A.; Anisur, M.R.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.

    2015-01-01

    Highlights: • Thermo physical properties of PCM could be enhanced by dispersing nanoparticles. • Surface/physical properties of nanoparticle could affect the thermal properties of PCM. • CNT and CNF showed better performance to enhance the thermal properties of PCM. • Some predictions in NePCM literature needs further investigations. - Abstract: A review of current experimental studies on variations in thermophysical properties of phase change material (PCM) due to dispersion of nanoparticles is presented in this article. Dispersed carbon nanotubes/fiber and different metal/metal oxide nano particles in paraffin and fatty acids might be a solution to improve latent heat thermal storage performance. Thermophysical properties such as thermal conductivity, latent heat, viscosity and super cooling of phase change materials (PCM) could be changed for different physical properties of dispersed nanoparticle such as size, shape, concentration and surface properties. Among the nano particles, comparatively carbon nanotubes and carbon nano fiber have shown better performance in enhancing the thermal properties of PCM for their unique properties. The present review will focus on the studies that describe how the surface, chemical and physical properties of nanoparticle could affect the thermal properties of PCM with the help of available explanations in the literature

  3. Chemical properties and colors of fermenting materials in salmon fish sauce production

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Nakano

    2018-02-01

    Full Text Available This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce (moromi, and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format. Keywords: Fish sauce, Chum salmon, Fermentation, Chemical properties, Color

  4. Identification of material properties of sandwich structure with piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Zemčík R.

    2008-11-01

    Full Text Available The work focuses on light-weight sandwich structures made of carbon-epoxy skins and foam core which have unique bending stiffness compared to conventional materials. The skins are manufactured by vacuum autoclave technology from unidirectional prepregs and the sandwich is then glued together. The resulting material properties of the structure usually differ from those provided by manufacturer or even those obtained from experimental tests on separate materials, which makes computational models unreliable. Therefore, the properties are identified using the combination of experimental analysis of the sandwich with attached piezoelectric transducer and corresponding static and modal finite element analyses. Simple mathematical optimization with repetitive finite element solution is used. The model is then verified by transient analysis when the piezoelectric patch is excited by harmonic signals covering the first two eigen-frequencies and the induced oscillations are measured by laser sensor.

  5. Cellular and Porous Materials Thermal Properties Simulation and Prediction

    CERN Document Server

    Öchsner, Andreas; de Lemos, Marcelo J S

    2008-01-01

    Providing the reader with a solid understanding of the fundamentals as well as an awareness of recent advances in properties and applications of cellular and porous materials, this handbook and ready reference covers all important analytical and numerical methods for characterizing and predicting thermal properties. In so doing it directly addresses the special characteristics of foam-like and hole-riddled materials, combining theoretical and experimental aspects for characterization purposes.

  6. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    Science.gov (United States)

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  7. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    Science.gov (United States)

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H U [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  9. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  10. Effects of CTR irradiation on the mechanical properties of structural materials

    International Nuclear Information System (INIS)

    Wiffen, F.W.

    1976-11-01

    Mechanical properties of CTR structural materials are important in determining the reliability and economics of fusion power. Furthermore, these properties are significantly affected by the high neutron flux experienced by components in the regions near the plasma of the fusion reactor. In general, irradiation hardens the material and leads to a reduction in ductility. An exception to this is in some complex engineering alloys where either hardening or softening can be observed depending on the alloy and the irradiation conditions. Regardless of this restriction, irradiation usually leads to a reduction in ductility. Available tensile data examined in this paper show that significant ductility reduction can be found for irradiation conditions typical of CTR operation. Consideration of these effects show that extensive work will be needed to fully establish the in-service properties of CTR structures. This information will be used by designers to develop conditions and design philosophies adapted to avoid the most deleterious conditions and minimize stresses on structures on reactor design. The information will also be used as input to alloy development programs with goals of producing materials more resistant to property degradation during irradiation. It is clear that a great deal of additional work will be required both to understand the effect of CTR irradiation on properties and to develop optimal alloys for this application

  11. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  12. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    International Nuclear Information System (INIS)

    Simon, N.J.

    1994-01-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al 2 O 3 , AlN, MgO, porcelain, SiO 2 , MgAl 2 O 4 , ZrO 2 , and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials

  13. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  14. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR of <2 [cm³(STP/(m²d bar] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.

  15. REFERENCE MATERIALS SYSTEM OF SCIENTIFIC METHODICAL CENTRE OF STATE SERVICE OF REFERENCE MATERIALS FOR COMPOSITION AND PROPERTIES OF SUBSTANCES AND MATERIALS URAL RESEARCH INSTITUTE FOR METROLOGY

    Directory of Open Access Journals (Sweden)

    E. V. Osinseva

    2015-01-01

    Full Text Available Since 1960s UNIIM performs research in the field of needs in reference materials of composition and properties of substances and materials (RM as well as develops it. During the research UNIIM has developed 757 types of RMs for metrological measurement assurance of factors of composition and properties of substance and materials for test laboratories of chemical, pharmaceutical, fuel, food industry, agriculture, metallurgy and ecological monitoring laboratories. List ofRMs enlarges thanks to development of UNIIM standards and transmission measurement facility from State standards of units. Taking into account the actual requirements in the field of measurements, the UNIIM's key destination is to assure the accuracy and the metrological traceability of measurements. The present-day system of RMs to be developed in UNIIM includes RMs of composition of inorganic and organic compounds and their solutions, fuels, stable isotopic materials, water, grounds, food products, biomaterials, nanomaterials, metals, alloys and other materials offerrous and non-ferrous industry, RMs of properties (thermodynamic, magnetic, physical-chemical, technical of substances and materials. The present article considers history of RMs list development which were created by UNIIM and the strategy of this direction.

  16. Effect of fluoride addition on the properties of dental alginate impression materials.

    Science.gov (United States)

    Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We

    2004-03-01

    Fluoride-containing dental alginate impression materials can exert a considerable reduction in enamel solubility. The objective was to evaluate the effects of fluoride addition in the alginate impression materials on the properties and subsequent release of fluoride. Four experimental alginate impression materials were studied. Materials were mixed with distilled water (control) or 100-ppm fluoride solution. One or two percent NaF, or 1% SnF2 was added to the materials, which were mixed with distilled water. Fluoride release, flexibility, recovery from deformation, setting time, compressive strength and elastic modulus were determined in accordance with the ISO 1563 and ANSI/ADA Spec. 18. Fluoride release increased after addition of fluoride, and the released amount was 0.762-14.761 ppm. Addition of NaF or SnF2 resulted in higher fluoride release than the control group (p alginate impression material may result in effective release of fluoride without deteriorating the properties of material itself.

  17. Computational methods for 2D materials: discovery, property characterization, and application design.

    Science.gov (United States)

    Paul, J T; Singh, A K; Dong, Z; Zhuang, H; Revard, B C; Rijal, B; Ashton, M; Linscheid, A; Blonsky, M; Gluhovic, D; Guo, J; Hennig, R G

    2017-11-29

    The discovery of two-dimensional (2D) materials comes at a time when computational methods are mature and can predict novel 2D materials, characterize their properties, and guide the design of 2D materials for applications. This article reviews the recent progress in computational approaches for 2D materials research. We discuss the computational techniques and provide an overview of the ongoing research in the field. We begin with an overview of known 2D materials, common computational methods, and available cyber infrastructures. We then move onto the discovery of novel 2D materials, discussing the stability criteria for 2D materials, computational methods for structure prediction, and interactions of monolayers with electrochemical and gaseous environments. Next, we describe the computational characterization of the 2D materials' electronic, optical, magnetic, and superconducting properties and the response of the properties under applied mechanical strain and electrical fields. From there, we move on to discuss the structure and properties of defects in 2D materials, and describe methods for 2D materials device simulations. We conclude by providing an outlook on the needs and challenges for future developments in the field of computational research for 2D materials.

  18. Density functional theory and pseudopotentials: A panacea for calculating properties of materials

    International Nuclear Information System (INIS)

    Cohen, M.L.; Lawrence Berkeley Lab., CA

    1995-09-01

    Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ''Standard Model'' of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented

  19. The influence of ion bombardment on emission properties of carbon materials

    International Nuclear Information System (INIS)

    Chepusov, Alexander; Komarskiy, Alexander; Kuznetsov, Vadim

    2014-01-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  20. The influence of ion bombardment on emission properties of carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Chepusov, Alexander, E-mail: chepusov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Komarskiy, Alexander, E-mail: aakomarskiy@gmail.com [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Kuznetsov, Vadim, E-mail: kuznetsov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation)

    2014-07-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  1. Sealing properties of cement-based grout materials used in the rock sealing project

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M; Gray, M N; Pusch, R; Boergesson, L; Karnland, O; Shenton, B; Walker, B

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs.

  2. Sealing properties of cement-based grout materials used in the rock sealing project

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.N.; Pusch, R.; Boergesson, L.; Karnland, O.; Shenton, B.; Walker, B.

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs

  3. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  4. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  5. Physical properties of a new sonically placed composite resin restorative material.

    Science.gov (United States)

    Ibarra, Emily T; Lien, Wen; Casey, Jeffery; Dixon, Sara A; Vandewalle, Kraig S

    2015-01-01

    A new nanohybrid composite activated by sonic energy has been recently introduced as a single-step, bulk-fill restorative material. The purpose of this study was to compare the physical properties of this new composite to various other composite restorative materials marketed for posterior or bulk-fill placement. The following physical properties were examined: depth of cure, volumetric shrinkage, flexural strength, flexural modulus, fracture toughness, and percent porosity. A mean and standard deviation were determined per group. One-way ANOVA and Tukey's post hoc tests were performed per property (α = 0.05). Percent porosity was evaluated with a Kruskal-Wallis/Mann-Whitney test (α = 0.005). Significant differences were found between groups (P composite restorative materials, the new nanohybrid composite showed low shrinkage and percent porosity, moderate fracture toughness and flexural modulus, and high flexural strength. However, it also demonstrated a relatively reduced depth of cure compared to the other composites.

  6. Experimental Investigation of Stiffness Characteristics and Damping Properties of a Metallic Rubber Material

    Science.gov (United States)

    Lu, Ch. Zh.; Li, Jingyuan; Zhou, Bangyang; Li, Shuang

    2017-09-01

    The static stiffness and dynamic damping properties of a metallic rubber material (MR) were investigated, which exhibited a nonlinear deformation behavior. Its static stiffness is analyzed and discussed. The effects of structural parameters of MR and experimental conditions on its shock absorption capacity were examined by dynamic tests. Results revealed excellent elastic and damping properties of the material. Its stiffness increased with density, but decreased with thickness. The damping property of MR varied with its density, thickness, loading frequency, and amplitude.

  7. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  8. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  9. Thermal properties and modeling of aluminosilicate materials for low-temperature bulk applications

    International Nuclear Information System (INIS)

    Kaushal, S.

    1988-01-01

    This thesis concerns itself with the thermal properties of aluminosilicate materials such as cements, blended cements and clays and their application to the problem of radioactive waste encapsulation. The objective of this thesis is to study the thermal properties (heat of hydration, thermal conductivity and diffusivity) of these materials and to determine their effect on the temperature in large monoliths and on the material itself. In this thesis the hydration temperatures for the extreme conditions (adiabatic) were experimentally measured and compared to those predicted under real conditions. Such a simulation can be made by measuring the thermal properties and studying the temperature distribution predicted by a finite differences computer model. Measurements of adiabatic temperature rise were made using a computer-controlled adiabatic calorimeter which was designed and developed for this thesis. Conditions very close to zero heat exchange with the environment were achieved. The existence of this method made it possible to actually observe the fact that cement hydration results in boiling off of the water in such conditions. A number of additives were tried to prevent this. It was observed that waste or by-product materials such as blast furnace slag and fly ash could be used to dramatically reduced the temperature in large bodies. These materials also reacted extensively with the highly alkaline radioactive waste solution to form hydrogarnet and zeolitic material which had useful cementing properties. The conclusion was reached that a selection of blends of aluminosilicate materials can be utilized for providing the proper thermal environment for long-term geological disposal of radioactive waste

  10. Properties of selected superconductive materials, 1978 supplement. Technical note

    International Nuclear Information System (INIS)

    Roberts, B.W.

    1978-10-01

    This report includes data on additional superconductive materials extracted from the world literature up to fall 1977 and is an addendum to the data set published in J. Phys. Chem. Ref. Data 5, no. 3, 581-821 (1976) (Reprint no. 84). The data presented are new values and have not been selected or compared to values (except for selected values of the elements) previously assembled by the Superconductive Materials Data Center. The properties included are composition, critical temperature, critical magnetic field, crystal structure and the results of negative experiments. Special tabulations of high magnetic field materials with Type II behavior and materials with organic components are included. All entries are keyed to the literature. A list of recent reviews centered on superconductive materials is included

  11. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  12. Analysis of Mechanical Properties of Fabrics of Different Raw Material

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-07-01

    Full Text Available The study analyzes dependence of mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on integrated fabric structure factor j and raw material density r, among the fabrics of different raw material (cotton, wool, polypropylene, polyester and polyacrylnitrile and woven in different conditions. The received results demonstrate that sometimes strong dependences exist (wool, polypropylene and polyacrylnitrile, whereas in some cases (cotton and polyester there is no correlation. It was also discovered that the breaking force and elongation at break in the direction of weft increase, when fabric structure becomes more rigid. In the meantime variations of the curves in the direction of warp are insignificant. Regarding static friction force and static friction coefficient (found in two cases, when fabrics were rubbing against leather and materials, it was discovered that consistency of the curves is irregular, i. e. they either increase or decrease, when integrated fabric structure factor j growth. It was also identified that some dependences are not strong and relationship between explored and analyzed factors does not exist. Variation of all these mechanical properties with respect to material density r enables to conclude that increase of material density r results in poor dependences or they are whatsoever non-existent.http://dx.doi.org/10.5755/j01.ms.17.2.487

  13. Properties of materials based on polybenzimidazopyrrolone

    Energy Technology Data Exchange (ETDEWEB)

    Korshak, L L; Lekaye, I A; Vinogradova, O V; Chatova, L L; Lekaye, T V; Rusanov, A L

    1980-01-01

    Polymers based on polyheteroarylene compounds are characterized by high radiation and ablation resistance and are prepared by a two-stage synthesis:preparation of the soluble polyamidoamino acids (PAAA's), and polycondensation by thermal intramolecular polycyclodehydration of the PAAA's. Three types of polymers were prepared by the reaction in dimethylformamide of 3,3',4,4'-tetraminodiphenyl-oxide with the dianhydrides of diphenyloxide-, benzophenone-, and diphenylsulfon-tetracarbonic acids and pyromellitic acid. An evaluation was made of the optimum regimes for extruding these polymers and of the properties of the extruded material. (JMT)

  14. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances.

    Science.gov (United States)

    Kohda, Naohisa; Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Ahluwalia, Karamdeep S; Mizoguchi, Itaru

    2013-05-01

    To measure the forces delivered by thermoplastic appliances made from three materials and investigate effects of mechanical properties, material thickness, and amount of activation on orthodontic forces. Three thermoplastic materials, Duran (Scheu Dental), Erkodur (Erkodent Erich Kopp GmbH), and Hardcast (Scheu Dental), with two different thicknesses were selected. Values of elastic modulus and hardness were obtained from nanoindentation measurements at 28°C. A custom-fabricated system with a force sensor was employed to obtain measurements of in vitro force delivered by the thermoplastic appliances for 0.5-mm and 1.0-mm activation for bodily tooth movement. Experimental results were subjected to several statistical analyses. Hardcast had significantly lower elastic modulus and hardness than Duran and Erkodur, whose properties were not significantly different. Appliances fabricated from thicker material (0.75 mm or 0.8 mm) always produced significantly greater force than those fabricated from thinner material (0.4 mm or 0.5 mm). Appliances with 1.0-mm activation produced significantly lower force than those with 0.5-mm activation, except for 0.4-mm thick Hardcast appliances. A strong correlation was found between mechanical properties of the thermoplastic materials and force produced by the appliances. Orthodontic forces delivered by thermoplastic appliances depend on the material, thickness, and amount of activation. Mechanical properties of the polymers obtained by nanoindentation testing are predictive of force delivery by these appliances.

  15. Measurement of mechanical and thermophysical properties of dimensionally stable materials for space applications

    Science.gov (United States)

    Rawal, Suraj P.; Misra, Mohan S.

    1992-01-01

    Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.

  16. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.J.

    1994-12-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

  17. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    Science.gov (United States)

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  18. Development of Composite Materials with High Passive Damping Properties

    National Research Council Canada - National Science Library

    Crocker, Malcolm J

    2006-01-01

    .... However their fatigue, vibration and acoustic properties are known less. This is a problem since such composite materials tend to be more brittle than metals because of the possibility of delamination and fiber breakage...

  19. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  20. Photoelectric properties of GaAs materials studied by pulsed laser techniques

    International Nuclear Information System (INIS)

    Aguir, Khalifa

    1981-01-01

    This research thesis addressed the photoelectric properties of single-crystal or epitaxial GaAs (N doped or P doped) materials. The objective is to characterize and to improve the electric quality of these materials and associated components, notably for the production of high performance solar cells for ground-based or space-based applications. More particularly, this research aimed at using an excitation by a pulsed laser to analyse recombination and trapping properties of carriers created by photo-excitation, and also at studying the effect of low doses of particle irradiation on the carrier properties. Thus, the author describes conduction characteristics of two different N-type epitaxial layers, discusses carrier excitation and recombination processes which may occur in semiconductors, and proposes an overview of trapping phenomena. Photoelectric properties of the considered epitaxial layers are then studied and discussed

  1. Material properties of oxide dispersion strengthened (ODS) ferritic steels for core materials of FBR. Tensile properties of sodium exposed and nickel diffused materials

    International Nuclear Information System (INIS)

    Kato, Shoichi; Yoshida, Eiichi

    2002-12-01

    An oxide dispersion strengthened (ODS) ferritic steel is candidate for a long-life core materials of future FBR, because of good swelling resistance and high creep strength. In this study, tensile tests were carried out the long-term extrapolation of sodium environmental effects on the mechanical properties of ODS steels. The tested heats of materials are M93, M11 and F95. The specimens were pre-exposed to sodium for 1,000 and 3,000 hours under non-stress conditions. The pre-exposure to sodium was conducted using a sodium test loop constituted by austenitic steels. For the conditions of sodium exposure test, the sodium temperature was 650 and 700degC, the oxygen concentration in sodium was about 1 ppm and sodium flow rate on the surface of specimen was less than 1x10 -4 m/seconds (nearly static). Further the specimen with the nickel diffused was prepared, which is simulate to nickel diffusing through sodium from the surface of structural stainless steels. The main results obtained were as follows; (1) The tensile strength and the fracture elongation after sodium exposure (maximum 3,000 hours) were same as that of as-received materials. If was considered that the sodium environmental effect is negligible under the condition of this study. (2) Tensile properties of nickel diffused specimens were slightly lower than that of the as-received specimens, but it remains equal to that of thermal aging specimens. (3) The change in microstructure such as a degraded layer was observed on the surface of nickel diffused specimen. In the region of the degraded layer, phase transformations from the α-phase to the γ-phase were recognized. But, the microscopic oxide particles were observed same as that of α-phase base metal. (author)

  2. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  3. Influence of the reduction-crucible material on the uranium properties

    International Nuclear Information System (INIS)

    Braga, F.J.C.; Bose, A.; Freitas, C.T. de

    1979-01-01

    The uranium obtained by UF 4 reduction using Mg in bombs coated with different materials such as alumina, blast furnace slag, Zirconia and graphite was studied. The reduction process involves a reaction that altains temperatures of the order of 1600 0 C at tightly closed enclosure environment. Assuming in this process that the only possible influencial agent on the reaction main product, i.e., metallic uranium is the own bomb coaling, different properties, mechanical-metallurgical and phase-transformation characteristics were examined and the influences of the coating materials were compared. The comparison of these properties was also studied in uranium refined by arc fusion. (Author) [pt

  4. Material Property Measurement in Hostile Environments using Laser Acoustics

    International Nuclear Information System (INIS)

    Ken L. Telschow

    2004-01-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods-it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100's of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for laser

  5. Irradiation effects on material properties of steels used in nuclear reactors: a literature review

    International Nuclear Information System (INIS)

    Gerceker, N.; Dara, I. H.

    2001-01-01

    The structural materials of a nuclear power plant are of vital importance as they provide mechanical strength, structural support and physical containment for the primary reactor components as well as the nuclear power plant itself. These structural materials comprise mainly of metals and their alloys, ceramics and cermets. However, metals and their alloys are the most widely used materials and the irradiation effects are more pronounced on metallic materials as of their high temperature properties are more sensitive (with respect to ceramics and cermets) to any kind of external effects. The wholesale creation of effects on material properties has been studied for over four decades and it is not realistic to attempt to represent even a small part of the field in single poster paper. In the present contribution, a literature review of the irradiation effects on the material properties of different types of steel alloys will be given because steels are widely used as structural materials in reactors and therefore the irradiation effects on steels may be of paramount importance for reactor design, operation and safety concepts which will be discussed about radiation effects on material properties of steels will provide highlights to better understanding of the origins and development of radiation effects in materials

  6. LEATHER WASTE VALORISATION THROUGH MATERIAL INNOVATION: SOME PROPERTIES OF LEATHER WOOD FIBREBOARD

    Directory of Open Access Journals (Sweden)

    Axel M. RINDLER

    2015-12-01

    Full Text Available Due to the ever-increasing scarcity of resources and raw materials in the wood panels industry, it is imperative to look for suitable alternatives to the established resources. Therefore a combination of the traditionally used and newly explored sources may reveal highly innovative ways. The objective of this study is to provide an insight into the behavior of the material and possible new applications of those fiber/particle wood and waste leather composites. For this reason exclusively fibers of spruce were used for the trials. Wet white (WW leather particles and wet blue (WB leather particles were mixed with the wooden materials for the production of high density fibreboards. Besides the mechanical properties such as the internal bond (IB the bending strength (MOR and modulus of elasticity (MOE was analyzed. Further physical property as thickness swelling after 24h watering was investigated. To analyze how the density influences the behavior under thermal conditions, fiberboards with the densities 500, 700 and 900 kg/m³ were tested. The results of the material properties were influenced by the leather content of the panels. The results for the UF-bonded HDF boards show enhancement of the transverse IB with increasing wet blue leather content, whereas the other mechanical properties decline meanwhile. The thickness swelling showed higher values compared to the wood fibreboard. The results of this study underline the usefulness of integrating leather shavings to HDF and give an overview of their influence in wood fiber materials. The combination of the natural resource wood fiber and the leather waste products (Wet Blue and Wet White gives a very interesting new material, its mechanical properties allow a variety of possible application in future applications.

  7. A FEM-based method to determine the complex material properties of piezoelectric disks.

    Science.gov (United States)

    Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C

    2014-08-01

    Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is

  8. Mechanical properties of BixSb2−xTe3 nanostructured thermoelectric material

    International Nuclear Information System (INIS)

    Li, G; Gadelrab, K R; Souier, T; Chiesa, M; Potapov, P L; Chen, G

    2012-01-01

    Research on thermoelectric (TE) materials has been focused on their transport properties in order to maximize their overall performance. Mechanical properties, which are crucial for system reliability, are often overlooked. The recent development of a new class of high-performance, low-dimension thermoelectric materials calls for a better understanding of their mechanical behavior to achieve the desired system reliability. In the present study we investigate the mechanical behavior of nanostructure bulk TE material p-type Bi x Sb 2−x Te 3 by means of nanoindentation and 3D finite element analysis. The Young’s modulus of the material was estimated by the Oliver–Pharr (OP) method and by means of numerically assisted nanoindentation analysis yielding comparable values about 40 GPa. Enhanced hardness and yield strength can be predicted for this nanostructured material. Microstructure is studied and correlation with mechanical properties is discussed. (paper)

  9. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  10. Recent developments in piezoelectric ceramic materials and deterioration of their properties

    International Nuclear Information System (INIS)

    Pasha, R.A.; Khan, M.Z.

    2006-01-01

    There has been growing interest in recent years in piezoelectric ceramic materials because of their excellent dielectric, sensing, actuating and efficient process control applications. Lead Zirconate Titanate (PZT), Barium Titanate (BaTi O/sub 3/) and Lead Metaniobate (PbNb/sub 2/ O/sub 6/) and PVDF Polymers and generally favored as smart sensing materials. These materials are being used in critical engineering systems and smart structure. Fatigue failure due to electrical and thermal shocking is a major issue in degradation of these materials. Lot of work has been done in this area but still various issues need to investigate. Recent developments and current issues in piezoelectric materials and deterioration of their properties in different working conditions are discussed. The development of Finite Element codes incorporating smart material element has provided an opportunity to solve some practical problems. The new piezoelectric finite element capability available in some commercial package like ANSYS makes it convenient to perform static dynamic and thermal analysis for the fully coupled piezoelectric and structural response. Researchers have a great scope to uncover the various properties of these smart materials in different environmental conditions. In present work an overall review of the title is presented. (author)

  11. Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials

    International Nuclear Information System (INIS)

    Coutures, J.P.

    1978-01-01

    Some high temperature work performed with solar furnaces on rare earth oxides is reviewed. Emphasis is on the thermophysical properties (refractoriness, vaporization behavior) and the nature of solid solution on materials which could be used as electrodes for the MHD process. As new sources of energy are being developed due to the world energy crisis, MHD conversion could be useful. The development of MHD systems requires new efforts to develop and optimize materials properties. These materials must have good mechanical and electrical properties (if possible, pure electronic conduction with good emission). Because of the high temperature in MHD generators, the materials for electrodes must have good refractoriness and also must resist vaporization and corrosion at high temperature (T approx. 2000 0 C). Rare-earth oxides are the basic components for most of the MHD electrode materials and it is important to know their thermophysical properties (solidification point phase transitions, heat of fusion and of phase transition, vapor pressure). Because of the high temperature range and the nature of the atmosphere in which these experiments must be performed, special equipment adapted to solar furnaces was developed

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    Science.gov (United States)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  13. Nanotechnologies. Properties and applications of nanostructured materials

    International Nuclear Information System (INIS)

    Rempel, A A

    2007-01-01

    The review summarises the main methods for the preparation of nanostructured metals, alloys, semiconductors and ceramics. The formation mechanisms of nanostructures based on two different principles, viz. the assembly principle (bottom-up) and the disintegration principle (top-down), are analysed. Isolated nanoparticles, nanopowders and compact nanomaterials produced by these methods possess different properties. The scope of application of various classes of nanostructured materials is considered and the topicality of the development of nanoindustry is emphasised.

  14. Comparison of shrinkage related properties of various patch repair materials

    Science.gov (United States)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  15. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    Science.gov (United States)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  16. Quality measurements of resonance cavities in behalf of investigation of microwave properties of superconducting materials

    International Nuclear Information System (INIS)

    Dekkers, G.; Ridder, M. de.

    1988-01-01

    A method for investigating conducting properties at microwave frequencies of superconducting materials by means of quality measurements of a resonance cavity is described. The method is based on the direct relationship of the quality factor of a resonance circuit, in this case a resonance cavity, with the losses in the circuit. In a resonance cavity these losses are caused by the material properties of the resonance cavity. Therefore quality measurements yield, essentially, a possibility for investigation of conducting properties of materials. The underlying theory of the subject, the design of a special resonance cavity, the measuring methods and the accuracy in the relation of the measured quality factor and the specific conductivity of the material is presented. refs.; figs.; tabs

  17. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    Science.gov (United States)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  18. Connection between microstructure and magnetic properties of soft magnetic materials

    International Nuclear Information System (INIS)

    Bertotti, G.

    2008-01-01

    The magnetic behavior of soft magnetic materials is discussed with some emphasis on the connection between macroscopic properties and underlying micromagnetic energy aspects. It is shown that important conceptual gaps still exist in the interpretation of macroscopic magnetic properties in terms of the micromagnetic formulation. Different aspects of hysteresis modeling, power loss prediction and magnetic non-destructive evaluation are discussed in this perspective

  19. A comparative evaluation of mechanical properties of nanofibrous materials

    Science.gov (United States)

    Lyubun, German P.; Bessudnova, Nadezda O.

    2014-01-01

    Restoration or replacement of lost or damaged hard tooth tissues remain a reconstructive clinical dentistry challenge. One of the most promising solutions to this problem is the development of novel concepts and methodologies of tissue engineering for the synthesis of three-dimensional graft constructs that are equivalent to original organs and tissues. This structural and functional compatibility can be reached by producing ultra-thin polymer filament scaffolds. This research aims through a series of studies to examine different methods of polymer filament material special preparation and test mechanical properties of the produced materials subjected to a tensile strain. Nanofibrous material preparation using chemically pure acetone and mixtures of ethanol/water has shown no significant changes in sample surface morphology. The high temperature impact on material morphology has resulted in the modification of fiber structure. In the course of mechanical tests it has been revealed the dependence of the material strength on the spinning solution compositions. The results achieved point to the possibility to develop nanofibrous materials with required parameters changing the methodology of spinning solution production.

  20. STATISTICAL DISTRIBUTION PATTERNS IN MECHANICAL AND FATIGUE PROPERTIES OF METALLIC MATERIALS

    OpenAIRE

    Tatsuo, SAKAI; Masaki, NAKAJIMA; Keiro, TOKAJI; Norihiko, HASEGAWA; Department of Mechanical Engineering, Ritsumeikan University; Department of Mechanical Engineering, Toyota College of Technology; Department of Mechanical Engineering, Gifu University; Department of Mechanical Engineering, Gifu University

    1997-01-01

    Many papers on the statistical aspect of materials strength have been collected and reviewed by The Research Group for Statistical Aspects of Materials Strength.A book of "Statistical Aspects of Materials Strength" was written by this group, and published in 1992.Based on the experimental data compiled in this book, distribution patterns of mechanical properties are systematically surveyed paying an attention to metallic materials.Thus one can obtain the fundamental knowledge for a reliabilit...

  1. About preparation and properties of UC based fuel materials

    International Nuclear Information System (INIS)

    Vooght, D. de; Timmermans, W.; Batist, R. de.

    1978-07-01

    The sintering behaviour and the effect of a numer of production parameters on the properties of sintered UC materials have been studied. Materials investigated include slightly hyperstoichiometric UC(UCsub(1+x)), oxygen containing UC[U(CO)] and UC containing both oxygen and nitrogen [U(CON)]. The materials have been characterized in terms of grain size distribution for the pre-sintering powder, of porosity distribution for the powdered material and for the green and sintered pellets and of the density of the green and sintered pellets. Carbothermic reaction temperature, milling time, and to some extent sintering temperature have been varied. The report discusses the possible correlations between several parameters such as milling time, powder fineness, density, grain size of the sintered product, composition (O,N content), etc. (author)

  2. Physicomechanical properties of porous fiber materials and prediction of them

    International Nuclear Information System (INIS)

    Kostornov, A.G.; Galstyan, L.G.

    1985-01-01

    A comparison is presented of the experimentally determined values of certain properties of porous fiber materials obtained by the optimum method from monodisperse fibers of copper, nickel, and Nichrome of different diameters with the corresponding theoretical values. The electrical conductivity, tensile strength, and modulus of elasticity, the basic properties of a porous body, which are determined both by the structural characteristics of the elements and by the condition of the interparticle contacts, were considered

  3. Correlation of macroscopic material properties with microscopic nuclear data

    International Nuclear Information System (INIS)

    Simons, R.L.

    1981-01-01

    Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area

  4. Explorations in the application of nanotechnology to improve the mechanical properties of composite materials

    Science.gov (United States)

    Yang, Cheng

    2007-12-01

    This thesis presents the research achievements on the design, preparation, characterization, and analysis of a series of composite materials. By studying the interface interaction of the composite materials using nanotechnology, we developed composite materials that achieve satisfactory mechanical properties in two classes of materials. Durable press (DP) natural textiles are important consumer products usually achieved by erosslinking the molecules in the textiles to achieve long-term wrinkle resistance, which, however, also leads to the simultaneous significant drop of mechanical properties. Herein, a series of polymeric nanoparticl es were investigated, the application of as little as ˜0.14 wt% addition of the nanoparticles improved the mechanical property of the DP cotton fabric by 56% in tearing resistance and 100% in abrasion resistance; the loss in recovery angle is negligible. The author also studied the enzyme-triggered DP treatments of silk fabrics, as a green process method. After the treatment of enzymes, excellent DP property was achieved with improved strain property. Injectable calcium phosphate powder containing acrylic bone cements are widely used in orthopedic surgery to fix artificial prostheses. However, the bending strength is still unsatisfactory. The author modified the surface of the strontium (Sr) containing hydroxyapatite (HA) filler powders with acrylolpamidronate in order to improve the overall mechanical performance of the bone cement composites. By adding 0.25 wt% of acrylolpamidronate to the Sr-HA nanopowders, more than 19% of the bending strength and more than 23% compression strength of the Sr-HA bone cement were improved. Biological evaluations revealed that these bone cement composites were biocompatible and bioactive in cell culture. The results obtained in this thesis work show an effective method to significantly enhance the mechanical properties of composite materials. Different from other available methods, by developing a

  5. Can matter mark the hours? Eighteenth-century vitalist materialism and functional properties.

    Science.gov (United States)

    Kaitaro, Timo

    2008-12-01

    Eighteenth-century Montpellerian vitalism and contemporaneous French "vitalist" materialism, exemplified by the medical and biological materialism of La Mettrie and Diderot, differ in some essential aspects from some later forms of vitalism that tended to postulate immaterial vital principles or forces. This article examines the arguments defending the existence of vital properties in living organisms presented in the context of eighteenth-century French materialism. These arguments had recourse to technological metaphors and analogies, mainly clockworks, in order to claim that just as machines can have functional properties which its parts do not possess (e.g., showing time), so living organisms can, as material entities, also have organic or vital properties which its material parts do not possess. Such arguments, with the help of a healthy dose of epistemological scepticism, tend to strike a balance between two positions concerning the ontology of life which we now tend to label "vitalism" and "emergentism." Although there is nothing inconsistent in viewing vital properties as emergent, some ambiguity results if one does not draw a clear distinction between properties and functions. The philosophical problems related to these ambiguities are revealed in Diderot's apparent hesitation concerning sentience as "a general property of matter or the product of organization."

  6. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials are tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials

  7. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC: a review of material properties and design procedures

    Directory of Open Access Journals (Sweden)

    T. E. T. Buttignol

    Full Text Available ABSTRACT This paper does a review of the recent achievements on the knowledge of UHPFRC properties and in the development of design procedures. UHPFRC is defined as a new material, with unique properties (high ductility, low permeability, very high strength capacity in compression, higher toughness in comparison to conventional concrete. It is important to know both material and mechanical properties to fully take advantage of its outstanding properties for structural applications. However, since this is a new material, the current design codes are not well suited and should be reviewed before being applied to UHPFRC. In the first part, the following material properties are addressed: hydration process; permeability; fibers role; mix design; fiber-matrix bond properties workability; mixing procedure; and curing. In the second part, the mechanical properties of the material are discussed, together with some design recommendations. The aspects herein examined are: size effect; compressive and flexural strength; tensile stress-strain relation; shear and punching shear capacity; creep and shrinkage; fracture energy; steel bars anchorage and adherence. Besides, the tensile mechanical characterization is described using inverse analysis based on bending tests data. In the last part, material behavior at high temperature is discussed, including physical-chemical transformations of the concrete, spalling effect, and transient creep. In the latter case, a new Load Induced Thermal Strain (LITS semi-empirical model is described and compared with UHPC experimental results.

  8. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  9. Experimental Study on the Comparison of the Material Properties of Glass Wool Used as Building Materials

    Directory of Open Access Journals (Sweden)

    Kyoung-Woo KIM

    2014-04-01

    Full Text Available Artificial mineral fibers such as glass wool or stone wool are commonly used in building walls, ceilings and floors as a major insulation material for buildings. Among the material properties of building materials, thermal conductivity, the sound absorption coefficient, compressibility, and dynamic stiffness are regarded as important performance requirements since they directly affect the thermal and acoustic properties of the building. This study measured the changes of the thermal and acoustical performances of glass wool that was actually installed for a long time to the outer wall of a building as an insulation material through a comparison with recently produced glass wool. The results showed that the measured thermal conductivities of the old and the new specimens both rise with an increase of temperature, showing quite similar results in both specimens over temperature ranges of (0 – 20 ºC. The noise reduction coefficient decreased by 0.1 in the old specimen and the difference of the compressibilities in both specimens was shown to be 7.32 mm. The dynamic stiffness of the old specimen was found to be 1.28 MN/m3 higher than that of the new specimen.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.3714

  10. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    2017-05-15

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.

  11. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  12. Characterization of dynamic material properties of light alloys for crashworthiness applications

    Directory of Open Access Journals (Sweden)

    Nuno Peixinho

    2010-12-01

    Full Text Available This paper presents results on the tensile testing of AZ31B-H24 magnesium alloy and 6111-T4 aluminium alloy at different strain rates. These materials are strong candidates for use in crashworthy automotive components and parts due to their well-balanced combination of strength, stiffness and density. To test their application in the auto industry an understanding of material behaviour at relevant strain rates is needed, as well as constitutive equations suitable for use in analytical and numerical calculations. Mechanical properties were determined from tensile tests using flat sheet samples, employing two different test techniques: a servo-hydraulic machine and a tensile-loading Hopkinson bar. The test results were used to compare different mechanical properties of the tested materials and to validate constitutive equations intended to provide a mathematical description of strain rate dependence. The Cowper-Symonds equation was examined.

  13. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    Science.gov (United States)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  14. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga

    2014-01-01

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  15. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Science.gov (United States)

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Low temperature radiative properties of materials used in cryogenics

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Hanzelka, Pavel; Králík, Tomáš; Srnka, Aleš

    2005-01-01

    Roč. 45, č. 8 (2005), s. 529-536 ISSN 0011-2275 R&D Projects: GA AV ČR(CZ) IBS2065109 Keywords : structural materials * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.762, year: 2005

  17. Q4 Titanium 6-4 Material Properties Development

    Science.gov (United States)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  18. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  19. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials was tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials. (author)

  20. Evolution of material properties during free radical photopolymerization

    Science.gov (United States)

    Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry

    2018-03-01

    Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress

  1. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  2. Conditioning of material properties by micro rotary swaging

    Science.gov (United States)

    Ishkina, Svetlana; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Cold forming initiates a change of the material properties like flow stress and hardness. Due to work hardening and the accompanied loss of formability some intermediate heat treatment may become necessary in multi-stage forming processes. One possibility to avoid this heat treatment is to adjust the forming characteristics in terms of flow stress and formability by rotary swaging. This process is particularly suitable not only for producing of the target geometry but also for modifying of the material properties during the process and thus, rotary swaging can prepare the parts for further forming, such as extrusion. In this contribution, the process chain "rotary swaging - extrusion" for austenite stainless steel AISI304 was investigated. The forming characteristics of the semi-finished products for the extrusion were influenced by the previous swaging process. The conditioning by changing of the microstructure, the work hardening and the geometry of the processed wires was achieved by the process design. For this purpose, the geometry of the swaging dies, the feeding velocity as well as the process kinematics (eccentric swaging) and a stroke following angle Δɸ were varied. In particular, the novel geometry of the swaging dies with extraordinary sloped faces generated a non-symmetric material flow with severe shear deformation and thus an extreme change of the microstructure. The required forming force of the following extrusion process reflected the range of achievable conditioning. The micro rotary swaging process positively improved the formability of AISI304 by work softening.

  3. Preparation and hygrothermal properties of composite phase change humidity control materials

    International Nuclear Information System (INIS)

    Chen, Zhi; Qin, Menghao

    2016-01-01

    Highlights: • A new kind of phase change humidity control material (PCHCM) was prepared. • The PCHCM can moderate both the indoor temperature and humidity. • The silicon dioxide shell can improve the thermal properties of the composite. • The PCM microcapsules can improve the moisture buffer ability of the composite. • The CPCM/vesuvianite composite has a better hygrothermal performance than pure hygroscopic material. - Abstract: A novel phase change humidity control material (PCHCM) was prepared by using PCM microcapsules and different hygroscopic porous materials. The PCHCM composite can regulate the indoor hygrothermal environment by absorbing or releasing both heat and moisture. The PCM microcapsules were synthesized with methyl triethoxysilane by the sol–gel method. The vesuvianite, sepiolite and zeolite were used as hygroscopic materials. The scanning electron microscopy (SEM) was used to measure the morphology profiles of the microcapsules and PCHCM. The differential scanning calorimetry (DSC) and the thermal gravimetric analysis (TGA) were used to determine the thermal properties and thermal stability. Both the moisture transfer coefficient and moisture buffer value (MBV) of different PCHCMs were measured by the improved cup method. The DSC results showed that the SiO 2 shell can reduce the super-cooling degree of PCM. The super-cooling degrees of microcapsules and PCHCM are lower than that of the pure PCM. The onset temperature of thermal degradation of the microcapsules and PCHCMs is higher than that of pure PCM. Both the moisture transfer coefficient and MBV of PCHCMs are higher than that of the pure hygroscopic materials. The results indicated the PCHCMs have better thermal properties and moisture buffer ability.

  4. Preparation and properties of hybrid materials for high-rise constructions

    Directory of Open Access Journals (Sweden)

    Matseevich Tatyana

    2018-01-01

    Full Text Available The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal. The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  5. Preparation and properties of hybrid materials for high-rise constructions

    Science.gov (United States)

    Matseevich, Tatyana

    2018-03-01

    The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  6. Modeling of material properties of piezoelectric ceramics taking into account damage development under static compression

    International Nuclear Information System (INIS)

    Mizuno, M; Nishikata, T; Okayasu, M

    2013-01-01

    We have carried out static compression tests in the poling direction for PZT ceramics and evaluated the material properties by measuring the resonance and anti-resonance frequencies and electrostatic capacity at regular intervals. Then the variation in the material properties up to fracture was clarified. Also, the development of internal damage was also clarified quantitatively by evaluating a damage variable on the basis of the continuum damage mechanics. The damage variable was calculated from the ratio of the elastic coefficient to its initial value. In the present paper, the development of internal damage was formulated as an evolution equation of the damage variable. In the formulation, a threshold stress leading to the onset of damage was considered. Moreover, the variation in material properties was related to the damage variable and formulated as material functions of the damage variable. The development of internal damage and the variation in material properties were simulated by the equations proposed in the present paper and the validity of the equations was verified by comparing the predictions with experimental results. (paper)

  7. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    Science.gov (United States)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  8. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  9. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  10. Comparison of material property specifications of ferritic steels in fast-breeder reactor technology

    International Nuclear Information System (INIS)

    Delporte, E.; Vanderborck, Y.

    1988-01-01

    The component fabrications for the fast breeder reactors request the use of ferritic steels specially appropriated for the construction of the equipments sustaining pressure and high temperature. The Activity Group nr 3 Materials of the FRCC has decided to make a study to compare the different norms related to the properties of somme ferritic steels used in the different European fast breeder projects. In particular, this study should allow in the different countries of the Community, to identify the designation of a specific steel and to compare its properties. Deviations between the different norms of a same material are mentioned to facilitate European standardization of this type of material

  11. From properties to materials: An efficient and simple approach.

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-21

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  12. From properties to materials: An efficient and simple approach

    Science.gov (United States)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-01

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  13. Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides.

    Science.gov (United States)

    Mehboudi, Mehrshad; Fregoso, Benjamin M; Yang, Yurong; Zhu, Wenjuan; van der Zande, Arend; Ferrer, Jaime; Bellaiche, L; Kumar, Pradeep; Barraza-Lopez, Salvador

    2016-12-09

    GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature T_{c} well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above T_{c}. As the in-plane lattice transforms from a rectangle into a square at T_{c}, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at T_{c}, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at T_{c}. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3×10^{-12}  C/K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.

  14. Influence of Water Absorption on Volume Resistivity and the Dielectric Properties of Neat Epoxy Material

    KAUST Repository

    Sulaimani, Anwar Ali

    2014-07-15

    Influence of Water Absorption on the Dielectric Properties and Volume Resistivity of Neat Epoxy Material Anwar Ali Sulaimani Epoxy resins are widely used materials in the industry as electrical insulators, adhesives and in aircrafts structural components because of their high mechanical sti ness, strength and high temperature and chemical resistance properties. But still, the in uence of water uptake due to moisture adsorption is not fully understood as it detrimentally modi es the electrical and chemical properties of the material. Here, we investigate the in uence of water moisture uptake on the neat epoxy material by monitoring the change in the volume resistivity and dielectric properties of epoxy material at three di erent thickness con gurations: 0.250 mm, 0.50 mm and 1 mm thicknesses. Gravimetric analysis was done to monitor the mass uptake behaviour, Volume Resistivity was measured to monitor the change in conductivity of the material, and the dielectric properties were mapped to characterise the type of water mechanism available within the material during two ageing processes of sorption and desorption. Two-stage behaviours of di usion and reaction have been identi ed by the mass uptake analysis. Moreover, the plot of volume resistivity versus mass uptake has indi- cated a non-uniform relationship between the two quantities. However, the analysis of the dielectric spectrum at medium range of frequency and time has showed a change 5 in the dipolar activities and also showed the extent to which the water molecules can be segregated between bounding to the resin or existing as free water.

  15. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  16. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  17. Mechanical properties of materials used for temporary fixed dentures – in vitro study

    Directory of Open Access Journals (Sweden)

    Celej-Piszcz Elzbieta

    2017-06-01

    Full Text Available Objectives. The objective of the research was to define the mechanical properties of currently marketed temporary filling materials. Methods. Eight temporary filling materials: Boston, Dentalon, Protemp II, Revotek LC, Structure 2, Structure 3, UniFast LC, UniFast Trad were used to make 5 samples each of measurements 2 × 2 × 25 mm, in order to define the flexural strength, and 10 rings each of measurements 2 × 5 mm, in order to carry out the Vickers micro-hardness test. After preparation, the samples were stored in distilled water of temperature of 370°C, for 7 days. Subsequently, flexural strength and Vickers hardness testing was undertaken. Results. Composite temporary materials showed considerably better mechanical properties, both in flexural strength and in Vickers micro-hardness testing. Conclusions. the best mechanical properties, both in terms of flexural strength, as well as Vickers micro-hardness test can be observe among composite materials.

  18. Sensory properties of marinated herring (Clupea harengus) processed from raw material from commercial landings

    DEFF Research Database (Denmark)

    Nielsen, Durita; Hyldig, Grethe; Nielsen, Jette

    2005-01-01

    Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile of marina......Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile...

  19. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  20. Functional properties of composite material from recycled tires and polyurethane binder in water medium

    International Nuclear Information System (INIS)

    Plesuma, R.; Malers, L.

    2016-01-01

    The present research is as a continuation of the authors’ previous research of composite material and practical application of composite material largely connected with water. The aim of present study was to establish certain functional properties of the material in water medium. Water permeability, absorption and swelling of the composite material after being exposed to water for certain period were determined. Water absorption, permeability and swelling of the composite material showed close correlation with polymer reactivity. Molding pressure, temperature and the distribution of rubber particle sizes also demonstrate a direct influence on the water absorption and permeability of the composite material. The obtained results are useful for the practical application of selected composite material with desirable and predictable functional properties. (paper)

  1. Determination of optical properties of tissue and other bio-materials

    CSIR Research Space (South Africa)

    Singh, A

    2008-11-01

    Full Text Available appears less diffusively scattered. Determination of optical properties of tissue and other bio-materials A SINGH, AE KARSTEN, JS DAM CSIR National Laser Centre, Biophotonics Group PO Box 395, Pretoria, 0001, South Africa Email: ASingh1@csir.co.za K...

  2. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    International Nuclear Information System (INIS)

    Dhak, Debasis; Das, Soma; Communication Engineering.); Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolution of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices

  3. Hazardous properties and environmental effects of materials used in solar heating and cooling (SHAC) technologies: interim handbook

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, J.Q.

    1978-12-01

    General background informaion related to SHAC systems, how a particular material was chosen for this handbook, and codes and standards are given. Materials are categorized according to their functional use in SHAC systems as follows: (1) heat transfer fluids and fluid treatment chemicals, (2) insulation materials, (3) seals and sealant materials, (4) glazing materials, (5) collector materials, and (6) storage media. The informaion is presented under: general properties, chemical composition, thermal degradation products, and thermoxidative products of some commercial materials; toxic properties and other potential health effects; fire hazard properties; and environmental effects of and disposal methods for SHAC materials. (MHR)

  4. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  5. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  6. Effects of Material Properties on the Total Stored Energy of a Hybrid Flywheel Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Ha, S.K.; Yoon, Y.B. [Hanyang University, Seoul (Korea); Han, S.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-05-01

    A numerical method based on an assumption of a generalized plane strain (GPS) state is presented for calculating the stress and strength ratio distributions of the rotating composite flywheel rotor of varying material properties in the radial direction. The rotor is divided into many rings and each ring has constant material properties. All the rings are assumed to expand and have the same axial strain. A three-dimensional finite element method is then used to verify the accuracy of the present method for various height ratios and ply angles. This method gives a better solution for most of the rotors than other methods of a plane stress or plane strain state. After verification, the effects of material properties on the total stored energy (TSE) of the composite flywheel rotor are investigated. For this purpose, the material properties of the rotor, i.e., circumferential and radial Youngs moduli, ply angles and mass densities, are expressed by power functions of the radius and the rotor is analyzed. The analysis shows that TSE can be most effectively increased by changing the circumferential Youngs moduli along the radius, which amounts to over 300% of TSE of the constant material properties. The variation of ply angles along the radius can increase TSE by about 30% at most. The method of changing the mass densities along the radius could be also effective but its effects are not so noticeable in the rotor where the circumferential stiffness is properly arranged. (author). 24 refs., 7 figs.

  7. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  8. Macro-architectured cellular materials: Properties, characteristic modes, and prediction methods

    Science.gov (United States)

    Ma, Zheng-Dong

    2017-12-01

    Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson's ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.

  9. Overview of U.S. LMFBR structural materials mechanical properties program

    International Nuclear Information System (INIS)

    Horak, J.A.; Purdy, C.M.

    This paper presents the objective, scope, and status of the U.S. Department of Energy's Materials and Structures Program to develop a data base on mechanical properties of structural materials for out-of-core structures and components for LMFBRs. Information on the development of a reference data base on materials for the reactor system, reactor enclosure system, primary heat transport system, intermediate heat transport system, and steam generator system is included. In addition, the development of the data and analyses to account for the effects of temperature and stress, as well as water/steam, sodium, and radiation environments, is described. Plans for the development of alternative materials for future out-of-core applications are presented. (author)

  10. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.; Gooneratne, C.P.; Wang, Q.X.; Liu, Y.; Gianchandani, Y.; Kosel, Jü rgen

    2014-01-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials

  11. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    Science.gov (United States)

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.

  12. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Junko; Kawakami, Masashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Kondoh, Katsuyoshi, E-mail: kondoh@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Ayman, El-Sayed; Imai, Hisashi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan)

    2010-10-01

    Pure titanium (Ti) particulate reinforced pure magnesium (Mg) composite materials were fabricated via powder metallurgy route, and their microstructural and mechanical properties were evaluated. When using the elemental mixture of pure Mg and pure Ti powders and consolidating them by solid-state sintering process, no significant increase in tensile strength of the composites was obtained, because of poor bonding strength at the interface between {alpha}-Mg matrix and Ti particles. In particular, coarse magnesium oxide (MgO) particles of about 100 nm were formed via thermite reaction between TiO{sub 2} surface films of Ti particles and Mg raw powders and resulted in preventing the improvement of the mechanical properties of the composite material. On the other hand, when using the atomized pure Mg composite powders reinforced with Ti particulates, their extruded composite material showed obviously improved tensile strength and good elongation, compared to the extruded pure Mg powder material including no Ti particle. The obvious improvement in the tensile strength was due to the restriction of dislocation movement by Ti reinforcements under applied tensile load.

  13. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  14. Measurements of interface fracture properties of composite materials

    International Nuclear Information System (INIS)

    Ashkenazi, D.; Bank-Sills, L.; Travitzky, N.; Eliasi, R.

    1998-01-01

    In this investigation, interface Fracture properties are measured. To this end, glass/epoxy Brazilian disk specimens are studied. In order to calibrate the specimen, a numerical procedure is used. The finite element method is employed to derive stress intensity factors as a function of loading angle and crack length. By means of the weight friction method together with finite elements, a correction to the stress intensity factors for residual thermal stresses is obtained. These are combined to determine the critical interface energy release rate as a function of phase angle Tom the measured load and crack length at Fracture. A series of tests on a glass/epoxy material pair were carried out. It may be observed from the results that the residual thermal stresses resulting from the material mismatch greatly affect the interface toughness values

  15. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth

    2014-01-01

    over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical......-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect...... quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline...

  16. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  17. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  18. Mechanical properties of resin-ceramic CAD/CAM restorative materials.

    Science.gov (United States)

    Awada, Abdallah; Nathanson, Dan

    2015-10-01

    The recent development of polymer-based computer-aided design and computer-aided manufactured (CAD/CAM) milling blocks and the limited availability of independent studies on these materials make it pertinent to evaluate their properties and identify potential strengths and limitations. The purpose of this in vitro study was to determine and compare mechanical properties (flexural strength, flexural modulus, modulus of resilience) and compare the margin edge quality of recently introduced polymer-based CAD/CAM materials with some of their commercially available composite resin and ceramic counterparts. The materials studied were Lava Ultimate Restorative (LVU; 3M ESPE), Enamic (ENA; Vita Zahnfabrik), Cerasmart (CES; GC Dental Products), IPS Empress CAD (EMP; Ivoclar Vivadent AG), Vitablocs Mark II (VM2; Vita Zahnfabrik), and Paradigm MZ100 Block (MZ1; 3M ESPE). Polished 4×1×13.5 mm bars (n=25) were prepared from standard-sized milling blocks of each tested material. The bars were subjected to a 3-point flexural test on a 10-mm span with a crosshead speed of 0.5 mm/min. In addition, 42 conventional monolithic crowns (7 per material) were milled. Margin edge quality was observed by means of macrophotography and optical microscopy, providing a qualitative visual assessment and a measurement of existing roughness. The results were analyzed by ANOVA followed by the Tukey HSD test (α=.05). The mean flexural strength of the tested materials ranged from 105 ±9 MPa (VM2) to 219 ±20 MPa (CES). The mean flexural modulus ranged from 8 ±0.25 GPa (CES) to 32 ±1.9 GPa (EMP). The mean modulus of resilience ranged from 0.21 ±0.02 MPa (VM2) to 3.07 ±0.45 MPa (CES). The qualitative assessment of margin edge roughness revealed visible differences among the tested materials, with mean roughness measurements ranging from 60 ±16 μm (CES) to 190 ±15 μm (EMP). The material factor had a significant effect on the mean flexural strength (Pmaterials tested in this study exhibited

  19. "Smart" Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications.

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-02-28

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. "Smart" materials based on cellulose have great advantages-especially their intelligent behaviors in reaction to environmental stimuli-and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of "smart" materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of "smart" materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these "smart" materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  20. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  1. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  2. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  3. The influence of material properties on plastic hinge rotational capacity and strength

    NARCIS (Netherlands)

    Steenbergen, H.M.G.M.; Bijlaard, F.S.K.; Daniels, B.J.

    1996-01-01

    In this article the effects of standardised material stress-strain behaviours on plastic hinge length, moment and rotational capacity are investigated using a specially developed computer program. Material properties are described using three standard post-yield stress-strain characteristics, as

  4. Effect of operating conditions and environment on properties of materials of PWR type nuclear power plant components

    International Nuclear Information System (INIS)

    Vacek, M.

    1987-01-01

    Operating reliability and service life of PWR type nuclear power plants are discussed with respect to the material properties of the plant components. The effects of the operating environment on the material properties and the methods of their determination are characterized. Discussed are core materials, such as fuel, its cladding and regulating rod materials, and the materials of pipes, steam generators and condensers. The advances in the production of pressure vessel materials and their degradation during operation are treated in great detail. (Z.M.)

  5. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    International Nuclear Information System (INIS)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-01-01

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to its superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.

  6. Material variability and repetitive member factors for the allowable properties of engineered wood products

    Science.gov (United States)

    Steve Verrill; David E. Kretschmann

    2009-01-01

    It has been argued that repetitive member allowable property adjustments should be larger for high-variability materials than for low-variability materials. We report analytic calculations and simulations that suggest that the order of such adjustments should be reversed, that is, given the manner in which allowable properties are currently calculated, as the...

  7. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  8. Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf (Clay Technology AB (SE))

    2006-12-15

    The present work includes a coherent study of Wyoming bentonite with respect to the most relevant properties for use in a repository, and a parallel study of other potential buffer and tunnel backfilling materials. The reason for this is twofold; to quantify the effect of mineralogical variations on the various important sealing properties of bentonite, and to verify that there are alternative potential sources of bentonite. The latter is motivated by the fact that Sweden alone plans to deposit at least 6,000 copper canisters which include approximately 130,000 metric tones bentonite buffer material and several times more as tunnel backfill material. Different types of sealing clay materials may also be relevant to use, since the demands on the clay will be different at the various locations in a repository. Alternative sources of bentonite would consequently be valuable in order to secure quality, supply, and price. Important aspects on buffer and tunnel backfilling materials may be summarized as: Original sealing properties. Hazardous substances in any respect. Short-term effects of ground-water chemistry. Long-term stability, i.e. effects of temperature and ground-water chemistry. Availability. Costs. The focus in this study is on the first three items. The long-term stability is indirectly considered in that mineralogical composition is determined. The availability is only considered in such a way that most of the analyzed materials represent huge clay formations, which contain much more material than needed for a repository. The cost aspects have not been included, mainly because the present day price is not relevant due to the time frame of the construction of a repository

  9. Standard Reference Development of nuclear material for Tensile and Hardness Test Properties

    International Nuclear Information System (INIS)

    Choo, Y. S.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Baik, S. J.; Chun, Y. B.; Kim, K. H.; Hong, K. P.; Ryu, W. S.

    2007-12-01

    Standard reference is a official approved data such a coefficient of physics, approved material properties, and etc., which should be analyzed and evaluated by scientific method to acquire official approval for accuracy and credibility of measured data and information. So it could be used broadly and continuously by various fields of nation and society. It is classified to effective standard reference, verified standard reference, and certified standard reference. There are sixteen fields in designated standard references such a physical chemistry field, material field, metal field, and the others. The standard reference of neutron irradiated nuclear structural material is classified to metal field. This report summarized the whole processes about data collection, data production, data evaluation and the suggestion of details evaluation technical standard for tensile and hardness properties, which were achieved by carry out the project 'nuclear material standard reference development' as a result

  10. Standard Reference Development of nuclear material for Tensile and Hardness Test Properties

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Y. S.; Kim, D. S.; Yoo, B. O.; Ahn, S. B.; Baik, S. J.; Chun, Y. B.; Kim, K. H.; Hong, K. P.; Ryu, W. S

    2007-12-15

    Standard reference is a official approved data such a coefficient of physics, approved material properties, and etc., which should be analyzed and evaluated by scientific method to acquire official approval for accuracy and credibility of measured data and information. So it could be used broadly and continuously by various fields of nation and society. It is classified to effective standard reference, verified standard reference, and certified standard reference. There are sixteen fields in designated standard references such a physical chemistry field, material field, metal field, and the others. The standard reference of neutron irradiated nuclear structural material is classified to metal field. This report summarized the whole processes about data collection, data production, data evaluation and the suggestion of details evaluation technical standard for tensile and hardness properties, which were achieved by carry out the project 'nuclear material standard reference development' as a result.

  11. Reactor pressure vessel embrittlement management through EPRI-Developed material property databases

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Server, W.L.; Griesbach, T.J.

    1997-01-01

    Uncertainties and variability in U.S. reactor pressure vessel (RPV) material properties have caused the U.S. Nuclear Regulatory Commission (NRC) to request information from all nuclear utilities in order to assess the impact of these data scatter and uncertainties on compliance with existing regulatory criteria. Resolving the vessel material uncertainty issues requires compiling all available data into a single integrated database to develop a better understanding of irradiated material property behavior. EPRI has developed two comprehensive databases for utility implementation to compile and evaluate available material property and surveillance data. RPVDATA is a comprehensive reactor vessel materials database and data management program that combines data from many different sources into one common database. Searches of the data can be easily performed to identify plants with similar materials, sort through measured test results, compare the ''best-estimates'' for reported chemistries with licensing basis values, quantify variability in measured weld qualification and test data, identify relevant surveillance results for characterizing embrittlement trends, and resolve uncertainties in vessel material properties. PREP4 has been developed to assist utilities in evaluating existing unirradiated and irradiated data for plant surveillance materials; PREP4 evaluations can be used to assess the accuracy of new trend curve predictions. In addition, searches of the data can be easily performed to identify available Charpy shift and upper shelf data, review surveillance material chemistry and fabrication information, review general capsule irradiation information, and identify applicable source reference information. In support of utility evaluations to consider thermal annealing as a viable embrittlement management option, EPRI is also developing a database to evaluate material response to thermal annealing. Efforts are underway to develop an irradiation

  12. Thermoelectric properties and nanostructures of materials prepared from rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Pukird, S.; Tipparach, U.; Kasian, P. [Ubon Ratchathani Univ., Ubon Ratchathani (Thailand). Dept. of Physics; Limsuwan, P. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Dept. of Physics

    2009-07-01

    Thailand produces large amounts of agricultural residues such as rice husk and coconut shells. Rice husk is considered to be a potential source for solar grade silicon. Studies have shown that reasonably pure polycrystalline silicon can be prepared from rice husk white ash by a metallothermic reduction process. This paper reported on a study that investigated the thermoelectric properties of ceramic material prepared by mixing silica from rice husk ash and carbon obtained from coconut shell charcoal. The thermoelectric properties of the materials were examined along with their microstructures. The materials were made from burning rice husk ash and coconut shell at different temperatures and then doped with metal oxides. Pellets were heated at temperature of 700 degrees C for 1-3 hours. The voltage on both sides of the pellets was observed. The electromotive force was found when different temperatures were applied on both sides of the pellet specimens. The Seebeck coefficient was then calculated. The results showed that these materials can be used as thermoelectric devices. Scanning electron microscope (SEM) and energy dispersive X-rays (EDX) were used to investigate the source of materials and the products on the substrates. The images of SEM and EDX showed nanostructures of materials such as nanowires, nanorods and nanoparticles of the products and sources. 22 refs., 2 tabs., 9 figs.

  13. Textile Materials with New Properties Used for Confections Manufacturing

    Directory of Open Access Journals (Sweden)

    Neacşu A. N.

    2009-12-01

    Full Text Available The quality of textile clothing depends on the quality of prime materials and also on the technology used; this must ensure a balance between transferred heat, resulted humidity and human and environmental thermal demands, all this bringing about physiological comfort. In order to meet consumers’ demands regarding the production of products which are easy to maintain and have high hygiene properties, new prime materials are searched, with a view to ensuring a wide range of clothing. Taking into consideration the acceleration of changes and the global inter-connections, a company must develop its capacity of innovation in order to bring products with new properties on the market before others do.

  14. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  15. Assessing the mechanical properties of nuclear materials using spherical nano-indentation

    International Nuclear Information System (INIS)

    Hickey, J.; Hardie, C.

    2015-01-01

    This paper reports on the assessment of a nano-indentation test, using tips of spherical geometry, to calculate the mechanical properties of nuclear materials at the micron-scale. The test method is based on incrementally loading and unloading the tip into a sample of material with unknown mechanical properties. The incremental indentation stress, strain and elastic modulus are calculated by analysing each increment's unload curve. Two samples of iron and tungsten were used with a spherical indenter tip with an apparent radius of 30 μm. The method for calculating the mechanical properties is based on two markers that define the top and bottom of each load increment's unload curve. As such, the bottom marker can be moved down the unload curve to increase the proportion of data included in the results. This simulates increasing the percent unloaded from just one data set. The results showed that increasing the percent unloaded during each increment was beneficial as it reduced the effects of creep at the top of the unload curve and pile-up of material around the indenter tip as the test progressed. However, it is likely that increasing the percentage unloaded results in the inclusion of a higher proportion of reverse plasticity effects in the calculated results. (authors)

  16. A study on the mechanical properties of additive manufactured polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Dept. of Mechanical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2015-08-15

    Traditionally, additive manufacturing (AM) technology has been used to fabricate prototypes in the early development phase of a product. This technology is being applied to release manufacturing of a product because of its low cost and fast fabrication. AM technology is a process of joining materials to fabricate a product from the 3D CAD data in a layer-by-layer manner. The orientation of a layer during manufacturing can affect the mechanical properties of the product because of its anisotropy. In this paper, tensile testing of polymer-based specimens were built with a typical AM process (FDM, PolyJet and SLA) to study the mechanical properties of the AM materials. The ASTM D 638 tensile testing standard was followed for building the specimens. The mechanical properties of the specimens were determined on the basis of stress-strain curves formed by tensile tests. In addition, the fracture surfaces of the specimens were observed by SEM to analyze the results.

  17. News from the Library: Looking for materials properties? Find the answer in CINDAS databases

    CERN Multimedia

    CERN Library

    2012-01-01

    Materials properties databases are a crucial source of information when doing research in Materials Science. The creation and regular updating of such databases requires identification and collection of relevant worldwide scientific and technical literature, followed by the compilation, critical evaluation, correlation and synthesis of both existing and new experimental data.   The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University produces several databases on the properties and behaviour of materials. The databases include: - ASMD (Aerospace Structural Metals Database) which gives access to approximately 80,000 data curves on over 220 alloys used in the aerospace and other industries - the Microelectronics Packaging Materials Database (MPMD), providing data and information on the thermal, mechanical, electrical and physical properties of electronics packaging materials, and - the Thermophysical Properties of Matter Database (TPMD), covering the...

  18. Physicomechanical properties of single- and two-phase polycrystalline materials on micro- and macroscopic levels

    International Nuclear Information System (INIS)

    Kuksa, L.V.; Arzamaskova, L.M.

    2000-01-01

    The results of studies on elastic and plastic properties of the single- and two-phase polycrystalline materials in dependence on the choice of the consideration scale level are presented. The experimental and theoretical methods, making it possible to study the role of the scale factor by consideration on the micro- and macrolevel and the peculiarities of forming the physicomechanical properties of the material as a whole, are developed. The dependences, characterizing the change of the physicomechanical properties by different scales of consideration, are obtained [ru

  19. Tribological properties of magnet structural materials at cryogenic temperatures in vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, Akira; Shimizu, Tomoharu; Yoshino, Yasuhiro; Iida, Shin-ichiro; Sugimoto, Makoto; Yoshida, Kiyoshi.

    1994-01-01

    Tribological properties of structural materials of a superconducting magnet for a nuclear fusion reactor were investigated at temperatures of 293 K, 77 K and about 5 K in vacuum. Specimen materials were JN1, JN2 and SUS316L steels, copper and its alloys, and GFRP. The properties of the coefficient of friction against the number of cycles were classified into two groups; smooth friction and fluctuating friction. The latter was caused by the strong adhesion dependent on the material combination and temperature. The coefficient of friction of the smooth friction was low less than 0.6. The upper coefficient of friction of fluctuating friction reaches more than 3. The temperature dependence of the coefficient of friction was also examined from 5 K to 130 K. Combinations of Cu-Cu and JN2-cupronickel showed high friction over the temperature, but JN1-Cu and JN2-Cu showed clear temperature dependence where the friction was high at temperatures between 45 K and 90 K. (author)

  20. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  1. Imitation and reactor studies of irradiation effect on material mechanic properties

    International Nuclear Information System (INIS)

    Ozhigov, L.S.

    1999-01-01

    Processes of low- and high-temperature radiation embrittlement, radiation creeping and their influence on reactor material properties are considered. Role of imitation experiments in these processes is analysed

  2. Basic properties of a zirconia based fuel material for LWRs

    International Nuclear Information System (INIS)

    Degueldre, C.; Paratte, J.M.

    1997-01-01

    The properties of zirconia cubic solid solutions doped with yttria, erbia and ceria or thoria are investigated with emphasis on the potential use of this material as inert matrix fuel for plutonium incineration in a light water reactor (LWR). The material is selected on the basis of its neutronic properties. Zr and Y are not neutron absorbers. Among the rare earth elements, Er was identified as a suitable burnable poison. The high density cubic solid solution is stable for a rather large range of compositions and from room temperature up to about 3000 K. Samples irradiated under low and high energy Xe ion irradiation up to a fluence of 1.8.10 16 Xe.cm -2 were investigated by transmission electron microscopy. Low energy (60 keV) Xe ions did not produce amorphization. From the observed bubble formation, swelling values during irradiation at room temperature or at high temperature (925 K) were estimated to be 0.1-0.72% by volume. Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high energy (1.5 MeV) Xe ion irradiation and low temperature (20 K). This confirms the robustness of this material and argues in favour of the selection of a zirconia based material as an advanced nuclear fuel for plutonium incineration. (author) 5 figs., 1 tab., 17 refs

  3. Physical properties and compatibility with dental stones of current alginate impression materials.

    Science.gov (United States)

    Murata, H; Kawamura, M; Hamada, T; Chimori, H; Nikawa, H

    2004-11-01

    This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material.

  4. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  5. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  6. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    Science.gov (United States)

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  7. Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes

    International Nuclear Information System (INIS)

    Lu, Y Charles; Kurapati, Siva N V R K; Yang Fuqian

    2008-01-01

    The cylindrical indentation is analysed, using the finite element method, for determining the plastic properties of elastic-plastic materials and the effect of strain hardening. The results are compared with those obtained from spherical indentation, the commonly used technique for measuring plastic properties of materials in small volumes. The analysis shows that the deformation under a cylindrical indenter quickly reaches a fully plastic state and that the size (diameter) of the plastic zone remains constant during further indentation. The indentation load is proportional to the indentation depth at large indentation depth, from which the indentation pressure P m at the onset of yielding can be readily extrapolated. The analysis of cylindrical indentation suggests that it does not need parameters such as impression radius (a) and contact stiffness (S) for determining the plastic behaviour of materials. Thus, the cylindrical indentation can suppress the uncertainties in measuring material properties

  8. Theoretical model for the hydrogen-material interaction as a basis for prediction of the material mechanical properties

    International Nuclear Information System (INIS)

    Indeitsev, D.A.; Polyanskiy, V.A.; Sukhanov, A.A.; Belyaev, A.A.

    2009-01-01

    The natural law concentration of hydrogen inside the materials has a distribution over the different binding energies. This distribution is changing under the mechanical tension. The model of interaction of the small hydrogen concentration with materials provides one with an instrument for modeling the materials fatigue and destruction, as well as the prediction of material properties during exploitation. The well-known models are of the phenomenological nature. However if one takes into account the physical mechanism then one obtains an accurate model and the instrument for the reliable prediction. The two-continuum model of the solid material is a substantiation for the present study. This model describes the interaction between the low concentration of hydrogen and the material. The redistribution of the hydrogen between the different binding energy levels is taken into account, too

  9. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  10. Data supporting the prediction of the properties of eutectic organic phase change materials

    Directory of Open Access Journals (Sweden)

    Samer Kahwaji

    2018-04-01

    Full Text Available The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs. The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018 [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs. Keywords: Phase change materials, PCM, Eutectic, Thermal properties, Thermal energy storage

  11. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  12. Hydrogen storing and electrical properties of hyperbranched polymers-based nanoporous materials

    International Nuclear Information System (INIS)

    Abdel Rehim, Mona H.; Ismail, Nahla; Badawy, Abd El-Rahman A.A.; Turky, Gamal

    2011-01-01

    Highlights: · The hydrogen storage capacity of hyperbranched P-Urea, PAMAM and PAMAM and VO x is studied and electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. · Electrical properties measurements for the samples showed complete insulating behavior at hydrogenation measuring temperature. · These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. - Abstract: Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VO x ) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VO x . The hydrogen storage capacity significantly enhanced when PAMAM and VO x form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

  13. Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling

    OpenAIRE

    Steinhaus, Thomas

    2010-01-01

    Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational domain. The various sub-models associated with these have been developed sufficiently to reduce the errors below 10%-15%, and work continues on reducing these errors yet further. However, the uncertainties introduced by using material properties as an input for these models a...

  14. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  15. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  16. Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux

    Directory of Open Access Journals (Sweden)

    Pranas Juozas ŽILINSKAS

    2013-03-01

    Full Text Available This work analyzes the opportunities of wider characterization of textile materials, fabrics, upholstery fabrics, fibers, yarns or others, which may accumulate electric charge. A non-contact way for electrostatic properties measurement based on affecting those materials by ions with positive or negative charge is described. The method allows to measure simultaneously the time dependences of the surface voltage and the electric charge during the charging process and the time dependences of the surface voltage during the discharging process. From the measured dependencies the following set of parameters was measured or calculated: the surface voltage limiting value, the surface voltage semi-decay time, the maximum deposited charge, the layer capacitance, the energy of the accumulated charge and others. The surface voltage distribution measurement method when the investigated textile material is affected by ion flux was also described. To verify the applicability of the proposed methods for characterization of textile materials in order to determine the above-mentioned parameters of cotton, linen, wool, viscose, acetate, polyester, polyester coated with polytetrafluoroethylene, a series of experiments were performed. The surface voltage distribution measurement method based on affecting textile materials by ions with positive charge was described and a surface voltage distribution of a polyester-cotton upholstery fabric produced by a Jacquard mechanism was presented. The performed experiments demonstrate the possibilities of method application for comparison of the electrostatic properties of different textile materials used for the same tasks or the same materials produced by different technological processes.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3828

  17. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    Science.gov (United States)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  18. Modeling material-degradation-induced elastic property of tissue engineering scaffolds.

    Science.gov (United States)

    Bawolin, N K; Li, M G; Chen, X B; Zhang, W J

    2010-11-01

    The mechanical properties of tissue engineering scaffolds play a critical role in the success of repairing damaged tissues/organs. Determining the mechanical properties has proven to be a challenging task as these properties are not constant but depend upon time as the scaffold degrades. In this study, the modeling of the time-dependent mechanical properties of a scaffold is performed based on the concept of finite element model updating. This modeling approach contains three steps: (1) development of a finite element model for the effective mechanical properties of the scaffold, (2) parametrizing the finite element model by selecting parameters associated with the scaffold microstructure and/or material properties, which vary with scaffold degradation, and (3) identifying selected parameters as functions of time based on measurements from the tests on the scaffold mechanical properties as they degrade. To validate the developed model, scaffolds were made from the biocompatible polymer polycaprolactone (PCL) mixed with hydroxylapatite (HA) nanoparticles and their mechanical properties were examined in terms of the Young modulus. Based on the bulk degradation exhibited by the PCL/HA scaffold, the molecular weight was selected for model updating. With the identified molecular weight, the finite element model developed was effective for predicting the time-dependent mechanical properties of PCL/HA scaffolds during degradation.

  19. Investigation on adhering properties of dental materials by means of radioactively labelled bacteria

    International Nuclear Information System (INIS)

    Pfister, W.; Kleinert, P.; Sandig, H.C.; Wutzler, P.; Ruschitschka, A.; Schaefer, U.

    1987-01-01

    Bacteria of the species Streptococcus mutans were radioactively labelled with 113 In-oxinate. Different dental materials were incubated with the labelled bacteria. Counts per minute of the dental materials could be determined as proportion of the quantity of adhering microorganisms. Silver-palladium-alloy had a lower adherence than silver-tin-alloy. Finest polished alloys had lower adhering properties than unpolished surfaces of materials. (author)

  20. Determination of the probability for radioactive materials on properties in Monticello, Utah

    International Nuclear Information System (INIS)

    Wilson, M.J.; Crutcher, J.W.

    1991-02-01

    In 1978, under the authority of the Atomic Energy Act, the US Department of Energy (DOE) established the Surplus Facilities Management Program (SFMP) to manage the maintenance and surveillance of numerous DOE-owned, radioactively contaminated facilities that have been declared surplus and to conduct a program leading to the ultimate disposition of those facilities. The primary responsibility of SFMP is to protect public health and the environment from potentially harmful radioactive contamination contained within or derived from DOE-owned facilities. Management of SFMP is directed by the DOE Office of Environmental Restoration and Waste Management, Washington, DC. Prior to mill site remediation, Monticello properties surrounding the site and designated privately owned are being assessed for inclusion in the SFMP. Oak Ridge National Laboratory (ORNL) was directed by DOE in July 1988 to assess the radiological condition of privately owned properties in Monticello that have been identified as possibly containing Monticello mill-related materials. Properties containing Monticello mill-related materials and with associated radiation levels that exceed US Environmental Protection Agency (EPA) and DOE standards are eligible for cleanup under SFMP. The objective of this study was to determine the probability that a property which contained Monticello mill-related residual radioactive material in excess of the guidelines would not be assessed under the current protocol. 3 refs., 3 figs., 2 tabs

  1. Synthesis, properties and applications of 2D non-graphene materials

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-01-01

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III–V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field. (topical review)

  2. Bidirectional Thermo-Mechanical Properties of Foam Core Materials Using DIC

    DEFF Research Database (Denmark)

    Taher, Siavash Talebi; Thomsen, Ole Thybo; M Dulieu-Barton, Janice

    2011-01-01

    mechanical properties at room and at elevated temperatures. The MAF enables the realization of pure compression or high compression to shear bidirectional loading conditions that is not possible with conventional Arcan fixtures. The MAF is attached to a standard universal test machine equiped...... with an environmental chamber using specially designed grips that allow the specimen to rotate, and hence reduces paristic effects due to misalignment. The objective is to measure the unidirectional and bidirectional mechanical properties of PVC foam materials at elevated tempreature using digital image correlation...

  3. Effect of time-dependent material properties on the crack behavior in the interface of two polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Zouhar, Michal; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2011-01-01

    Roč. 47, č. 2 (2011), s. 203-210 ISSN 0191-5665 R&D Projects: GA ČR GC101/09/J027; GA ČR GD106/09/H035; GA ČR GA106/09/0279 Institutional research plan: CEZ:AV0Z20410507 Keywords : multilayer plastic pipes * bimaterial interface * stability criteria * critical stress * time -depended material properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.409, year: 2011

  4. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  5. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  6. A dual triangular pyramidal indentation technique based on FEA solutions for Material property evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo; Hyun, Hong Chul [Sogana Univ., Seoul (Korea, Republic of); Lee, Jin Haeng; Lee, Hyungyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this study, we suggest a method for material property evaluation by dual triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load displacement curves. From this, we established property evaluation formula using dual triangular pyramidal indenters having two different half included angles. The approach provides the values of elastic modulus, yield strength and strain hardening exponent within an average error of 3% for various materials.

  7. Enhancing the piezoelectric properties of flexible hybrid AlN materials using semi-crystalline parylene

    Science.gov (United States)

    Jackson, Nathan; Mathewson, Alan

    2017-04-01

    Flexible piezoelectric materials are desired for numerous applications including biomedical, wearable, and flexible electronics. However, most flexible piezoelectric materials are not compatible with CMOS fabrication technology, which is desired for most MEMS applications. This paper reports on the development of a hybrid flexible piezoelectric material consisting of aluminium nitride (AlN) and a semi-crystalline polymer substrate. Various types of semi-crystalline parylene and polyimide materials were investigated as the polymer substrate. The crystallinity and surfaces of the polymer substrates were modified by micro-roughening and annealing in order to determine the effects on the AlN quality. The AlN crystallinity and piezoelectric properties decreased when the polymer surfaces were treated with O2 plasma. However, increasing the crystallinity of the parylene substrate prior to deposition of AlN caused enhanced c-axis (002) AlN crystallinity and piezoelectric response of the AlN. Piezoelectric properties of 200 °C annealed parylene-N substrate resulted in an AlN d 33 value of 4.87 pm V-1 compared to 2.17 pm V-1 for AlN on polyimide and 4.0 pm V-1 for unannealed AlN/parylene-N. The electrical response measurements to an applied force demonstrated that the parylene/AlN hybrid material had higher V pp (0.918 V) than commercial flexible piezoelectric material (PVDF) (V pp 0.36 V). The results in this paper demonstrate that the piezoelectric properties of a flexible AlN hybrid material can be enhanced by increasing the crystallinity of the polymer substrate, and the enhanced properties can function better than previous flexible piezoelectrics.

  8. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  9. Geophysical methods for determining the geotechnical engineering properties of earth materials.

    Science.gov (United States)

    2010-03-01

    Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...

  10. Characterization of Redox properties of humic materials

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1995-01-01

    An important aspect of humic materials is the presence of stable free radicals as shown by the width of 1 H-NMR lines of humic acid in solution as well as ESR spectra of solid samples. Presumably, these are due to quinohdrone functional groups in the humic structure. These free radicals are assumed to be a source of the redox effects of humics in metal cations. Phenolic groups have also been proposed as a source of reduction potential in these substances. The reduction potential of humic material is 0.5-0.7 V (vs. the normal hydrogen electrode). In addition to this inherent redox property, humics undergo photolysis by sunlight in surface waters which results in the production of hydrogen peroxide. The latter can also result in redox reactions with metal cations. Such direct and indirect redox capability can have significant effects on the migration of reducible cations. Studies of the reduction of hexavalent actinide cations by humic acid showed the reactions Np O 2 2+ -> Np O 2 + (E 1/2 0 = 1.47 V) and Pu O 2 2+ -> Pu +4 (E 1/2 0 = 1.04 V) while U O 2 2+ was not reduced. The reduction of plutonium in sea water by humics is discussed. Evidence of the effects of redox by humic material on metal cations in natural waters and sediments are also reviewed. (authors). 16 refs., 2 figs., 1 tab

  11. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  12. Development of a material property database on selected ceramic matrix composite materials

    Science.gov (United States)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  13. Structure and properties of phosphorene-like IV-VI 2D materials.

    Science.gov (United States)

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices.

  14. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    Science.gov (United States)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  15. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Science.gov (United States)

    Qiu, Xiaoyun; Hu, Shuwen

    2013-01-01

    Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review. PMID:28809338

  16. “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Shuwen Hu

    2013-02-01

    Full Text Available Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.

  17. Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and their basic optical and electrical properties were examined. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were examined by normal/inverse photoemission spectroscopy and energy band calculations. The results of the examinations suggested that these materials possess unique features more than simple wide-gap semiconductors. Namely, the layered oxychalcogenides are considered to be extremely thin quantum wells composed of the oxide and chalcogenide layers or 2D chalcogenide crystals/molecules embedded in an oxide matrix. Observation of step-like absorption edges, large band gap energy and large exciton binding energy demonstrated these features originating from 2D density of states and quantum size effects in these layered materials

  18. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    Science.gov (United States)

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  20. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  1. Study of the luminescence properties of dental materials for their use in accidental dosimetry

    International Nuclear Information System (INIS)

    Veronese, Ivan; Cantone, Marie C.; Guzzi, Gianpaolo

    2008-01-01

    Full text: The current social and political situation in many world areas and the increasing hostilities between countries and cultures have accentuated the risk of a malicious use of ionising radiations. Terrorist attacks with the intentional disseminations of radioactive materials in urban settlements may involve a large number of persons, and a rapid estimation of the severity of the exposure is required for undertaking suitable protective actions and supporting decision making. Promising methodologies for a prompt dose evaluation, are those exploiting the luminescence and dosimetric properties of objects and materials which can be easily found in the contaminated area. Among these objects, dental materials have the advantage to be on contact with human body and they could therefore represent individual dosimeters in case of accidental exposure to ionising radiation. The interest in the use of dental ceramics for dosimetric purposes dates back to late 1970, however, it is only through the use of high-sensitive experimental techniques and instrumentation today available, that the potentiality of such materials as accidental dosimeters can be exploited. Moreover, innovative materials are being continuously introduced into the market, containing new additives and pigments with peculiar optical properties. In this study, Thermally Stimulated Luminescence (TSL) and Optically Stimulated Luminescence (OSL) techniques are applied to investigate the luminescence and dosimetric properties of several dental materials, including resins, glass and feldspatic ceramics, and also zirconia and alumina based ceramics, being their use widely increased in the recent years in substitution of metal cores. (author)

  2. The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute Inc., Trnava (Slovakia)

    1997-04-01

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  3. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    Science.gov (United States)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  4. Equilibrium paths analysis of materials with rheological properties by using the chaos theory

    Science.gov (United States)

    Bednarek, Paweł; Rządkowski, Jan

    2018-01-01

    The numerical equilibrium path analysis of the material with random rheological properties by using standard procedures and specialist computer programs was not successful. The proper solution for the analysed heuristic model of the material was obtained on the base of chaos theory elements and neural networks. The paper deals with mathematical reasons of used computer programs and also are elaborated the properties of the attractor used in analysis. There are presented results of conducted numerical analysis both in a numerical and in graphical form for the used procedures.

  5. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    Directory of Open Access Journals (Sweden)

    Arul Amalan

    2013-01-01

    Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions.

  6. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  7. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  8. Basic radiation sterilization properties of packaging materials

    International Nuclear Information System (INIS)

    Zouharova, A.; Kolarova, J.; Olbrichova, D.

    1984-01-01

    The foils of various materials were irradiated with 60 Co with an activity of 11,538 TBq. The minimum radiation dose was 25 kGy. Changes in chemico-physical properties were evaluated by infrared spectroscopy and were not detected after irradiation with 25 kGy. Packing foils were subjected to the following tests: mechanical tests, tests of weld strength, tests of impact resistance, free fall tests, permeability tests for water vapour and microbiological tests. The results of all tests were tabulated. The tests showed that the foils are impermeable for microorganisms and provided the welds are airtight the packed products remain sterile. (J.P.)

  9. 14 CFR 29.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL—HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL—HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL—HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  10. 14 CFR 27.613 - Material strength properties and design values.

    Science.gov (United States)

    2010-01-01

    ... Administrator: (1) MIL-HDBK-5, “Metallic Materials and Elements for Flight Vehicle Structure”. (2) MIL-HDBK-17, “Plastics for Flight Vehicles”. (3) ANC-18, “Design of Wood Aircraft Structures”. (4) MIL-HDBK-23... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design...

  11. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  12. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  13. Identification of material properties of orthotropic composite plate using experimental frequency response function data

    Science.gov (United States)

    Tam, Jun Hui; Ong, Zhi Chao; Ismail, Zubaidah; Ang, Bee Chin; Khoo, Shin Yee

    2018-05-01

    The demand for composite materials is increasing due to their great superiority in material properties, e.g., lightweight, high strength and high corrosion resistance. As a result, the invention of composite materials of diverse properties is becoming prevalent, and thus, leading to the development of material identification methods for composite materials. Conventional identification methods are destructive, time-consuming and costly. Therefore, an accurate identification approach is proposed to circumvent these drawbacks, involving the use of Frequency Response Function (FRF) error function defined by the correlation discrepancy between experimental and Finite-Element generated FRFs. A square E-glass epoxy composite plate is investigated under several different configurations of boundary conditions. It is notable that the experimental FRFs are used as the correlation reference, such that, during computation, the predicted FRFs are continuously updated with reference to the experimental FRFs until achieving a solution. The final identified elastic properties, namely in-plane elastic moduli, Ex and Ey, in-plane shear modulus, Gxy, and major Poisson's ratio, vxy of the composite plate are subsequently compared to the benchmark parameters as well as with those obtained using modal-based approach. As compared to the modal-based approach, the proposed method is found to have yielded relatively better results. This can be explained by the direct employment of raw data in the proposed method that avoids errors that might incur during the stage of modal extraction.

  14. Process design of press hardening with gradient material property influence

    International Nuclear Information System (INIS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-01-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  15. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  16. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    Science.gov (United States)

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the “wonder material” graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications. PMID:24808721

  17. Thermophysical properties of new materials; Proprietes thermophysiques des materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `thermo-kinetics` section of the French association of thermal engineers. This book of proceedings contains 5 papers entitled: `characterization of thermal properties using periodical methods at the Odeillo test centre: developments and applications`; `measurement of the distribution of local thermophysical properties by IR images processing and averaging technique`; `extension of shock probes to the characterization of multi-layers - development of a simple device for the characterization of insulating materials or shear fluids`; `thermal local diffusivity of constituents of carbon/carbon composites`; `new method for the thermal diffusivity measurement of thermo-hardenable resins during polymerization`. (J.S.)

  18. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    Science.gov (United States)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  19. Effect of mechanical treatment on the electrical properties of graphite materials

    International Nuclear Information System (INIS)

    Yunasfi; Salim Mustofa

    2010-01-01

    Measurement of electrical properties of graphite materials as the mechanical treatment result with high energy milling (HEM) techniques was carried out. The carbon powder was milled using HEM by varying the milling time from 25 hours to 100 hours, and afterwards the graphite material was formed to a pellet under compaction up to 20 ton/cm"2. The measurements result of electrical properties using LCR (Inductance, Capacitance, Resistance) meter showed that milling process to graphite causes the increasing of conductivity and capacitance values and these values were increasing with the increase of milling times. Before milling, the conductivity value is 3.5976 Siemens/cm and the value of capacitance is 0.2223 μF at 100 kHz frequency. Increasing of conductivity value reached 26 % and capacitance value reached 66 % after milling for 100 hours. These increasing are analyzed due to decreasing of graphite powder particle size causing by longer milling time and result in higher electrical conductivity. (author)

  20. Mechanical properties test program on structural materials in a sodium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1979-10-01

    This document describes in detail the ongoing and planned US Test program on the mechanical properties of sodium-exposed Type 316 austenitic stainless and Fe-2 1/4 Cr-1 Mo ferritic steels. The test program is based on the Development Requirement Specifications (DRS) established by the DOE/Clinch River Breeder Reactor Project (CRBRP) Program Office, the general need for the development of LMFBR structural-design criteria established by the Nuclear Systems Materials Handbook, and the need for a fundamental understanding of materials behavior in a sodium environment, which is generic to LMFBR systems. The planned test program is an extension of work based on current knowledge of sodium chemistry and the influence of sodium purity on the mechanical properties of structural materials

  1. Evaluation of material property of austenitic stainless steel using nano-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Takeshi [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to evaluate some material properties of very small area on small specimens which are sampled from components in service and to predict macroscopic material properties from the data of the small specimens, nano-indentation is considered to be quite effective. However, there are few reports formularize the dependence of load on hardness values evaluated from the results of indentation tests with loads from 10 mg to 100 g. In this study, systematic tests of indentation were conducted to specimens of austenitic stainless steel SUS304 using a Berkovich indenter and a Vickers indenter with loads varying from 10 mg to 100 g. From these results numerical formulae which relate the calculated hardness values to the loads were made. In addition, the relation between Vickers hardness and nano-indentation hardness was obtained. As a result, it became possible to predict Vickers hardness from nano-indentation with loads as low as about 100 mg. (author)

  2. Characterizing material properties of cement-stabilized rammed earth to construct sustainable insulated walls

    Directory of Open Access Journals (Sweden)

    Rishi Gupta

    2014-01-01

    Full Text Available Use of local materials can reduce the hauling of construction materials over long distances, thus reducing the greenhouse gas emissions associated with transporting such materials. Use of locally available soils (earth for construction of walls has been used in many parts of the world. Owing to the thermal mass of these walls and the potential to have insulation embedded in the wall section has brought this construction material/technology at the forefront in recent years. However, the mechanical properties of the rammed earth and the parameters required for design of steel reinforced walls are not fully understood. In this paper, the author presents a case study where full-scale walls were constructed using rammed earth to understand the effect of two different types of shear detailing on the structural performance of the walls. The mechanical properties of the material essential for design such as compressive strength of the material including effect of coring on the strength, pull out strength of different rebar diameters, flexural performance and out-of-plane bending on walls was studied. These results are presented in this case study.

  3. Emergent material properties of developing epithelial tissues.

    Science.gov (United States)

    Machado, Pedro F; Duque, Julia; Étienne, Jocelyn; Martinez-Arias, Alfonso; Blanchard, Guy B; Gorfinkiel, Nicole

    2015-11-23

    Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5-6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge. We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures. Our results show that in an epithelial

  4. Mechanical properties and dependence with temperature of tetragonal polycrystalline zirconia materials

    International Nuclear Information System (INIS)

    Orange, G.

    1986-01-01

    Polycrystalline zirconia materials with a high content of metastable tetragonal phase have been obtained by pressureless sintering from experimental powders. Mechanical properties have been determined at room temperature and compared with similar materials. The fracture strength (σ /SUB f/ ) and fracture toughness (K /SUB 1c/ ) temperature dependence has been studied, in air environment up to 1000 0 C. Microstructure was studied by SEM examinations of fracture faces and TEM observations. Fracture toughness (of about 10 MPa √m at room temperature) decreases from 200 0 C to 800 0 C. The critical temperature (T /SUB c/ ) is estimated at 600 0 C. We observe an important decreases of fracture strength at 200 0 C. These mechanical properties are discussed on the basis of the stability of the tetragonal phase depending on additive content, grain size and temperature

  5. Material properties requirements for LMFBR structural design: General considerations and data needs

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, C E [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Purdy, C M [U.S. Energy Research and Development Administration (United States)

    1977-07-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1/4 Cr-1 Mo steel. (author)

  6. Material properties requirements for LMFBR structural design: general considerations and data needs

    International Nuclear Information System (INIS)

    Pugh, C.E.; Purdy, C.M.

    1977-01-01

    A statement is given of material properties information needed in connection with the structural design technology for liquid-metal fast breeder reactor (LMFBR) primary circuit components. Implementation of current analysis methods and criteria is considered with an emphasis on data and data correlations for performing elastic-plastic and creep analyses, for establishing allowable stress limits, and for computing creep-fatigue damage. Further development of the technology is discussed in relation to properties information. Emphasis is placed on improved constitutive equations for representing inelastic material behavior, on procedures for treating time-dependent fatigue, and on criteria for creep rupture. The properties are generally discussed without regard to specific alloys, since most categories of information are needed for each major structural material. Some sample experimental results are given for type 304 stainless steel and 2 1 / 4 Cr-1 Mo steel

  7. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  8. Thermophysical and Optical Properties of Materials Considered for Use on the LDSD Test Vehicle

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A.J.

    2015-01-01

    In June 2014, the first of multiple flights in the Low Density Supersonic Decelerator (LDSD) technology development program took place and successfully demonstrated a Supersonic Inflatable Aerodynamic Decelerator (SIAD) in Mars-like conditions. Although the primary goal of the technology program was the development of new decelerators for landing heavier payloads on Mars, the low-cost thermal design of the test vehicle was only possible through the innovative use of a combination of both commercial off the shelf (COTS) and aerospace grade materials. As a result, numerous thermophysical and optical property measurements were undertaken to characterize material candidates before the final material selection was made. This paper presents thermophysical and optical property measurements performed over the course of the LDSD test vehicle development, including those not ultimately selected for use on the vehicle. These properties are compared and contrasted with the existing measurements available in previous literature.

  9. Selected mechanical properties of aluminum composite materials reinforced with SiC particles

    Directory of Open Access Journals (Sweden)

    A. Kurzawa

    2008-07-01

    Full Text Available This work presents the results of research concerning influence of ceramic particles’ content of silicon carbide on selected mechanical properties of type AW-AlCu4Mg2Mn - SiC composite materials. Composites produced of SiC particles with pressure infiltration method of porous preform and subject to hot plastic forming in the form of open die forging were investigated. The experimental samples contained from 5% up to 45% of reinforcing SiC particles of 8÷10μm diameter. Studies of strength properties demonstrated that the best results, in case of tensile strength as well as offset yield strength, might be obtained while applying reinforcement in the amount of 20-25% vol. of SiC. Application of higher than 25% vol. contents of reinforcing particles leads to gradual strength loss. The investigated composites were characterized by very high functional properties, such as hardness and abrasive wear resistance, whose values increase strongly with the increase of reinforcement amount. The presented results of the experiments shall allow for a more precise component selection of composite materials at the stage of planning and design of their properties.

  10. Learning to Apply Models of Materials While Explaining Their Properties

    Science.gov (United States)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  11. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  12. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  13. Machine learning properties of materials and molecules with entropy-regularized kernels

    Science.gov (United States)

    Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip

    Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).

  14. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  16. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    Directory of Open Access Journals (Sweden)

    Peng Q

    2014-04-01

    Full Text Available Qing Peng,1 Albert K Dearden,2 Jared Crean,1 Liang Han,1 Sheng Liu,3 Xiaodong Wen,4,5 Suvranu De11Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; 2Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA; 3Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China; 4State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China; 5Synfuels China Co, Ltd, Huairou, Beijing, People's Republic of ChinaAbstract: Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the "wonder material" graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications.Keywords: two-dimensional materials, graphene-like structures, properties and synthesis, nanotechnology applications, graphyne, hydrogenation of grapheme

  17. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  18. Tuning the Transport Properties of Layered Materials for Thermoelectric Applications using First-Principles Calculations

    KAUST Repository

    Saeed, Yasir

    2014-05-11

    Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport

  19. Characterization of sapphire: For its material properties at high temperatures

    Science.gov (United States)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  20. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    Science.gov (United States)

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  1. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  2. Computer modelling of structures with account of the construction stages and the time dependent material properties

    Directory of Open Access Journals (Sweden)

    Traykov Alexander

    2015-01-01

    Full Text Available Numerical studies are performed on computer models taking into account the stages of construction and time dependent material properties defined in two forms. A 2D model of three storey two spans frame is created. The first form deals with material defined in the usual design practice way - without taking into account the time dependent properties of the concrete. The second form creep and shrinkage of the concrete are taken into account. Displacements and internal forces in specific elements and sections are reported. The influence of the time dependent material properties on the displacement and the internal forces in the main structural elements is tracked down. The results corresponding to the two forms of material definition are compared together as well as with the results obtained by the usual design calculations. Conclusions on the influence of the concrete creep and shrinkage during the construction towards structural behaviour are made.

  3. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    Science.gov (United States)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  4. Multinary lithium (oxo)nitridosilicates. Syntheses, structures and their materials properties

    International Nuclear Information System (INIS)

    Horky, Katrin

    2017-01-01

    The objective of this thesis was the synthesis, identification and characterization of novel lithium(oxo)nitridosilicates in order to investigate as well as to expand the materials properties of this compound class. Therefore, different synthesis strategies were carried out. Crystal structure elucidation with single-crystal X-ray diffraction was carried out on new compounds. Moreover, investigations of physical properties like luminescence and lithium ion conductivity were performed.

  5. Multinary lithium (oxo)nitridosilicates. Syntheses, structures and their materials properties

    Energy Technology Data Exchange (ETDEWEB)

    Horky, Katrin

    2017-11-06

    The objective of this thesis was the synthesis, identification and characterization of novel lithium(oxo)nitridosilicates in order to investigate as well as to expand the materials properties of this compound class. Therefore, different synthesis strategies were carried out. Crystal structure elucidation with single-crystal X-ray diffraction was carried out on new compounds. Moreover, investigations of physical properties like luminescence and lithium ion conductivity were performed.

  6. Electrical property and characterization of nano-SnO2/wollastonite composite materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Bai, Zhiqiang; Shen, Hongling; Zheng, Shuilin; Frost, Ray L.

    2013-01-01

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO 2 /wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO 2 /wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO 2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO 2 /wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10 4 Ω cm to 2.533 × 10 3 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO 2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated

  7. In-waveguide measurements of MMW dielectric properties of ceramic materials for the US fusion reactor materials research program

    International Nuclear Information System (INIS)

    Kennedy, J.C. III; Farnum, E.F.; Clinard, F.W. Jr.

    1992-01-01

    The objective is to obtain accurate measurements of dielectric properties of candidate ceramic insulating materials for fusion reactors. As part of an IEA collaboration, a set of round-robin materials was purchased for comparing dielectric measurements at laboratories in the United Kingdom, Spain, Germany, US, and Japan. P. Pells at Aldermasten, UK, purchased MACOR 9658, a glass-mica composite, and Roger Stoller, from ORNL, purchased WESGO AL-300 and AL-995, polycrystalline alumina standards. The authors obtained some of each of these materials for making these measurements. The results have been shared with the other IEA partners, and P. Pells is preparing a summary document. They used the millimeter wave apparatus described below and elsewhere in detail to measure the dielectric properties of these materials at 90 to 100 Ghz at room temperature. The nominal purity of AL-300 was 0.967; the nominal purity of AL-995 was 0.995. Their method was to measure the power transmission coefficient. They used computerized data reduction techniques to compute k (the dielectric constant) and tanδ (the loss tangent) directly from transmission maxima and their corresponding frequencies; to verify this method, they applied the same technique to theoretically derived channel spectra that were obtained by solving exactly the complex transmission coefficient, given k and tanδ. The alumina material with a lower level of purity resulted in higher loss but lower dielectric constant. They obtained dielectric constants that were higher for all the materials than manufacturer-reported values taken at lower frequencies. In addition, they obtained higher dielectric constant values than those found by other investigators at 100 GHz for AL-995 and MACOR. Tanδ values were in good agreement with those of other investigators obtained by free-space methods and dispersive Fourier-transform techniques in the same frequency range

  8. Improvement of thermo-mechanical properties of ceramic materials for nuclear applications

    International Nuclear Information System (INIS)

    Decroix, G.M.; Gosset, D.; Kryger, B.; Boussuge, M.; Burlet, H.

    1994-01-01

    In order to improve the thermo-mechanical properties of materials used as neutron absorbers in nuclear reactors, cermet or cercer have been produced with two original microstructures: micro- or macro-dispersed composites. The composites thermal shock resistance has been evaluated in an image furnace. The microstructures we obtained involve different reinforcement mechanisms, such as crack deflection, crack branching, crack bridging or microcrack toughening, and improvement of thermal conductivity. The results reveal a significant improvement of the thermo-mechanical properties of the boron base neutron absorbers whose fabrication process leads to a macro-dispersed microstructure. (authors). 8 refs., 8 figs., 2 tabs

  9. Densification and properties of HfB2 based materials

    International Nuclear Information System (INIS)

    Sonber, J.K.; Ch Murthy, T.S.R.; Bedse, R.D.; Subramanian, C.; Kumar, Sunil; Fotedar, R.K.; Krishnamurthy, N.; Suri, A.K.

    2011-01-01

    This paper presents the results of investigation carried out on densification and properties of HfB 2 based materials. Densification study of HfB 2 with and without sinter additive was carried out by hot pressing. TiSi 2 and CrSi 2 were used as sinter additive. Monolithic HfB 2 was densified to only 80%ρ th at 1850 deg C with a pressure of 35 MPa. Addition of 10 wt% TiSi 2 resulted in a density of 95% TD at a relatively low temperature of 1650 deg C and a low pressure of 20 MPa. Addition of 10% CrSi 2 resulted in a density of 99% TD at the same operating conditions. All the samples were characterized by SEM/EDS and mechanical property measurement. (author)

  10. Thermophysical properties of materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    Raj Sehgal, B.

    1996-01-01

    Correct material thermophysical properties are essential for good prediction of thermal processes in nuclear power plants. The issues in this area are of (a) need; (b) quality of evaluation; (c) duplication, and (d) acquisition of new data. The need should be based on some analysis. One should ask: ''Will the current state of knowledge about a certain property affect the performance and safety of a plant significantly?''. The evaluation of the state of current knowledge (''What is the accuracy of a data base?'') should be performed by known experts. Some duplication may be beneficial; but, in general, it should be avoided. New data acquisition is not an ordinary affair, when good accuracy is required. Considerable costs may be incurred; most of the major nuclear countries are cutting research programs

  11. Material properties of Grade 91 steel at elevated temperature and their comparison with a design code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Kim, Woo Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Han Sang; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the material properties of tensile strength, creep properties, and creep crack growth model for Gr.91 steel at elevated temperature were obtained from material tests at KAERI, and the test data were compared with those of the French elevated temperature design code, RCC-MRx. The conservatism of the material properties in the French design code is highlighted. Mod.9Cr-1Mo (ASME Grade 91; Gr.91) steel is widely adopted as candidate material for Generation IV nuclear systems as well as for advanced thermal plants. In a Gen IV sodium-cooled fast reactor of the PGSFR (Prototype Gen IV Sodium-cooled Fast Reactor) being developed by KAERI (Korea Atomic Energy Research Institute), Gr.91 steel is selected as the material for the steam generator, secondary piping, and decay heat exchangers. However, as this material has a relatively shorter history of usage in an actual plant than austenitic stainless steel, there are still many issues to be addressed including the long-term creep rupture life extrapolation and ratcheting behavior with cyclic softening characteristics.

  12. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution

    Science.gov (United States)

    Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.

    2018-04-01

    The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.

  13. Investigation of the Effects of Marble Material Properties on the Surface Quality

    Directory of Open Access Journals (Sweden)

    Sümeyra Cevheroğlu Çıra

    2018-01-01

    Full Text Available This study aims to investigate the effects of material properties of marble on surface roughness and glossiness. For this purpose, four types of limestones were investigated. Physicomechanical properties of samples were determined through laboratory measurements. Mineralogical and petrographical characterizations were made using thin-section analysis. X-ray fluorescence (XRF semiquantitative method was used for chemical analysis. Six different grinding-polishing tests for each marble unit were done under fixed operational conditions using the same abrasive series. Relationship between the material properties and the surface quality was investigated. Although the polishing-grinding tests were conducted under the same operational conditions, different levels of roughness and glossiness were observed on different samples. Data obtained from the study proved that the main cause of this difference is textural and chemical composition variations of the marble specimen. Moreover, statistical evaluations showed that porosity, uniaxial compressive strength, and indirect tensile strength have strong effects on the surface roughness and glossiness of the marble specimen. The presence of an inverse relationship between the glossiness and roughness levels was determined as the result of this study as well.

  14. Investigation of transport properties of colossal magnetoresistive materials

    International Nuclear Information System (INIS)

    Kaurav, Netram

    2006-01-01

    The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)

  15. A novel stress distribution analytical model of O-ring seals under different properties of materials

    International Nuclear Information System (INIS)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian

    2017-01-01

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials

  16. A novel stress distribution analytical model of O-ring seals under different properties of materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Wang, Shao Ping; Wang, Xing Jian [School of Automation Science and Electrical Engineering, Beihang University, Beijing (China)

    2017-01-15

    The elastomeric O-ring seals have been widely used as sealing elements in hydraulic systems. The sealing performance of O-ring seals is related to stress distribution. The stresses distribution depends on the squeeze rate and internal pressure, and would vary with properties of O-ring seals materials. Thus, in order to study the sealing performance of O-ring seals, it is necessary to describe the analytic relationship between stress distribution and properties of O-ring seals materials. For this purpose, a novel Stress distribution analytical model (SDAM) is proposed in this paper. The analytical model utilizes two stress complex functions to describe the stress distribution of O-ring seals. The proposed SDAM can express not only the analytical relationship between stress distribution and Young’s modulus, but also the one between stress distribution and Poisson’s ratio. Finally, compared results between finite element analysis and the SDAM validate that the proposed model can effectively reveal the stress distribution under different properties for O-ring materials.

  17. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A

    2018-03-01

    In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    Science.gov (United States)

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  19. A parametric study of influence of material properties on car cabin environment

    Directory of Open Access Journals (Sweden)

    Pokorny Jan

    2014-03-01

    Full Text Available Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  20. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    Science.gov (United States)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  1. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  2. Antimicrobial Property of Hydrocolloid Impression Material Incorporated with Silver Nanoparticles Against Staphylococcus Aureus

    Directory of Open Access Journals (Sweden)

    Wangchuk Norbu Penden

    2017-01-01

    Full Text Available Dental impressions can easily become contaminated with patient’s blood and saliva which are capable of transmitting infectious diseases to dental personnel. The addition of antimicrobial agents into impression materials could be effective in reducing the chances of cross-infection. Silver nanoparticles have been applied in dentistry as a potent antimicrobial agent. This study aims to evaluate the in vitro antimicrobial efficacy of silver nanoparticles incorporated to irreversible hydrocolloid impression material against Staphylococcus aureus. Silver nanoparticles (AgZrPO4, National Direct Network Company, Thailand at concentrations of 0.25%, 0.50%, 1.00% and 1.50% w/w were added to powder of impression materials (Kromopan, Lascod, Ilaty. Impression material samples were prepared on sterile plate in accordance with manufacturer’s instruction. After setting, a 100 microliter of S. aureus ATCC6538 suspension (106 cells/mL were inoculated on the surface of the impression sample and left for 10 minutes. The amount of S. aureus on the surface was quantified using imprint technique on Mannitol Salt agar. Impression materials incorporated with AgZrPO4 showed antimicrobial property against S. aureus (up to 95% reduction compared with control (impression material without AgZrPO4. Even though the mechanism of antimicrobial action was not clearly understood, AgZrPO4 incorporated to impression material was demonstrated to possess an inhibitory effect against pathogenic bacteria. Further studies are needed to investigate physical properties of the material and the clinical usage.

  3. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  4. Relationship between microstructure and mechanical properties in ODS materials for nuclear application

    International Nuclear Information System (INIS)

    De Carlan, Y.

    2013-01-01

    Oxide Dispersion Strengthened ferritic/martensitic alloys are developed as prospective cladding materials for future Sodium-Cooled-Fast-Reactors (GEN IV) [1]. These advanced alloys present a good resistance to irradiation and a high creep rupture strength due to a reinforcement by the homogeneous dispersion of hard nano-sized particles (such as Y 2 O 3 or YTiO). ODS alloys are elaborated by powder metallurgy, consolidated by hot extrusion and manufactured into cladding tube using the Pilger cold-rolling process [2, 3]. ODS alloys present usually low ductility and high hardness. The aim of this talk is to present the specificity of the metallurgy of ODS materials in relationship with the main mechanical properties (tensile and creep properties, toughness, transition temperature). Two types of alloys will be presented: Fe-9Cr martensitic ODS and Fe-14Cr ferritic ODS alloys. Mechanical properties of the materials depend on the metallurgical state (fine grains, recrystallized, martensitic) and very different behaviors are observed as a function of final microstructure. For example, for a Fe-9Cr ODS alloy, tempered martensite lets obtaining material with high strength whereas softened ferrite see figure 1 [4] tolerates high deformation levels. (authors)

  5. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  6. Investigations on the effect of creep stress on the thermal properties of metallic materials

    International Nuclear Information System (INIS)

    Radtke, U.; Crostack, H.A.; Winschuh, E.

    1995-01-01

    Using thermal wave analysis with front side infrared detection on sample material damaged by creep, one examines whether the creep stress has an effect on the thermal material properties and to what effect this can be used to estimate the remaining service life. (orig.) [de

  7. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    Science.gov (United States)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  8. A measurement system for two-dimensional DC-biased properties of magnetic materials

    International Nuclear Information System (INIS)

    Enokizono, M.; Matsuo, H.

    2003-01-01

    So far, the DC-biased magnetic properties have been measured in one dimension (scalar). However, these scalar magnetic properties are not enough to clarify the DC-biased magnetic properties because the scalar magnetic properties cannot exactly take into account the phase difference between the magnetic flux density B vector and the magnetic filed strength H vector. Thus, the magnetic field strength H and magnetic flux density B in magnetic materials must be measured as vector quantities (two-dimensional), directly. We showed the measurement system using a single-sheet tester (SST) to clarify the two-dimensional DC-biased magnetic properties. This system excited AC in Y-direction and DC in X-direction. This paper shows the measurement system using an SST and presents the measurement results of two-dimensional DC-biased magnetic properties when changing the DC exciting voltage and the iron loss

  9. Dental Glass Ionomer Cements as Permanent Filling Materials? – Properties, Limitations and Future Trends

    Directory of Open Access Journals (Sweden)

    Ulrich Lohbauer

    2009-12-01

    Full Text Available Glass ionomer cements (GICs are clinically attractive dental materials that have certain unique properties that make them useful as restorative and luting materials. This includes adhesion to moist tooth structures and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel, biocompatibility and low toxicity. The use of GICs in a mechanically loaded situation, however, has been hampered by their low mechanical performance. Poor mechanical properties, such as low fracture strength, toughness and wear, limit their extensive use in dentistry as a filling material in stress-bearing applications. In the posterior dental region, glass ionomer cements are mostly used as a temporary filling material. The requirement to strengthen those cements has lead to an ever increasing research effort into reinforcement or strengthening concepts.

  10. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  11. Application of Digital Image Correlation to Measurement of Packaging Material Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhou

    2013-01-01

    Full Text Available Among various packaging materials, papers and polymer plastics are the most common due to their light weights, low costs, and other advantages. However, their mechanical properties are difficult to measure precisely because of their softness. To overcome the difficulty, a new measure instrument prototype is proposed based on an optical method known as the digital image correlation (DIC. Experiments are designed to apply the DIC to measure mechanical properties of flexible packaging materials, including the stress-strain relationship, the Poisson ratio, the coefficient of heat expansion, the creep deformation, and the top-pressure deformation of corrugated box. In addition, the low frequency vibration of package is simulated, and the vibration frequencies are measured by DIC. Results obtained in the experiments illustrate the advantages of the DIC over traditional methods: noncontact, no reinforced effect, high precision over entire area, wide measurement range, and good measurement stability.

  12. Structure, magnetic, and electrical properties of Zn1-xMnxO material

    Science.gov (United States)

    Sebayang, P.; Hulu, S. F.; Nasruddin, Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Ginting, M.

    2017-07-01

    ZnO and MnO2 powder were synthesized using solid state reaction method to produce Zn1-xMnxO materials. Effect of dopant concentrations at the material of Zn1-xMnxO (x = 0.015, 0.02, 0.025) to the change of crystal structure, electrical and magnetic properties was studied. The X-ray diffraction (XRD) result of the samples that were doped with Mn showed a hexagonal wurtzite polycrystalline structure. The addition of Mn dopant resulting the decrease of lattice parameters and peaks intensity. The significant increase of the peak intensity occurred at x = 0.02, which also indicated an increase in the crystal quality of ZnO. The change of the ZnO structure affected the electrical and magnetic properties of the samples.

  13. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  14. Nanoscale defect architectures and their influence on material properties

    Science.gov (United States)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  15. Correlation between some technological parameters and properties of composite material based on recycled tires and polymer binder

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2015-04-01

    The present article is dedicated to the determination of a possible connection between the composition, specific properties of the composite material and molding pressure as an important technological parameter. Apparent density, Shore C hardness, compressive modulus of elasticity and compressive stress at 10% deformation was determined for composite material samples. Definite formation conditions - varying molding pressure conditions at ambient temperature and corresponding relative air humiditywere realized. The results obtained showed a significant effect of molding pressure on the apparent density, mechanical properties of composite material as well as on the compressive stress change at a cyclic mode of loading. Some general regularities were determined - mechanical properties of the composite material, as well as values of Shore C hardness increases with an increase of molding pressure.

  16. Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties

    OpenAIRE

    Markus Schmid; Kerstin Dallmann; Elodie Bugnicourt; Dario Cordoni; Florian Wild; Andrea Lazzeri; Klaus Noller

    2012-01-01

    In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustain...

  17. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  18. Relevant optical properties for direct restorative materials.

    Science.gov (United States)

    Pecho, Oscar E; Ghinea, Razvan; do Amaral, Erika A Navarro; Cardona, Juan C; Della Bona, Alvaro; Pérez, María M

    2016-05-01

    To evaluate relevant optical properties of esthetic direct restorative materials focusing on whitened and translucent shades. Enamel (E), body (B), dentin (D), translucent (T) and whitened (Wh) shades for E (WhE) and B (WhB) from a restorative system (Filtek Supreme XTE, 3M ESPE) were evaluated. Samples (1 mm thick) were prepared. Spectral reflectance (R%) and color coordinates (L*, a*, b*, C* and h°) were measured against black and white backgrounds, using a spectroradiometer, in a viewing booth, with CIE D65 illuminant and d/0° geometry. Scattering (S) and absorption (K) coefficients and transmittance (T%) were calculated using Kubelka-Munk's equations. Translucency (TP) and opalescence (OP) parameters and whiteness index (W*) were obtained from differences of CIELAB color coordinates. R%, S, K and T% curves from all shades were compared using VAF (Variance Accounting For) coefficient with Cauchy-Schwarz inequality. Color coordinates and optical parameters were statistically analyzed using one-way ANOVA, Tukey's test with Bonferroni correction (α=0.0007). Spectral behavior of R% and S were different for T shades. In addition, T shades showed the lowest R%, S and K values, as well as the highest T%, TP an OP values. In most cases, WhB shades showed different color and optical properties (including TP and W*) than their corresponding B shades. WhE shades showed similar mean W* values and higher mean T% and TP values than E shades. When using whitened or translucent composites, the final color is influenced not only by the intraoral background but also by the color and optical properties of multilayers used in the esthetic restoration. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...

  20. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  1. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  2. [Clinical and microbiological study regarding surface antibacterial properties of bioactive dental materials].

    Science.gov (United States)

    Târcă, T; Bădescu, Aida; Topoliceanu, C; Lăcătuşu, St

    2010-01-01

    In the new era of dentistry the coronal restoration materials must possess "bio-active" features represented by fluor ions release, chemical adhesion and antibacterial agents. Our study aims to determine the surface antibacterial properties of glassionomer cements and compomers. The study group included 64 patients with high cariogenic risk with 80 teeth with acute and chronic dental caries affecting proximal and occlusal dental surfaces. The teeth with cariogenic lesions were restored with zinc-oxide-eugenol (n=20), glassionomer cement GC Fuji Triage (n=20), glassionomer cement modified with resins Fuji II LC (n=20), compomer Dyract (n=20). DENTOCULT SM test (Orion Diagnostica, Finland) was used for bacterial analyses. The samples from bacterial biofilm were collected from the restorated dental surfaces (study group) and intact enamel surfaces (control group). The recorded data were processed using non-parametrical statistical tests. The lowest mean value of bacterial indices was recorded for glassionomer cement Fuji Triage (0.4), and Fuji II LC (1.2), material with highest surface antibacterial properties. The highest value (1.5) was recorded for compomer Dyract. The Kruskal-Wallis test proves the significant statistical differences between the three bioactive materials. The materials with bioactive features have the ability to inhibate the growth of Streptococcus mutans in bacterial biofilm to the surfaces of coronal restoration.

  3. Systematic and material independent variation of electrical, optical, and chemical properties of Ln-materials over the Ln-series (Ln=La,Ce,Pr,..,Lu)

    NARCIS (Netherlands)

    Van der Kolk, E.; Dorenbos, P.

    2007-01-01

    A model is presented that successfully predicts electro-optical properties of Lanthanide materials, irrespective whether these materials are inorganic or organic, diluted or concentrated, metallic, semi-conducting or insulating. The model is firmly based on recent experimental data revealing that

  4. MINIMUM SOLID AREA MODELS FOR THE EFFECTIVE PROPERTIES OF POROUS MATERIALS - A REFUTATION

    Directory of Open Access Journals (Sweden)

    Willi Pabst

    2015-09-01

    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  5. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    Science.gov (United States)

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.

  6. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  7. Selection and Basic Properties of the Buffer Material for High-Level Radioactive Waste Repository in China

    Institute of Scientific and Technical Information of China (English)

    WEN Zhijian

    2008-01-01

    Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common features are the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposing high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. It is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation properties, thermal conductivity, chemical buffering property,canister supporting property, and stress buffering property over a long period of time. Bentonite is selected as the main content of buffer material that can satisfy the above requirements. The Gaomiaozi deposit is selected as the candidate supplier for China's buffer material of high level radioactive waste repository. This paper presents the geological features of the GMZ deposit and basic properties of the GMZ Na-bentonite. It is a super-large deposit with a high content of montmorillonite (about 75%), and GMZ-1, which is Na-bentonite produced from GMZ deposit is selected as the reference material for China's buffer material study.

  8. Controlling the Casimir force via the electromagnetic properties of materials

    International Nuclear Information System (INIS)

    Yang Yaping; Chen Hong; Zeng Ran; Zhu Shiyao; Zubairy, M. Suhail

    2010-01-01

    The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.

  9. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  10. STRUCTURE AND PROPERTIES OF COMPOSITE MATERIAL BASED ON GYPSUM BINDER AND CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    CHUMAK Anastasia Gennadievna

    2013-04-01

    Full Text Available The aim of this work is to carry out a number of studies in the area of nanomodi­fication of gypsum binder matrix and to investigate the influence of multilayer carbon nanotubes on the structure, physical and mechanical properties of obtained compos­ites. The study of the gypsum binders structure formation mechanisms with the use of nanoadditives makes it possible to control the production processes of gypsum materi­als and articles with the given set of properties. The main tasks of the binder nanomodification are: even distribution of carbon nanostructures over the whole volume of material and provision of stability for the nanodimensional modifier during production process of the construction composite.

  11. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    Science.gov (United States)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  12. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  13. The liquid wood heat flow and material properties as a function of temperature

    Science.gov (United States)

    Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2018-03-01

    There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.

  14. A Review of Material Properties Estimation Using Eddy Current Testing and Capacitor Imaging

    Directory of Open Access Journals (Sweden)

    Mohd. Amri Yunus

    2009-01-01

    Full Text Available he non destructive testing applications based on inductive (eddy current testing and capacitive sensors are widely used for imaging of material properties. The simple structure, safe to use, low cost, non contact application, good response at medium range frequency of the sensors make them preferable to be used in the industries. The aim of this study is to talk about the material properties estimation applications using eddy current testing and capacitive sensing. The basic operations of eddy current testing and capacitive sensing with example of application in the non destructive testing are discussed. Next, the recent advancements of eddy current testing and capacitive testing in imaging technique are presented in this paper.

  15. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  16. 3D printing of optical materials: an investigation of the microscopic properties

    Science.gov (United States)

    Persano, Luana; Cardarelli, Francesco; Arinstein, Arkadii; Uttiya, Sureeporn; Zussman, Eyal; Pisignano, Dario; Camposeo, Andrea

    2018-02-01

    3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, optionally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.

  17. Some aspects of the formulation of alginate dental impression materials--setting characteristics and mechanical properties.

    Science.gov (United States)

    Nallamuthu, Navina A; Braden, Michael; Patel, Mangala P

    2012-07-01

    To study the role of the various components of alginate dental impression materials. Experimental materials were formulated and their physical properties characterized and compared to commercially available counterparts (Neocolloid, Palgat Plus and Blueprint Cremix). Properties examined were: dimensional stability and weight change in water and artificial saliva; setting behavior; Shore A hardness and tear energy. The role of magnesium oxide was also investigated. Weight changes in water and artificial saliva can be attributed to an initial thermodynamic potential owing to the ionic content of the alginate, causing water to diffuse into the material. Water is then driven back out following a reversal of this potential. Hardness results for experimental materials were within the range obtained from the commercial materials. The hardness value for an experimental formulation that did not contain magnesium oxide was lower than values from the other experimental materials that did. Tear energies for all three experimental materials were greater than those of the commercial products. There were statistically significant differences between the two experimental materials that contained magnesium oxide and one that did not. With regard to setting time, statistically significant differences were seen between commercial materials and two of the experimental materials. The experimental material that did not contain magnesium oxide had a considerably longer setting time than all of the other materials tested. The key role of magnesium oxide in the setting reaction and the effect on hardness have been demonstrated and discussed. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kehrer, Manfred [ORNL; Pallin, Simon B [ORNL

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  19. Theoretical and Numerical Investigation of Polymer-Particle Nanocomposites and their Effective Materials Properties

    National Research Council Canada - National Science Library

    Wang, Qi

    2008-01-01

    .... The project aimed to study the mesoscopic structure formation during flow processing and the corresponding rheological consequence leading to characterization of material properties in solid states...

  20. Ultrasonic assessment of early age property development in hydrating cementitious materials

    Science.gov (United States)

    Wang, Xiaojun

    The internal structure (microstructure) of cementitious materials, such as cement paste, mortar and concrete, evolves over time because of cement hydration. The microstructure of the cementitious phase plays a very important role in determining the strength, the mechanical properties and the long-term durability of cementitious materials. Therefore any understanding of the strength gain and the long-term durability of cementitious materials requires a proper assessment of the microstructure of its cementitious phase. Current methods for evaluating the microstructure of the cement are invasive and primarily laboratory-based. These methods are not conducive for studying the pore structure changes in the first few hours after casting since the changes in microstructure occur on a time scale that is an order of magnitude faster than the time required for sample preparation. The primary objective of the research presented in this thesis is to contribute towards advancing the current state-of-the-art in assessing the microstructure of cementitious systems. An ultrasonic wave reflection technique which allows for real-time assessment of the porosity and the elastic modulus of cementitious materials is developed. The test procedure for monitoring changes in the amplitude of horizontally polarized ultrasonic shear waves from the surface of hydrating cement paste is presented. A theoretical framework based on a poro-elastic idealization of the hydrating cementitious material is developed for interpreting the ultrasonic reflection data. The poro-elastic representation of hydrating cementitious material is shown to provide simultaneous, realistic estimates of porosity and shear modulus for hydrating cement paste and mortar through setting and early strength gain. The porosity predicted by the poro-elastic representation is identical to the capillary water content within the cement paste predicted by Powers' model. The shear modulus of the poro-elastic skeleton was compares

  1. Lifelong modelling of properties for materials with technological memory

    Science.gov (United States)

    Falaleev, AP; Meshkov, VV; Vetrogon, AA; Ogrizkov, SV; Shymchenko, AV

    2016-10-01

    An investigation of real automobile parts produced from dual phase steel during standard periods of life cycle is presented, which considers such processes as stamping, exploitation, automobile accident, and further repair. The development of the phenomenological model of the mechanical properties of such parts was based on the two surface plastic theory of Chaboche. As a consequence of the composite structure of dual phase steel, it was shown that local mechanical properties of parts produced from this material change significantly their during their life cycle, depending on accumulated plastic deformations and thermal treatments. Such mechanical property changes have a considerable impact on the accuracy of the computer modelling of automobile behaviour. The most significant errors of modelling were obtained at the critical operating conditions, such as crashes and accidents. The model developed takes into account the kinematics (Bauschinger effect), isotropic hardening, non-linear elastic steel behaviour and changes caused by the thermal treatment. Using finite element analysis, the model allows the evaluation of the passive safety of a repaired car body, and enables increased restoration accuracy following an accident. The model was confirmed experimentally for parts produced from dual phase steel DP780.

  2. Phase change - memory materials - composition, structure, and properties

    Czech Academy of Sciences Publication Activity Database

    Frumar, M.; Frumarová, Božena; Wágner, T.; Hrdlička, M.

    2007-01-01

    Roč. 18, suppl.1 (2007), S169-S174 ISSN 0957-4522. [International Conference on Optical and Optoelectronic Properties of Materials and Applications 2006. Darwin, 16.06.2006-20.06.2006] R&D Projects: GA ČR GA203/06/0627 Institutional research plan: CEZ:AV0Z40500505 Keywords : phase change memory Subject RIV: CA - Inorganic Chemistry Impact factor: 0.947, year: 2007

  3. Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties

    Science.gov (United States)

    Runge, M. Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J.

    2011-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivate of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of the previously studied PCLF (PCLFDEG) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLFPPD) or glycerol (PCLFGLY). PCLFPPD is linear and resembles the previously studied PCLFDEG, while PCLFGLY is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLFPPD has material properties similar to the previously studied PCLFDEG. The branched PCLFGLY exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate FDA approvable sterilization method is addressed. This study shows that autoclave sterilization on PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. PMID:21911087

  4. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring

    International Nuclear Information System (INIS)

    Oh, Sung Ha; Choi, Bok Lok

    2014-01-01

    This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses

  5. Mechanical properties and internal fit of 4 CAD-CAM block materials.

    Science.gov (United States)

    Goujat, Alexis; Abouelleil, Hazem; Colon, Pierre; Jeannin, Christophe; Pradelle, Nelly; Seux, Dominique; Grosgogeat, Brigitte

    2018-03-01

    Recent polymer-based computer-assisted design and computer-assisted manufacturing (CAD-CAM) materials have been commercialized for inlay restorations, a polymer-infiltrated ceramic-network (PICN) and composite resin nanoceramics. Little independent evidence regarding their mechanical properties exists. Internal adaptation is an important factor for the clinical success and longevity of a restoration, and data concerning this parameter for inlays made with these blocks are scarce. The purpose of this in vitro study was to evaluate and compare the mechanical properties (flexural strength, flexural modulus, Vickers hardness, fracture toughness) and the internal adaptation of these recent polymer-based blocks with a lithium disilicate glass-ceramic block. The materials tested in this study were a PICN material (Vita Enamic), 2 composite resin nanoceramics (Lava Ultimate; 3M ESPE and Cerasmart; GCDental Products), and a lithium disilicate glass-ceramic (IPS e.max CAD). Mechanical properties were evaluated according to ISO norm DIS 6872:2013. Bar-shaped specimens (18×3×3 mm) were prepared and submitted to a 3-point bend test using a universal testing machine at a cross-head speed of 0.5 mm/min. In addition, identical cavities were prepared in 60 human mandibular extracted molars (n=15) and optically scanned to receive mesioocclusodistal inlays milled with the 4 materials tested in a CEREC Inlab milling machine. The replica technique and a stereomicroscope (×20) were used to measure the internal fit of the inlays at 9 preselected locations. All data were statistically analyzed using 1-way ANOVA and the post hoc Tukey multiple comparison or Games-Howell test (α=.05). The mean flexural strength of the tested blocks ranged from 148.7 ±9.5 MPa (Vita Enamic) to 216.5 ±28.3 MPa (Cerasmart). The mean flexural modulus ranged from 23.3 ±6.4 GPa (Vita Enamic) to 52.8 ±10.5 GPa (IPS e.max CAD). The mean Vickers hardness ranged from 0.66 ±0.02 GPa (Cerasmart) to 5.98 ±0

  6. Study on thermal and mechanical properties of U-tube materials for steam generator

    International Nuclear Information System (INIS)

    Rheu, Woo Suk; Kang, Young Hwan; Park, Jong Man; Joo, Ki Nam; Kim, Sung Soo; Maeng, Wan Young; Park, Se Jin

    1993-01-01

    Most of domestic nuclear plants have used I600 TT material for steam generator U-tube, and piled up the field experience. I600 HTMA and I690 TT, however, are recommended for an alternative of U-tube by ABB-CE since YK-3 and 4. Field experience of I600 HTMA and I690 TT have not compiled in the country, so it is concerned to select the future materials for U-tube. Thus, database on the thermal and mechanical properties of U-tube materials is very necessary for design documentations. In this study, the thermal, mechanical and metallugical properties were tested and evaluated to establish the database for steam generator U-tube. In addition, thermal conductivity of I600 and I690 was measured and compared statistically, providing a basic document for applying I690 to U-tube. The results will be used to improve the manufacturing process in order to increase the integrity of U-tube. (Author)

  7. Development and material properties of new hybrid plywood from oil palm biomass

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Nurul Fazita, M.R.; Bhat, A.H.; Jawaid, M.; Nik Fuad, N.A.

    2010-01-01

    Shortage of wood as a raw material has forced wood-based industries to find alternative local raw materials. Currently, oil palm biomass is undergoing research and development (R and D) and appears to be the most viable alternative. This work examines the conversion of oil palm trunk (OPT) and oil palm empty fruit bunches (OPEFB) into new plywood and analyses its properties. We prepared five-ply veneer hybrid plywood (alternating layers of oil palm trunk veneer and empty fruit bunch mat) with different spread levels (300 g/m 2 and 500 g/m 2 ) of resins (phenol formaldehyde and urea formaldehyde). We then studied the mechanical and physical properties of the plywood. The results show that hybridisation of EFB with OPT improves some properties of plywood, such as bending strength, screw withdrawal and shear strength. The thermal properties of the plywood panels were studied by thermogravimetric analysis (TGA). The panels glued with phenol formaldehyde with a spread level of 500 g/m 2 showed better thermal stability than the other panels. Scanning electron microscope (SEM) was used to study the fibre matrix bonding and surface morphology of the plywood at different glue spread levels of the resins. The fibre-matrix bonding showed good improvement for the hybrid panel glued with 500 g/m 2 phenol formaldehyde.

  8. Assessment of the material properties of a fire damaged building

    OpenAIRE

    Oladipupo OLOMO; Olufikayo ADERINLEWO; Moses TANIMOLA; Silvana CROOPE

    2012-01-01

    This study identifies a process for assessing the material properties of a fire damaged building so as to determine whether the remains can be utilized in construction or be demolished. Physical and chemical analysis were carried out on concrete and steel samples taken from various elements of the building after thorough visual inspection of the entire building had been conducted. The physical (non-destructive) tests included the Schmidt hammer and ultrasonic pulse velocity tests on the concr...

  9. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  10. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  11. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    Science.gov (United States)

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  12. Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement

    Directory of Open Access Journals (Sweden)

    A. Lopez-Gil

    2014-01-01

    Full Text Available Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP and polyethylene-terphthalate (PET, and a biodegradable polymer, polylactic acid (PLA.

  13. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    Science.gov (United States)

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  14. Effect of ionizing radiation on the properties of PLA packaging materials

    International Nuclear Information System (INIS)

    Melski, K.; Kubera, H.; Gluszewski, W.; Zimek, Z.

    2011-01-01

    Poly(lactic acid) (PLA) is attractive as a substitute for classical polymer packaging material due to its biodegradability and sufficient mechanical and barrier properties. Presented research was focused on the changes of basic mechanical parameters after ionizing irradiation performed with doses in the range of 2.5-25 kGy, commonly used in radiation sterilization and preservation of foods. Two commercial available PLA packaging films were tested. The influence of radiation dose on the mechanical properties - tensile strength and elongation were determined using standardized methods. Radiation resistance of PLA is sufficient for packaging applications. The investigations of gas products of radiolysis of PLA have been made by gas chromatography after electron beam (EB) irradiations. (authors)

  15. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  16. Effect of complex alloying of powder materials on properties of laser melted surface layers

    International Nuclear Information System (INIS)

    Tesker, E.I.; Gur'ev, V.A.; Elistratov, V.S.; Savchenko, A.N.

    2001-01-01

    Quality and properties of laser melted surface layers produced using self-fluxing powder mixture of Ni-Cr-B-Si system and the same powders with enhanced Fe content alloyed with Co, Ti, Nb, Mo have been investigated. Composition of powder material is determined which does not cause of defect formation under laser melting and makes possible to produce a good mechanical and tribological properties of treated surface [ru

  17. Materials characterization of free volume and void properties by two-dimensional positron annihilation lifetime spectroscopy

    Science.gov (United States)

    Chen, Hongmin; Van Horn, J. David; Jean, Y. C.; Hung, Wei-Song; Lee, Kueir-Rarn

    2013-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been widely used to determine the free volume and void properties in polymeric materials. Recently, a two dimensional positron annihilation lifetime spectroscopy (2DPALS) system has been developed for membrane applications. The system measures the coincident signals between the lifetime and the energy which could separate the 2γ and 3γ annihilations and improve the accuracy in the determination of the free volume and void properties. When 2D-PALS is used in coupling with a variable mono-energy slow positron beam, it could be applied to a variety of material characterization. Results of free volumes and voids properties in a multi-layer polymer membrane characterized using 2D-PALS are presented.

  18. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  19. The Influence of Textile Materials Mechanical Properties upon Virtual Garment Fit

    Directory of Open Access Journals (Sweden)

    Kristina ANCUTIENĖ

    2011-07-01

    Full Text Available 3D virtual representation of garment provides high potential for design, product development and marketing processes, especially in mass customization strategies implementation. Clothing industry rapidly turns to virtual simulation which not only presents realistic 3D view of garment but also simulates mechanical behaviour of materials. 3D CAD systems can be used to define strain distribution in virtual garment which describes garment fit without actually producing the garment. Strain and distance ease between body and garment depends not only upon body measurements and garment construction, but also on mechanical and structural properties of selected material. The aim of this research was to investigate virtual garment fit using "Modaris 3D Fit" (Lectra software subjected to fabrics mechanical (tensile, bending, shear and structural (composition, thickness, area density properties investigating strain distribution in garment and distance ease between garment and human body. It was defined that for diagonal cut garments the highest influence upon garment fit has fabric tensile properties in weft direction. The highest influence is obtained at high distance ease and small strain values zones and at negative distance ease and high strain values zones. Therefore, presented method could be used for tight-fitted garments also for garments with draperies on purpose to investigate garment fit upon fabrics used.http://dx.doi.org/10.5755/j01.ms.17.2.486

  20. Gold nanorods-silicone hybrid material films and their optical limiting property

    Science.gov (United States)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  1. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  2. The properties of weft knitted fabric medical and preventive treatment action using eco-raw materials

    Science.gov (United States)

    Halavska, L.; Batrak, O.

    2016-07-01

    A new trend in the world is the clothing production using the new types of ecological raw materials application - milk, pineapple, coconut, hemp, banana, eucalyptus, clams, corn, bamboo, soya, nettle yarn. This makes it possible to create textile materials of new generation with unique antibacterial and antiseptic properties. Such materials have a positive preventive and sometimes therapeutic effect on people, and their health. Eco-raw materials clothing is able to protect the human body from the environment harmful effects: cold, heat, rain, dust, opportunely remove from underclothing layer the steam and gases, sweat; maintain in underclothing layer the necessary microclimate for normal organism functioning. Study of knitwear consumer properties, produced with eco-materials, is an urgent task of the world vector, directed on ecological environmental protection. This paper presents the research results of hygroscopicity and capillarity weft knitted fabrics, what knitted from different types of eco-raw materials: bamboo yarn, yarn containing soybean and nettle yarn. Character of influence of the liquid raising level changes depending on the experiment time and the knitting structure is revealed.

  3. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  4. Tribological properties of nonasbestos brake pad material by using coconut fiber

    Science.gov (United States)

    Craciun, A. L.; Pinca-Bretotean, C.; Utu, D.; Josan, A.

    2017-01-01

    In automotive industry, the brake system is influenced by a large number of variables including geometry of components, materials of brakes, components interaction and many operating condition. Organic fiber reinforced metallic friction composites are increasingly being used in automotive brake shoes, disc and pads, linings, blocks, clutch facings, primarily because of awareness of health hazards of asbestos. Current trend in the research field of automotive industry is to utilization of different wastes as a source of raw materials for composite materials. This will provide more economical benefit and also environmental preservation by utilize the waste of natural fibre In this paper it has performed a tribological study to determine the characteristics of the friction product by using coconut natural fibred reinforced in aluminium composite. In this sense, two different laboratory formulation were prepared with 5% and 10% coconut fibre and other constitutes like binder, friction modifiers, abrasive material and solid lubrificant using powder mettallurgy. These dnew materials for brake pads are tested for tribological behaviour in a standard pin on disc tribometer. To know the wear behavior of composite materials will determine the parameters that characterize there tribological properties.

  5. Effect of High Speed Sintering on the Properties of Zirconia Oxide Materials

    Science.gov (United States)

    2018-03-22

    12. REPORT TYPE 22/03/2018 Poster 4. TITLE AND SUBTITLE Effect of High-Speed Sintering on the Properties ofZirconia-Oxide Materials 6. AUTHOR(S...2018-03/24/2018 Sa. CONTRACT NUMBER Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER Sd. PROJECT NUMBER Se. TASK NUMBER Sf. WORK UNIT NUMBER 8

  6. Electrical property and characterization of nano-SnO{sub 2}/wollastonite composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Bai, Zhiqiang; Shen, Hongling [Qinhuangdao Glass Research Design Institute, Qinhuangdao 066000 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-03-15

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO{sub 2}/wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO{sub 2}/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO{sub 2} coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO{sub 2}/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10{sup 4} Ω cm to 2.533 × 10{sup 3} Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO{sub 2} nanoparticles on the surface of wollastonite was proposed

  7. Equivalent material properties of perforated plate with triangular or square penetration pattern for dynamic analysis

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull

    2006-01-01

    For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a model analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies

  8. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster

    Directory of Open Access Journals (Sweden)

    M. Lamrani

    2017-12-01

    Full Text Available The aim of the present work was to investigate the thermal properties of a new building material consisting of a mixture of plaster and peanut shells for use as insulating materials in building. The properties are commonly measured by using the steady state asymmetric hot plate method, the asymmetrical transient hot plate method and the flash method. The experimental study that we have conducted, enabled us to determine the conductivity, the effusivity and the thermal diffusivity of our material. The influence of the size and the mass fraction of the peanut shell shards on thermophysical properties of tested material, was investigated. Our experimental data show a good efficiency and a significant decrease in the thermal conductivity of material with peanut shell shards compared to simple plaster material. The purpose is to obtain ecological composite materials with better thermal performance, which can contribute to improve the thermal comfort in constructions in Morocco. The results show that the density of the new material was not substantially influenced by the size of the peanut shell shards. However, the thermal conductivity and diffusivity decrease from 0.3 Wm−1 K−1 and 3.75 × 10−7 m2 s−1 to 0.14 Wm−1 K−1 and 2.11 × 10−7m2 s−1, respectively, according to the variation of the mass fraction of peanut from 0 to20%.

  9. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    Directory of Open Access Journals (Sweden)

    Yijun Fu

    2016-04-01

    Full Text Available Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration.

  10. Green's function method with consideration of temperature dependent material properties for fatigue monitoring of nuclear power plants

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Kwon, Jong-Jooh; Kim, Wanjae

    2009-01-01

    In this paper, a method to consider temperature dependent material properties when using the Green's function method is proposed by using a numerical weight function approach. This is verified by using detailed finite element analyses for a pressurizer spray nozzle with various assumed thermal transient load cases. From the results, it is found that the temperature dependent material properties can significantly affect the maximum peak stresses and the proposed method can resolve this problem with the weight function approach. Finally, it is concluded that the temperature dependency of the material properties affects the maximum stress ranges for a fatigue evaluation. Therefore, it is necessary to consider this effect to monitor fatigue damage when using a Green's function method for the real operating conditions in a nuclear power plant

  11. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-01-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices. (technical note)

  12. Development and mechanical properties of structural materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  13. Mechanical properties of provisional dental materials: A systematic review and meta-analysis.

    Science.gov (United States)

    Astudillo-Rubio, Daniela; Delgado-Gaete, Andrés; Bellot-Arcís, Carlos; Montiel-Company, José María; Pascual-Moscardó, Agustín; Almerich-Silla, José Manuel

    2018-01-01

    Provisional restorations represent an important phase during the rehabilitation process, knowledge of the mechanical properties of the available materials allows us to predict their clinical performance. At present, there is no systematic review, which supports the clinicians' criteria, in the selection of a specific material over another for a particular clinical situation. The purpose of this systematic review and meta-analysis was to assess and compare the mechanical properties of dimethacrylates and monomethacrylates used in fabricating direct provisional restorations, in terms of flexural strength, fracture toughness and hardness. This review followed the PRISMA guidelines. The searches were conducted in PubMed, Embase, Web of Science, Scopus, the New York Academy of Medicine Grey Literature Report and were complemented by hand-searching, with no limitation of time or language up to January 10, 2017. Studies that assess and compare the mechanical properties of dimethacrylate- and monomethacrylate-based provisional restoration materials were selected. A quality assessment of full-text articles were performed according to modified ARRIVE and CONSORT criteria and modified Cochrane Collaboration's tool for in vitro studies. Initially, 256 articles were identified. After removing the duplicates and applying the selection criteria, 24 articles were included in the qualitative synthesis and 7 were included in the quantitative synthesis (meta-analysis). It may be concluded that dimethacrylate-based provisional restorations presented better mechanical behavior than monomethacrylate-based ones in terms of flexural strength and hardness. Fracture toughness showed no significant differences. Within the monomethacrylate group, polymethylmethacrylate showed greater flexural strength than polyethylmethacrylate.

  14. Mechanical properties of provisional dental materials: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Daniela Astudillo-Rubio

    Full Text Available Provisional restorations represent an important phase during the rehabilitation process, knowledge of the mechanical properties of the available materials allows us to predict their clinical performance. At present, there is no systematic review, which supports the clinicians' criteria, in the selection of a specific material over another for a particular clinical situation. The purpose of this systematic review and meta-analysis was to assess and compare the mechanical properties of dimethacrylates and monomethacrylates used in fabricating direct provisional restorations, in terms of flexural strength, fracture toughness and hardness. This review followed the PRISMA guidelines. The searches were conducted in PubMed, Embase, Web of Science, Scopus, the New York Academy of Medicine Grey Literature Report and were complemented by hand-searching, with no limitation of time or language up to January 10, 2017. Studies that assess and compare the mechanical properties of dimethacrylate- and monomethacrylate-based provisional restoration materials were selected. A quality assessment of full-text articles were performed according to modified ARRIVE and CONSORT criteria and modified Cochrane Collaboration's tool for in vitro studies. Initially, 256 articles were identified. After removing the duplicates and applying the selection criteria, 24 articles were included in the qualitative synthesis and 7 were included in the quantitative synthesis (meta-analysis. It may be concluded that dimethacrylate-based provisional restorations presented better mechanical behavior than monomethacrylate-based ones in terms of flexural strength and hardness. Fracture toughness showed no significant differences. Within the monomethacrylate group, polymethylmethacrylate showed greater flexural strength than polyethylmethacrylate.

  15. Can you see what you feel? Color and folding properties affect visual-tactile material discrimination of fabrics.

    Science.gov (United States)

    Xiao, Bei; Bi, Wenyan; Jia, Xiaodan; Wei, Hanhan; Adelson, Edward H

    2016-01-01

    Humans can often estimate tactile properties of objects from vision alone. For example, during online shopping, we can often infer material properties of clothing from images and judge how the material would feel against our skin. What visual information is important for tactile perception? Previous studies in material perception have focused on measuring surface appearance, such as gloss and roughness, and using verbal reports of material attributes and categories. However, in real life, predicting tactile properties of an object might not require accurate verbal descriptions of its surface attributes or categories. In this paper, we use tactile perception as ground truth to measure visual material perception. Using fabrics as our stimuli, we measure how observers match what they see (photographs of fabric samples) with what they feel (physical fabric samples). The data shows that color has a significant main effect in that removing color significantly reduces accuracy, especially when the images contain 3-D folds. We also find that images of draped fabrics, which revealed 3-D shape information, achieved better matching accuracy than images with flattened fabrics. The data shows a strong interaction between color and folding conditions on matching accuracy, suggesting that, in 3-D folding conditions, the visual system takes advantage of chromatic gradients to infer tactile properties but not in flattened conditions. Together, using a visual-tactile matching task, we show that humans use folding and color information in matching the visual and tactile properties of fabrics.

  16. Dependence of quality properties for grey iron on used raw materials

    Directory of Open Access Journals (Sweden)

    E. Weiss

    2009-01-01

    Full Text Available Grey iron castings keep the first place among castings on base of iron. Present trend in growing entrance production costs of cast stock force manufacturer to cost minimizing. Therefore is most actual deal replacement pig iron by steel scrap. In contribution are presented results research work relating to influence of raw materials on grey iron properties.

  17. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials

    Directory of Open Access Journals (Sweden)

    Seyed Saeid Rahimian Koloor

    2018-06-01

    Full Text Available The nanoindentation test is frequently used as an alternate method to obtain the mechanical properties of ductile materials. However, due to the lack of information about the effects of the sample and indenter physical configurations, the accuracy of the extracted material properties in nanoindentation tests requires further evaluation that has been considered in this study. In this respect, a demonstrator ductile material, aluminum 1100, was tested using the Triboscope nanoindenter system with the Berkovich indenter. A 3D finite element simulation of the nanoindentation test was developed and validated through exact prediction of the structural response with measured data. The validated model was then employed to examine the effects of various test configurations on the load–displacement response of the sample material. These parameters were the different indenter edge-tip radii, different indentation depths, different sample tilts, and different friction conditions between the indenter and the material surface. Within the range of the indenter edge-tip radii examined, the average elastic modulus and hardness were 78.34 ± 14.58 and 1.6 ± 0.24 GPa, respectively. The different indentation depths resulted in average values for the elastic modulus and hardness of 77.03 ± 6.54 and 1.58 ± 0.17 GPa, respectively. The uneven surface morphology, as described by the inclination of the local indentation plane, indicated an exponential increase in the extracted values of elastic modulus and hardness, ranging from 71.83 and 1.47 GPa (for the reference case, θ = 0° to 243.39 and 5.05 GPa at θ = 12°. The mechanical properties that were obtained through nanoindentation on the surface with 6° tilt or higher were outside the range for aluminum properties. The effect of friction on the resulting mechanical response and the properties of the material was negligible.

  18. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  19. Physical properties and heat transfer characteristics of materials for krypton-85 storage

    International Nuclear Information System (INIS)

    Christensen, A.B.

    1977-09-01

    Krypton-85 decay results in heat generation, and the subsequent temperature increase in the krypton-85 storage media must be evaluated. This report compiles the physical properties of krypton and of potential krypton-85 storage materials which are required to calculate the maximum temperature developed during storage. Temperature calculations were made for krypton-85 stored as a gas or immobilized solid in steel storage cylinders. The effects of krypton-85 loading, cylinder radius, storage media properties, and exterior cooling on storage temperature were shown

  20. Statistical properties of material strength for reliability evaluation of components of fast reactors. Austenitic stainless steels

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Sasaki, Naoto; Tomobe, Masato

    2015-03-01

    Many efforts have been made to implement the System Based Code concept of which objective is to optimize margins dispersed in several codes and standards. Failure probability is expected to be a promising quantitative index for optimization of margins, and statistical information for random variables is needed to evaluate failure probability. Material strength like tensile strength is an important random variable, but the statistical information has not been provided enough yet. In this report, statistical properties of material strength such as creep rupture time, steady creep strain rate, yield stress, tensile stress, flow stress, fatigue life and cyclic stress-strain curve, were estimated for SUS304 and 316FR steel, which are typical structural materials for fast reactors. Other austenitic stainless steels like SUS316 were also used for statistical estimation of some material properties such as fatigue life. These materials are registered in the JSME code of design and construction of fast reactors, so test data used for developing the code were used as much as possible in this report. (author)

  1. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties.

    Science.gov (United States)

    Mangal, Sharad; Meiser, Felix; Morton, David; Larson, Ian

    2015-01-01

    Tablets represent the preferred and most commonly dispensed pharmaceutical dosage form for administering active pharmaceutical ingredients (APIs). Minimizing the cost of goods and improving manufacturing output efficiency has motivated companies to use direct compression as a preferred method of tablet manufacturing. Excipients dictate the success of direct compression, notably by optimizing powder formulation compactability and flow, thus there has been a surge in creating excipients specifically designed to meet these needs for direct compression. Greater scientific understanding of tablet manufacturing coupled with effective application of the principles of material science and particle engineering has resulted in a number of improved direct compression excipients. Despite this, significant practical disadvantages of direct compression remain relative to granulation, and this is partly due to the limitations of direct compression excipients. For instance, in formulating high-dose APIs, a much higher level of excipient is required relative to wet or dry granulation and so tablets are much bigger. Creating excipients to enable direct compression of high-dose APIs requires the knowledge of the relationship between fundamental material properties and excipient functionalities. In this paper, we review the current understanding of the relationship between fundamental material properties and excipient functionality for direct compression.

  2. Tensile Mechanical Properties and Failure Modes of a Basalt Fiber/Epoxy Resin Composite Material

    OpenAIRE

    He, Jingjing; Shi, Junping; Cao, Xiaoshan; Hu, Yifeng

    2018-01-01

    Uniaxial tensile tests of basalt fiber/epoxy (BF/EP) composite material with four different fiber orientations were conducted under four different fiber volume fractions, and the variations of BF/EP composite material failure modes and tensile mechanical properties were analyzed. The results show that when the fiber volume fraction is constant, the tensile strength, elastic modulus, and limiting strain of BF/EP composite material all decrease with increasing fiber orientation angle. When the ...

  3. Effects of Novel Structure Bonding Materials on Properties of Aeronautical Acrylic

    Directory of Open Access Journals (Sweden)

    LI Zhisheng

    2017-06-01

    Full Text Available Novel structure bonding materials, J-351 epoxy adhesive film with low curing temperature and liquid modified acrylate SY-50s adhesive were chosen and characterized. The effects of adhesives on the mechanical properties of acrylic were studied. The results reveal that both adhesives have excellent bonding properties to acrylic. The stress-solvent crazing value of J-351 is higher than that of SY-50s. With the application of adhesive on the surface, mechanical properties of acrylic are declined. Casting acrylic shows more drastic decline than that of oriented acrylic. Through the characterization of fracture surface, we find that fracture of tensile sample derives from the side with adhesive. Mechanical properties of acrylic are more sensitive to SY-50s, because the liquid adhesive presents integrate bonding interface with acrylic. The interface between J-351 and acrylic is clear, making acrylic insensitive to J-351 film. Edge attachment strength of samples bonded with J-351 are higher than that of samples bonded with SY-50s due to the effects of adhesives on acrylic. J-351 epoxy adhesive film presents preferable application performance in the structure bonding of aeronautical acrylic.

  4. Characterization of earth materials properties for conceptual design of an exploratory shaft, Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Haag, R.D.; Swanson, O.E.

    1984-01-01

    Preliminary Exploratory Shaft design studies have been performed for representative sites in all salt basins within the NWTS Program. These studies have been based on data which are not site specific. Earth materials overlying the Richton Dome were characterized by analysis of geotechnical and hydrological data that had been acquired for site selection purposes. Data sets were reorganized, reinterpreted and evaluated in light of published empirical correlations, known constituative relations, experience with other sites, and engineering judgment. Geotechnical properties were assessed from geophysical logs, lithologic sample descriptions, and limited blow-count, grain size and pump test data. These properties included grain size, plasticity, unit weight, moisture content, bulk density, porosity, shear strength, elasticity, permeability, and saturation. Additionally, chemical and thermal properties were estimated and the local hydrologic flow properties were addressed. The analyses allowed heretofor unrecognized lithologic material groupings (definable layers and sublayers) to be identified based on similarities in physical properties. Subsurface conditions, as interpreted, pose no unique excavation problems. However, the analysis identified some potential issues which had not been previously recognized and gave confidence that other previously assumed potential problems may not exist. 2 figures, 1 table

  5. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths

    International Nuclear Information System (INIS)

    Liu Yang; Liao Fuhui; Li Junran; Zhang Shaohua; Chen Shumei; Wei Chenguan; Gao Song

    2006-01-01

    Electrorheological (ER) materials of pure SiO 2 and SiO 2 doped with rare earths (RE = Ce, Gd, Y) (non-metallic glasses (silicates)) were prepared using Na 2 SiO 3 and RECl 3 as starting materials. The electrorheological properties are not enhanced by all rare earth additions. The material doped with Ce exhibits the best ER performance

  6. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    International Nuclear Information System (INIS)

    Li Xiaodong; Zhai Qingzhou; Zou Mingqiang

    2010-01-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  7. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  8. Structure, production and properties of high-melting compounds and systems (hard materials and hard metals)

    International Nuclear Information System (INIS)

    Holleck, H.; Thuemmler, F.

    1979-07-01

    The report contains contributions by various authors to the research project on the production, structure, and physical properties of high-melting compounds and systems (hard metals and hard materials), in particular WC-, TaC-, and MoC-base materials. (GSCH) [de

  9. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  10. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    International Nuclear Information System (INIS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5. (paper)

  11. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  12. Properties and cleanability of new and traditional agricultural surface materials

    Directory of Open Access Journals (Sweden)

    J. MÄÄTTÄ

    2008-12-01

    Full Text Available The aim of the present study was to evaluate new and traditional surface materials for use in cattle barns. The evaluated concrete materials had different compositions and included different additives and coatings. Contact angle meter, optical profilometry and scanning electron microscopy SEM were used for characterization of surface properties. Radiochemical methods and a biochemical adenosine triphosphate ATP method were used to determine cleanability. A specific methodological aim was to examine the correlations between these determination methods. A statistically significant difference was observed between contact angles of non-coated concretes, coated concretes and joint materials. In general, coatings smoothened surfaces and the joint materials were the roughest surfaces, as illustrated by profilometry and SEM. On the basis of the radiochemical determination methods, coatings improved the cleanability of concrete. An epoxy joint material was cleaned efficiently from the oil model soil and from the labelled feed soil when compared to the two cement-based joint materials. According to the results of the biochemical ATP method the manure test soil was cleaned better from a concrete including inorganic sealant than from the other materials examined. The cleanability results of oil model soil used in the radiochemical method correlated with the results of the test feed soil used in the biochemical ATP method. Both determination methods of cleanability appeared to be suitable for examining the cleanability of surfaces soiled with agricultural soils. Only the radiochemical determination gives detailed quantitative results, but it can be used only in laboratory studies. The results of this laboratory study will be used for selecting materials for a pilot study in a cattle barn.;

  13. IAEA-coordinated research programme for the establishment of a database of thermophysical properties of reactor materials

    International Nuclear Information System (INIS)

    Maglic, K.D.; Kupitz, J.; Krett, V.

    1991-01-01

    Operational and safety assessments of nuclear reactors rely on models, computer programs, databases, and input parameters. Obviously, the best computer programs can be only as good as their input data, of which the thermophysical properties of reactor materials constitute an important portion. Thermophysical data are needed for modelling the thermal behaviour of materials under normal, transient, and accident conditions. The IAEA analysed the needs of its member states in this area, and a decision was made to organise a coordinated research programme (CRP) aimed at the generation and establishment of a reliable and complete database of reactor materials. The main features of advanced water-cooled reactors are described, and the content of the IAEA CRP for the establishment of a thermophysical property database-system of operation, objectives, and implementation schedule-is discussed. (Author)

  14. Possibilities for specific utilization of material properties for an optimal part design

    Science.gov (United States)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  15. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  16. Pore structure, mechanical properties and polymer characteristics of porous materials impregnated with methylmethacrylate

    International Nuclear Information System (INIS)

    Hastrup, K.

    1976-05-01

    The pore structure of porous materials plays a decisive role with regard to many properties of the materials. One therefore expects property improvement due to impregnation to be mostly brought about as a result of pore structure modification. This supposition formed the basis for the project here presented, which had the main aim of investigating polymer impregnation in relation to pore structure. Objectives were: 1) to examine the pore structure of hardened cement paste, beech wood and porous glass before and after gas-phase impregnation with methyl-methacrylate monomer and in situ polymerization, 2) to investigate the influence of the pore structure on the molecular weight of the polymer, 3) to investigate the influence of the degree of pore filling on the elastic modulus, damping coefficient and bending strength. (author)

  17. Sorption properties of new composite materials suitable for radioanalytical determination of 59-Ni and 63-Ni

    International Nuclear Information System (INIS)

    Fisera, O.; Sebesta, F.

    2006-01-01

    New composite materials for separation and radioanalytical determination of radionickel ( 59, 63 Ni) were prepared and their sorption properties were examined. Chelating agents dimethylglyoxime (DMG) and diphenylglyoxime (DFG) as active components were immobilized in porous matrix of binding polymer polyacrylonitrile (PAN). Sorption properties of these materials were compared with commercial Ni Resin (Eichrom Technologies, USA). Weight distribution ratios, sorption kinetics and operating capacities were investigated during experiments performed. The highest weight distribution ratios were found for the material DFG-PAN. The sorbent DMG-PAN has the highest operating capacity. The fastest kinetics of nickel sorption was determined for the commercial Ni Resin. Elution of nickel with nitric acid solution allows subsequent and direct determination of radionickel by liquid scintillation counting. (author)

  18. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  19. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  20. Effect of γ-ray irradiation on properties of castor oil-polyurethane potting materials

    International Nuclear Information System (INIS)

    Guan Jian; Luo Xianglin; Yue Yilun

    2001-01-01

    After γ-ray sterilization, the amounts of 4,4'-methylenedianiline (MDA) in the five kinds of synthesized medical castor oil-polyurethane potting materials were detected by HPLC. The influences of γ-ray irradiation on the mechanical performance of the potting materials were also discussed quantitatively.The experimental results show that the amounts of produced MDA increases with γ-ray irradiation dosage. After 25 kGy γ-ray sterilization, the accumulated amounts of MDA in the five kinds of potting materials were 10.33, 10.37, 10.52, 10.59, 10.91 ? μg/g respectively. Those amounts are below the level of harm amount to human body. At the same time, the mechanical properties of the potting materials such as tensile strength, tear strength and hardness are improved because cross-linking happens under irradiation