WorldWideScience

Sample records for properties fluorescence energies

  1. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET with Fluorescent Materials

    Directory of Open Access Journals (Sweden)

    Hongyan Xia

    2017-12-01

    Full Text Available Studies on the following were reviewed: (1 the structure of spiropyrans and spirooxazines (two kinds of spiro compounds under external stimuli and (2 the construction and applications of composite systems based on fluorescence resonance energy transfer (FRET with fluorescent materials. When treated with different stimuli (light, acids and bases, solvents, metal ions, temperature, redox potential, and so on, spiropyrans/spirooxazines undergo transformations between the ring-closed form (SP, the ring-opened merocyanine (MC form, and the protonated ring-opened form (MCH. This is due to the breakage of the spiro C–O bond and the protonation of MC, along with a color change. Various novel, multifunctional materials based on photochromic spiropyrans and spirooxazines have been successfully developed because of the vastly differently physiochemical properties posssed by the SP, MC and MCH forms. Among the three different structural forms, the MC form has been studied most extensively. The MC form not only gives complexes with various inorganic particles, biological molecules, and organic chemicals but also acts as the energy acceptor (of energy from fluorescent molecules during energy transfer processes that take place under proper conditions. Furthermore, spiropyran and spirooxazine compounds exhibit reversible physicochemical property changes under proper stimuli; this provides more advantages compared with other photochromic compounds. Additionally, the molecular structures of spiropyrans and spirooxazines can be easily modified and extended, so better compounds can be obtained to expand the scope of already known applications. Described in detail are: (1 the structural properties of spiropyrans and spirooxazines and related photochromic mechanisms; (2 composite systems based on spiropyrans and spirooxazines, and (3 fluorescent materials which have potential applications in sensing, probing, and a variety of optical elements.

  2. Fluorescence spectral properties of outer antenna LHC II

    CERN Document Server

    He Jun Fang; Zhang, Shu; He Fang Tao; Ren Zhao You; Li Liang Bi; Kuang Ting Yun

    2002-01-01

    Outer antenna LHC II acts to absorb and transfer energy for photosynthesis. The authors studied the fluorescence properties of LHC II of spinach with scanning imaging fluorescence spectroscopy. After it had been excited by 514.5 nm laser, the integral fluorescence spectrum of LHC II was detected. It was shown that energy transfer existed between carotenoid and chlorophyll. Seven bands of LHC II fluorescence emission were resolved by Gauss combination, viz. 656.7, 664.6, 671.5, 677.2, 683.5, 689.6, 695.3 nm, and the percentages of them were 3.0%, 13.1%,13.3%, 21.1%, 13.2%, 33.3%, 3.0% respectively. The emission of 658.7 nm was attributed to chlorophyll b, the other emission bands were produced by chlorophyll a molecules with the maximum absorption 662, 670/671, 676, 680 nm and over 690 nm. The band 656.7 nm, whose percentage was 3.0%, shows that the most energy was absorbed by chlorophyll a. The percentage of band 689.6 nm was the most, which was possibly correlated with one type of self protective mechanism o...

  3. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  4. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  5. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding

    International Nuclear Information System (INIS)

    Allen, Lucy R; Paci, Emanuele

    2010-01-01

    Fluorescence resonance energy transfer is a powerful technique which is often used to probe the properties of proteins and complex macromolecules. The technique relies on relatively large fluorescent dyes which are engineered into the molecule of interest. In the case of small proteins, these dyes may affect the stability of the protein, and modify the folding kinetics and the folding mechanisms which are being probed. Here we use atomistic simulation to investigate the effect that commonly used fluorescent dyes have on the folding of a four-helix bundle protein. We show that, depending on where the dyes are attached, their effect on the kinetic and thermodynamic properties of the protein may be significant. We find that, while the overall folding mechanism is not affected by the dyes, they can destabilize, or even stabilize, intermediate states.

  6. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-01-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2 O 2 S (GOS) Gd 2 SiO 5 (GSO) YAlO 3 (YAP), Y 3 Al 5 O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2 . Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges

  7. Fluorescence properties of human teeth and dental calculus for clinical applications

    Science.gov (United States)

    Lee, Yong-Keun

    2015-04-01

    Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.

  8. 76 FR 70547 - Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Science.gov (United States)

    2011-11-14

    ... the term ``fluorescent lamp,'' which EPCA defines as ``a low pressure mercury electric-discharge... discharge into light,'' and as including the four enumerated types of fluorescent lamps for which EPCA... Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts; Final Rule #0;#0;Federal...

  9. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc

    2004-11-09

    We present optical investigations on the conformation of oligonucleotide layers on Au surfaces. Our studies concentrate on the effect of varying surface coverage densities on the structural properties of layers of 12- and 24mer single-stranded DNA, tethered to the Au surface at one end while being labeled with a fluorescent marker at the opposing end. The distance-dependent energy transfer from the marker dye to the metal surface, which causes quenching of the observed fluorescence, is used to provide information on the orientation of the DNA strands relative to the surface. Variations in the oligonucleotide coverage density, as determined from electrochemical quantification, over 2 orders of magnitude are achieved by employing different preparation conditions. The observed enhancement in fluorescence intensity with increasing DNA coverage can be related to a model involving mutual steric interactions of oligonucleotides on the surface, as well as fluorescence quenching theory. Finally, the applicability of the presented concepts for investigations of heterogeneous monolayers is demonstrated by means of studying the coadsorption of mercaptohexanol onto DNA-modified Au surfaces.

  10. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  11. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  12. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    Science.gov (United States)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  13. Fluorescence energy transfer on erythrocyte membranes

    International Nuclear Information System (INIS)

    Fuchs, H.M.; Hof, M.; Lawaczeck, R.

    1995-08-01

    Stationary and time-dependent fluorescence have been measured for a donor/acceptor (DA) pair bound to membrane proteins of bovine erythrocyte ghosts. The donor N-(p-(2-benzoxazolyl)phenyl)-maleimid (BMI) and the acceptor fluram bind to SH- and NH 2 -residues, respectively. The fluorescence spectra and the time-dependent emission are consistent with a radiationless fluorescence energy transfer (RET). The density of RET-effective acceptor binding sites c=0.072 nm -2 was calculated on the basis of the two-dimensional Foerster-kinetic. Band3 protein is the only membrane spanning protein with accessible SH-groups, and therefore only effective binding sites on the band3 protein are counted for the RET measurements performed. (author). 23 refs, 4 figs, 2 tabs

  14. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    Science.gov (United States)

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  16. Fluorescent properties of novel dendrimer dyes based on thiazole orange

    International Nuclear Information System (INIS)

    Fei Xuening; Gu Yingchun; Lan Yunquan; Shi Bin

    2011-01-01

    In this paper, polyamidoamine (PAMAM) dendrimers with active amino group of some generations (G=0.5-2) were prepared from commercial aminoacetaldehyde diethyl acetal by the divergent method. After that, thiazole orange (TO) with -COOH was incorporated with dendrimers of G=1 and 2 to afford novel dendrimer-TO dyes. The fluorescent properties studies showed that the fluorescent intensity of the same concentration of dendrimer-TO (G=2) was higher than that of the dendrimer-TO (G=1), and both of them were much stronger than free TO with -COOH. There was a fluorescent enhancement of the dendrimer dyes compared with free dye. The dendrimer dyes were of well-defined chemical structure,with little aggregation and self-quenching as well as good fluorescence properties of good stability, high intensity and sensitivity, which could be used in labeling cancer cells and further in diagnosis and detection of early-stage tumors. - Highlights: → A kind of dendrimer probe based on TO was designed and synthesized. → Dendrimers showed an obvious fluorescence enhancement compared to free dye. → Dendrimers labeled with BSA also showed fluorescence enhancement. → Dendrimers may be used in diagnosis and detection of early-stage tumors.

  17. The fluorescence properties and NMR analysis of protopine and allocryptopine

    International Nuclear Information System (INIS)

    Kubala, Martin; Vacek, Jan; Popa, Igor; Janovska, Marika; Kosina, Pavel; Ulrichova, Jitka; Travnicek, Zdenek; Simanek, Vilim

    2011-01-01

    The fluorescence properties of protopine and allocryptopine in aqueous and organic environments are described for the first time. The fluorescence of alkaloids and their pH-dependent interconversion to cationic forms (transannular interaction) were studied using steady-state and time-resolved fluorescence techniques. For the analysis of tricyclic base and cis/trans tetracyclic cations of the alkaloids, NMR and X-ray crystallography were used. - Highlights: → We describe fundamental fluorescence characteristics of alkaloids protopine and allocryptopine. → We analyzed the pH-dependent transitions and cis/trans isomerization. → These two alkaloids can be better distinguished by their fluorescence decay characteristics. → The fluorescence parameters are related to the NMR and crystallographic structural data.

  18. Fluorescent Nanodiamonds in Biomedical Applications.

    Science.gov (United States)

    Mitura, Katarzyna Anna; Włodarczyk, Elżbieta

    2018-04-18

    Nanoparticles have an extended surface and a large surface area, which is the ratio of the size of the surfacearea to the volume. A functionalized surface can give rise to more modifications and therefore allows this nanomaterial to have new properties. Fluorescent molecules contain fluorophore, which is capable of being excited via the absorption of light energy at a specific wavelength and subsequently emitting radiation energy of a longer wavelength. A chemically modified surface of nanodiamond (ND; by carboxylation) demonstrated biocompatibility with DNA, cytochrome C, and antigens. In turn, fluorescent nanodiamonds (FNDs) belong to a group of new nanomaterials. Their surface can be modified by joining functional groups such as carboxyl, hydroxyl, or amino, after which they can be employed as a fluorescence agent. Their fluorescent properties result from defects in the crystal lattice. FNDs reach dimensions of 4-100 nm, have attributes such as photostability, long fluorescence lifetimes (10 ns), and fluorescence emission between 600 and 700 nm. They are also nontoxic, chemically inert, biocompatible, and environmentally harmless. The main purpose of this article was to present the medical applications of various types of modified NDs.

  19. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  20. Preparation and fluorescence properties of 6-carboxyfluorescein/hydrotalcite nanocomposites

    International Nuclear Information System (INIS)

    Li, Chunfang; Qi, Yanhai; Li, Qianru; Li, Dongxiang; Hou, Wanguo

    2014-01-01

    The nanocomposites of fluorescent dye/hydrotalcite-like compounds (HTlc) synthesized by intercalation and/or surface adsorption methods have exhibited specific photophysical and photochemical property. In this work, 6-carboxyfluorescein (6CF)/HTlc nanocomposites were synthesized by ammonia coprecipitation and reconstruction-induced surface adsorption methods, and they were characterized by powder X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Thermogravimetric differential thermal measurements (TG-DTA) and fluorescence spectra. The results demonstrate that the dye molecules are primarily adsorbed on HTlc surface. The fluorescence emission of 6CF/Mg–Al HTlc composites is related with 6CF dosage due to the self-quenching mechanism. The 6CF/Zn–Al HTlc nanocomposite reconstructed at high temperature have much strong luminescence than that reconstructed at room temperature and the 6CF/Mg–Al HTlc nanocomposites. -- Highlights: • Fluorescent 6-carboxyfluorescein/HTlc nanocomposites were synthesized. • Fluorescent dye molecules are primarily adsorbed on HTlc surface. • Nanocomposite luminescence is related with the cluster structure of fluorescent dyes

  1. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  2. Quantitative analysis with energy dispersive X-ray fluorescence analyser

    International Nuclear Information System (INIS)

    Kataria, S.K.; Kapoor, S.S.; Lal, M.; Rao, B.V.N.

    1977-01-01

    Quantitative analysis of samples using radioisotope excited energy dispersive x-ray fluorescence system is described. The complete set-up is built around a locally made Si(Li) detector x-ray spectrometer with an energy resolution of 220 eV at 5.94 KeV. The photopeaks observed in the x-ray fluorescence spectra are fitted with a Gaussian function and the intensities of the characteristic x-ray lines are extracted, which in turn are used for calculating the elemental concentrations. The results for a few typical cases are presented. (author)

  3. Presence of Fluorescent Carbon Nanoparticles in Baked Lamb: Their Properties and Potential Application for Sensors.

    Science.gov (United States)

    Wang, Haitao; Xie, Yisha; Liu, Shan; Cong, Shuang; Song, Yukun; Xu, Xianbing; Tan, Mingqian

    2017-08-30

    The presence of nanoparticles in food has drawn much attention in recent years. Fluorescent carbon nanoparticles are a new class of nanostructures; however, the distribution and physicochemical properties of such nanoparticles in food remain unclear. Herein, the presence of fluorescent carbon nanoparticles in baked lamb was confirmed, and their physicochemical properties were investigated. The fluorescent carbon nanoparticles from baked lamb emit strong blue fluorescence under ultraviolet light with a 10% fluorescent quantum yield. The nanoparticles are roughly spherical in appearance with a diameter of around 2.0 nm. Hydroxyl, amino, and carboxyl groups exist on the surface of nanoparticles. In addition, the nanoparticles could serve as a fluorescence sensor for glucose detection through an oxidation-reduction reaction. This work is the first report on fluorescent carbon nanoparticles present in baked lamb, which provides valuable insight into the physicochemical properties of such nanoparticles and their potential application in sensors.

  4. Spectroscopy and nonclassical fluorescence properties of single trapped Ba+ ions

    International Nuclear Information System (INIS)

    Bolle, J.

    1998-06-01

    This thesis reports on the setup and application of an experimental apparatus for spectroscopic and quantum optical investigations of a single Barium ion in a Paul trap. The realization of the apparatus, which consists of the ion trap in ultra high vacuum, two laser systems, and a photon counting detection system, is described in detail, with particular consideration of the noise sources like stray light and laser frequency instabilities. The two lasers at 493 nm and 650 nm needed to continuously excite resonance fluorescence from the Barium ion have been realized using diode lasers only. The preparation of a single localized Barium ion is described, in particular its optical cooling with the laser light and the minimization of induced vibration in the trapping potential. The purely quantum mechanical property of antibunching is observed by measuring the intensity correlation function of resonance fluorescence from the trapped and cooled ion. Interference properties of the single ion resonance fluorescence are investigated with a Mach-Zehnder interferometer. From the measured high-contrast interference signal it is proven that each individual fluorescence photon interferes with itself. The fluorescence excitation spectrum, on varying one laser frequency, is also measured and exhibits dark resonances. These measurements are compared to calculations based on optical Bloch equations for the 8 atomic levels involved. Future experiments, in particular the detection of reduced quantum fluctuations (squeezing) in one quadrature component of the resonance fluorescence, are discussed. (author)

  5. Fluorescence properties of valence-controlled Eu{sup 2+} and Mn{sup 2+} ions in aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyen, Ho [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nonaka, Takamasa; Yamanaka, Ken-ichi [Toyota Central R& D Labs., Inc., Nagakute, Aichi (Japan); Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nogami, Masayuki, E-mail: mnogami@mtj.biglobe.ne.jp [Toyota Physical and Chemical Research Institute, Nagakute, Aichi (Japan); Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam)

    2017-04-15

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} glasses were developed to dope Eu{sup 2+} and Mn{sup 2+} with well controlled valence states by heating in H{sub 2} gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu{sup 3+}, Mn{sup 3+} and Mn{sup 2+} ions incorporated in the as-prepared glasses, the Eu{sup 3+} and Mn{sup 3+} ions were reduced to Eu{sup 2+} and Mn{sup 2+} ions, respectively, by heating in H{sub 2} gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H{sub 2} exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu{sup 2+} and Mn{sup 2+}, respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn{sup 2+} ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu{sup 2+} to Mn{sup 2+} ions and the energy transfer efficiency was estimated with a concentration of Eu{sup 2+}and Mn{sup 2+} ions.

  6. Energy dispersive X-Ray fluorescence spectrometric study of ...

    African Journals Online (AJOL)

    Energy dispersive X-Ray fluorescence spectrometric study of compositional differences in trace elements in dried Moringa oleifera leaves grown in two different agro-ecological locations in Ebonyi State, Nigeria.

  7. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  8. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  9. Opalescence and fluorescence properties of indirect and direct resin materials.

    Science.gov (United States)

    Song, Sang-Hoon; Yu, Bin; Ahn, Jin-Soo; Lee, Yong-Keun

    2008-08-01

    To measure the opalescence and fluorescence properties of indirect and direct resin materials before and after polymerization, and to determine the influence of the material and shade group combination on these properties. BelleGlass NG (BG, indirect resin) and Estelite Sigma (ES, direct resin), each composed in 3 shade groups (EN, OD and TL for BG; BS, AS and OP for ES) out of a total of 16 shades were investigated. Resin material was packed into a mold (the BEC condition) and polymerized with a light-polymerization unit (CWL). Secondary polymerization (CIC) was performed for BG. Color was measured in the BEC, CWL, and CIC conditions, and the opalescence parameter (OP) and fluorescence parameter (FL) were calculated. For the OP, the mean for BG material was 24.3 before polymerization, which changed to 19.9 after polymerization (CIC). In the case of ES, the mean OP before polymerization was 25.6, which changed to 12.4 after polymerization (CWL). For the FL, the mean FL for BG was 2.5 before polymerization, which changed to 0.7 after polymerization. In the case of ES, the mean FL before polymerization was 1.2, which did not change after polymerization. Material and shade group combination influenced the OP and FL values (popalescence and fluorescence properties of resin materials varied depending on the material, shade group, and polymerization. Clinically, these properties should be considered when neighboring teeth are restored with different types of material.

  10. Efficient fluorescence energy transfer system between CdTe-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine.

    Science.gov (United States)

    Gao, Feng; Ye, Qingqing; Cui, Peng; Zhang, Lu

    2012-05-09

    We here report an efficient and enhanced fluorescence energy transfer system between confined quantum dots (QDs) by entrapping CdTe into the mesoporous silica shell (CdTe@SiO₂) as donors and gold nanoparticles (AuNPs) as acceptors. At pH 6.50, the CdTe@SiO₂-AuNPs assemblies coalesce to form larger clusters due to charge neutralization, leading to the fluorescence quenching of CdTe@SiO₂ as a result of energy transfer. As compared with the energy transfer system between unconfined CdTe and AuNPs, the maximum fluorescence quenching efficiency of the proposed system is improved by about 27.0%, and the quenching constant, K(sv), is increased by about 2.4-fold. The enhanced quenching effect largely turns off the fluorescence of CdTe@SiO₂ and provides an optimal "off-state" for sensitive "turn-on" assay. In the present study, upon addition of melamine, the weak fluorescence system of CdTe@SiO₂-AuNPs is enhanced due to the strong interactions between the amino group of melamine and the gold nanoparticles via covalent bond, leading to the release of AuNPs from the surfaces of CdTe@SiO₂; thus, its fluorescence is restored. A "turn-on" fluorimetric method for the detection of melamine is proposed based on the restored fluorescence of the system. Under the optimal conditions, the fluorescence enhanced efficiency shows a linear function against the melamine concentrations ranging from 7.5 × 10⁻⁹ to 3.5 × 10⁻⁷ M (i.e., 1.0-44 ppb). The analytical sensitivity is improved by about 50%, and the detection limit is decreased by 5.0-fold, as compared with the analytical results using the CdTe-AuNPs system. Moreover, the proposed method was successfully applied to the determination of melamine in real samples with excellent recoveries in the range from 97.4 to 104.1%. Such a fluorescence energy transfer system between confined QDs and AuNPs may pave a new way for designing chemo/biosensing.

  11. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry?

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Heydorn, Kaj

    1985-01-01

    This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference.......This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference....

  12. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  13. Novel Fluorescent Microemulsion: Probing Properties, Investigating Mechanism, and Unveiling Potential Application.

    Science.gov (United States)

    Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong

    2017-08-09

    Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.

  14. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    Science.gov (United States)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  15. Determination of basic state parameters and characterization of optical, dielectric and fluorescence properties of calcium boro lactate (CaBL)

    International Nuclear Information System (INIS)

    Vijayalakshmi, A.; Balraj, V.

    2016-01-01

    This paper describes the calculation of basic solid state parameters like penn gap, plasma energy, polarizability and fermi energy for calcium boro lactate single crystal. calcium boro lactate crystals were developed by solution growth method. Single crystal diffraction studies carried out and calculated basic solid state criterion for the CaBL compound. optical nature of these compound explained by using UV-Visible spectrum. Electro-optic behaviour of the crystal explained by dielectric studies. Light emitting properties explained by fluorescence studies. (author)

  16. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.

    Science.gov (United States)

    Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli

    2016-10-05

    The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Research Note: Energy dispersive x-ray fluorescence analysis ...

    African Journals Online (AJOL)

    Energy Dispersive X-Ray fluorescence (EDXRF) technique for the analysis of geological, biological and environmental samples is described. The technique has been applied in the analysis of 10 (geological, biological, environmental) standard reference materials. The accuracy and precision of the technique were attested ...

  18. High yield fabrication of fluorescent nanodiamonds

    International Nuclear Information System (INIS)

    Boudou, Jean-Paul; Curmi, Patrick A; Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Aubert, Pascal; Sennour, Mohamed; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  19. High yield fabrication of fluorescent nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, Jean-Paul; Curmi, Patrick A [Structure and Activity of Normal and Pathological Biomolecules-INSERM/UEVE U829, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf [3.Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Aubert, Pascal [Nanometric Media Laboratory, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Sennour, Mohamed; Thorel, Alain [Centre des Materiaux, Mines Paris, ParisTech, BP 87, F-91000 Evry (France); Gaffet, Eric [Nanomaterials Research Group-UMR 5060, CNRS, UTBM, Site de Sevenans, F-90010 Belfort (France)], E-mail: jpb.cnrs@free.fr, E-mail: pcurmi@univ-evry.fr, E-mail: f.jelezko@physik.uni-stuttgart.de

    2009-06-10

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  20. Synthesis and characterization of multicolour fluorescent ...

    Indian Academy of Sciences (India)

    ... of latent fingerprints. The optical and structural characterization of the nanoparticles was carried .... by absorption of phonons from the host matrix [13], the exchange of energy in ... impressions based on the fluorescent properties exhibited by.

  1. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes

    Science.gov (United States)

    Li, Xuelian; Matthews, Shelton; Kohli, Punit

    2009-01-01

    Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene–carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor (Rad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For Rad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in Rad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET

  2. Energy Dispersive X-Ray Fluorescence Spectrometric Study of ...

    African Journals Online (AJOL)

    MBI

    2017-06-11

    Jun 11, 2017 ... Compositional Differences in Trace Elements in Dried Moringa oleifera ... Ti, Cu, Mo, Fe, Zn, Ni, Re, Eu and Pb using Energy Dispersive X-ray fluorescence ... Africa, Southeast Asia (Valdez-Solana et al., 2015). ... vegetable in many countries, including Nigeria .... of other elements in environmental samples.

  3. Optical properties of flexible fluorescent films prepared by screen printing technology

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2018-05-01

    Full Text Available In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(InN chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  4. Optical properties of flexible fluorescent films prepared by screen printing technology

    Science.gov (United States)

    Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang

    2018-05-01

    In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.

  5. CH3 NH3 PbBr3 Perovskite Nanocrystals as Efficient Light-Harvesting Antenna for Fluorescence Resonance Energy Transfer.

    Science.gov (United States)

    Muthu, Chinnadurai; Vijayan, Anuja; Nair, Vijayakumar C

    2017-05-04

    Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH 3 NH 3 PbBr 3 )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH 3 NH 3 PbBr 3 nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A study of the compartmentalization of core-shell nanoparticles through fluorescence energy transfer of dopants

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L; Jiang Hui; Duran, Randolph S, E-mail: rduran@lsu.edu [Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611 (United States)

    2010-02-05

    Hybrid organic-inorganic templates and core-shell nanoparticles were used as models to study the communication between fluorescent probes placed inside nanoparticles. The hybrid templates were prepared on the basis of a mixed-surfactant system using octadecyltrimethoxysilane as a reactive amphiphile. The core-shell particles were obtained after coating of the templates with a siloxane shell, using the silanol groups on their surface. Atomic force microscopy imaging showed that the templates were made of a flexible material that flattened significantly after deposition on a substrate and evaporation of the solvent. Pyrene was sequestered by the templates in an aqueous suspension, which placed it in a nonpolar environment, as observed by its fluorescence response. Subsequently, double-doped templates were prepared by sequestering coumarin 153 (C153), with pyrene-doped hybrid templates. The communication between these probes was studied on the basis of their spectral properties, by means of fluorescence resonance energy transfer (FRET). Energy transfer between the dyes with efficiencies up to 55% was observed. Similarly, double-doped core-shell particles prepared on the basis of the hybrid templates were doped with this pair of dyes. Despite the presence of the shell, which was intended to increment the average separation between the probes, interaction of the dyes was observed, although with lower efficiencies. A similar study was performed with C153 and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM). FRET studies indicated that the probes were placed in proximity to each other. We confirmed these observations by means of fluorescence lifetime measurements, which showed a decrease in the lifetime of the donor upon addition of the acceptor.

  7. Elementary analysis by means of the x fluorescence and energy dispersion

    International Nuclear Information System (INIS)

    Jbeli, H.

    1988-10-01

    Three actualisation reports are shown, in the three first chapters, concerning the following subjects: x fluorescence principle, energy dispersive X ray spectroscopy and excitation spectrum characteristics. The matrice effects, the energy equivalence concept, and the correction methods of the interelement effects, related to a calibration curve, are discussed. For the last ones, it is shown that they are supplied to rough values. Quantitative analysis results are shown. A new possibility has been added to those of data processing program usually applied in quantitative analysis. In the second method applied in quantitative analysis, standard samples are used. In both methods an error appreciation analysis is carried out. It is shown that energy dispersive X fluorescence analysis can be applied to thin layers composition and thickness characterization [fr

  8. Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Kokko, Tiina; Kokko, Leena; Soukka, Tero; Loevgren, Timo

    2007-01-01

    A homogeneous non-competitive assay principle for measurement of small analytes based on quenching of fluorescence is described. Fluorescence resonance energy transfer (FRET) occurs between the donor, intrinsically fluorescent europium(III)-chelate conjugated to streptavidin, and the acceptor, quencher dye conjugated to biotin derivative when the biotin-quencher is bound to Eu-streptavidin. Fluorescence can be measured only from those streptavidins that are bound to biotin of the sample, while the fluorescence of the streptavidins that are not occupied by biotin are quenched by quencher-biotin conjugates. The quenching efficiencies of the non-fluorescent quencher dyes were over 95% and one dye molecule was able to quench the fluorescence of more than one europium(III)-chelate. This, however, together with the quadrovalent nature of streptavidin limited the measurable range of the assay to 0.2-2 nmol L -1 . In this study we demonstrated that FRET could be used to design a non-competitive homogeneous assay for a small analyte resulting in equal performance with competitive heterogeneous assay

  9. Dispersive X-ray fluorescence applications in energy in environmental problems diagnostic

    International Nuclear Information System (INIS)

    Odino, R.; Souto, B.; Roca, S.; Campomar, W.

    1994-01-01

    X-ray fluorescence energy was used to detect the grade of contamination due to a Portland cement factory. X-ray fluorescence was used to determine the incidence of a Portland cement plant in the quality of air in its surroundings. Many contaminants (Cu, Pb, Ni, Br) do not come from the Portland cement industry but other industries in the zone

  10. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  11. pH-dependent fluorescence property of methyl red isomers in silver colloids

    International Nuclear Information System (INIS)

    Wong, Jian-How; Lee, Szetsen

    2012-01-01

    We report the use of silver (Ag) colloids in the spectroscopic differentiation of methyl red (MR) isomers (o-MR, m-MR, p-MR) by fluorescence techniques. Under different pH conditions, the formation of MR-Ag complex has an impact on the fluorescence band shapes and peak position shift, which are distinctive between MR isomers. The fluorescence quenching between 400 and 414 nm accompanied by simultaneous enhancement between 510 and 541 nm changes with pH are closely related to energy transfer efficiency and the interaction between the MR isomers and the Ag surface.

  12. Energy transfer from a fluorescent hydrogel to a hosted fluorophore

    NARCIS (Netherlands)

    Montalti, Marco; Dolci, Luisa Stella; Prodi, Luca; Zaccheroni, Nelsi; Stuart, Marc C.A.; van Bommel, Kjeld C.; Friggeri, Arianna

    2006-01-01

    The fluorescent properties of a new 1,3,5-cyclohexyltricarboxamide-based low-molecular-weight hydrogelator (1) derivatized with one hydrophobic fluorophore and two hydrophilic substituents have been investigated. Gels of I are composed of long, nonbranched fibers of uniform diameter, as shown by

  13. Cucurbitacin delta 23-reductase from the fruit of Cucurbita maxima var. Green Hubbard. Physicochemical and fluorescence properties and enzyme-ligand interactions.

    Science.gov (United States)

    Dirr, H W; Schabort, J C; Weitz, C

    1986-02-01

    Cucurbitacin delta 23-reductase from Cucurbita maxima var. Green Hubbard fruit displays an apparent Mr of 32,000, a Stokes radius of 263 nm and a diffusion coefficient of 8.93 X 10(-7) cm2 X s-1. The enzyme appears to possess a homogeneous dimeric quaternary structure with a subunit Mr of 15,000. Two tryptophan and fourteen tyrosine residues per dimer were found. Emission spectral properties of the enzyme and fluorescence quenching by iodide indicate the tryptophan residues to be buried within the protein molecule. In the pH range 5-7, where no conformational changes were detected, protonation of a sterically related ionizable group with a pK of approx. 6.0 markedly influenced the fluorescence of the tryptophan residues. Protein fluorescence quenching was employed to determine the dissociation constants for binding of NADPH (Kd 17 microM), NADP+ (Kd 30 microM) and elaterinide (Kd 227 microM). Fluorescence energy transfer between the tryptophan residues and enzyme-bound NADPH was observed.

  14. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.

    Science.gov (United States)

    Simsek, Yusuf; Brown, Alex

    2018-05-09

    Molecular dynamic (MD) simulations were carried out to obtain the conformational changes of the chromophore in the gold fluorescent protein (PDB ID: 1OXF). To obtain two-photon absorption (TPA) cross-sections, time dependent density functional theory (TD-DFT) computations were performed for chromophore geometries sampled along the trajectory. The TD-DFT computations used the CAM-B3LYP functional and 6-31+G(d) basis set with the conductor-like polarizable continuum model (PCM) with parameters for water. Results showed that two dihedral angles change remarkably over the simulation time. TPA cross-sections were found to average 20 GM for the excitation to S1 between 430 and 460 nm; however, the maximal and minimal values were 35GM and 5GM, respectively. Besides the effects of the dihedrals on the spectroscopic properties, some bond lengths affected the excitation energies and the TPA cross-sections significantly (up to ±25-30%) while the effects of bond angles were smaller (±5%). Overall the present results provide insight in the effects of conformational exibility on TPA (with gold fluorescent protein as a specific example) and suggest that further experimental measurements of TPA for gold fluorescent protein should be undertaken.

  15. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  16. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  17. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots

    International Nuclear Information System (INIS)

    Zuo, Pengli; Lu, Xiuhua; Sun, Zhigang; Guo, Yuhan; He, Hua

    2016-01-01

    Carbon dots (C-dots) are a kind of fluorescent nanoparticles that are strongly fluorescent, non-blinking, and can be easily synthesized at low cost. Their emission color can be tuned by varying the excitation wavelength. Their properties make them strong competitors to semiconductor quantum dots. Synthetic approaches for C-dots can be classified into two categories, viz. top-down and bottom-up methods. Surface passivated and functionalized C-dots can be utilized to sense pH values, metal ions and organic molecules. Owing to their low cytotoxicity, biocompatibility and impressive photostability, long-term observations become possible. C-dots also show promise as labels and for bioimaging. This review (with 142 refs.) is divided into several sections. The first covers commonly used methods for preparation of C-dots including laser ablation, arc discharge, electrochemical methods, pyrolytic processes, template based methods, microwave assisted methods, chemical oxidation methods, reverse micelle based methods, etc. The first section also covers methods for surface functionalization and passivation. We continue by discussing the spectroscopic properties and other physical and chemical properties of C-dots (fluorescence, up-conversion fluorescence, methods for enhancing photoluminescence, effects of pH value, cytotoxicity, etc.). Another section covers the characterization including TEM and XRD. Applications in biology are summarized and subdivided into in vitro imaging, in vivo imaging, chemical probe, quantitation of biomacromolecules, but also in drug delivery, photoacoustic imaging and anticancer therapy. We finally discuss current challenges and perspectives in this promising field. (author)

  18. Reorientational properties of fluorescent analogues of the protein kinase C cofactors diacylglycerol and phorbol ester.

    NARCIS (Netherlands)

    Pap, E.H.W.; Ketelaars, M.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.

    1996-01-01

    The reorientational properties of the fluorescently labelled protein kinase C (PKC) cofactors diacylglycerol (DG) and phorbol ester (PMA) in vesicles and mixed micelles have been investigated using time-resolved polarised fluorescence. The sn-2 acyl chain of DG was replaced by diphenylhexatriene-

  19. Photophysical properties of a surfactive long-chain styryl merocyanine dye as fluorescent probe

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, L.F.M., E-mail: Lailafmi@yahoo.com [Al-Azhar University, Faculty of Science, Chemistry Department, Nasr City, 12 Ibrahim El-Nagar, El-Hegaz Sq. Heliopolis, Cairo 11315 (Egypt)

    2012-09-15

    This work deals with detailed investigations of the photophysical properties of a styryl merocyanine dye, namely 1-cetyl-4-[4 Prime -(methoxy) styryl]-pyridinium bromide (CMSPB) of molecular rotor type. The solvatochromic analyses of the data in different solvents using the Kamlet-Taft parameters ({alpha}, {beta}, {pi}{sup Low-Asterisk }) were discussed. Optical excitation of the studied merocyanine dye populates a CT S{sub 1} state with about 22.64 folds higher dipole moment value relative to that in the S{sub 0} state. Moreover, the effect of solvent viscosity (glycerol at various temperatures (299.0-351.0 K)) on CMSPB fluorescent properties is analyzed to understand the molecular mechanisms of the characteristic increase in CMSPB fluorescence intensity. The results indicate that CMSPB exhibits fluorescent properties typical for molecular rotors. The results show that torsional relaxation dynamics of molecular rotors in high-viscosity solvents cannot be described by the simple stick boundary hydrodynamics defined by the Debye-Stokes-Einstein (DSE) equation. The fluorescence depolarization behavior in glycerol at various temperatures (299.0-351.0 K) shows that the molecular rotational diffusion is controlled by the free volume of the medium. Furthermore, excited state studies in ethanol/chloroform mixture revealed the formation of weak complex with chloroform of stoichiometry 1:1 with formation constant of 0.004l mol{sup -1}. Moreover, the increase of the quantum yield values in micellar solutions of CTAB and SDS relative to that of water indicates that the guest dye molecules are microencapsulated into the hydrophobic interior of host micelle. The obtained non-zero values of fluorescence polarization in micellar solution imply reduced rotational depolarization of dye molecules via association with the surfactant. Upon comparing the spectral data in micelles with those in homogeneous solvent systems, more can be learned of the structural details of the micellar

  20. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  1. Fluorescent strategy based on cationic conjugated polymer fluorescence resonance energy transfer for the quantification of 5-(hydroxymethyl)cytosine in genomic DNA.

    Science.gov (United States)

    Hong, Tingting; Wang, Tianlu; Guo, Pu; Xing, Xiwen; Ding, Fei; Chen, Yuqi; Wu, Jinjun; Ma, Jingwei; Wu, Fan; Zhou, Xiang

    2013-11-19

    DNA methylation is dynamically reprogrammed during early embryonic development in mammals. It can be explained partially by the discovery of 5-(hydroxymethyl)cytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), which are identified as key players involved in both active and passive demethylation pathways. As one of the ten-eleven translocation oxidation products, 5-hmC was found relatively abundant in neuron cells and embryonic stem cells. Herein we report a new method for 5-hmC quantification in genomic DNA based on CCP-FRET (cationic conjugated polymers act as the energy donor and induce fluorescence resonance energy transfer) assay combined with KRuO4 oxidation. 5-hmC in genomic DNA can be selectively transformed into 5-fC by the oxidation of KRuO4 and then labeled with hydroxylamine-BODIPY (BODIPY = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore through the reaction between 5-fC and hydroxylamine-BODIPY. After the fluorescently labeled DNA was captured by CCP through electrostatic interactions, a significant FRET between CCP and hydroxylamine-BODIPY fluorophore was observed. This CCP-FRET-based assay benefits from light-harvesting, large Stokes shift, and optical signal amplification properties of the CCP. Furthermore, this CCP-FRET-based assay was quite successfully demonstrated for the 5-hmC quantification in three types of cells (mESc, HeLa, HEK 293T), providing a much more convenient choice for 5-hmC quantification in genomic DNA.

  2. The spectral properties of (--epigallocatechin 3-O-gallate (EGCG fluorescence in different solvents: dependence on solvent polarity.

    Directory of Open Access Journals (Sweden)

    Vladislav Snitsarev

    Full Text Available (--Epigallocatechin 3-O-gallate (EGCG a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90, a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB at pH=7.0, acetonitrile (AN (a polar aprotic solvent, dimethylsulfoxide (DMSO (a polar aprotic solvent, and ethanol (EtOH (a polar protic solvent. We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  3. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.

    Science.gov (United States)

    Ma, Jin-Liang; Yin, Bin-Cheng; Le, Huynh-Nhu; Ye, Bang-Ce

    2015-06-17

    We have developed a label-free method for sequence-specific DNA detection based on surface plasmon enhanced energy transfer (SPEET) process between fluorescent DNA/AgNC string and gold nanoparticles (AuNPs). DNA/AgNC string, prepared by a single-stranded DNA template encoded two emitter-nucleation sequences at its termini and an oligo spacer in the middle, was rationally designed to produce bright fluorescence emission. The proposed method takes advantage of two strategies. The first one is the difference in binding properties of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) toward AuNPs. The second one is SPEET process between fluorescent DNA/AgNC string and AuNPs, in which fluorescent DNA/AgNC string can be spontaneously adsorbed onto the surface of AuNPs and correspondingly AuNPs serve as "nanoquencher" to quench the fluorescence of DNA/AgNC string. In the presence of target DNA, the sensing probe hybridized with target DNA to form duplex DNA, leading to a salt-induced AuNP aggregation and subsequently weakened SPEET process between fluorescent DNA/AgNC string and AuNPs. A red-to-blue color change of AuNPs and a concomitant fluorescence increase were clearly observed in the sensing system, which had a concentration dependent manner with specific DNA. The proposed method achieved a detection limit of ∼2.5 nM, offering the following merits of simple design, convenient operation, and low experimental cost because of no chemical modification, organic dye, enzymatic reaction, or separation procedure involved.

  4. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  5. Research on the ultrafast fluorescence property of thylakoid membranes of the wild-type and mutant rice

    Science.gov (United States)

    Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun

    2003-10-01

    A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.

  6. Fluorescent property of 3-hydroxymethyl imidazo[1,2-a]pyridine and pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Velázquez-Olvera Stephania

    2012-08-01

    Full Text Available Abstract Background Imidazo[1,2-a]pyridines and pyrimidines are important organic fluorophores which have been investigated as biomarkers and photochemical sensors. The effect on the luminescent property by substituents in the heterocycle and phenyl rings, have been studied as well. In this investigation, series of 3-hydroxymethyl imidazo[1,2-a]pyridines and pyrimidines were synthesized and evaluated in relation to fluorescence emission, based upon the hypothesis that the hydroxymethyl group may act as an enhancer of fluorescence intensity. Results Compounds of both series emitted light in organic solvents dilutions as well as in acidic and alkaline media. Quantitative fluorescence spectroscopy determined that both fused heterocycles fluoresced more intensely than the parent unsubstituted imidazo[1,2-a]azine fluorophore. In particular, 3-hydroxymethyl imidazo[1,2-a]pyridines fluoresced more intensely than 3-hydroxymethyl imidazo[1,2-a]pyrimidines, the latter emitting blue light at longer wavelengths, whereas the former emitted purple light. Conclusion It was concluded that in most cases the hydroxymethyl moiety did act as an enhancer of the fluorescence intensity, however, a comparison made with the fluorescence emitted by 2-aryl imidazo[1,2-a]azines revealed that in some cases the hydroxymethyl substituent decreased the fluorescence intensity.

  7. Bis-pyrene-modified unlocked nucleic acids: synthesis, hybridization studies, and fluorescent properties

    DEFF Research Database (Denmark)

    Perlíková, Pavla; Ejlersen, Maria; Langkjaer, Niels

    2014-01-01

    Efficient synthesis of a building block for the incorporation of a bis-pyrene-modified unlocked nucleic acid (UNA) into oligonucleotides (DNA*) was developed. The presence of bis-pyrene-modified UNA within a duplex leads to duplex destabilization that is more profound in DNA*/RNA and less distinc......)uracil:pyrene exciplex emission in the single-stranded form. Such fluorescent properties enable the application of bis-pyrene-modified UNA in the development of fluorescence probes for DNA/RNA detection and for detection of deletions at specific positions....

  8. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  9. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.

    Science.gov (United States)

    Waiwijit, U; Phokaratkul, D; Kampeera, J; Lomas, T; Wisitsoraat, A; Kiatpathomchai, W; Tuantranont, A

    2015-10-20

    Graphene oxide (GO) is attractived for biological or medical applications due to its unique electrical, physical, optical and biological properties. In particular, GO can adsorb DNA via π-π stacking or non-covalent interactions, leading to fluorescence quenching phenomenon applicable for bio-molecular detection. In this work, a new method for white spot syndrome virus (WSSV)-DNA detection is developed based on loop-mediated isothermal amplification (LAMP) combined with fluorescence resonance energy transfer (FRET) between GO and fluorescein isothiocyanate-labeled probe (FITC-probe). The fluorescence quenching efficiency of FITC-probe was found to increase with increasing GO concentration and reached 98.7% at a GO concentration of 50 μg/ml. The fluorescence intensity of FITC-probe was recovered after hybridization with WSSV LAMP product with an optimal hybridization time of 10 min and increased accordingly with increasing amount of LAMP products. The detection limit was estimated to be as low as 10 copies of WSSV plasmid DNA or 0.6 fg of the total DNA extracted from shrimp infected with WSSV. In addition, no cross reaction was observed with other common shrimp viral pathogens. Therefore, the GO-FRET-LAMP technique is promising for fast, sensitive and specific detection of DNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  11. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV

  12. Reversible Energy Transfer and Fluorescence Decay in Solid Solutions

    Science.gov (United States)

    Shealy, David L.; Hoover, Richard B.; Gabardi, David R.

    1988-07-01

    The article deals with the influence of reversible excitation energy transfer on the fluorescence decay in systems with random distribution of molecules. On the basis of a hopping model, we have obtained an expression for the Laplace transform of the decay function and an expression for the average decay time. The case of dipole-dipole interaction is discussed in detail.

  13. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  14. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    Science.gov (United States)

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Development of a portable fluorescent X-ray analyser and its application to the study on cultural properties

    International Nuclear Information System (INIS)

    Ito, Yutaka; Imamura, Mineo; Kanba, Nobuyuki

    1999-01-01

    X-ray fluorescence analysis is well recognized as an effective tool for archaeometric analysis. For examples elemental compositions provide the researchers with basic information on the materials involved in the cultural properties under study and thus provide a clue to its historical background. The same information is also essential when the conservators try to preserve cultural properties. In this paper we studied a portable and inexpensive system for X-ray fluorescence analysis, making use of a small Si-PIN diode spectrometer. The system is convenient for the study of cultural properties in the outdoors. (author)

  16. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers

    Directory of Open Access Journals (Sweden)

    Yizhang Liu

    2018-02-01

    Full Text Available Carboxyl-functionalized semiconducting polymer dots (Pdots were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0–50 nM (R2 = 0.990 and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0–30 nM (R2 = 0.997, with a detection limit of 0.56 nM and a recovery rate of 96.2–104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.

  17. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  18. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  19. Fluorescence resonance energy transfer between conjugated molecules infiltrated in three-dimensional opal photonic crystals

    International Nuclear Information System (INIS)

    Zou, Lu; Sui, Ning; Wang, Ying-Hui; Qian, Cheng; Ma, Yu-Guang; Zhang, Han-Zhuang

    2015-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 6 (C-6) to Sulforhodamine B (S-B) infiltrated into opal PMMA (poly-methyl-methacrylate) photonic crystals (PCs) has been studied in detail. The intrinsic mesh micro-porous structure of opal PCs could increase the luminescent efficiency through inhibiting the intermolecular interaction. Meanwhile, its structure of periodically varying refractive indices could also modify the FRET through affecting the luminescence characteristics of energy donor or energy acceptor. The results demonstrate that the FRET efficiency between conjugated dyes was easily modified by opal PCs. - Highlights: • We investigate the fluorescence resonance energy transfer between two kinds of dyes. • These two kinds of dyes are infiltrated in PMMA opal photonic crystals. • The structure of opal PCs could improve the luminescent characteristics. • The structure of opal PCs could improve the energy transfer characteristics

  20. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis and spectral properties of novel chlorinated pH fluorescent probes

    International Nuclear Information System (INIS)

    Wu Xianglong; Jin Xilang; Wang Yunxia; Mei Qibing; Li Jianli; Shi Zhen

    2011-01-01

    Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4, 5, 6, 7-tetrachlorophthalic anhydride or 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. pH-dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed a strongly pH-sensitive range of 3.0-7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and strong pH-sensitivity. - Research highlights: → Eight chlorinated fluoresceins have been synthesized in the presence of methanesulfonic acid. → Emission spectra of these compounds shifted towards long wavelength with increase in chlorine. → Eight chlorinated fluoresceins showed a strongly pH-sensitive range of 3.0-7.0. → They have emission maxima at long wavelengths and high fluorescence quantum yields.

  2. Fluorescence of Alexa fluor dye tracks protein folding.

    Directory of Open Access Journals (Sweden)

    Simon Lindhoud

    Full Text Available Fluorescence spectroscopy is an important tool for the characterization of protein folding. Often, a protein is labeled with appropriate fluorescent donor and acceptor probes and folding-induced changes in Förster Resonance Energy Transfer (FRET are monitored. However, conformational changes of the protein potentially affect fluorescence properties of both probes, thereby profoundly complicating interpretation of FRET data. In this study, we assess the effects protein folding has on fluorescence properties of Alexa Fluor 488 (A488, which is commonly used as FRET donor. Here, A488 is covalently attached to Cys69 of apoflavodoxin from Azotobacter vinelandii. Although coupling of A488 slightly destabilizes apoflavodoxin, the three-state folding of this protein, which involves a molten globule intermediate, is unaffected. Upon folding of apoflavodoxin, fluorescence emission intensity of A488 changes significantly. To illuminate the molecular sources of this alteration, we applied steady state and time-resolved fluorescence techniques. The results obtained show that tryptophans cause folding-induced changes in quenching of Alexa dye. Compared to unfolded protein, static quenching of A488 is increased in the molten globule. Upon populating the native state both static and dynamic quenching of A488 decrease considerably. We show that fluorescence quenching of Alexa Fluor dyes is a sensitive reporter of conformational changes during protein folding.

  3. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.

    Science.gov (United States)

    Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra

    2018-04-14

    This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.

  4. Changes in opalescence and fluorescence properties of resin composites after accelerated aging.

    Science.gov (United States)

    Lee, Yong-Keun; Lu, Huan; Powers, John M

    2006-07-01

    Opalescence and fluorescence properties and the correlated translucency and masking effect of resin composites may change after aging. The objective of this study was to determine the changes in opalescence and fluorescence properties of resin composites after accelerated aging for 150 kJ/m2. Changes in translucency and masking effect were also determined. Color and spectral distribution of seven resin composites (A2 shade, 1-mm thick) were measured in the reflectance and transmittance modes under ultraviolet light (UV)-included and excluded conditions. Opalescence parameter (OP) was calculated as the difference in yellow-blue (Deltab*) and red-green (Deltaa*) coordinates between the reflected and transmitted colors under UV-included and excluded conditions. For the fluorescence evaluation, color differences (FL-Ref and FL-Trans) by the inclusion or exclusion of the UV-component of the standard illuminant D65 in the reflectance and transmittance modes were calculated. Under UV-included and excluded conditions, the translucency parameter (TP) was calculated, and the masking effect (ME) was calculated as the color difference between a specimen over a black tile and black tile itself. Repeated-measures 2-way analysis of variance at the significance level of 0.05 was performed for the values before and after aging. OP values in UV-included and excluded conditions did not change significantly after aging. FL-Ref and FL-Trans, TP values and ME values in UV-included and excluded conditions changed significantly after aging (pOpalescence of resin composites did not change but fluorescence was not detected after accelerated aging for 150 kJ/m2. Translucency and masking effect changed significantly after aging.

  5. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix Q to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Fluorescent... reference; see § 430.3). The test for measuring standby mode energy consumption of fluorescent lamp ballasts...

  6. Analysis of kiwi fruit (Accented deliciosa) by energy dispersive X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia S.; Oliveira, Marcia L. de; Silva, Lucia C.A.S.; Arthur, Valter; Almeida, Eduardo

    2011-01-01

    The search for a healthy life has led consumers to eat fruits and vegetables in place of manufactured products, however, the demand for minimally processed products has evolved rapidly. The kiwi has at least eight nutrients beneficial to health: calcium, magnesium, manganese, phosphorus, iron, potassium, sodium and has also high vitamin C, which has wide acceptance in consumer markets. Energy dispersive spectroscopy X-ray (EDX) is the analytical technique used for elemental analysis or chemical characterization of a sample. It is a variant of fluorescence spectroscopy X-ray based on the sample through an investigation of interactions between electromagnetic radiation and matter, analyzing X-rays emitted by matter in response to being struck by charged particles. The aim of this study were to determine potassium, calcium, iron and bromine (K, Ca, Fe and Br, respectively) present in kiwifruit using the technique of fluorescence X-ray energy dispersive (EDXRF). Kiwifruit were peeled, washed and cut into slices and freeze-dried. After drying the sample was held digestion and subsequent reading of the same equipment in the X-ray fluorescence energy dispersive (EDXRF). The results indicated that the contents of potassium, calcium, iron and bromine are present in kiwifruit as expected when compared to Brazilian Table of Food Composition. (author)

  7. A novel pH-sensitive polymeric fluorescent probe: Synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyun; Xu Qingfeng; Xia Xuewei; Ge Jianfeng [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Lu Jianmei, E-mail: lujm@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215123 (China); Li Najun, E-mail: linajun@sina.com [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215123 (China)

    2010-04-15

    A novel initiator containing proflavine derivative moiety, 3,6-dibromo-isobutyramide acridine (DIA), was synthesized and initiated the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). A water-soluble monomer, N,N-dimethylacrylamide (DMAA) was also initiated by DIA for comparison. The obtained fluorescent polymers, PMMA-DIA and PDMAA-DIA, were characterized by {sup 1}H NMR, GPC and TGA. The emission spectra of the fluorescent polymers exhibit obvious changes in color and fluorescence intensity along with pH varied in range of 3.0-9.0. In addition, the obtained polymers present good film-forming capacity and the films also have a high quantum yield and pH response. Both oil-soluble PMMA-DIA and water-soluble PDMAA-DIA have steady optical and chemical properties by containing proflavine moiety in the main chain.

  8. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  9. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    Science.gov (United States)

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  10. Synthesis and fluorescence properties of some difluoroboron β-diketonate complexes and composite containing PMMA

    Science.gov (United States)

    Xing, Dongye; Hou, Yanjun; Niu, Haijun

    2018-03-01

    A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.

  11. Fluorescence Spectral Properties of All4261 Binding with Phycocyanobilin in E.Coli

    Science.gov (United States)

    Ma, Q.; Zheng, X. J.; Zhou, Z.; Zhou, N.; Zhao, K. H.; Zhou, M.

    2014-07-01

    Cyanobacteriochromes (CBCRs) are chromophorylated proteins that acting as sensory photoreceptors in cyanobacteria. Based on the bioinformatics of All4261 in Nostoc sp. PCC7120, All4261 is a CBCR apoprotein composed of GAF domains in the N-terminal region. Via polymerase chain reaction with specific primers, All4261 was amplified with genome DNA of Nostoc sp. PCC7120 as template and then subcloned into the expression vector pET30(a+). To survey the fluorescence spectral properties, All4261 was coexpressed with the plasmid that catalyzes phycocyanobilin (PCB) biosynthesis, pACYC-ho1-pcyA, in E.coli BL21. Fluorescence emission spectra and excitation spectra showed that chromophorylated cells containing All4261-PCB had a fluorescence emission peak at 645 nm and a fluorescence excitation peak at 550 nm, but no reversible photoconversion. In order to identify the binding site of PCB in All4261, we obtained three variants All4261(C296L), All4261(C328A), and All4261(C339L), via sitedirected mutagenesis. The binding site was identified as C339 based on the lack of PCB binding of All4261(C339L).

  12. Modification of fluorescence and optical properties of Rhodamine B dye doped PVA/Chitosan polymer blend films

    Science.gov (United States)

    Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.

    2018-05-01

    Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.

  13. Synthesis and photophysical properties of fluorescence sensing diester-terminated 1,8-naphthalimide

    International Nuclear Information System (INIS)

    Bojinov, N. I. Georgiev. V. B.

    2011-01-01

    Full text: The immediate detection and determination of environmental pollutants have been gaining particular importance. In recent years, extensive research has been carried out on fluorescent organic compounds whose photophysical properties are sensitive to environmental changes. Such interest is due to the possibility of tailoring the design of molecular devices for environmental pollution caused by heavy and transition metal ions. Photoinduced electron transfer (PET) using the 'fluorophore-spacer-receptor' format, developed by de Silva, is one of the most popular approaches to the design of fluorescent sensors.; This work reports the synthesis and sensor activity of a 1,8-naphthalimide sensor based on the 'fluorophore-spacer-receptor' format. The diester-terminated 1,8-naphthalimide was found to display sensitive fluorescence signal amplification over a wide pH scale, which has been ascribed to a photoinduced electron transfer from the tertiary amine receptor to the fluorophore. From the changes in the fluorescence intensity, a pKa value of 4.42 was determined, making the synthesized compound of potential use as pH chemosensing material.; In addition, the ability to detect ions has been evaluated in DMF by monitoring the quenching of the fluorescence intensity. Different ions have been tested: Zn 2+ , Ni 2+ , Pb 2+ , Co 2+ , Cu 2+ , and Fe 3+ for this purpose. The results have clearly shown that only Fe 3+ could be efficiently detected

  14. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.

    Science.gov (United States)

    Chen, Jian; Tang, Ying; Wang, Hong; Zhang, Peisheng; Li, Ya; Jiang, Jianhui

    2016-12-15

    The design of effective tools capable of sensing lysosome pH is highly desirable for better understanding its biological functions in cellular behaviors and various diseases. Herein, a lysosome-targetable ratiometric fluorescent polymer nanoparticle pH sensor (RFPNS) was synthesized via incorporation of miniemulsion polymerization and surface modification technique. In this system, the donor: 4-ethoxy-9-allyl-1,8-naphthalimide (EANI) and the acceptor: fluorescein isothiocyanate (FITC) were covalently linked to the polymer nanoparticle to construct pH-responsive fluorescence resonance energy transfer (FRET) system. The FITC moieties on the surface of RFPNS underwent structural and spectral transformation as the presence of pH changes, resulting in ratiometric fluorescent sensing of pH. The as-prepared RFPNS displayed favorable water dispersibility, good pH-induced spectral reversibility and so on. Following the living cell uptake, the as-prepared RFPNS with good cell-membrane permeability can mainly stain in the lysosomes; and it can facilitate visualization of the intracellular lysosomal pH changes. This nanosensor platform offers a novel method for future development of ratiometric fluorescent probes for targeting other analytes, like ions, metabolites,and other biomolecules in biosamples. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    Science.gov (United States)

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  16. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    Science.gov (United States)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  17. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations

    Science.gov (United States)

    Lewandowski, Dawid; Schroeder, Grzegorz; Sawczak, Mirosław; Ossowski, Tadeusz

    2015-10-01

    Riboflavin was covalently linked to mesoporous SBA-15 silica surface via grafting technique. Then fluorescence properties of the system obtained were analyzed in the presence of several metal and organic cations. Both quenching and strengthening of fluorescence as well as significant changes in the maximum fluorescence wavelength were observed. The results were compared with absorption and fluorescence data obtained for riboflavin water solutions.

  18. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    Science.gov (United States)

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  19. A low cost multi-purpose experimental arrangement for variants in energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F.; Silva, R.M.C.; Moraes, L.M.B.; Parreira, P.S.; Appoloni, R.C.; Silva, R.M.C.

    2005-01-01

    Based in an X-ray tower with four exits (two line and two point beams) experimental conditions were arranged to carry out variants in energy dispersive X-ray fluorescence analysis: (1) the conventional one (EDXRF), with excitation/detection of thin and thick samples, under vacuum and air atmosphere, (2) the X-ray energy dispersive micro- fluorescence analysis(μ-EDXRF), with 2D mapping, using a quartz capillar, (3) the total reflection X-ray fluorescence (TXRF), under He and air atmosphere, and (4) secondary target/polarized X-ray fluorescence (P-EDXRF). It was possible to use a Cu, Mo or W target on the X-ray tube, with or without filter (V, Fe, Ni and Zr), and Si(Li) or Si-PIN semicondutor detectors coupled to a multichannel analyzer. In addition, it was possible to use the point beam to carry out experiments on (5) X-ray radiography and (6) X-ray absorption, and the line beam on (7) X-ray diffractometry studies.

  20. Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia

    International Nuclear Information System (INIS)

    Reynolds, Travis; Kolodinsky, Jane; Murray, Byron

    2012-01-01

    This article examines consumer willingness to pay for energy-saving compact fluorescent light bulbs using the results of a stated preferences study conducted in the Caribbean island nation of Saint Lucia. Geographic location, low income status, and age are found to affect willingness-to-pay for compact fluorescent lighting, while higher income status and other demographic variables appear to have minimal or no significant impacts. Energy efficiency knowledge is associated with increased willingness-to-pay for energy-efficient bulbs and with increased use of compact fluorescent lighting. Contrary to theoretical expectations, past purchase of compact fluorescent bulbs is found to have no impact on self-reported willingness to pay. We hypothesize that this null result is due to the recent emergence of low-cost, low-quality compact fluorescent bulbs in the Saint Lucian lighting market, which may be negatively influencing consumers' preferences and expectations regarding energy-efficient lighting. Findings support the argument that government-sponsored education and subsidy programs will likely result in increased use of energy-saving technologies in Saint Lucia. But such behavioral changes may not be sustained in the long run unless low quality bulbs – the “lemons” of the compact fluorescent lighting market – can be clearly identified by consumers. - Highlights: ▶ We model how knowledge, attitudes, and past purchase affect CFL adoption. ▶ Saint Lucian consumers have some knowledge of and favorable attitudes toward CFLs. ▶ Energy efficiency knowledge increases stated willingness-to-pay (WTP) for CFLs. ▶ Past purchase does not increase WTP; low-quality ‘lemons’ may influence consumers. ▶ Policy can lower consumer risks in lighting markets where low quality bulbs exist.

  1. The Pierre Auger fluorescence detector. Cross-checking the absolute calibration using a drone

    Energy Technology Data Exchange (ETDEWEB)

    Tomankova, Lenka [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory combines the air shower fluorescence and surface array methods to study ultra-high energy cosmic rays. As the energy scale of the experiment is derived from calorimetric measurements by the fluorescence telescopes, their accurate calibration is of primary importance to all Auger data. We discuss a novel calibration method based on a remotely flown drone equipped with a specially designed light source that mimics a snapshot of an air shower traversing the atmosphere. Several drone measurement campaigns have been performed to study the properties of the Auger fluorescence telescopes and to derive an end-to-end calibration. We give an overview of the measurements and present the basic analysis chain as well as the first results of an independent cross-check of the Auger energy scale.

  2. Fluorescence spectroscopy of dental calculus

    International Nuclear Information System (INIS)

    Bakhmutov, D; Gonchukov, S; Sukhinina, A

    2010-01-01

    The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined

  3. Fluorescence spectroscopy of dental calculus

    Science.gov (United States)

    Bakhmutov, D.; Gonchukov, S.; Sukhinina, A.

    2010-05-01

    The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined.

  4. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene-derived aminophosphonates.

    Science.gov (United States)

    Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela

    2016-01-01

    A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).

  5. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    Directory of Open Access Journals (Sweden)

    Jarosław Lewkowski

    2016-06-01

    Full Text Available A large series of variously substituted amino(pyren-1-ylmethylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-ylmethylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-ylmethylphosphonic acid displayed strong fluorescence (ΦF = 0.68 in phosphate-buffered saline (PBS. The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenylamino(pyren-1-ylmethylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM, simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM.

  6. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Czech Academy of Sciences Publication Activity Database

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, E.; Dawson, B.; Horváth, P.; Hrabovský, M.; Jiang, J.; Mandát, Dušan; Matalon, A.; Matthews, J.N.; Motloch, P.; Palatka, Miroslav; Pech, Miroslav; Privitera, P.; Schovánek, Petr; Takizawa, Y.; Thomas, S.B.; Trávníček, Petr; Yamazaki, K.

    2016-01-01

    Roč. 74, Feb (2016), s. 64-72 ISSN 0927-6505 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : ultra-high energy cosmic rays * fluorescence detector * extensive air shower Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.257, year: 2016

  7. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  8. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  9. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  10. Correction of fluorescence for depth-specific optical and vascular properties using reflectance and differential path-length spectroscopy during PDT

    Science.gov (United States)

    van Zaane, F.; Middelburg, T. A.; de Bruijn, H. S.; van der Ploeg-van den Heuvel, A.; de Haas, E. R. M.; Sterenborg, H. J. C. M.; Neumann, H. A. M.; Robinson, D. J.

    2009-06-01

    Introduction: The rate of PpIX fluorescence photobleaching is routinely used as a dose metric for ALA-PDT. Diffuse reflection spectroscopy is often used to account for variations in tissue optical properties at the photosensitizer excitation and emission bands. It can be used to quantify changes in vascular parameters, such as blood volume fraction and saturation, and can aid understanding of tissue response to PDT. The volume and(/or) depth over which these signals are acquired are critical. The aim of this study is to use quantitative reflectance spectroscopy (DPS) to correct fluorescence for changes in tissue optical properties and monitor PDT. Materials & Methods: ALA was topically applied to hairless mice skin and the incubated spot was treated with PDT according to fractionated illumination schemes. DPS measurements of vascular parameters and optical properties were performed directly before and after illumination. Both the differential signal, delivery-and-collection-fiber signal and the collection fiber signal, which all probe different measurement volumes, are analyzed. Results & Conclusions: Analysis of DPS measurements shows that at the depth where most fluorescence originates, there is almost no blood present. During PDT vascular parameters at this depth stay constant. In more oxygenated layers of the tissue, the optical properties do change during PDT, suggesting that only a small part of PpIX fluorescence originates from the interesting depths where vascular response occurs. Correcting fluorescence emission spectra for optical changes at specific depths and not for the total of changes in a larger volume, as is usually done now, can improve PpIX photobleaching based treatment monitoring.

  11. Exploration of the Fluorescent Properties and the Modulated Activities against Sirtuin Fluorogenic Assays of Chromenone-Derived Natural Products

    Directory of Open Access Journals (Sweden)

    Hui Wen

    2018-05-01

    Full Text Available Chromenone-derived natural products include chromones (flavone, isoflavone and coumarins. Chromenone compounds not only exhibit impressive biological activities, but also are an important resource of experimentally used fluorophores, such as, 7-amino-4-methylcoumarin (AMC. Various chromenone compounds have reported to have weak fluorescence, and this has the potential to interfere with the measurements during AMC fluorogenic assays and result in non-robust assay readouts. Several flavones and isoflavones were found as SIRT1 activators, while fluorogenic sirtuin assays utilized AMC labelled peptides as the substrates. In this study we investigated whether the fluorescent properties of chromenone-derived natural products interrupt the measurement of SIRT1/2 modulated activities. We found that the reported SIRT1 activators: flavones were detected with the SIRT1 activation activity, but isoflavones were not detected with SIRT1 activation activity, and instead that they were found to be fluorogenic compounds. Another chromenone compound, osthole, exhibited a moderate SIRT2 inhibitory activity with an IC50 of 10 μM. In conclusion, the fluorescent properties of these chromenone compounds do affect the measurement of the sirtuin activities of both inhibitors and activators. However, if the possible fluorescence properties are mitigated in the assay readout, these fluorogenic assays enable the screening of activity modulators.

  12. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    Science.gov (United States)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  13. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  14. pH-Responsive Fluorescence Enhancement in Graphene Oxide-Naphthalimide Nanoconjugates: A Fluorescence Turn-On Sensor for Acetylcholine.

    Science.gov (United States)

    Mangalath, Sreejith; Abraham, Silja; Joseph, Joshy

    2017-08-22

    A pH-sensitive, fluorescence "turn-on" sensor based on a graphene oxide-naphthalimide (GO-NI) nanoconjugate for the detection of acetylcholine (ACh) by monitoring the enzymatic activity of acetylcholinesterase (AChE) in aqueous solution is reported. These nanoconjugates were synthesized by covalently anchoring picolyl-substituted NI derivatives on the GO/reduced GO surface through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide coupling strategy, and the morphological and photophysical properties were studied in detail. Synergistic effects of π-π interactions between GO and the NI chromophore, and efficient photoinduced electron- and energy-transfer processes, were responsible for the strong quenching of fluorescence of these nanoconjugates, which were perturbed under acidic pH conditions, leading to significant enhancement of fluorescence emission. This nanoconjugate was successfully employed for the efficient sensing of pH changes caused by the enzymatic activity of AChE, thereby demonstrating its utility as a fluorescence turn-on sensor for ACh in the neurophysiological range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  16. Fluorescence spectral properties of stomach tissues with pathology

    Science.gov (United States)

    Giraev, K. M.; Ashurbekov, N. A.; Lahina, M. A.

    2012-05-01

    Steady-state fluorescence and diffuse reflection spectra are measured for in vivo normal and pathological (chronic atrophic and ulcerating defects, malignant neoplasms) stomach mucous lining tissues. The degree of distortion of the fluorescence spectra is estimated taking light scattering and absorption into account. A combination of Gauss and Lorentz functions is used to decompose the fluorescence spectra. Potential groups of fluorophores are determined and indices are introduced to characterize the dynamics of their contributions to the resultant spectra as pathologies develop. Reabsorption is found to quench the fluorescence of structural proteins by as much as a factor of 3, while scattering of the light can increase the fluorescence intensity of flavin and prophyrin groups by as much as a factor of 2.

  17. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    Marbec, E.R.

    1987-01-01

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author) [es

  18. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  19. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  20. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    Science.gov (United States)

    Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Gajek, Gabriela

    2016-01-01

    Summary A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM). PMID:27559373

  1. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  2. Hyperspectral solar-induced chlorophyll fluorescence of urban tree leaves: Analyses and applications

    Science.gov (United States)

    Van Wittenberghe, Shari

    Solar energy is the primary energy source for life on Earth which is converted into chemical energy through photosynthesis by plants, algae and cyanobacteria, releasing fuel for the organisms' activities. To dissipate excess of absorbed light energy, plants emit chlorophyll (Chl) fluorescence (650-850 nm) from the same location where photosynthesis takes place. Hence, it provides information on the efficiency of primary energy conversion. From this knowledge, many applications on vegetation and crop stress monitoring could be developed, a necessity for our planet under threat of a changing global climate. Even though the Chl fluorescence signal is weak against the intense reflected radiation background, methods for retrieving the solar-induced Chl fluorescence have been refined over the last years, both at leaf and airborne scale. However, a lack of studies on solar-induced Chl fluorescence gives difficulties for the interpretation of the signal. Within this thesis, hyperspectral upward and downward solar-induced Chl fluorescence is measured at leaf level. Fluorescence yield (FY) is calculated as well as different ratios characterizing the emitted Chl fluorescence shape. The research in this PhD dissertation illustrates the influence of several factors on the solar-induced Chl fluorescence signal. For instance, both the intensity of FY and its spectral shape of urban tree leaves are able to change under influence of stress factors such as traffic air pollution. This shows how solar-induced Chl fluorescence could function as an early stress indicator for vegetation. Further, it is shown that the signal contains information on the ultrastructure of the photosynthetic apparatus. Also, it is proven that the leaf anatomical structure and related light scattering properties play a role in the partitioning between upward and downward Chl fluorescence emission. All these findings indicate how the Chl fluorescence spectrum is influenced by factors which also influence

  3. Fluorescent S-layer fusion proteins

    International Nuclear Information System (INIS)

    Kainz, B.

    2010-01-01

    This work describes the construction and characterisation of fluorescent S-layer fusion proteins used as building blocks for the fabrication of nanostructured monomolecular biocoatings on silica particles with defined fluorescence properties. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the pH-dependant cyan, green and yellow variant of the green fluorescent protein (GFP) and the red fluorescent protein mRFP1. These fluorescent S-layer fusion proteins, acting as scaffold and optical sensing element simultaneously, were able to reassemble in solution and on silica particles forming 2D nanostructures with p2 lattice symmetry (a=11 ±0.5 nm, b=14 ±0.4 nm, g=80 ±1 o ). The pH-dependant fluorescence behaviour was studied with fluorimetry, confocal microscopy and flow cytometry. These fluorescent S-layer fusion proteins can be used as pH-sensor. 50% of the fluorescence intensity decreases at their calculated pKa values (pH6 - pH5). The fluorescence intensity of the GFP variants vanished completely between pH4 and pH3 whereas the chromophore of the red protein mRFP1 was only slightly affected in acidic conditions. At the isoelectric point of the S-layer coated silica particles (pH4.6 ±0.2) an increase in particle aggregation was detected by flow cytometry. The cyan and yellow fluorescent proteins were chosen to create a bi-fluorescent S-layer tandem fusion protein with the possibility for resonance energy transfer (FRET). A transfer efficiency of 20% and a molecular distance between the donor (ECFP) and acceptor (YFP) chromophores of around 6.2 nm could be shown. This bi-fluorescent ECFP-SgsE-YFP tandem fusion protein was able to reassemble on solid surfaces. The remarkable combination of fluorescence and self-assembly and the design of bi-functional S-layer tandem fusion protein matrices makes them to a promising tool in nanobiotechnology. (author) [de

  4. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    Science.gov (United States)

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. ∼2 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in silicate glass

    International Nuclear Information System (INIS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hao, Wei; Hu, Lili; Zhang, Junjie

    2014-01-01

    Graphical abstract: - Highlights: • A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability (k gl = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er 3+ to Tm 3+ in STFE glass is 13.39 × 10 −40 cm 6 /s. - Abstract: A Er 3+ /Tm 3+ co-doped silicate glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er 3+ /Tm 3+ co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er 3+ and Tm 3+ ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er 3+ /Tm 3+ co-doped silicate glasses due to the efficient energy transfer from Er 3+ to Tm 3+ ions. The energy transfer coefficient from Er 3+ to Tm 3+ ions can reach as high as 13.39 × 10 −40 cm 6 /s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er 3+ /Tm 3+ co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser

  6. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    Science.gov (United States)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  7. X-ray fluorescence spectrometers: a comparison of wavelength and energy dispersive instruments

    International Nuclear Information System (INIS)

    Slates, R.V.

    1977-11-01

    Wavelength dispersive and energy dispersive x-ray fluorescence spectrometers are compared. Separate sections are devoted to principles of operation, sample excitation, spectral resolution, and x-ray detection. Tabulated data from the literature are cited in the comparison of accuracy, precision, and detection limits. Spectral interferences and distortions are discussed. Advantages and limitations are listed for simultaneous wavelength dispersive spectrometers, sequential wavelength dispersive spectrometers, and Si(Li) energy dispersive spectrometers. Accuracy, precision, and detection limits are generally superior for wavelength dispersive spectrometers

  8. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  9. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria

    Directory of Open Access Journals (Sweden)

    Looger Loren L

    2008-06-01

    Full Text Available Abstract Background Engineering microorganisms to improve metabolite flux requires detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. These sensors have been applied successfully in mammalian and plant cells but potentially could also be used to monitor steady-state levels of metabolites in microorganisms using fluorimetric assays. Sensors for hexose and pentose carbohydrates could help in the development of fermentative microorganisms, for example, for biofuels applications. Arabinose is one of the carbohydrates to be monitored during biofuels production from lignocellulose, while maltose is an important degradation product of starch that is relevant for starch-derived biofuels production. Results An Escherichia coli expression vector compatible with phage λ recombination technology was constructed to facilitate sensor construction and was used to generate a novel fluorescence resonance energy transfer sensor for arabinose. In parallel, a strategy for improving the sensor signal was applied to construct an improved maltose sensor. Both sensors were expressed in the cytosol of E. coli and sugar accumulation was monitored using a simple fluorimetric assay of E. coli cultures in microtiter plates. In the case of both nanosensors, the addition of the respective ligand led to concentration-dependent fluorescence resonance energy transfer responses allowing quantitative analysis of the intracellular sugar levels at given extracellular supply levels as well as accumulation rates. Conclusion The nanosensor destination vector combined with the optimization strategy for sensor responses should help to accelerate the development of metabolite sensors. The new carbohydrate fluorescence resonance energy transfer sensors can be used for in vivo

  10. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  11. Fluorescence properties of europium and samarium. beta. -diketonates and their use in fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H; Hiraki, K; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1981-01-01

    Several europium and samarium ..beta..-diketonates (tta, ntfa, bfa) complexed with 1, 10-phenanthroline, or with trioctylphosphine oxide (topo) were synthesized. The fluorescence properties of these compounds in benzene or hexane have been studied. Absorption and fluorescence spectra, fluorescence quantum yield, fluorescence sensitivity index (F.S.I.), and fluorescence lifetime were measured. From the measurement of fluorescence lifetime of the ..beta..-diketonates, the velocity of radiative process (k sub(f)/phi sub(f)) has almost the same value for benzene and hexane solvent. The red fluorescence (Em. max. : 619 nm) of Eu(III) in these chelates is attributed to transitions from /sup 5/D/sub 0/ ..-->.. /sup 7/F/sub 2/ levels of this ion, and the three-band spectrum (Em. max. : 569 nm, 606 nm, 650 nm) indicates the transitions from the /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(5/2), /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(7/2), and /sup 4/G sub(5/2) ..-->.. /sup 6/H sub(9/2) levels of Sm(III), respectively. These spectra are not changed by any solvents and ligands. From the results, the fluorescence of the ..beta..-diketonates in organic solvent has been attributed to m* ..-->.. m luminescence transition. The complexes of Eu(III) and Sm(III) show radiative transition within orbitals, composed exclusively of 4f orbitals of rare earth ions (m* ..-->.. m radiative transition). Fluorinated ligands show better sensitivity than unfluorinated ligands, and the best sensitivity is obtained with TTA-phen system, and/or TTA-topo system for the spectrofluorometric determination of the two metals. In the case of Eu determination, 619 nm emission wavelength is used (the determinable range : 0.2 -- 10 ppb Eu), and in the case of Sm determination, 650 nm emission wavelength is adopted (the determinable range : 0.1 -- 1 ppm Sm), because of much higher sensitivity than the other two peaks (569, 606 nm) without interference from europium complex.

  12. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  13. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    Science.gov (United States)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  14. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    Science.gov (United States)

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  15. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  16. Energy dispersion X-ray fluorescence techniques in water pollution analysis

    International Nuclear Information System (INIS)

    Holynska, B.

    1980-01-01

    Advantages and limitations of energy dispersion X-ray fluorescence methods for analysis of pollutants in water are discussed. The necessary equipment for X-ray measurement of insoluble and dissolved trace metals in water is described. Different techniques of enrichment of trace metals are presented: ion exchange on selective Chelex-100 exchanger, precipitation with chelating agents DDTC and APDC, and adsorption on activated carbon. Some results obtained using different preconcentration methods for trace metals determination in different waters are presented. (author)

  17. Energy-dispersive X-ray fluorescence spectrometry of industrial paint samples

    International Nuclear Information System (INIS)

    Christensen, L.H.; Drabaek, I.

    1986-01-01

    An energy-dispersive X-ray fluorescence method for the direct, simultaneous determination of major and minor elements in coatings is described. The method relies on the back-scatter/fundamental parameter concept and provides a general solution to matrix problems. The method has been implemented and verified on spectrometers based both on tube excitation and radioisotope excitation. Results demonstrating some performance characteristics are presented. Sample inhomogeneity problems that impede quantification of low-Z elements in some types of paint are discussed. (Auth.)

  18. Hybrid Systems Based on Layered Silicate and Organic Dyes for Cascade Energy Transfer

    Czech Academy of Sciences Publication Activity Database

    Belušáková, S.; Lang, Kamil; Bujdák, J.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 21784-21794 ISSN 1932-7447 Institutional support: RVO:61388980 Keywords : Cascade energy transfers * Multicomponent films * Resonance energy transfer * Spectral properties * Steady state fluorescence * Time-resolved fluorescence spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 4.509, year: 2015

  19. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr

    International Nuclear Information System (INIS)

    Wang Xiang-Li; Dong Chen-Zhong; Su Mao-Gen; Koike Fumihiro

    2012-01-01

    We systematically study the decay properties of the K-shell excited F-like ions with 10≤Z≤36 based on the multiconfiguration Dirac—Fock method. The Breit interaction, the QED corrections and the nuclear finite mass effects are also considered as perturbation. Auger transition rates, radiative, Auger and natural widths, as well as fluorescence and Auger yields for K-shell excited F-like ions are presented. It is shown by means of concrete figures that the decay properties change significantly with the increase of the atomic number Z; the Auger rate is overtaken at Z = 30 by the radiative decay rate. Several fitting formulae for the radiative and Auger widths and the fluorescence yields have been evaluated which is expected to be useful in plasma analysis and plasma modeling. (atomic and molecular physics)

  20. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.

    Science.gov (United States)

    Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L

    2016-09-20

    The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    Science.gov (United States)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  2. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Seasonal variability in CDOM absorption and fluorescence properties in the Barataria Basin, Louisiana, USA.

    Science.gov (United States)

    Singh, Shatrughan; D'Sa, Eurico; Swenson, Erick

    2010-01-01

    Absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) along a 124 km transect in the Barataria Basin, a large estuary located in Louisiana, USA, were investigated during high and low flow periods of the Mississippi River in the spring and winter of 2008-2009. Mean CDOM absorption at 355 nm from the marine to the freshwater end member stations ranged from (3.25 +/- 0.56) to (20.76 +/- 2.43) m(-1) for the three month high flow period whereas it varied from (1.48 +/- 1.08) to (25.45 +/- 7.03) m(-1) for the same stations during low flow period. Corresponding salinity values at these stations indicated the influence of river and shelf exchanges in the lower basin and precipitation and runoff in the upper basin. An inverse relationship of CDOM absorbance and fluorescence with salinity observed in the basin could be a useful indicator of salinity. CDOM fluorescence also varied over a large range showing an approximately 8 to 12-fold increase between the marine and freshwater end members for the two flow seasons. Excitation-emission matrix spectral plots indicated the presence of various fluorescence components with highest being the A-peak, lowest the T-peak, and the C and M-peaks showing similar trends along the transect. During low flow season the A/C ratio were well correlated with station locations indicating increased terrestrial influence towards the upper basin. CDOM absorption and fluorescence at 355 nm were highly correlated and independent of CDOM sources suggesting that fluorescence could be used to characterize CDOM in the basin.

  4. Ionoluminescence properties of polystyrene-hosted fluorophore films induced by helium ions of energy 50-350 keV

    Science.gov (United States)

    Chakraborty, Subha; Huang, Mengbing

    2017-10-01

    We report on measurements and analysis of ionoluminescence properties of pure polystyrene films and polystyrene films doped with four types of fluorophores in low kinetic energies (50-350 keV) of ion irradiation. We have developed a theoretical model to understand the experimentally observed ionoluminescence behaviors in terms of scintillation yield from individual ion tracks, photophysical energy transfer mechanisms, and irradiation-induced defects. A comparison of the model and experimental results suggests that singlet up-conversion resulting from triplet-triplet annihilation processes may be responsible for enhanced singlet emission of the fluorophores at high ion beam flux densities. Energy transfer from the polystyrene matrix to the fluorophore molecules has been identified as an effective pathway to increasing the fluorescence efficiency in the doped scintillator films.

  5. Fluorescing macerals from wood precursors

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S A; Bensley, D F

    1987-01-01

    A preliminary investigation into the origin of wood-derived macerals has established the existence of autofluorescent maceral precursors in the secondary xylem of swamp-inhabiting plant species. The optical character and fluorescent properties of microtomed thin-sections of modern woods from the Florida Everglades and Okefenokee Swamp, Georgia are compared to the character and properties of their peatified equivalents from various Everglades and Okefenokee peat horizons and their lignitic equivalents from the Brandon lignite of Vermont and the Trail Ridge lignitic peat from northern Florida. The inherent fluorescence of woody cell walls is believed to be caused by lignin though other cell wall components may contribute. The fluorescence spectra for several wood and cell types had a ..gamma../sub m//sub a//sub x/ of 452 nm and Q value of 0.00. The color as observed in blue light and the spectral geometry as measured in UV light of peatified and lignitic woody cell walls (potential textinites) may change progressively during early coalification. Cell wall-derived maceral material is shown to maintain its fluorescing properties after being converted to a structureless material, perhaps a corpohuminite or humodetrinite precursor. Fluorescing xylem cell contents, such as condensed tannins or essential oils, can maintain the fluorescent character through early coalification. Xylem cell walls and xylem cell contents are shown to provide fluorescing progenitor materials which would not require subsequent infusion with 'lipid' materials to account for their fluorescence as phytoclast material or as macerals in coal. 35 references.

  6. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  7. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review.

    Science.gov (United States)

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-10-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.

  8. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  9. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  10. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).

    Science.gov (United States)

    Lauterbach, Rolf; Liu, Jing; Knoll, Wolfgang; Paulsen, Harald

    2010-11-16

    The major light-harvesting chlorophyll a/b complex (LHCII) of the photosynthetic apparatus in green plants can be viewed as a protein scaffold binding and positioning a large number of pigment molecules that combines rapid and efficient excitation energy transfer with effective protection of its pigments from photobleaching. These properties make LHCII potentially interesting as a light harvester (or a model thereof) in photoelectronic applications. Most of such applications would require the LHCII to be immobilized on a solid surface. In a previous study we showed the immobilization of recombinant LHCII on functionalized gold surfaces via a 6-histidine tag (His tag) in the protein moiety. In this work the occurrence and efficiency of Förster energy transfer between immobilized LHCII on a functionalized surface have been analyzed by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). A near-infrared dye was attached to some but not all of the LHC complexes, serving as an energy acceptor to chlorophylls. Analysis of the energy transfer from chlorophylls to this acceptor dye yielded information about the extent of intercomplex energy transfer between immobilized LHCII.

  11. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.

    Science.gov (United States)

    Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank

    2009-11-01

    Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.

  12. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  13. Fluorescent biosensors enabled by graphene and graphene oxide.

    Science.gov (United States)

    Zhang, Huan; Zhang, Honglu; Aldalbahi, Ali; Zuo, Xiaolei; Fan, Chunhai; Mi, Xianqiang

    2017-03-15

    During the past few years, graphene and graphene oxide (GO) have attracted numerous attentions for the potential applications in various fields from energy technology, biosensing to biomedical diagnosis and therapy due to their various functionalization, high volume surface ratio, unique physical and electrical properties. Among which, graphene and graphene oxide based fluorescent biosensors enabled by their fluorescence-quenching properties have attracted great interests. The fluorescence of fluorophore or dye labeled on probes (such as molecular beacon, aptamer, DNAzymes and so on) was quenched after adsorbed on to the surface of graphene. While in the present of the targets, due to the strong interactions between probes and targets, the probes were detached from the surface of graphene, generating dramatic fluorescence, which could be used as signals for detection of the targets. This strategy was simple and economy, together with great programmable abilities of probes; we could realize detection of different kinds of species. In this review, we first briefly introduced the history of graphene and graphene oxide, and then summarized the fluorescent biosensors enabled by graphene and GO, with a detailed account of the design mechanism and comparison with other nanomaterials (e.g. carbon nanotubes and gold nanoparticles). Following that, different sensing platforms for detection of DNAs, ions, biomolecules and pathogens or cells as well as the cytotoxicity issue of graphene and GO based in vivo biosensing were further discussed. We hope that this review would do some help to researchers who are interested in graphene related biosening research work. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Study on fluorescence properties of carbogenic nanoparticles and their application for the determination of ferrous succinate

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wen [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Du Yingxiang, E-mail: du_yingxiang@126.co [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China) and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China) and Key Laboratory of Modern Chinese Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Wang Yunqing [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-08-15

    A new type of fluorescent nanomaterial named carbogenic nanoparticles (NPs) has drawn considerable attention recently. In this study, we adopted a direct and simple synthetic method to produce the carbogenic NPs and investigated the fluorescence properties of the as-prepared carbogenic NPs in detail. It was found that the fluorescence of carbogenic NPs was stable with the variance of environmental conditions such as pH, temperature and UV irradiation. More interestingly, we found carbogenic NPs exhibited high selectivity and sensitivity towards ferric ions. Under optimum conditions, a good linear relationship could be obtained between the fluorescence intensity and concentration of ferric ions in the range of 5.0x10{sup -5}-5.0x10{sup -4} mol L{sup -1}, and the limit of detection is 11.2 {mu}mol L{sup -1}. Based on the fluorescence quenching of carbogenic NPs, a rapid and specific quantitative method was proposed for the determination of ferrous succinate. The content of ferrous succinate in commercial tablets determined by the present method was agreed with the spectrophotometric method results and the reproducibility and the recovery of the proposed method were satisfactory.

  15. Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance

    International Nuclear Information System (INIS)

    Gliedt, Travis; Hoicka, Christina E.

    2015-01-01

    Highlights: • Energy Star property owners/managers view energy as strategic or financial investments. • Energy performance improvements and motivations differ by property type. • Energy projects are most often funded by internal cash reserves. • Motivations and funding sources differ by type of energy project. • Environmental sustainability is an important criterion in many energy projects. - Abstract: Due to its significant carbon footprint and cost-effectiveness for upgrades, the commercial property sector is important for climate change mitigation. Although barriers to energy system changes, such as funding, financing and information, are well recognized, Energy Star property owners and managers are successfully overcoming these barriers and instigating energy efficiency upgrades, renewable energy installations, and behavior and management programs. To examine the decision-making process that leads to energy performance improvements, a national survey of property owners and management organizations of buildings that earned an Energy Star score of 75 or higher was conducted. The extent to which energy upgrades were considered strategic investments motivated by environmental sustainability or corporate social responsibility, or financial investments motivated by payback period or return-on-investment criteria, was contingent upon the property type and type of energy project. Environmental sustainability was found to be an important motivation for energy projects in office spaces in general, but in the case of smaller office spaces was often combined with motivations for corporate social responsibility. Energy projects on education properties were motivated by financial investment. Building envelope and mechanical efficiency upgrades were considered financial investments, while renewable energy, green roofs, and water conservation technologies were considered environmental sustainability initiatives

  16. Fluorescent holograms with albumin-acrylamide

    Science.gov (United States)

    Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Fuentes-Tapia, I.

    2014-02-01

    We describe fluorescent holograms were made with photosensitive films of albumin (protein) quail, used as modified matrices. Albumin is mixed with acrylamide and eosin Y. Therefore, prepare a photosensitive emulsion and solid hydrated with the ability to phase transmission holograms and volume (VPH). Eosin Y is a fluorescent agent that acts as a photo-sensitizing dye which stimulates the polymerization of acrylamide. To record the interference pattern produced by two waves superimposed on the modified matrix, we use a He-Cd laser. To reconstruct the diffraction pattern is observed with He- Ne laser, λ = 632.8nm, the material is self-developing properties. Measure the diffraction efficiency of the diffracted orders (η[-1, +1]) as a function of exposure energy. We work with various thicknesses and measure the variation of the refractive index using the coupled wave theory of Kogelnik, the holographic gratings meet Bragg condition.

  17. Instrumental aspects of tube-excited energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Adams, F.; Nullens, H.; Espen, P. van

    1983-01-01

    Energy-dispersive X-ray fluorescence spectrometry is an attractive and widely used method for sensitive multi-element analysis. The method suffers from the extreme density of spectral components in a rather limited energy range which implies the need for computer based spectrum analysis. The method of iterative least squares analysis is the most powerful tool for this. It requires a systematic and accurate description of the spectral features. Other important necessities for accurate analysis are the calibration of the spectrometer and the correction for matrix absorption effects in the sample; they can be calculated from available physical constants. Ours and similar procedures prove that semi-automatic analyses are possible with an accuracy of the order of 5%. (author)

  18. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.

    Science.gov (United States)

    Huang, Sheng Tian; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2012-01-18

    We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO provides a quantitative readout for tartrazine, giving a detection limit of 0.53 ng mL(-1).

  19. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    Science.gov (United States)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  20. Fluorescence resonance energy transfer: A promising tool for investigation of the interaction between 1-anthracene sulphonate and serum albumins

    International Nuclear Information System (INIS)

    Banerjee, Paltu; Ghosh, Saptaparni; Sarkar, Arindam; Bhattacharya, Subhash Chandra

    2011-01-01

    This present investigation has revealed that steady state as well as time-resolved fluorescence techniques can serve as highly sensitive monitors for exploring the interaction of fluorescent probe 1-anthracene sulphonate (1-AS) with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA).We have focused on fluorescence resonance energy transfer (FRET) between excited tryptophan in transport proteins to 1-AS, for the study of relaxation dynamics of biological molecules.

  1. A highly selective fluorescent chemosensor for Cu2+ : synthesis and properties of a rhodamine B-containing diarylethene.

    Science.gov (United States)

    Xue, Dandan; Zheng, Chunhong; Qu, Shengzu; Liao, Guanming; Fan, Congbin; Liu, Gang; Pu, Shouzhi

    2017-06-01

    A diarylethene bearing a triazole-linked rhodamine B unit was synthesized. Its fluorescent emission was significantly enhanced in the presence of protons or Cu 2 + due to transformation from the pirocyclic form to open-ring form. The fluorescence was quenched sequentially upon irradiation with 297 nm light based on the intramolecular fluorescence resonance energy transfer mechanism. In an acetonitrile: water binary solvent (1: 1 v/v), the compound showed significant fluorescent enhancement for Cu 2 + compared with a wide range of tested metal ions with a fast response and a limit of detection of 2.86 × 10 -8  mol L -1 . Using Cu 2 + and UV light as the chemical inputs, and fluorescence intensity at 597 nm as the output, a logic gate was developed at the molecular level. Moreover, the compound can be used with a high accuracy to detect Cu 2 + in a natural water sample. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  3. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  4. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T.H.; Sørensen, D.; Tobiasen, C.

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  5. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  6. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  7. Photon induced x-ray fluorescence analysis using energy dispersive detector and dichotomous sampler

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Loo, B.W.; Goulding, F.S.

    1976-01-01

    Operating experience in using the photon-excited energy-dispersive x-ray fluorescence analysis system has demonstrated the applicability of this technique to large-scale air-sampling networks. This experience has shown that it is possible to perform automatic sampling and analysis of aerosol particulates at a sensitivity and accuracy more than adequate for most air pollution studies

  8. Highly Sensitive Fluorescent Sensor for Cartap Based on Fluorescence Resonance Energy Transfer Between Gold Nanoparticles and Rhodamine B.

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Fa, Huanbao; Yang, Mei; Wu, Huixiang; Zhang, Liang; Huo, Danqun

    2018-04-01

    Cartap residue poses a great threat to human health and its derivatives would remain in soils, natural waters and other environmental domains for a long time. Herein, a simple, rapid and ultrasensitive analytical method for the determination of cartap based on fluorescence resonance energy transfer (FRET) between Au nanoparticles (AuNPs) and rhodamine B (RB) is first described. With the presence of citrate-stabilized AuNPs, the fluorescence of RB was remarkably quenched by AuNPs via FRET. The fluorescence of the AuNPs-RB system was recovered upon addition of cartap, cartap can be adsorbed on the surface of AuNPs due to its amino group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the FRET between AuNPs and RB was weakened and the PL intensity of RB was recovered accordingly. A good linear correlation for detection of RB was exhibited from 1 nM to 180 nM, and the detection limit reached 0.88 nM, which was much lower than the safety limit required by USA, UK and China. To the best of our knowledge, it has been the lowest detection ever without the aid of costly instrumentation. This method was successfully carried out for the assessment of cartap in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost and non-time-consuming compared with traditional methods.

  9. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  10. Study on the fluorescence resonance energy transfer between CdS quantum dots and Eosin Y.

    Science.gov (United States)

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Chen, Jianqiu

    2015-03-01

    Water-soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water-soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05-10.10), concentration of Eosin Y (2-80 mg/L) and concentration of CdS QDs (2-80 mg/L), were investigated and refined. Donor-to-acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water-soluble CdS QDs and Eosin Y at pH 5.0; donor-to-acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    Science.gov (United States)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  12. Molecular Viscosity Sensors with Two Rotators for Optimizing the Fluorescence Intensity-Contrast Trade-Off.

    Science.gov (United States)

    Lee, Seung-Chul; Lee, Chang-Lyoul; Heo, Jeongyun; Jeong, Chan-Uk; Lee, Gyeong-Hui; Kim, Sehoon; Yoon, Woojin; Yun, Hoseop; Park, Sung O; Kwak, Sang Kyu; Park, Sung-Ha; Kwon, O-Pil

    2018-02-26

    A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  14. Self-Assembled Fluorescent Nanoprobe Based on Forster Resonance Energy Transfer for Carbon Monoxide in Living Cells and Animals via Ligand Exchange.

    Science.gov (United States)

    Jia, Ruizhen; Song, Pengfei; Wang, Jingjing; Mai, Hengtang; Li, Sixian; Cheng, Yu; Wu, Song

    2018-05-29

    Carbon monoxide (CO) is recognized as a biologically essential gaseous neurotransmitter that modulates many physiological processes in living subjects. Currently reported fluorescent probes for CO imaging in cells basically utilize palladium related chemistry which requires complicated synthetic work. Herein we provide a new strategy to construct a fluorescent nanoprobe, NanoCO-1, based on the Forster resonance energy transfer (FRET) mechanism by entrapping the existing dirhodium complex as the energy acceptor and the CO recognition part, and a commonly used nitrobenzoxadiazole (NBD) dye as energy donor into a micelle formed by self-assembly. The exchange of ligands in the dirhodium complex by CO in the nanoprobe disrupts the FRET and leads to the turn-on of fluorescence. The merits of NanoCO-1 including good biocompatibility, selectivity, photostability, and low cytotoxity, render this nanoprobe ability to track CO in living cells, zebrafish embryo, and larvae. Our straightforward approach can be extended to establish the CO fluorescent probes based on adsorption of CO on a variety of metal derivatives.

  15. A new device for energy-dispersive x-ray fluorescence

    Science.gov (United States)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  16. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    Science.gov (United States)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    Science.gov (United States)

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.

    Science.gov (United States)

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu

    2017-07-19

    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  19. Precise measurement of the absolute fluorescence yield of nitrogen in air. Consequences on the detection of ultra-high energy cosmic rays; Mesure precise du rendement absolu de la fluorescence de l'azote dans l'air. Consequences sur la detection des rayons cosmiques d'ultra-haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Lefeuvre, G

    2006-07-15

    The study of the energy spectrum of ultra-high energy cosmic rays (E > 10{sup 20} eV) requires to determine the energy with much more precision than what is currently achieved. The shower of particles created in the atmosphere can be detected either by sampling particle on the ground, or by detecting the fluorescence induced by the excitation of nitrogen by shower electrons. At present, the measurement of the fluorescence is the simplest and the most reliable method, since it does not call upon hadronic physics laws at extreme energies, a field still inaccessible to accelerators. The precise knowledge of the conversion factor between deposited energy and the number of fluorescence photons produced (the yield) is thus essential. Up to now, it has been determined with an accuracy of 15 % only. This main goal of this work is to measure this yield to better than 5 per cent. To do this, 1 MeV electrons from a radioactive source excite nitrogen of the air. The accuracy has been reached thanks to the implementation of a new method for the absolute calibration of the photomultipliers detecting the photons, to better than 2 per cent. The fluorescence yield, measured and normalized to 0.85 MeV, 760 mmHg and 15 Celsius degrees, is (4.23 {+-} 0.20) photons per meter, or (20.46 {+-} 0.98) photons per deposited MeV. In addition, and for the first time, the absolute fluorescence spectrum of nitrogen excited by a source has been measured with an optical grating spectrometer. (author)

  20. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  1. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    Science.gov (United States)

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  2. Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method.

    Science.gov (United States)

    Madrakian, Tayyebeh; Bagheri, Habibollah; Afkhami, Abbas

    2015-08-01

    A sensitive spectrofluorimetric method using constant-energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1-220.0 µg mL(-1) of albumin with a detection limit of 7.0 × 10(-3)  µg mL(-1). The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL(-1) albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  4. Photochemical properties and interfacial fluorescence sensing for homocysteine of triptycene orthoquinone layer-by-layer-assembled multilayers

    International Nuclear Information System (INIS)

    Sun, Xiangying; Liu, Bin; Wu, Qiong; Li, Fang

    2014-01-01

    In the present work, the properties of triptycene orthoquinone derivatives were studied. As a kind of good electron-transfer platform, triptycene derivatives with different electron donors or electron acceptors behave distinctively with their luminescent properties. The intensity ratio of fluorescence peaks can be controlled by the number of methoxy groups (electron donor) and orthoquinone groups (electron acceptor) simultaneously. We have assembled 6,7,12,13-4-methoxyl-2, 3-2-orthoquinone triptycene onto self-assembled monolayers (SAMs) to create a probe for detecting biological thiols. The SAMs exhibited higher selectivity toward homocysteine than to other thiol-containing compounds with a fast response and a stable signal over a wide liner range from 2.0 μmol/L to 1.0 mmol/L with the detection limit of 0.52 μmol/L. - Highlights: • A dual fluorescence probe for biological thiols was reported. • This probe is based on triptycene orthoquinones self-assembled mutilayers. • The sensor exhibits higher selectivity toward homocysteine than other thiol compounds

  5. Photochemical properties and interfacial fluorescence sensing for homocysteine of triptycene orthoquinone layer-by-layer-assembled multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiangying, E-mail: sunxy@hqu.edu.cn; Liu, Bin; Wu, Qiong; Li, Fang

    2014-07-01

    In the present work, the properties of triptycene orthoquinone derivatives were studied. As a kind of good electron-transfer platform, triptycene derivatives with different electron donors or electron acceptors behave distinctively with their luminescent properties. The intensity ratio of fluorescence peaks can be controlled by the number of methoxy groups (electron donor) and orthoquinone groups (electron acceptor) simultaneously. We have assembled 6,7,12,13-4-methoxyl-2, 3-2-orthoquinone triptycene onto self-assembled monolayers (SAMs) to create a probe for detecting biological thiols. The SAMs exhibited higher selectivity toward homocysteine than to other thiol-containing compounds with a fast response and a stable signal over a wide liner range from 2.0 μmol/L to 1.0 mmol/L with the detection limit of 0.52 μmol/L. - Highlights: • A dual fluorescence probe for biological thiols was reported. • This probe is based on triptycene orthoquinones self-assembled mutilayers. • The sensor exhibits higher selectivity toward homocysteine than other thiol compounds.

  6. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    Science.gov (United States)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  7. Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams

    International Nuclear Information System (INIS)

    Morozov, A.; Kruecken, R.; Ulrich, A.; Wieser, J.

    2006-01-01

    Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12 keV electron beams at gas pressures from 250 to 1400 hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations

  8. The fluorescence action spectra of some saturated hydrocarbon liquids for excitation energies above and below their ionization thresholds

    International Nuclear Information System (INIS)

    Ostafin, A.E.; Lipsky, S.

    1993-01-01

    Fluorescence action spectra have been obtained for the neat liquids, cis-decalin, trans-decalin, bicyclohexyl, cyclohexane, methylcyclohexane, isobutylcyclohexane, 2,3,4-trimethylpentane, 2,3-dimethylbutane, 3-methylhexane, 3-methylpentane, n-decane, n-dodecane, and n-pentadecane at excitation energies, ε, ranging from their absorption onsets (at ca. 7 eV) to 10.3 eV. For all compounds, with the exception of cis-decalin, the fluorescence quantum yield is observed to monotonically decline with increasing ε, reaching a minimum value at an energy, ε m (a few tenths of an eV above the liquid phase ionization threshold, ε l ) followed by a slow increase. In the case of cis-decalin, the fluorescence quantum yield remains constant over the entire range of excitation energies studied, permitting its use as a quantum counter replacing the standard sodium salicylate, at least over a spectral range from 185 to 120 nm. The recovery of the fluorescence quantum yield for ε>ε m is attributed to an increasing probability for electron ejection followed by e - +RH + geminate recombination, to produce an excited state of RH with energy less than ε l . From a simple analysis of the action spectrum, a lower bound estimate of the electron ejection probability, φ ± , is obtained as a function of ε. In the case of cyclohexane, where φ ± has been obtained by other techniques at ε congruent 10 eV, the lower bound estimate agrees with the experimental value. From this agreement, arguments are presented to make plausible the conjecture that in all these liquids, the initially produced e - +RH + geminate ion pair first rapidly internally converts to an ion-pair state ca

  9. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bhattar, S.L.; Kolekar, G.B. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India); Patil, S.R. [Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416 004, Maharashtra (India)], E-mail: srp_fsl@rediffmail.com

    2008-03-15

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R{sub 0}) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B{sub 2} directly from pharmaceutical tablets.

  10. Some dispersive X-ray fluorescence applications in energies with radioisotopic excitation source

    International Nuclear Information System (INIS)

    Adelfang, P.; Vazquez, C.

    1990-01-01

    The aim of this work is based on the use of interelemental correction coefficients which are calculated through fundamental parameters. To this purpose, it is necessary to know about the physical constants for each element including the absorption coefficient values and fluorescence yield, the incidence radiation energy, geometric and instrumental parameters. Besides, a special application of the program for the determination of a Nd-La mixed crystal formula is included. (Author) [es

  11. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    Science.gov (United States)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  12. Absorbance and fluorescence studies on porphyrin Nanostructures ...

    African Journals Online (AJOL)

    The aim of this work was to study some photophysical properties of PNR for application as light harvester in dye sensitized solar cells. These properties included absorbance, fluorescence, and fluorescence quantum yield and lifetime. The results of Transmission Electron Microscope (TEM) images showed the formation of ...

  13. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (II), nickel (II) and zinc (II) complexes: a novel fluorescence sensor

    International Nuclear Information System (INIS)

    Ressalan, S.; Iyer, C.S.P.

    2005-01-01

    Absorption and fluorescence spectroscopic properties of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene (HT) are studied. The mechanism of photo-induced electron transfer (PET) followed by energy transfer process of the ligand and the Cu (II), Ni (II) and Zn (II) metal complexes have been investigated. The excited state photo induced intramolecular hydrogen transfer from N-OH to triazene 1-nitrogen atom is explained. The effect of pH, solvent and concentration on the absorption and fluorescence of the ligand is studied and it has been found that the absorption and fluorescence of HT is highly pH, solvent and concentration dependent. Participation of the N-OH proton of HT in the solvent assisted O to N-proton transfer has also been proposed. The fluorescence band shift and changes in intensity is modulated by protonation and complexation with metal ions. This fluorophore can thus be used as a pH dependent and M (n+1)+ /M n+ redox on/off switchable molecular sensor

  14. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    Science.gov (United States)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  15. Precision and accuracy of multi-element analysis of aerosols using energy-dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Adams, F.; Van Espen, P.

    1976-01-01

    Measurements have been carried out for the determination of the inherent errors of energy-dispersive X-ray fluorescence and for the evaluation of its precision and accuracy. The accuracy of the method is confirmed by independent determinations on the same samples using other analytical methods

  16. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton

    Directory of Open Access Journals (Sweden)

    M. J. Behrenfeld

    2009-05-01

    Full Text Available Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

  17. Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.

    Science.gov (United States)

    Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei

    2015-09-01

    Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM

  18. The fluorescence properties of aerosol larger than 0.8 μm in an urban and a PBA-dominated location

    Science.gov (United States)

    Gabey, A. M.; Stanley, W. R.; Gallagher, M. W.; Kaye, P. H.

    2011-01-01

    Dual-wavelength Ultraviolet light-induced fluorescence (UV-LIF) measurements were performed on ambient environmental aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical), which are taken to represent environments with negligible and significant primary biological aerosol (PBA) influences, respectively. Single-particle fluorescence intensity and optical equivalent diameter were measured with a Wide Issue Bioaerosol Sensor, version 3 (WIBS3) in the diameter range 0.8 μm≤DP≤20 μm for 2-3 weeks and filters were analysed using energy dispersive X-ray (EDX) spectroscopy, which revealed mostly non-PBA dominated particle sizes larger than 1 μm in Manchester. The WIBS3 features three fluorescence channels: Fluorescence excited at 280 nm is recorded at 310-400 nm and 400-600 nm and fluorescence excited at 370 nm is detected at 400-600 nm. In Manchester the primary size mode of fluorescent and non-fluorescent material was at 1.2 μm. In Borneo non-fluorescent material peaked at 1.2 μm and fluorescent at 3-4 μm. The fluorescence intensity at 400-600 nm generally increased with DP at both sites, as did the 310-400 nm intensity in Borneo. In Manchester the 310-400 m fluorescence decreased at DP>4 μm, suggesting this channel offers additional discrimination between fluorescent particle types. Finally, the ratio of fluorescence intensity in two pairs of channels was investigated as a function of particle diameter and this varied significantly between the two environments, demonstrating that the fluorescent aerosol in each can in principle be distinguished using a combination of fluorescence and elastic scattering measurements.

  19. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  20. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.

    Science.gov (United States)

    Arvand, Majid; Mirroshandel, Aazam A

    2017-10-15

    With the advantages of excellent optical properties and biocompatibility, single-strand DNA-functionalized quantum dots have been widely applied in biosensing and bioimaging. A new aptasensor with easy operation, high sensitivity, and high selectivity was developed by immobilizing the aptamer on water soluble l-cysteine capped ZnS quantum dots (QDs). Graphene oxide (GO) sheets are mixed with the aptamer-QDs. Consequently, the aptamer-conjugated QDs bind to the GO sheets to form a GO/aptamer-QDs ensemble. This aptasensor enables the energy transfer based on a fluorescence resonance energy transfer (FRET) from the QDs to the GO sheets, quenching the fluorescence of QDs. The GO/aptamer-QDs ensemble assay acts as a "turn-on'' fluorescent sensor for edifenphos (EDI) detection. When GO was replaced by EDI, the fluorescence of QDs was restored and its intensity was proportional to the EDI concentration. This GO-based aptasensor under the optimum conditions exhibited excellent analytical performance for EDI determination, ranging from 5×10 -4 to 6×10 -3 mg L -1 with the detection limit of 1.3×10 -4 mgL -1 . Furthermore, the designed aptasensor exhibited excellent selectivity toward EDI compared to other pesticides and herbicides with similar structures such as diazinon, heptachlor, endrin, dieldrin, butachlor and chlordane. Good reproducibility and precision (RSD =3.9%, n =10) of the assay indicates the high potential of the aptasensor for quantitative trace analysis of EDI. Moreover, the results demonstrate the applicability of the aptasensor for monitoring EDI fungicide in spiked real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Some fluorescence properties of dimethylaminochalcone and its novel cyclic analogues

    Science.gov (United States)

    Tomečková, Vladimíra; Poškrobová, Martina; Štefanišinová, Miroslava; Perjési, Pál

    2009-12-01

    This paper demonstrates the basic character (polarity, solubility, colour, absorption and fluorescence quantum yield) of synthetic dimethylaminochalcone ( 1) and its cyclic analogues measured in toluene, chloroform, dimethylsulfoxide and ethanol, which have been studied by absorption and fluorescence spectroscopy. The biologically active dye 4'-dimethylaminochalcone ( 1b) and its less flexible analogues 4-dimethylaminoindanone ( 2b), -tetralone ( 3b), and -benzosuberone ( 4b) are lipophilic molecules that displayed the best solubility in toluene and chloroform. The highest fluorescence and quantum yields of compounds 1 and 2 have been obtained in DMSO and chloroform. Quenching effect of fluorescence compounds ( 1- 4) has been studied in the mixture of the most polar organic solvents DMSO and water. In the presence of water, fluorescence of compound 1 has been quenched the best from all studied chalcones and emission maxima of molecules 1- 4 have been shifted to the longer wavelengths. Quenching effect of fluorescence by water was in order 1 > 2 > 3 > 4.

  2. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  3. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  4. An Analysis of Sources of Technological Change in Efficiency Improvement of Fluorescent Lamp Systems

    Science.gov (United States)

    Imanaka, Takeo

    In Japan, energy efficient fluorescent lamp systems which use “rare-earth phosphors” and “electronic ballasts” have shown rapid diffusion since 1990s. This report investigated sources of technological change in the efficiency improvement of fluorescent lamp systems: (i) Fluorescent lamp and luminaires have been under steady technological development for getting more energy efficient lighting and the concepts to achieve high efficiency had been found in such activities; however, it took long time until they realized and become widely used; (ii) Electronic ballasts and rare-earth phosphors add fluorescent lamp systems not only energy efficiency but also various values such as compactness, lightweight, higher output, and better color rendering properties, which have also been expected and have induced research and development (R&D) (iii) Affordable electronic ballasts are realized by the new technology “power MOSFET” which is based on IC technologies and has been developed for large markets of information and communication technologies and mobile devices; and (iv) Rare-earth phosphors became available after rare-earth industries developed for the purpose of supplying rare-earth phosphors for color television. In terms of sources of technological change, (i) corresponds to “R&D” aiming at the particular purpose i.e. energy efficiency in this case, on the other hand, (ii), (iii), and (iv) correspond to “spillovers” from activities aiming at other purposes. This case exhibits an actual example in which “spillovers” were the critical sources of technological change in energy technology.

  5. Fluorescence and Nonradiative Properties of Nd3+ in Novel Heavy Metal Contained Fluorophosphate Glass

    Directory of Open Access Journals (Sweden)

    Ju H. Choi

    2007-01-01

    Full Text Available We demonstrate new series of heavy metal containing fluorophosphate glass system. The fluorescence and nonradiative properties of Nd3+ ions are investigated as a function of Nd2O3 concentration. The variation of intensity parameters Ω2, Ω4, and Ω6 is determined from absorption spectra. The spontaneous probability (A and branching ratio (β are determined using intensity parameters. The emission cross sections for the 4F3/2→4I13/2 transition, which is calculated by Fuchtbabauer-Ladenburg method, decrease from 6.1×10−21 to 3.0×10−21(pm2 and those for the 4F3/2→4I11/2 transition decrease from 3.51×10−20 to 1.7×10−20 as Nd2O3 concentration increase up to 3 wt%. The nonradiative relaxation is analyzed in terms of multiphonon relaxation and concentration quenching due to energy transfer among Nd3+ ions. Finally, the above results obtained at 1 wt %Nd2O3 are compared with some of reported laser host glasses which indicated the potentials for broadband-amplifiers and high-power laser applications.

  6. Smart Drug Delivery System-Inspired Enzyme-Linked Immunosorbent Assay Based on Fluorescence Resonance Energy Transfer and Allochroic Effect Induced Dual-Modal Colorimetric and Fluorescent Detection.

    Science.gov (United States)

    Miao, Luyang; Zhu, Chengzhou; Jiao, Lei; Li, He; Du, Dan; Lin, Yuehe; Wei, Qin

    2018-02-06

    Numerous analytical techniques have been undertaken for the detection of protein biomarkers because of their extensive and significant applications in clinical diagnosis, whereas there are few strategies to develop dual-readout immunosensors to achieve more accurate results. To the best of our knowledge, inspired by smart drug delivery system (DDS), a novel pH-responsive modified enzyme-linked immunosorbent assay (ELISA) was innovatively developed for the first time, realizing dual-modal colorimetric and fluorescent detection of cardiac troponin I (cTnI). Curcumin (CUR) was elaborately selected as a reporter molecule, which played the same role of drugs in DDS based on the following considerations: (1) CUR can be used as a kind of pH indicator by the inherited allochroic effect induced by basic pH value; (2) the fluorescence of CUR can be quenched by certain nanocarriers as the acceptor because of the occurrence of fluorescence resonance energy transfer (FRET), while recovered by the stimuli of basic pH value, which can produce "signal-on" fluorescence detection. Three-dimensional MoS 2 nanoflowers (3D-MoS 2 NFs) were employed in immobilizing CUR to constitute a nanoprobe for the determination of cTnI by virtue of good biocompatibility, high absorption capacity, and fluorescence quench efficiency toward CUR. The proposed DDS-inspired ELISA offered dual-modal colorimetric and fluorescent detection of cTnI, thereby meeting the reliable and precise analysis requirements. We believe that the developed dual-readout ELISA will create a new avenue and bring innovative inspirations for biological detections.

  7. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  8. Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes.

    Science.gov (United States)

    Cui, Chunzhi; Park, Dong Hyuk; Kim, Jeongyong; Joo, Jinsoo; Ahn, Dong June

    2013-06-14

    Oligonucleotide assisted tri(8-hydroxyquinoline) aluminium (Alq3) microrods were prepared for the first time. When hybridized with oligonucleotide labeled by Cy3 fluorescent dye, a significant photoluminescence variation of the Alq3 microrods was observed due to Förster resonance energy transfer, unlike when Cy5-oligonucleotide was used. Versatile nucleotide manipulation would open up wider applications of Alq3-based materials, based on this fundamental observation.

  9. The measurement of attenuation coefficients at low photon energies using fluorescent x-radiation

    International Nuclear Information System (INIS)

    Peaple, L.H.J.; White, D.R.

    1978-03-01

    A rapid and accurate method has been developed to measure low energy attenuation coefficients for materials of importance in radiation dosimetry. It employs a collimated beam of fluorescent x-rays from which the required radiation is selected by means of a high resolution germanium detector and multi-channel analyser. The method is described in detail and its accuracy and application outlined with reference to the results from nine different materials. (author)

  10. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Aggarwal, S.K.; Venugopal, V.

    2010-01-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 μg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 μg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1σ) and the results deviated from the expected values by < 4% on average.

  11. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  12. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang 033001 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yaling [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xiaoting [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Feng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-11-30

    Highlights: • Nitrogen-doped carbon dots (NCDs) from ammonia solution and citric acid were synthesized at different temperatures. • Quantum yield (QY) of NCDs depends largely on the amount of fluorescent polymer chains (FPC), more FPC gives higher QY. • The law of QY of NCDs first increase and then decrease with the reaction temperature increased is found and explained. • Nitrogen doping plays significant role in getting increased UV–vis absorption and QY. - Abstract: To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV–vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  13. Influence of fluorescent dye on physical-mechanical properties of luting cements for confocal microscopy analysis.

    Science.gov (United States)

    Oliveira, Dayane; Prieto, Lúcia; Araújo, Cíntia; Coppini, Erick; Pereira, Gisele; Paulillo, Luís

    2014-12-01

    To evaluate the influence of a fluorescent dye (rhodamine B) on the physical and mechanical properties of three different luting cements: a conventional adhesive luting cement (RelyX ARC, 3M/ESPE), a self-adhesive luting cement (RelyX U-200, 3M/ESPE), and a self-etching and self-adhesive luting cement (SeT PP, SDI). The cements were mixed with 0.03 wt% rhodamine B, formed into bar-shaped specimens (n = 10), and light cured using an LED curing unit (Radii, SDI) with a radiant exposure of 32 J/cm(2) . The Knoop hardness (KHN), flexural strength (FS), and Young's modulus (YM) analyses were evaluated after storage for 24 h. Outcomes were subjected to two-way ANOVA and Tukey's test (P = 0.05) for multiple comparisons. No significant differences in FS or YM were observed among the tested groups (P ≥ 0.05); the addition of rhodamine B increased the hardness of the luting cements tested. The addition of a fluorescent agent at 0.03 wt% concentration does not negatively affect the physical-mechanical properties of the luting cement polymerization behavior. © 2014 Wiley Periodicals, Inc.

  14. Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix

    International Nuclear Information System (INIS)

    Jiu Hongfang; Zhang Lixin; Liu Guode; Fan Tao

    2009-01-01

    The fluorescence property of Sm(DBM) 3 phen- (DBM-dibenzoylmethide, phen-1,10-phenanthroline) and Tb(DBM) 3 phen-co-doped poly(methyl methacrylate) (PMMA) was investigated. The excitation, emission spectra and fluorescence lifetime of the co-doped samples were examined. In the co-doped samples, the luminescence intensities of Sm 3+ enhance with an increase of the Tb(DBM) 3 phen content and with a decrease of the Sm(DBM) 3 phen content. The reason for the fluorescence enhancement effect in the co-doped polymer is the intermolecular energy transfer. To give a vivid picture for this co-doped system, a model for the fluorescence enhancement of Sm(DBM) 3 phen- and Tb(DBM) 3 phen-co-doped PMMA is presented

  15. Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging

    Science.gov (United States)

    Tian, Rui; Yan, Dongpeng; Li, Chunyang; Xu, Simin; Liang, Ruizheng; Guo, Lingyan; Wei, Min; Evans, David G.; Duan, Xue

    2016-05-01

    Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling.Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC

  16. A study on properties of PbWO4 crystal

    International Nuclear Information System (INIS)

    He Jingtang; Mao Yufang; Dong Xiaoli

    1997-01-01

    The experimental results on properties of the PbWO 4 crystal are reported, including the excitation and fluorescence spectra, absolute and relative light yield and decay times. It seems that the PbWO 4 crystal can be used in high energy physics experiments for detecting high energy shower particles

  17. Structural design of intrinsically fluorescent oxysterols

    DEFF Research Database (Denmark)

    Nåbo, Lina J; Modzel, Maciej; Krishnan, Kathiresan

    2018-01-01

    Oxysterols are oxidized derivatives of cholesterol with many important biological functions. Trafficking of oxysterols in and between cells is not well studied, largely due to the lack of appropriate oxysterol analogs. Intrinsically fluorescent oxysterols present a new route towards direct...... observation of intracellular oxysterol trafficking by fluorescence microscopy. We characterize the fluorescence properties of the existing fluorescent 25-hydroxycholesterol analog 25-hydroxycholestatrienol, and propose a new probe with an extended conjugated system. The location of both probes inside...

  18. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  19. Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes.

    Science.gov (United States)

    Tang, Yongqiang; Liu, Zhang; Zhu, Linyi; Han, Yuchun; Wang, Yilin

    2015-02-24

    The aggregation behavior of anionic single-chain surfactant sodium lauryl ether sulfate containing three ether groups (SLE3S) with positively bicharged organic salt 1,2-bis(2-benzylammoniumethoxy)ethane dichloride (BEO) has been investigated in aqueous solution, and the effects of the BEO/SLE3S aggregate transitions on the fluorescent properties of anionic conjugated polyelectrolyte MPS-PPV with a larger molecular weight and cationic conjugated oligoelectrolyte DAB have been evaluated. Without BEO, SLE3S does not affect the fluorescent properties of MPS-PPV and only affects the fluorescent properties of DAB at a higher SLE3S concentration. With the addition of BEO, SLE3S and BEO form gemini-like surfactant (SLE3S)2-BEO. When the BEO/SLE3S molar ratio is fixed at 0.25, with increasing the BEO/SLE3S concentration, the BEO/SLE3S mixture forms large, loosely arranged aggregates and then transforms to closely packed spherical aggregates and finally to long thread-like micelles. The photoluminescence (PL) intensity of MPS-PPV varies with the morphologies of the BEO/SLE3S aggregates, while the PL intensity of DAB is almost independent of the aggregate morphologies. The results demonstrate that gemini-like surfactants formed through intermolecular interactions can effectively adjust the fluorescent properties of conjugated polyelectrolytes.

  20. Synthesis and spectral properties of Methyl-Phenyl pyrazoloquinoxaline fluorescence emitters: Experiment and DFT/TDDFT calculations

    Science.gov (United States)

    Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.

    2018-01-01

    Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.

  1. The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations

    Science.gov (United States)

    Gabey, A. M.; Stanley, W. R.; Gallagher, M. W.; Kaye, P. H.

    2011-06-01

    UV-LIF measurements were performed on ambient aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical) using a Wide Issue Bioaerosol Spectrometer, version 3 (WIBS3). These sites are taken to represent environments with minor and significant primary biological aerosol (PBA) influences respectively, and the urban dataset describes the fluorescent background aerosol against which PBA must be identified by researchers using LIF. The ensemble aerosol at both sites was characterised over 2-3 weeks by measuring the fluorescence intensity and optical equivalent diameter (DP) of single particles sized 0.8 ≤ DP ≤ 20 μm. Filter samples were also collected for a subset of the Manchester campaign and analysed using energy dispersive X-Ray (EDX) spectroscopy and environmental scanning electron microscopy (ESEM), which revealed mostly non-PBA at D ≤ 1 μm. The WIBS3 features three fluorescence channels: the emission following a 280 nm excitation is recorded at 310-400 nm (channel F1) and 400-600 nm (F2), and fluorescence excited at 350 nm is detected at 400-600 nm (F3). In Manchester the primary size mode of fluorescent and non-fluorescent material was present at 0.8-1.2 μm, with a secondary fluorescent mode at 2-4 μm. In Borneo non-fluorescent material peaked at 0.8-1.2 μm and fluorescent at 3-4 μm. Agreement between fluorescent number concentrations in each channel differed at the two sites, with F1 and F3 reporting similar concentrations in Borneo but F3 outnumbering F1 by a factor of 2-3 across the size spectrum in Manchester. The fluorescence intensity in each channel generally rose with DP at both sites with the exception of F1 intensity in Manchester, which peaked at DP = 4 μm, causing a divergence between F1 and F3 intensity at larger DP. This divergence and the differing fluorescent particle concentrations demonstrate the additional discrimination provided by the F1 channel in Manchester. The relationships between

  2. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    Science.gov (United States)

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  3. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  4. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    Science.gov (United States)

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-11-01

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm -1 . Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  5. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin.

    Science.gov (United States)

    Mayavan, Sundar; Dutta, Naba K; Choudhury, Namita R; Kim, Misook; Elvin, Christopher M; Hill, Anita J

    2011-04-01

    In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates. The calculation of the bimolecular quenching constant using the Stern-Volmer equation confirms that the dominant mechanism involved in quenching of fluorescence of rec1-resilin in the presence of AuNP is static. Photoacoustic infrared spectroscopy was employed to understand the nature of the interfacial interaction between the AuNP and rec1-resilin and its evolution with pH. In such bioconjugates the quenched emission of fluorescence by AuNP on the fluorophore moiety of rec1-resilin in the immediate vicinity of the AuNP has significant potential for fluorescence-based detection schemes, sensors and also can be incorporated into nanoparticle-based devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analysis of trace elements in medicinal plants with energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Ekinci, N.; Polat, R.; Budak, G.; Ekinci, R.

    2004-01-01

    Mankind still depend on traditional herbal medicine for the treatment of various diseases and ailments. Elemental composition and concentration of medicinal plants have been investigated by energy dispersive X-ray fluorescence. The elements present in medicinal plants are P, Cl, K, Ca, S, Al, Ti, V, Rb, Sr, Zr, Nb, Mo, In, Sn, I and Ce. The physical basis of the used analytical method, the experimental set up and the procedure of sample preparation are presented. (author)

  7. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere

    DEFF Research Database (Denmark)

    Nielsen, T H; Sørensen, D; Tobiasen, C

    2002-01-01

    Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600...... in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties...

  8. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Polyaspartamide-Polylactide Graft Copolymers with Tunable Properties for the Realization of Fluorescent Nanoparticles for Imaging.

    Science.gov (United States)

    Craparo, Emanuela Fabiola; Porsio, Barbara; Mauro, Nicolò; Giammona, Gaetano; Cavallaro, Gennara

    2015-08-01

    Here, the synthesis and the characterization of novel amphiphilic graft copolymers with tunable properties, useful in obtaining polymeric fluorescent nanoparticles for application in imaging, are described. These copolymers are obtained by chemical conjugation of rhodamine B (RhB) moieties, polylactic acid (PLA), and O-(2-aminoethyl)-O'-methyl poly(ethylene glycol) (PEG) on α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA). In particular, PHEA is first functionalized with RhB to obtain PHEA-RhB with a derivatization degree in RhB (DDRhB ) equal to 0.55 mol%. By varying the reaction conditions, different amounts of PLA are grafted on PHEA-RhB to obtain PHEA-RhB-PLA with DDPLA equal to 1.9, 4.0, and 6.2 mol%. Then, PEG chains are grafted on PHEA-RhB-PLA derivatives to obtain PHEA-RhB-PLA-PEG graft copolymers. The preparation of polymeric fluorescent nanoparticles with tunable properties and spherical shape is described by using PHEA-RhB-PLA-PEG with DD in PLA and PEG equal to 4.0 and 4.9 mol%, by following easily scaling up processes, such as emulsion-solvent evaporation and high pressure homogenization (HPH)-solvent evaporation techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond.

    Science.gov (United States)

    Reineck, P; Capelli, M; Lau, D W M; Jeske, J; Field, M R; Ohshima, T; Greentree, A D; Gibson, B C

    2017-01-05

    Bright and photostable fluorescence from nitrogen-vacancy (NV) centers is demonstrated in unprocessed detonation nanodiamond particle aggregates. The optical properties of these particles is analyzed using confocal fluorescence microscopy and spectroscopy, time resolved fluorescence decay measurements, and optically detected magnetic resonance experiments. Two particle populations with distinct optical properties are identified and compared to high-pressure high-temperature (HPHT) fluorescent nanodiamonds. We find that the brightness of one detonation nanodiamond particle population is on the same order as that of highly processed fluorescent 100 nm HPHT nanodiamonds. Our results may open the path to a simple and up-scalable route for the production of fluorescent NV nanodiamonds for use in bioimaging applications.

  11. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gryzunov, Y.A. E-mail: grysunov@sci.lebedev.ru; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N

    2000-06-21

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with {tau}{sub 1}=8.0{+-}0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ({tau}{sub 2}=1.44{+-}0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  12. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    International Nuclear Information System (INIS)

    Gryzunov, Y.A.; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N.

    2000-01-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with τ 1 =8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence (τ 2 =1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly

  13. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Science.gov (United States)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  14. Quantitative schemes in energy dispersive X-ray fluorescence implemented in AXIL

    International Nuclear Information System (INIS)

    Tchantchane, A.; Benamar, M.A.; Tobbeche, S.

    1995-01-01

    E.D.X.R.F (Energy Dispersive X-ray Fluorescence) has long been used for quantitative analysis of many types of samples including environment samples. the software package AXIL (Analysis of x-ray spectra by iterative least quares) is extensively used for the spectra analysis and the quantification of x-ray spectra. It includes several methods of quantitative schemes for evaluating element concentrations. We present the general theory behind each scheme implemented into the software package. The spectra of the performance of each of these quantitative schemes. We have also investigated their performance relative to the uncertainties in the experimental parameters and sample description

  15. Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Ohishi, Yasutake; Tani, Takao

    2006-01-01

    Structural and fluorescence properties of flame spray-synthesized Ni 1 mol%-doped MgO-SiO 2 nano-particles (MgO:SiO 2 = 100:0, 50:50, 25:75 and 0:100 in mol%) were investigated as a first step to prepare transparent materials containing Ni:MgO for optical gain media. Polyhedral aggregates of primary particles with diameters of 8-19 nm were obtained for all compositions. The 100MgO particles were single crystalline and showed the fluorescences (centered at 1260 and 1320 nm) and lifetime (3.8 ms) similar to those of solid state-synthesized Ni:MgO polycrystalline powder under laser excitation at 976 nm, suggesting Ni ions incorporated in MgO

  16. One-pot synthesis of biocompatible Te-phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process

    International Nuclear Information System (INIS)

    Qian Haisheng; Zhu Enbo; Zheng Shunji; Yang Xingyun; Li Liangchao; Tong Guoxiu; Li Zhengquan; Hu Yong; Guo Changfa; Guo Huichen

    2010-01-01

    One-pot hydrothermal process has been developed to synthesize uniform Te-phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te-phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  17. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    Science.gov (United States)

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  18. One-pot synthesis of biocompatible Te-phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haisheng; Zhu Enbo; Zheng Shunji; Yang Xingyun; Li Liangchao; Tong Guoxiu [Department of Chemistry, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Li Zhengquan; Hu Yong; Guo Changfa [Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Guo Huichen, E-mail: shqian@zjnu.cn, E-mail: ghch-2004@hotmail.com [State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 11, Lanzhou, Gansu 730046 (China)

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te-phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te-phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  19. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  20. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.

    Science.gov (United States)

    Sahoo, Harekrushna; Roccatano, Danilo; Zacharias, Martin; Nau, Werner M

    2006-06-28

    Fluorescence resonance energy transfer (FRET) between tryptophan (Trp) as donor and 2,3-diazabicyclo[2.2.2]oct-2-ene (Dbo) as acceptor was studied by steady-state and time-resolved fluorescence spectroscopy. The unique feature of this FRET pair is its exceptionally short Förster radius (10 A), which allows one to recover distance distributions in very short structureless peptides. The technique was applied to Trp-(GlySer)n-Dbo-NH2 peptides with n = 0-10, for which the average probe/quencher distance ranged between 8.7 and 13.7 A experimentally (in propylene glycol, analysis according to wormlike chain model) and 8.6-10.2 A theoretically (for n = 0-6, GROMOS96 molecular dynamics simulations). The larger FRET efficiency in steady-state compared to time-resolved fluorescence experiments was attributed to a static quenching component, suggesting that a small but significant part (ca. 10%) of the conformations are already in van der Waals contact when excitation occurs.

  1. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  2. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    International Nuclear Information System (INIS)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments. (topical review)

  3. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  4. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    Science.gov (United States)

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  6. 10 CFR Appendix W to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Medium Base Compact Fluorescent Lamps

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... the previous step. Round the final energy consumption value, as applicable, to the nearest decimal...

  7. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  8. Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells

    International Nuclear Information System (INIS)

    Fu Guo; Yang Huayan; Wang Chen; Zhang Feng; You Zhendong; Wang Guiying; He Cheng; Chen Yizhang; Xu Zhihan

    2006-01-01

    Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to β 2 subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively

  9. Ultrafast Proton Shuttling in Psammocora Cyan Fluorescent Protein

    NARCIS (Netherlands)

    Kennis, J.T.M.; van Stokkum, I.H.M.; Peterson, D.S.; Pandit, A.; Wachter, R.M.

    2013-01-01

    Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy

  10. Enhanced fluorescence of tetrasulfonated zinc phthalocyanine by graphene quantum dots and its application in molecular sensing/imaging.

    Science.gov (United States)

    Wang, Jian; Zhang, Yanjun; Ye, Jiqing; Jiang, Zhou

    2017-06-01

    When excited at 435 nm, tetra-sulfonate zinc phthalocyanine (ZnPcS 4 ) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet-triplet (T-T) energy transfer of excited phthalocyanine ( 3 *ZnPcS 4 ). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS 4 . The fluorescence properties of ZnPcS 4 -GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS 4 -GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost-saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property.

    Science.gov (United States)

    Wu, Kailong; Wang, Zian; Zhan, Lisi; Zhong, Cheng; Gong, Shaolong; Xie, Guohua; Yang, Chuluo

    2018-04-05

    Two new blue emitters, i.e., bis-[2-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( o-ACSO2) and bis-[3-(9,9-dimethyl-9,10-dihydroacridine)-phenyl]-sulfone ( m-ACSO2), with reserved fine thermally activated delayed fluorescent (TADF) nature and simply tuned thermal and optoelectronic properties, were synthesized by isomer engineering. The meta-linking compound, i.e., m-ACSO2, obtains the highest photoluminescence quantum yield with a small singlet-triplet energy gap, a moderate delayed fluorescent lifetime, excellent solubility, and neat film homogeneity. Due to its unique aggregation-induced emission (AIE) character, neat film-based heterojunction-like organic light-emitting diodes (OLEDs) are achievable. By inserting an excitonic inert exciton-blocking layer, the PN heterojunction-like emission accompanied by intefacial exciplex was shifted to a homojunction-like channel mainly from the AIE emitter itself, providing a new tactic to generate efficient blue color from neat films. The solution-processed nondoped sky-blue OLED employing m-ACSO2 as emitter with homojunction-like emission achieved a maximum external quantum efficiency of 17.2%. The design strategies presented herein provide practical methods to construct efficient blue TADF dyes and realize high-performance blue TADF devices.

  12. Relocation of the disulfonic stilbene sites of AE1 (band 3) on the basis of fluorescence energy transfer measurements.

    Science.gov (United States)

    Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian; Atherton, Stephen J

    2004-09-28

    Previous fluorescence resonance energy transfer (FRET) measurements, using BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) as a label for the disulfonic stilbene site and FM (fluorescein-5-maleimide) as a label for the cytoplasmic SH groups on band 3 (AE1), combined with data showing that the cytoplasmic SH groups lie about 40 A from the cytoplasmic surface of the lipid bilayer, would place the BIDS sites very near the membrane's inner surface, a location that seems to be inconsistent with current models of AE1 structure and mechanism. We reinvestigated the BIDS-FM distance, using laser single photon counting techniques as well as steady-state fluorescence of AE1, in its native membrane environment. Both techniques agree that there is very little energy transfer from BIDS to FM. The mean energy transfer (E), based on three-exponential fits to the fluorescence decay data, is 2.5 +/- 0.7% (SEM, N = 12). Steady-state fluorescence measurements also indicate BIDS to FM. These data indicate that the BIDS sites are probably over 63 A from the cytoplasmic SH groups, placing them near the middle or the external half of the lipid bilayer. This relocation of the BIDS sites fits with other evidence that the disulfonic stilbene sites are located farther toward the external membrane surface than Glu-681, a residue near the inner membrane surface whose modification affects the pH dependence and anion selectivity of band 3. The involvement of two relatively distant parts of the AE1 protein in transport function suggests that the transport mechanism requires coordinated large-scale conformational changes in the band 3 protein.

  13. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    Science.gov (United States)

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  14. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    Directory of Open Access Journals (Sweden)

    David F Gruber

    Full Text Available We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs. Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp., two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II. We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  15. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  16. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  17. Solvothermal preparation and fluorescent properties of color-tunable InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Chul; Jang, Eun-Pyo [Department of Materials Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Jang, Dong Seon; Choi, Yoonyoung; Choi, Moongoo [Materials and Devices Laboratory, LGE Advanced Research Institute, LG Electronics, Seoul 137-724 (Korea, Republic of); Yang, Heesun, E-mail: hyang@hongik.ac.kr [Department of Materials Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of)

    2013-02-15

    This work reports on the solvothermal preparation and optical properties of InP core and InP/ZnS core/shell quantum dots (QDs). InP QDs are synthesized using a phosphorus (P) source of tris(dimethylamino)phosphine (P(N(CH{sub 3}){sub 2}){sub 3}) under the solvothermal conditions in the range of reaction temperature of 120-180 Degree-Sign C and reaction time of 12 h-1 week to tune their size. ZnS shelling is also solvothermally performed by varying the shell growth temperature from 180 to 220 Degree-Sign C for 6 h, and then respective InP and InP/ZnS QDs are subjected to the size-sorting procedure. Effects of the shelling temperature on the fluorescent attributes (emission peak wavelength, bandwidth, and quantum yield) of the resulting size-sorted InP/ZnS QD fractions are investigated. The qualitative information on the shell thickness as a function of shelling temperature is furthermore provided by x-ray diffraction and x-ray photoelectron spectroscopy. - Highlights: Black-Right-Pointing-Pointer InP/ZnS core/shell QDs are prepared using a P source of P(N(CH{sub 3}){sub 2}){sub 3} by a stepwise solvothermal approach. Black-Right-Pointing-Pointer Widely emission-tuable InP/ZnS QDs are realized by varying the solvothermal condition for core QD growth. Black-Right-Pointing-Pointer Effects of ZnS shelling temperature on fluorescent properties of InP/ZnS QDs are investigated.

  18. Solvothermal preparation and fluorescent properties of color-tunable InP/ZnS quantum dots

    International Nuclear Information System (INIS)

    Lee, Ju Chul; Jang, Eun-Pyo; Jang, Dong Seon; Choi, Yoonyoung; Choi, Moongoo; Yang, Heesun

    2013-01-01

    This work reports on the solvothermal preparation and optical properties of InP core and InP/ZnS core/shell quantum dots (QDs). InP QDs are synthesized using a phosphorus (P) source of tris(dimethylamino)phosphine (P(N(CH 3 ) 2 ) 3 ) under the solvothermal conditions in the range of reaction temperature of 120–180 °C and reaction time of 12 h−1 week to tune their size. ZnS shelling is also solvothermally performed by varying the shell growth temperature from 180 to 220 °C for 6 h, and then respective InP and InP/ZnS QDs are subjected to the size-sorting procedure. Effects of the shelling temperature on the fluorescent attributes (emission peak wavelength, bandwidth, and quantum yield) of the resulting size-sorted InP/ZnS QD fractions are investigated. The qualitative information on the shell thickness as a function of shelling temperature is furthermore provided by x-ray diffraction and x-ray photoelectron spectroscopy. - Highlights: ► InP/ZnS core/shell QDs are prepared using a P source of P(N(CH 3 ) 2 ) 3 by a stepwise solvothermal approach. ► Widely emission-tuable InP/ZnS QDs are realized by varying the solvothermal condition for core QD growth. ► Effects of ZnS shelling temperature on fluorescent properties of InP/ZnS QDs are investigated.

  19. [Ph-Sensor Properties of a Fluorescent Protein from Dendronephthya sp].

    Science.gov (United States)

    Pakhomov, A A; Chertkova, R V; Martynov, V I

    2015-01-01

    Genetically encoded biosensors based on fluorescent proteins are now widely applicable for monitoring pH changes in live cells. Here, we have shown that a fluorescent protein from Dendronephthya sp. (DendFP) exhibits a pronounced pH-sensitivity. Unlike most of known genetically encoded pH-sensors, fluorescence of the protein is not quenched upon medium acidification, but is shifting from the red to green spectral range. Therefore, quantitative measurements of intracellular pH are feasible by ratiometric comparison of emission intensities in the red and green spectral ranges, which makes DendFP advantageous compared with other genetically encoded pH-sensors.

  20. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  1. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  2. The Synthesis of Wavelength-Controlled CdTe/Hydroxyapatite Composites and Their Fluorescence Enhancement by Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Li Jin

    2016-01-01

    Full Text Available For the last ten years, quantum dots modified by biological materials have made it possible to study biochemical processes by means of biomedical imaging. This thesis introduced how the fluorescence CdTe quantum dots/hydroxyapatite composites were synthesized and how their structure, morphology, and fluorescence property were characterized by using TEM, XRD, EDS, UV-vis absorption spectra, and fluorescence spectra. The fluorescence spectra indicated the superb photometric characteristics of CdTe/HA composites. We also found that refluxing temperature and time had prominent effects on fluorescence wavelength and intensity of CdTe/HA composites, so the fluorescence emission wavelength of CdTe/HA composites could be controlled. In addition, the effect of BSA on the fluorescence properties of CdTe/HA composites was studied. The fluorescent emission intensity of CdTe/HA composites was enhanced directly with increasing concentrations of BSA; meanwhile, the fluorescence emission intensity of BSA dramatically decreased, which indicated that a Förster nonradiative energy transfer process occurred through the formation of chemical bonds between BSA and CdTe/HA composites. And the two-dimensional correlation (2D COS was used to analyze the BSA solution before and after the reaction, which indicated that CdTe/HA composites have bound to a site at the surface of the molecule in the first subdomain IA. We also found that there was a linear relationship between the fluorescence intensity enhancement (F/F0 of CdTe/HA composites and the concentration of the bovine serum albumin, which might become a method for quantitative analysis of BSA in a real sample.

  3. The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforest locations

    Directory of Open Access Journals (Sweden)

    A. M. Gabey

    2011-06-01

    Full Text Available UV-LIF measurements were performed on ambient aerosol in Manchester, UK (urban city centre, winter and Borneo, Malaysia (remote, tropical using a Wide Issue Bioaerosol Spectrometer, version 3 (WIBS3. These sites are taken to represent environments with minor and significant primary biological aerosol (PBA influences respectively, and the urban dataset describes the fluorescent background aerosol against which PBA must be identified by researchers using LIF. The ensemble aerosol at both sites was characterised over 2–3 weeks by measuring the fluorescence intensity and optical equivalent diameter (DP of single particles sized 0.8 ≤ DP ≤ 20 μm. Filter samples were also collected for a subset of the Manchester campaign and analysed using energy dispersive X-Ray (EDX spectroscopy and environmental scanning electron microscopy (ESEM, which revealed mostly non-PBA at D ≤ 1 μm.

    The WIBS3 features three fluorescence channels: the emission following a 280 nm excitation is recorded at 310–400 nm (channel F1 and 400–600 nm (F2, and fluorescence excited at 350 nm is detected at 400–600 nm (F3. In Manchester the primary size mode of fluorescent and non-fluorescent material was present at 0.8–1.2 μm, with a secondary fluorescent mode at 2–4 μm. In Borneo non-fluorescent material peaked at 0.8–1.2 μm and fluorescent at 3–4 μm. Agreement between fluorescent number concentrations in each channel differed at the two sites, with F1 and F3 reporting similar concentrations in Borneo but F3 outnumbering F1 by a factor of 2–3 across the size spectrum in Manchester.

    The fluorescence intensity in each channel generally rose with DP at both sites with the exception of F1 intensity in Manchester, which peaked at DP = 4 μm, causing a divergence between F1 and F3 intensity at larger DP. This divergence and the differing

  4. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    Science.gov (United States)

    Glazer, Alexander N.; Benson, Scott C.

    1998-01-01

    Novel fluorescent heterodimeric DNA-staining energy transfer dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts. Kits and individual compounds are provided, where the kits find use for simultaneous detection of a variety of moieties, particularly using a single narrow wavelength irradiation source. The individual compounds are characterized by high donor quenching and high affinity to dsDNA as a result of optimizing the length of the linking group separating the two chromophores.

  5. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    Science.gov (United States)

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem.

    Science.gov (United States)

    Vaudour, Emmanuelle; Cerovic, Zoran G; Ebengo, Dav M; Latouche, Gwendal

    2018-04-10

    For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, N tot , CaCO₃, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca 2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K⁺, Na⁺, Mg 2+ , coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, N tot , CaCO₃, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.

  7. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem

    Directory of Open Access Journals (Sweden)

    Emmanuelle Vaudour

    2018-04-01

    Full Text Available For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3, iron, fine particle-sizes (clay, fine silt, fine sand, CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75. Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68 when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.

  8. Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M₁ in Milk.

    Science.gov (United States)

    Li, Hui; Yang, Daibin; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Mao, Jin; Wu, Jing

    2017-10-13

    A highly sensitive aptasensor for aflatoxin M₁ (AFM₁) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM₁ aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM₁ into the FAM-AFM₁ aptamer-PdNPs FRET system, the AFM₁ aptamer preferentially combined with AFM₁ accompanied by conformational change, which greatly weakened the coordination interaction between the AFM₁ aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM₁ was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM₁ detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.

  9. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    Science.gov (United States)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  10. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase

    International Nuclear Information System (INIS)

    Ruiz-Palomero, Celia; Benítez-Martínez, Sandra; Soriano, M. Laura; Valcárcel, Miguel

    2017-01-01

    A novel low-cost fluorimetric platform based on sulfur, nitrogen-codoped graphene quantum dots immersed into nanocellulosic hydrogels is designed and applied in detecting the laccase enzyme. Although most of methods for detecting laccase are based on their catalytic activity, which is strongly dependent on environmental parameters, we report a sensitive and selective method based on the fluorescence response of hydrogels containing graphene quantum dots (GQDs) acting as luminophore towards laccase. The easily-prepared gel matrix not only improves the fluorescence signal of GQDs by avoiding their self-quenching but also stabilizes their fluorescence signal and improves their sensitivity towards laccase. Noncovalent interactions between the sensor and the analyte are believed to be causing this significant quenching without peak-shifts of GQD fluorescence via energy transfer. The selective extraction of laccase was proved in different shampoos as complex matrices achieving a detection limit of 0.048 U mL −1 and recoveries of 86.2–94.1%. As the unusual properties of nanocellulose and GQDs, the fluorescent sensor is simple, eco-friendly and cost-efficient. This straightforward strategy is able to detect and stabilize laccase, being an added-value for storage and recycling enzymes. - Highlights: • Fluorescent hydrogels were constructed by combining nanocellulose and graphene quantum dots. • The resulting hydrogels exhibited fluorescence quenching in presence of laccase. • Equilibrium in the optical signal of S,N-graphene quantum dots in presence of laccase was achieved faster within hydrogels. • The proposed method to determine laccase using fluorescent hydrogels was successfully applied in shampoo.

  11. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift.

    Science.gov (United States)

    Arribat, Mathieu; Rémond, Emmanuelle; Clément, Sébastien; Lee, Arie Van Der; Cavelier, Florine

    2018-01-24

    The synthesis of phospholyl(borane) amino acids was stereoselectively achieved by reaction of phospholide anion with iodo α-amino ester derived from l-aspartic acid or l-serine, followed by in situ complexation with borane. Phospholyl(borane) amino acids are easy to store and can be subjected to direct transformation into the corresponding free phospholyl, gold complex, oxide or sulfur derivatives as well as phospholinium salts, thus offering a variety of side chains. After selective deprotection of carboxylic function or amine, C- or N- peptide coupling with an alanine moiety proved the possible incorporation into peptides. Such phospholyl amino acid and peptide derivatives exhibit fluorescent properties with a large Stokes shift (160 nm) and fluorescence up to 535 nm, depending on the phosphole aromaticity and the chemical environment. These phospholyl(borane) amino acids constitute a new class of unnatural amino acids useful for structure-activities relationship studies and appear to be promising fluorophores for the development of labeled peptides.

  12. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    Science.gov (United States)

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  13. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    International Nuclear Information System (INIS)

    Buruiana, Emil C.; Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina

    2011-01-01

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ( 1 H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu 2+ ) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: → Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. → Quenching effects by acids, Cu 2+ and nitrobenzene in solution/film were evidenced. → A fluorescence dequenching was observed for the composite with silsesquixane units. → A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  14. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  15. Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tian Junping [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zhao Huimin, E-mail: zhaohuim@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Liu Meng; Chen Yaqiong; Quan Xie [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer The quantum dots-ssDNA probe was designed for the determination of virus DNA. Black-Right-Pointing-Pointer The fluorescence of quantum dots was effectively quenched by carbon nanotubes. Black-Right-Pointing-Pointer The addition of target H5N1 DNA restored the quenched fluorescence of quantum dots. Black-Right-Pointing-Pointer The proposed method exhibited high sensitivity and good selectivity for H5N1 DNA. - Abstract: In this paper, a simple and sensitive approach for H5N1 DNA detection was described based on the fluorescence resonance energy transfer (FRET) from quantum dots (QDs) to carbon nanotubes (CNTs) in a QDs-ssDNA/oxCNTs system, in which the QDs (CdTe) modified with ssDNA were used as donors. In the initial stage, with the strong interaction between ssDNA and oxCNTs, QDs fluorescence was effectively quenched. Upon the recognition of the target, the effective competitive bindings of it to QDs-ssDNA occurred, which decreased the interactions between the QDs-ssDNA and oxCNTs, leading to the recovery of the QDs fluorescence. The recovered fluorescence of QDs was linearly proportional to the concentration of the target in the range of 0.01-20 {mu}M with a detection limit of 9.39 nM. Moreover, even a single-base mismatched target with the same concentration of target DNA can only recover a limited low fluorescence of QDs, illustrating the good anti-interference performance of this QDs-ssDNA/oxCNTs system. This FRET platform in the QDs-ssDNA/oxCNTs system was facilitated to the simple, sensitive and quantitative detection of virus nucleic acids and could have a wide range of applications in molecular diagnosis.

  16. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  17. Design, Synthesis, Fluorescence Properties and Antibacterial Activities of New 8-Chloro-3-Alkyl-3H-Pyrazolo[4,3-a]acridine-11-Carbonitriles

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Zeynab; Pordel, Mehdi; Davoodnia, Abolghasem [Islamic Azad Univ., Mashhad (Iran, Islamic Republic of)

    2014-02-15

    The treatment of alkylated nitro derivatives of indazole with 2-(4-chlorophenyl)acetonitrile under basic conditions gave the new 8-chloro-3-alkyl-3H-pyrazolo[4,3-a]acridine-11-carbonitriles via the nucleophilic substitution of hydrogen which proceeds at room temperature with concomitant cyclisation in fairly good yields. The structures of all newly synthesized compounds were confirmed by IR, {sup 1}H NMR, {sup 13}C NMR and mass spectral data. Fluorescence experimental results of all newly synthesized compounds revealed remarkable photoluminescence properties and strong green fluorescence properties. Also, the new compounds exhibited potent antibacterial activity and their antibacterial activity (MIC) against Gram positive (Staphylococcuse aureus methicillin resistant S. aureus and Bacillus subtilis) and negative bacterial (Pseudomonas aeruginosa and Escherichia coli) species were determined.

  18. Holograms preparation using commercial fluorescent benzyl

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes-GarcIa, V; Olivares-Perez, A; Ordonez-Padilla, M J; Mejias-Brizuela, N Y, E-mail: valdoga@Hotmail.com, E-mail: olivares@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Coordinacion de Optica, Calle Luis Enrique Erro N0 1, Santa Maria Tonantzintla, Puebla (Mexico)

    2011-01-01

    We have been able to make holograms with substances such as fluorescence thought of light blue laser to make transmissions holograms, using ammonium dichromate as photo-sensitizer and polyvinyl alcohol (PVA) as matrix. Ammonium dichromate inhibit the fluorescence properties of inks, both mixed in a (PVA) matrix, but we avoid this chemical reaction and we show the results to use the method of painting hologram with fluorescents ink and we describe how the diffraction efficiency parameter changes as a function of the ink absorbed by the emulsion recorded with the gratings, we got good results, making holographic gratings with a blue light from laser diode 470 nm. And we later were painting with fluorescent ink, integrating fluorescence characteristics to the hologram.

  19. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage

    2015-05-01

    Full Text Available The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I-catalysed azide–alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.

  20. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  1. Hyper-filter-fluorescer spectrometer for fusion x-ray diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.

    1981-01-01

    The filter-fluorescer spectrometer (FFS) is a powerful tool for measuring x-ray spectrum from high fluence x-ray sources. However, this technique is limited to energies less than 120 keV, because there are no practical absorption edges available above this energy. In this paper, we present a new method of utilizing the filter-fluorescer system for x-ray spectral measurement above 120 keV. The new apparatus is called hyper-filter-fluorescer spectrometer

  2. Influence of opalescence and fluorescence properties on the light transmittance of resin composite as a function of wavelength.

    Science.gov (United States)

    Lee, Yong-Keun; Powers, John M

    2006-10-01

    To determine the influence of opalescence and fluorescence properties on the light transmittance of resin composites as a function of wavelength (410-750 nm). Spectral distribution of seven resin composites of A2 shade was measured according to the CIELAB color scale relative to the standard illuminant D65 in the reflectance and transmittance modes. Opalescence spectrum (OPS) was calculated as the subtraction spectrum (i.e., the spectrum measured in the transmittance mode subtracted at each wavelength from the spectrum measured in the reflectance mode). UV component of the illuminant was included and excluded to calculate the fluorescence spectrum (FLR and FLT in the reflectance and transmittance mode, respectively). Contrast ratio (CR) was calculated as the ratio of reflectance over a black background and over a white background. The total transmittance spectral distribution (TSD) value was used as the parameter to indicate masking ability of the resin composites over background color. Multiple regression analyses were performed among TSD and other optical parameters at the significance level of 0.05. In all the resin composites and wavelength range, correlation between CR and TSD was very high (r = -0.99). Correlations between each parameters varied by the wavelength range of fluorescence (410-500 nm) and no-fluorescence (510-750 nm). Correlation between OPS and TSD varied by the wavelength range (r = -0.86 to -0.94, Popalescence and fluorescence of resin composite varied by the wavelength.

  3. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  4. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.

    Science.gov (United States)

    Krause, Christopher D; Izotova, Lara S; Pestka, Sidney

    2013-10-01

    Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Study on the fluorescence characteristics of carbon dots

    Science.gov (United States)

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.

  6. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  7. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    Science.gov (United States)

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  8. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies

  9. Vibrational energy flow through the green fluorescent protein-water interface: communication maps and thermal boundary conductance.

    Science.gov (United States)

    Xu, Yao; Leitner, David M

    2014-07-17

    We calculate communication maps for green fluorescent protein (GFP) to elucidate energy transfer pathways between the chromophore and other parts of the protein in the ground and excited state. The approach locates energy transport channels from the chromophore to remote regions of the protein via residues and water molecules that hydrogen bond to the chromophore. We calculate the thermal boundary conductance between GFP and water over a wide range of temperature and find that the interface between the protein and the cluster of water molecules in the β-barrel poses negligible resistance to thermal flow, consistent with facile vibrational energy transfer from the chromophore to the β-barrel waters observed in the communication maps.

  10. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(II)-based polymer

    Science.gov (United States)

    Wu, Jian; Li, Bao-Hong; Zhong, Hua-Rui; Qiu, Shuo-Wen; Liang, Yi-Wen; Zhuang, Xiao-Yi; Singh, Amita; Kumar, Abhinav

    2018-04-01

    A biocompatible metal-organic framework (MOF) [Zn2(TPL)(FA)(OH)(H2O)] (1) (TPL = theophylline and H2FA = fumaric acid) had been chosen which offers an ideal model for the development of fluorescencent chemosensor using simple synthetic protocol. The MOF 1 have been tested as a fluorescent chemosensor against nitro-aromatics (NACs) and it displayed high selectivity for 4-NT over other NACs as evident by the emission spectroscopy. The alleviation in fluorescence intensity of 1 in presence of different NACs have been explained with the help of theoretical calculations which suggested that there is occurrence of both electron and energy transfer processes, in addition to electrostatic interaction between 1 and NACs which may be responsible for the unprecedented selective alleviation in the fluorescence intensity. Also, 1 had been deployed as a photocatalyst for the degradation of methyl violet (MV) and Rhodamine B (Rh B) in aqueous solution under UV irradiation. The photocatalytic results indicated the 1 exhibit 85% photocatalytic efficiency against Rh B in 100 min, while its efficiency against MV was only 50% under the identical experimental conditions. The possible mechanism for the photocatalytic activity has been proposed using density of states (DOS) calculations.

  11. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species

    Science.gov (United States)

    Leem, Jung Woo; Kim, Seong-Ryul; Choi, Kwang-Ho; Kim, Young L.

    2018-03-01

    The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.

  12. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  13. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions.

    Science.gov (United States)

    Chen, Chia-Hsiu; Tanaka, Kenichi; Funatsu, Kimito

    2018-04-22

    The Quantitative Structure - Property Relationship (QSPR) approach was performed to study the fluorescence absorption wavelengths and emission wavelengths of 413 fluorescent dyes in different solvent conditions. The dyes included the chromophore derivatives of cyanine, xanthene, coumarin, pyrene, naphthalene, anthracene and etc., with the wavelength ranging from 250 nm to 800 nm. An ensemble method, random forest (RF), was employed to construct nonlinear prediction models compared with the results of linear partial least squares and nonlinear support vector machine regression models. Quantum chemical descriptors derived from density functional theory method and solvent information were also used by constructing models. The best prediction results were obtained from RF model, with the squared correlation coefficients [Formula: see text] of 0.940 and 0.905 for λ abs and λ em , respectively. The descriptors used in the models were discussed in detail in this report by comparing the feature importance of RF.

  14. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  15. Perovskite nanocrystals: across-dimensional attachment, film-scale assembly on a flexible substrate and their fluorescence properties

    Science.gov (United States)

    Huang, Wenyi; Liu, Jiajia; Bai, Bing; Huang, Liu; Xu, Meng; Liu, Jia; Rong, Hongpan; Zhang, Jiatao

    2018-03-01

    Perovskite nanocrystals (NCs), which are a good fluorescence candidate with excellent photoelectric properties, have opened new avenues in the fabrication of highly efficient solar cells, light-emitting diodes (LEDs), and other optoelectronic devices. Further advances will rely on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional (3D) perovskites with architectural innovations. In this work, the perovskite film was fabricated on a flexible substrate using simple dip-coating technology and 3D assemblies of perovskite NCs were obtained through an attachment process. Original perovskite NCs had a rectangular or square morphology with high particle uniformity and the narrow and symmetric fluorescence emission peak was adjustable at 515-527 nm. The controllable self-assembly of the micron size cuboid-like 3D assembly had an apparent enhancement on peak (111) in the x-ray diffraction (XRD) pattern. Surface ligands not only play a role in the attachment process but also keep the independence of each NC in 3D assemblies. Such assembly of the perovskite film maintained the original perovskite NCs fluorescence emission peak and narrow full width at the half-maximum (FWHM), which is of great importance for the investigation of future devices.

  16. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  17. Fluorescence spectroscopic studies on substituted porphyrins in homogeneous solvents and cationic micellar medium

    International Nuclear Information System (INIS)

    Phukan, Smritakshi; Mishra, Bhupendra; Chandra Shekar, K.P.; Kumar, Anil; Kumar, Dalip; Mitra, Sivaprasad

    2013-01-01

    Steady state and time-resolved fluorescence properties of porphyrin appended 1,3,4-oxadiazoles and thiazoles were described in homogeneous medium as well as in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The electron withdrawing substituent on the porphyrin moiety in both the cases make a donor–spacer–acceptor type of intramolecular photoinduced electron transfer (PET) system resulting substantial quenching in porphyrin fluorescence due to partial energy migration towards the acceptor in the excited state. The increase in fluorescence yield as well as appreciable difference in fluorescence decay behavior in aqueous buffer solution of pH 4.2 from that in chloroform solution is believed due to partial protonation of the porphyrin ring. All the investigated systems show preferential binding into the interfacial region of the micellar sub-domain with varying degree of penetration depending on the nature of the substituent. Almost 2–4 fold increase in fluorescence yield for the probes is explained on the basis of restricted flexibility and corresponding decrease in total nonradiative rate inside the micellar interface layer. - Highlights: ► Synthesis and detail fluorescence studies of a series of porphyrin appended 1,3,4-oxadiazoles and thiazoles. ► Comparison of homogeneous solvent study with that in CTAB. ► Substantial porphyrin fluorescence quenching in donor–spacer–acceptor type system. ► Preferential binding of the substituted porphyrins in micellar sub-domain. ► Appreciable increase in fluorescence yield in micellar interface layer is due to decrease in total nonradiative rate.

  18. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  19. A “turn-on” fluorescent microbead sensor for detecting nitric oxide

    Directory of Open Access Journals (Sweden)

    Yang LH

    2014-12-01

    Full Text Available Lan-Hee Yang,1,2 Dong June Ahn,3 Eunhae Koo1 1Advanced Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul, Republic of Korea; 2Department of Biomicrosystem Technology, Korea University, Seoul, Republic of Korea; 3Departments of Biomicrosystem Technology, Chemical & Biological Engineering, KU-KIST Graduate School, Korea University, Seoul, Republic of Korea Abstract: Nitric oxide (NO is a messenger molecule involved in numerous physical and pathological processes in biological systems. Therefore, the development of a highly sensitive material able to detect NO in vivo is a key step in treating cardiovascular and a number of types of cancer-related diseases, as well as neurological dysfunction. Here we describe the development of a fluorescent probe using microbeads to enhance the fluorescence signal. Microbeads are infused with the fluorophore, dansyl-piperazine (Ds-pip, and quenched when the fluorophore is coordinated with a rhodium (Rh-complex, ie, Rh2(AcO-4(Ds-pip. In contrast, they are able to fluoresce when the transition-metal complex is replaced by NO. To confirm the “on/off” mechanism for detecting NO, we investigated the structural molecular properties using the Fritz Haber Institute ab initio molecular simulations (FHI-AIMS package. According to the binding energy calculation, NO molecules bind more strongly and rapidly with the Rh-core of the Rh-complex than with Ds-pip. This suggests that NO can bond strongly with the Rh-core and replace Ds-pip, even though Ds-pip is already near the Rh-core. However, the recovery process takes longer than the quenching process because the recovery process needs to overcome the energy barrier for formation of the transition state complex, ie, NO-(AcO-4-(Ds-pip. Further, we confirm that the Rh-complex with the Ds-pip structure has too small an energy gap to give off visible light from the highest unoccupied molecular orbital/lowest unoccupied molecular

  20. Effect of Solvation on Electron Detachment and Excitation Energies of a Green Fluorescent Protein Chromophore Variant.

    Science.gov (United States)

    Bose, Samik; Chakrabarty, Suman; Ghosh, Debashree

    2016-05-19

    Hybrid quantum mechanics/molecular mechanics (QM/MM) is applied to the fluorinated green fluorescent protein (GFP) chromophore (DFHBDI) in its deprotonated form to understand the solvatochromic shifts in its vertical detachment energy (VDE) and vertical excitation energy (VEE). This variant of the GFP chromophore becomes fluorescent in an RNA environment and has a wide range of applications in biomedical and biochemical fields. From microsolvation studies, we benchmark (with respect to full QM) the accuracy of our QM/MM calculations with effective fragment potential (EFP) as the MM method of choice. We show that while the solvatochromic shift in the VEE is minimal (0.1 eV blue shift) and its polarization component is only 0.03 eV, the effect of the solvent on the VDE is quite large (3.85 eV). We also show by accurate calculations on the solvatochromic shift of the VDE that polarization accounts for ∼0.23 eV and therefore cannot be neglected. The effect of the counterions on the VDE of the deprotonated chromophore in solvation is studied in detail, and a charge-smearing scheme is suggested for charged chromophores.

  1. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  2. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  3. Photosynthetic complex LH2 – Absorption and steady state fluorescence spectra

    International Nuclear Information System (INIS)

    Zapletal, David; Heřman, Pavel

    2014-01-01

    Nowadays, much effort is devoted to the study of photosynthesis which could be the basis for an ideal energy source in the future. To be able to create such an energy source – an artificial photosynthetic complex, the first step is a detailed understanding of the function of photosynthetic complexes in living organisms. Photosynthesis starts with the absorption of a solar photon by one of the LH (light-harvesting) pigment–protein complexes and transferring the excitation energy to the reaction center where a charge separation is initiated. The geometric structure of some LH complexes is known in great detail, e.g. for the LH2 complexes of purple bacteria. For understanding of photosynthesis first stage efficiency, it is necessary to study especially optical properties of LH complexes. In this paper we present simulated absorption and steady-state fluorescence spectra for ring molecular system within full Hamiltonian model. Such system can model bacteriochlorophyll ring of peripheral light-harvesting complex LH2 from purple bacterium Rhodopseudomonas acidophila (Rhodoblastus acidophilus). Dynamic disorder (coupling with phonon bath) simultaneously with uncorrelated static disorder (transfer integral fluctuations) is used in our present simulations. We compare and discuss our new results with our previously published ones and of course with experimental data. - Highlights: • We model absorption and steady state fluorescence spectra for B850 ring from LH2. • Fluctuations of environment is modelled by static and dynamic disorder. • Full Hamiltonian model is compared with the nearest neighbour approximation one. • Simulated fluorescence spectrum is compared with experimental data

  4. Characterization of Roman glass tesserae from the Coriglia excavation site (Italy) via energy-dispersive X-ray fluorescence spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Donais, Mary Kate; Sparks, Andrew; Redente, Monica [Saint Anselm College, Department of Chemistry, Manchester, NH (United States); Pevenage, Jolien van; Moens, Luc; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Ghent (Belgium); George, David B. [Saint Anselm College, Department of Classics, Manchester, NH (United States); Vandenabeele, Peter [Ghent University, Department of Archaeology, Ghent (Belgium)

    2016-12-15

    The combined use of handheld energy-dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and micro-energy-dispersive X-ray fluorescence spectrometry permitted the characterization of Roman glass tesserae excavation from the Coriglia (Italy) archeological site. Analyses of ten different glass colors were conducted as spot analyses on intact samples and as both spot analyses and line scans on select cross-sectioned samples. The elemental and molecular information gained from these spectral measurements allowed for the qualitative chemical characterization of the bulk glass, decolorants, opacifiers, and coloring agents. The use of an antimony opacifier in many of the samples supports the late Imperial phasing as determined through numismatic, fresco, ceramics, and architectural evidence. And dealinization of the exterior glass layers caused by the burial environment was confirmed. (orig.)

  5. Escape probabilities for fluorescent x-rays

    International Nuclear Information System (INIS)

    Dance, D.R.; Day, G.J.

    1985-01-01

    Computation of the energy absorption efficiency of an x-ray photon detector involves consideration of the histories of the secondary particles produced in any initial or secondary interaction which may occur within the detector. In particular, the K or higher shell fluorescent x-rays which may be emitted following a photoelectric interaction can carry away a large fraction of the energy of the incident photon, especially if this energy is just above an absorption edge. The effects of such photons cannot be ignored and a correction term, depending upon the probability that the fluorescent x-rays will escape from the detector, must be applied to the energy absorption efficiency. For detectors such as x-ray intensifying screens, it has been usual to calculate this probability by numerical integration. In this note analytic expressions are derived for the escape probability of fluorescent photons from planar detectors in terms of exponential integral functions. Rational approximations for these functions are readily available and these analytic expressions therefore facilitate the computation of photon absorption efficiencies. A table is presented which should obviate the need for calculating the escape probability for most cases of interest. (author)

  6. Fluorescent analysis of interaction of flavonols with hemoglobin and bovine serum albumin

    Science.gov (United States)

    Sentchouk, V. V.; Bondaryuk, E. V.

    2007-09-01

    We have studied the fluorescent properties of flavonols (quercetin, fisetin, morin, rutin) with the aim of studying possible interaction with hemoglobin and bovine serum albumin (BSA). We observed an increase in the intensity of intrinsic fluorescence for all the flavonols except rutin in the presence of BSA. From the changes in the fluorescence spectra, we concluded that tautomeric forms are formed on interaction with hemoglobin. We determined the interconnection between the structure of related flavonols and their fluorescent properties on interaction with proteins, and we determined the binding constants for binding with BSA and hemoglobin.

  7. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment.

    Science.gov (United States)

    Khattab, Tawfik A; Rehan, Mohamed; Hamouda, Tamer

    2018-09-01

    Smart clothing can be defined as textiles that respond to a certain stimulus accompanied by a change in their properties. A specific class herein is the photochromic and fluorescent textiles that change color with light. A photochromic and fluorescent cotton fabric based on pigment printing is obtained. Such fabric is prepared by aqueous-based pigment-binder printing formulation containing inorganic pigment phosphor characterized by good photo- and thermal stability. It exhibits optimal excitation wavelength (365 nm) results in color and fluorescence change of the fabric surface. To prepare the transparent pigment-binder composite film, the phosphor pigment must be well-dispersed via physical immobilization without their aggregation. The pigment-binder paste is applied successfully onto cotton fabric using screen printing technique followed by thermal fixation. After screen-printing, a homogenous photochromic film is assembled on a cotton substrate surface, which represents substantial greenish-yellow color development as indicated by CIE Lab color space measurements under ultraviolet light, even at a pigment concentration of 0.08 wt% of the printing paste. The photochromic cotton fabric exhibit three excitation peaks at 272, 325 and 365 nm and three emission peaks at 418, 495 and 520 nm. The fluorescent optical microscope, scanning electron microscope, elemental mapping, energy dispersive X-ray spectroscopy, fluorescence emission and UV/Vis absorption spectroscopic data of the printed cotton fabric are described. The printed fabric showed a reversible and rapid photochromic response during ultra-violet excitation without fatigue. The fastness properties including washing, crocking, perspiration, sublimation/heat, and light are described. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    Science.gov (United States)

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  9. Two-photon fluorescent polysiloxane-based films with thermally responsive self switching properties achieved by a unique reversible spirocyclization mechanism.

    Science.gov (United States)

    Zuo, Yujing; Yang, Tingxin; Zhang, Yu; Gou, Zhiming; Tian, Minggang; Kong, Xiuqi; Lin, Weiying

    2018-03-14

    Responsiveness and reversibility are present in nature, and are ubiquitous in biological systems. The realization of reversibility and responsiveness is of great importance in the development of properties and the design of new materials. However, two-photon fluorescent thermal-responsive materials have not been reported to date. Herein, we engineered thermally responsive polysiloxane materials ( Dns-non ) that exhibited unique two-photon luminescence, and this is the first report about thermally responsive luminescent materials with two-photon fluorescence. The fluorescence of Dns-non could switch from the "on" to "off" state through a facile heating and cooling process, which could be observed by the naked eye. Monitoring the temperature of the CPU in situ was achieved by easily coating D1-non onto the CPU surface, which verified the potential application in devices of Dns-non . A unique alkaline tuned reversible transition mechanism of rhodamine-B from its spirocyclic to its ring-open state was proposed. Furthermore, Dns-non appeared to be a useful cell adhesive for the culture of cells on the surface. We believe that the constructed thermally responsive silicon films which have promising utilization as a new type of functional fluorescent material, may show broad applications in materials chemistry or bioscience.

  10. Instrumentation and Fluorescent Chemistries Used in qPCR

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Löfström, Charlotta; Hansen, Trine

    2012-01-01

    will be discussed from a user perspective leading to an instrument selection guide. Differences between fluorescent DNA binding dyes and target-specific fluorescently labeled primers or probes for detection of amplicon accumulation will be discussed, along with the properties and applications of the most frequently...

  11. Controllable synthesis and characterization of highly fluorescent silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Junlin [Nanjing Normal University, School of Chemistry and Materials Science (China); An Xueqing, E-mail: anxueqin@ecust.edu.cn [East China University of Science and Technology, School of Chemistry and Molecular Engineering (China); Zhu Yinyan [Nanjing Normal University, School of Chemistry and Materials Science (China)

    2012-12-15

    Highly fluorescent silver nanoparticles (AgFNPs) have been prepared by microemulsion method and the sizes of AgFNPs were controlled by altering the molar ratio ({omega}) of water-to-surfactant in the water-in-oil microemulsion. The results were shown that the AgFNPs sizes increased with incremental molar ratio ({omega}) of water-to-surfactant. The AgFNPs have been characterized by transmission electron microscopy, dynamic light scattering, fluorescence and absorption spectroscopy, and fluorescence lifetime study. Study of the spectral characteristics was shown that the absorbance of AgFNPs increased significantly with the {omega}, and linear relationship between absorbance and the size of AgFNPs was observed. The increase of AgFNPs size caused a red shift of maximum absorption wavelength in the UV-Vis spectra, and the relationship between maximum absorption wavelength and AgFNPs size appeared linear dependence. The maximum fluorescence emission wavelength did not shift with the change of particles size, but the emission intensity increases with the {omega}. The results were shown that the other factors to affect the fluorescence properties of AgFNPs were the surface properties and microstructure, except the AgFNPs size. These surface properties depend upon the stabilizing agent, reactant concentration, and solvents and so on.

  12. A porous cadmium(II) framework. Synthesis, crystal structure, gas adsorption, and fluorescence sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Pingping [College of Sciences, Agricultural University of Hebei, Baoding (China)

    2017-05-18

    The Cd{sup II} compound, namely [Cd(Tppa)(SO{sub 4})(H{sub 2}O)]{sub n} (1) [Tppa = tris(4-(pyridyl)phenyl) amine], was synthesized by the reaction of CdSO{sub 4}.8H{sub 2}O and Tppa under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D inorganic -[Cd-SO{sub 4}-Cd]{sub n}- chains. Topological analysis reveals that compound 1 represents a trinodal (3,4,6)-connected topological network with the point symbol of {6.7"2}{sub 2}{6"4.7.10}{6"4.7"5.8"4.10"2}. Gas adsorption properties investigations indicate that compound 1 exhibits moderate adsorption capacities for light hydrocarbons at room temperature. Luminescence property studies revealed that this Cd{sup II} compound exhibits high fluorescence sensitivity for sensing of CS{sub 2} molecule. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions.

    Science.gov (United States)

    Itaka, Keiji; Harada, Atsushi; Nakamura, Kozo; Kawaguchi, Hiroshi; Kataoka, Kazunori

    2002-01-01

    The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.

  14. Two-photon excited fluorescence microscopy application for ex vivo investigation of ocular fundus samples

    Science.gov (United States)

    Peters, Sven; Hammer, Martin; Schweitzer, Dietrich

    2011-07-01

    Two-photon excited fluorescence (TPEF) imaging of ocular tissue has recently become a promising tool in ophthalmology for diagnostic and research purposes. The feasibility and the advantages of TPEF imaging, namely deeper tissue penetration and improved high-resolution imaging of microstructures, have been demonstrated lately using human ocular samples. The autofluorescence properties of endogenous fluorophores in ocular fundus tissue are well known from spectrophotometric analysis. But fluorophores, especially when it comes to fluorescence lifetime, typically display a dependence of their fluorescence properties on local environmental parameters. Hence, a more detailed investigation of ocular fundus autofluorescence ideally in vivo is of utmost interest. The aim of this study is to determine space-resolved the stationary and time-resolved fluorescence properties of endogenous fluorophores in ex vivo porcine ocular fundus samples by means of two-photon excited fluorescence spectrum and lifetime imaging microscopy (FSIM/FLIM). By our first results, we characterized the autofluorescence of individual anatomical structures of porcine retina samples excited at 760 nm. The fluorescence properties of almost all investigated retinal layers are relatively homogenous. But as previously unknown, ganglion cell bodies show a significantly shorter fluorescence lifetime compared to the adjacent mueller cells. Since all retinal layers exhibit bi-exponential autofluorescence decays, we were able to achieve a more precise characterization of fluorescence properties of endogenous fluorophores compared to a present in vivo FLIM approach by confocal scanning laser ophthalmoscope (cSLO).

  15. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    International Nuclear Information System (INIS)

    Yuan, Qi; Liu, Bing

    2005-01-01

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d"1"0 metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d"1"0 coordination dimer [Ag_2(Iso)_2(NO_3)_2

  16. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    Science.gov (United States)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  17. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  18. Sub-threshold excited Cl Kβ (K-V) x-ray fluorescence from CF3Cl molecule

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Cowan, P.L.; Lindle, D.W.; LaVilla, R.E.

    1987-10-01

    With the availability of tunable synchrotron radiation sources, unoccupied molecular orbits (below vacuum level) can be selectively populated producing highly excited neutral molecules. X-ray fluorescence spectra from molecules were obtained with excitation below the ionization threshold and were observed to have significant intensity changes, absolute and relative energy position shifts and line width changes as compared to fluorescence spectra excited above the threshold. As an example, the Cl Kβ (K-V) emission spectra from CF 3 Cl vapor are presented. The energy shifts and intensity changes are explained in terms of perturbation effects due to the presence of an electron in an unoccupied molecular orbital. The narrow line widths obtained in the spectra excited below threshold are explained in terms of the ''effective'' hole production region in a core state limited by the broadening of the unoccupied level. The change in line widths as a function of below-threshold excitation energy is proposed as a novel technique to study the localized properties and reorganization effects of a hole in a core level. 10 refs., 4 figs., 1 tab

  19. Fluorescence studies of Rhodamine 6G functionalized silicon oxide nanostructures

    International Nuclear Information System (INIS)

    Baumgaertel, Thomas; Borczyskowski, Christian von; Graaf, Harald

    2010-01-01

    Selective anchoring of optically active molecules on nanostructured surfaces is a promising step towards the creation of nanoscale devices with new functionalities. Recently we have demonstrated the electrostatic attachment of charged fluorescent molecules on silicon oxide nanostructures prepared by atomic force microscopy (AFM) nanolithography via local anodic oxidation (LAO) of dodecyl-terminated silicon. In this paper we report on our findings from a more detailed optical investigation of the bound dye Rhodamine 6G. High sensitivity optical wide field microscopy as well as confocal laser microscopy have been used to characterize the Rhodamine fluorescence emission. A highly interesting question concerns the interaction between an emitter close to a silicon surface because mechanisms such as energy transfer and fluorescence quenching will occur which are still not fully understood. Since the oxide thickness can be varied during preparation continuously from 1 to ∼ 5 nm, it is possible to investigate the fluorescence of the bound dye in close proximity to the underlying silicon. Using confocal laser microscopy we were also able to obtain optical spectra from the bound molecules. Together with the results from an analysis of their photochemical bleaching behaviour, we conjecture that some of the Rhodamine 6G molecules on the structure are interacting with the oxide, causing a spectral shift and differences in their photochemical properties.

  20. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C

    2017-11-28

    Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

  1. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging

    Science.gov (United States)

    Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle

    2011-09-01

    The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.

  2. Market response to the public display of energy performance rating at property sales

    International Nuclear Information System (INIS)

    Jensen, Ole Michael; Hansen, Anders Rhiger; Kragh, Jesper

    2016-01-01

    Energy labels have generally received positive response from consumers and have moved the market for white goods and cars in the direction of more energy-efficient products. On the real estate market, it was expected that an energy label, rating the energy performance of a property based on a national energy performance certificate (EPC) might receive similar response. However, in Denmark no response to the energy performance rating was observed for 15 years. This was a surprise considering that Denmark was the first country to implement an A to G rating of the energy performance of buildings. A statistical examination of data on property sales prices and energy performance ratings was carried out. All relevant property transaction data from 2007 till 2012 were examined and they showed that energy performance ratings had an impact on property sales prices. However, before June 2010, the impact was modest, whereas after June 2010 the impact of energy performance ratings on property sales prices increased significantly as a result of an EU requirement to display the energy performance rating in connection with property sales. On this background, it was concluded that a public display of the energy performance rating is fundamental for market response. - Highlights: •Energy performance ratings of buildings have an impact on property sales prices. •A statistical examination shows that since 2010 sales prices reflect energy performance. •Mandatory display of the rating prescribed by EU Directive was decisive. •The positive market response will be an incentive for energy upgrading of the property.

  3. Identification of new fluorescence processes in the UV spectra of cool stars from new energy levels of Fe II and Cr II

    Science.gov (United States)

    Johansson, Sveneric; Carpenter, Kenneth G.

    1988-01-01

    Two fluorescence processes operating in atmospheres of cool stars, symbiotic stars, and the Sun are presented. Two emission lines, at 1347.03 and 1360.17 A, are identified as fluorescence lines of Cr II and Fe II. The lines are due to transitions from highly excited levels, which are populated radiatively by the hydrogen Lyman alpha line due to accidental wavelength coincidences. Three energy levels, one in Cr II and two in Fe II, are reported.

  4. Luminescence properties and energy transfer investigations of Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-01-01

    Highlights: • A phosphor Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce"3"+ to Tb"3"+ ions was illustrated in detail. • Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce"3"+ or Tb"3"+ doped and Ce"3"+/Tb"3"+ co-doped Sr_3Lu(PO_4)_3 phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce"3"+ single doping is 4 mol% with maximal fluorescence intensity. The Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor shows both a blue emission (428 nm) from Ce"3"+ and a yellowish-green emission (545 nm) from Tb"3"+ with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce"3"+ to Tb"3"+ ions takes place in the Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce"3"+ to Tb"3"+ ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  5. Improving the spectral analysis of Fluorescence Resonance Energy Transfer in live cells: application to interferon receptors and Janus kinases.

    Science.gov (United States)

    Krause, Christopher D; Digioia, Gina; Izotova, Lara S; Pestka, Sidney

    2013-10-01

    The observed Fluorescence Resonance Energy Transfer (FRET) between fluorescently labeled proteins varies in cells. To understand how this variation affects our interpretation of how proteins interact in cells, we developed a protocol that mathematically separates donor-independent and donor-dependent excitations of acceptor, determines the electromagnetic interaction of donors and acceptors, and quantifies the efficiency of the interaction of donors and acceptors. By analyzing large populations of cells, we found that misbalanced or insufficient expression of acceptor or donor as well as their inefficient or reversible interaction influenced FRET efficiency in vivo. Use of red-shifted donors and acceptors gave spectra with less endogenous fluorescence but produced lower FRET efficiency, possibly caused by reduced quenching of red-shifted fluorophores in cells. Additionally, cryptic interactions between jellyfish FPs artefactually increased the apparent FRET efficiency. Our protocol can distinguish specific and nonspecific protein interactions even within highly constrained environments as plasma membranes. Overall, accurate FRET estimations in cells or within complex environments can be obtained by a combination of proper data analysis, study of sufficient numbers of cells, and use of properly empirically developed fluorescent proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  7. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  8. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  9. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  10. Influence of optical properties of esthetic brackets (color, translucence, and fluorescence) on visual perception.

    Science.gov (United States)

    Lopes Filho, Hibernon; Maia, Lúcio E G; Araújo, Marcus Vinicius A; Ruellas, Antônio Carlos O

    2012-04-01

    The aims of this study were to evaluate the optical properties of esthetic brackets and determine their influence on visual perception. Eighty esthetic brackets of 16 commercial brands were tested. The color and translucency of the brackets, as well as the color of the maxillary central incisors of 40 subjects, were measured with a spectrophotometer. The fluorescence of the brackets was determined by duly calibrated appraisers. The color differences between the brands of brackets and the teeth were calculated. Data were analyzed by using 1-way analysis of variance; the Scheffé multiple comparison test was used to establish the difference between brands of brackets, (α = 0.05). The color parameters L ∗ a ∗ b ∗ of nontranslucent brackets ranged from 49.4 to 86.0, -1.6 to 3.0, and 1.9 to 14.6, respectively. The direct transmission of light ranged from 0.0% to 38.8% transmittance. No bracket showed fluorescence. The color and translucency, as well as the color difference, of the brackets were influenced by brand (P perception; translucent brackets and the nontranslucent InVu (TP Orthodontics, LaPorte, Ind) brackets were less visually perceptible. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Fluorescence properties of the anti-tumour alkaloid luotonin A and new synthetic analogues: pH modulation as an approach to their fluorimetric quantitation in biological samples

    International Nuclear Information System (INIS)

    González-Ruiz, Víctor; González-Cuevas, Yamisley; Arunachalam, Sankaralingam; Martín, M. Antonia; Olives, Ana I.; Ribelles, Pascual; Ramos, M. Teresa; Menéndez, J. Carlos

    2012-01-01

    Luotonin A is an alkaloid structurally related to the natural anti-tumour agent camptothecin. The fluorescence behaviour of luotonin A and a series of six analogues is described in the present work. The influence of solvent polarity and pH on the native fluorescence properties of these alkaloids was studied, finding that in organic solvents or in aqueous solutions (pH 5.5–7.2) the neutral form of the luotonin derivatives emit in the region of 410–450 nm but, in both media, acidification to pH values below 3.0 causes a new emission band to appear at about 500 nm. An ESPT reaction occurs due to the protonation of the basic nitrogen atoms of the pentacyclic ring. Acid-base titrations of luotonin A and its derivatives in aqueous and acetonitrile media were carried out in order to determine their pK a ⁎ values which were around 2, showing these compounds to be very weak bases. In aqueous media, the absence of an iso-emissive point in the emission spectra suggests the existence of more than two species in the proton transfer equilibria. The basicity of the luotonin A derivatives is increased in organic media, and a good correlation between the pK a ⁎ values and the chemical structure was found. The protonation of luotonin A was also studied by 1 H-NMR and 13 C-NMR experiments, which proved the protonation of the nitrogen atoms at the positions 5 and 6 of the pentacyclic ring. The fluorescence quantum yields were determined in ethanol and in aqueous solutions under neutral and acidic conditions. The fluorescence quantum yields were higher in water for the case of the more polar compounds, and the opposite result was obtained for the more hydrophobic ones. The remarkable and interesting fluorescence properties of luotonin A prompted the development of its fluorimetric analytical quantitation, obtaining very good analytical features. - Highlights: ► This is the first study on the fluorescence properties of luotonin A analogues. ► Fluorescence and NMR experiments

  12. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  13. Design of remote laser-induced fluorescence system's acquisition circuit

    Science.gov (United States)

    Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.

  14. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We

  15. Effects of aging and HEMA content on the translucency, fluorescence, and opalescence properties of experimental HEMA-added glass ionomers.

    Science.gov (United States)

    Lee, Yong-Keun; Yu, Bin; Zhao, Guang-Feng; Lim, Jin Ik

    2010-01-01

    Changes in the translucency, fluorescence, and opalescence of experimental 10-50% 2-hydroxyethyl methacrylate (HEMA)-added glass ionomers (HAGIs) after 5,000 cycles of thermocycling were determined and compared with those of commercial resin-modified glass ionomers (RMGIs). Changes in the translucency (TP), fluorescence (FL), and opalescence (OP) parameters were in the range of -3.5 to 0.2, -2.3 to 0.3 and -2.6 to 9.1 units respectively for HAGIs; and -0.9 to 0.3, -0.7 to 0.6, and 1.1 to 2.3 units respectively for RMGIs. Changes in the TP, FL, and OP of HAGIs were influenced by the HEMA content and powder shade, and were generally larger than those of RMGIs. Since the changes in TP, FL, and OP of experimental HAGIs were influenced by the HEMA content, there arises a need to determine the optimal HEMA ratio to attain high stability for these optical properties. In addition, results of this study showed that apart from optimal HEMA ratio, future studies should include other aspects and factors that contribute to age-dependent changes in optical properties.

  16. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  17. Preparation of polymer–rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    International Nuclear Information System (INIS)

    Gao Baojiao; Zhang Wei; Zhang Zhengguo; Lei Qingjuan

    2012-01-01

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer–rare earth complex, SAPS–Eu(III), was prepared. The structure of SAPS–Eu(III) was characterized, and the fluorescence properties of SAPS–Eu(III) were mainly investigated. The experimental results show that the complex SAPS–Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu 3+ ion, and it enables the complex SAPS–Eu(III) to produce the apparent “Antenna Effect”. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS–Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS–Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu 3+ ion is equal to 10, and here the binary intrachain complex SAPS–Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS–Eu(III)–Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu 3+ ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS–Eu(III). - Highlights: ► We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. ► The polymer-rare earth complex, SAPS–Eu(III), was prepared and a stronger “antenna effect” was produced. ► For the intramolecular complex SAPS–Eu(III), the apparent

  18. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics. Copyright © 2014 Wiley Periodicals, Inc.

  19. A polarizable embedding DFT study of one-photon absorption in fluorescent proteins

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn H.; Kongsted, Jacob

    2013-01-01

    mutants (BFP, eGFP, YFP and eCFP). The observed trends in excitation energies among the FPs are reproduced by our approach when performing calculations directly on the crystal structures or when using structures extracted from a molecular dynamics simulations. However, in the former case, QM/MM geometry......A theoretical study of the one-photon absorption of five fluorescent proteins (FPs) is presented. The absorption properties are calculated using a polarizable embedding approach combined with density functional theory (PE-DFT) on the wild-type green fluorescent protein (wtGFP) and several of its...... optimization of the chromophores within a frozen protein environment is needed in order to reproduce the experimental trends. Explicit account of polarization in the force field is not needed to yield the correct trend between the different FPs, but is necessary for reproducing the experimentally observed red...

  20. Hydrogen bond strengthening induces fluorescence quenching of PRODAN derivative by turning on twisted intramolecular charge transfer

    Science.gov (United States)

    Yang, Yonggang; Li, Donglin; Li, Chaozheng; Liu, YuFang; Jiang, Kai

    2017-12-01

    Researchers have proposed different effective mechanisms of hydrogen bonding (HB) on the fluorescence of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and its derivatives. Herein, excited state transition and dynamics analysis confirm that the fluorescence of PD (a derivative of PRODAN with ethyl replaced by 3-hydroxy-2,2-dimethylpropan) emits from the planar intramolecular charge transfer (PICT) state rather than twist ICT (TICT) state, because the fluorescence emission and surface hopping from the TICT state to the twist ground (T-S0) state is energy forbidden. Nevertheless, the strengthening of intramolecular-HB (intra-HB) and intermolecular-HB (inter-HB) of PD-(methanol)2 smooth the pathway of surface hopping from TICT to T-S0 state and the external conversion going to planar ground state by decreasing the energy difference of the two states. This smoothing changes the fluorescence state of PD-(methanol)2 to the TICT state in which fluorescence emission does not occur but surface hopping, leading to the partial fluorescence quenching of PD in methanol solvent. This conclusion is different from previous related reports. Moreover, the inter-HB strengthening of PD-methanol in PICT state induces the cleavage of intra-HB and a fluorescence red-shift of 54 nm compared to PD. This red-shift increases to 66 nm for PD-(methanol)2 for the strengthening of the one intra-HB and two inter-HBs. The dipole moments of PD-methanol and PD-(methanol)2 respectively increase about 10.3D and 8.1D in PICT state compared to PD. The synergistic effect of intra-HB and inter-HB induces partial quenching of PD in methanol solvent by turning on the TICT state and fluorescence red-shift. This work gives a reasonable description on the fluorescence red-shift and partial quenching of PD in methanol solvent, which will bring insight into the study of spectroscopic properties of molecules owning better spectral characteristics.

  1. Homogeneous competitive assay of ligand affinities based on quenching fluorescence of tyrosine/tryptophan residues in a protein via Főrster-resonance-energy-transfer

    Science.gov (United States)

    Xie, Yanling; Yang, Xiaolan; Pu, Jun; Zhao, Yunsheng; Zhang, Ying; Xie, Guoming; Zheng, Jun; Yuan, Huidong; Liao, Fei

    2010-11-01

    A new homogeneous competitive assay of ligand affinities was proposed based on quenching the fluorescence of tryptophan/tyrosine residues in a protein via Főrster-resonance-energy-transfer using a fluorescent reference ligand as the acceptor. Under excitation around 280 nm, the fluorescence of a protein or a bound acceptor was monitored upon competitive binding against a nonfluorescent candidate ligand. Chemometrics for deriving the binding ratio of the acceptor with either fluorescence signal was discussed; the dissociation constant ( Kd) of a nonfluorescent candidate ligand was calculated from its concentration to displace 50% binding of the acceptor. N-biotinyl-N'-(1-naphthyl)-ethylenediamine (BNEDA) and N-biotinyl-N'-dansyl-ethylenediamine (BDEDA) were used as the reference ligands and acceptors to streptavidin to test this new homogeneous competitive assay. Upon binding of an acceptor to streptavidin, there were the quench of streptavidin fluorescence at 340 nm and the characteristic fluorescence at 430 nm for BNEDA or at 525 nm for BDEDA. Kd of BNEDA and BDEDA was obtained via competitive binding against biotin. By quantifying BNEDA fluorescence, Kd of each tested nonfluorescent biotin derivative was consistent with that by quantifying streptavidin fluorescence using BNEDA or BDEDA as the acceptor. The overall coefficients of variation were about 10%. Therefore, this homogeneous competitive assay was effective and promising to high-throughput-screening.

  2. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the Northwestern Mediterranean Sea (Bay of Marseilles, France)

    Science.gov (United States)

    Para, J.; Coble, P. G.; Charrière, B.; Tedetti, M.; Fontana, C.; Sempéré, R.

    2010-07-01

    Seawater samples were collected in surface waters (2 and 5 m depths) of the Bay of Marseilles (Northwestern Mediterranean Sea; 5°17'30'' E, 43°14'30'' N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m-1) with in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm-1) in summer than in fall and winter periods (0.017 ± 0.002 nm-1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30-21.94 QSU) and marine humic-like component (peak M; 0.55-5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34-2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events may reach Marseilles Bay within 2-3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peak C). Besides Rhône River plumes, mixing events of the entire water column injected humic (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties, within the

  3. Temperature and humidity dependence of air fluorescence yield measured by AIRFLY

    International Nuclear Information System (INIS)

    Ave, M.; Bohacova, M.; Buonomo, B.; Busca, N.; Cazon, L.; Chemerisov, S.D.; Conde, M.E.; Crowell, R.A.; Di Carlo, P.; Di Giulio, C.; Doubrava, M.; Esposito, A.; Facal, P.; Franchini, F.J.; Hoerandel, J.; Hrabovsky, M.; Iarlori, M.; Kasprzyk, T.E.; Keilhauer, B.

    2008-01-01

    The fluorescence detection of ultra high energy cosmic rays requires a detailed knowledge of the fluorescence light emission from nitrogen molecules over a wide range of atmospheric parameters, corresponding to altitudes typical of the cosmic ray shower development in the atmosphere. We have studied the temperature and humidity dependence of the fluorescence light spectrum excited by MeV electrons in air. Results for the 313.6, 337.1, 353.7 and 391.4 nm bands are reported in this paper. We found that the temperature and humidity dependence of the quenching process changes the fluorescence yield by a sizeable amount (up to 20% for the temperature dependence in the 391.4 nm band) and its effect must be included for a precise estimation of the energy of ultra high energy cosmic rays.

  4. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    Science.gov (United States)

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  5. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    OpenAIRE

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photo...

  6. Low-energy properties of fractional helical Luttinger liquids

    NARCIS (Netherlands)

    Meng, T.; Fritz, L.|info:eu-repo/dai/nl/371569559; Schuricht, D.|info:eu-repo/dai/nl/369284690; Loss, D.

    2014-01-01

    We investigate the low-energy properties of (quasi) helical and fractional helical Luttinger liquids. In particular, we calculate the Drude peak of the optical conductivity, the density of states, as well as charge transport properties of the interacting system with and without attached Fermi liquid

  7. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  8. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus

    2006-01-01

    to investigate the contribution of biomass incineration to air quality, energy-dispersive x-ray fluorescence (EDXRF) analysis was performed on aerosol particles sampled in the centre of the small city of Växjö. PM2.5 and PM2.5-10 fractions were sampled with the special aim of determining the contribution...

  9. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  10. Intense fluorescence of Au 20

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chongqi; Harbich, Wolfgang; Sementa, Luca; Ghiringhelli, Luca; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Brune, Harald

    2017-08-21

    Ligand-protected Au clusters are non-bleaching fluorescence markers in bio- and medical applications. We show that their fluorescence is an intrinsic property of the Au cluster itself. We find a very intense and sharp fluorescence peak located at λ =739.2 nm (1.68 eV) for Au20 clusters in a Ne matrix held at 6 K. The fluorescence reflects the HOMO-LUMO diabatic bandgap of the cluster. The cluster shows a very rich absorption fine structure reminiscent of well defined molecule-like quantum levels. These levels are resolved since Au20 has only one stable isomer (tetrahedral), therefore our sample is mono-disperse in cluster size and conformation. Density-functional theory (DFT) and time-dependent DFT calculations clarify the nature of optical absorptionand predict both main absorption peaks and intrinsic fluorescence in good agreement with experiment.

  11. A light diet for a giant appetite: An assessment of China's fluorescent lamp standard

    International Nuclear Information System (INIS)

    Lin Jiang

    2005-01-01

    Lighting has been one of the fastest growing electric end uses in China over the last 20 years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting needs. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8-T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through energy efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's 2003 minimum efficiency standard for linear fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and greenhouse gas emissions

  12. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids.

    Science.gov (United States)

    Lan, Jing; Zou, Hong Yan; Wang, Qiang; Zeng, Ping; Li, Yuan Fang; Huang, Cheng Zhi

    2016-12-01

    An ultra-sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer in the BSA-stabilized gold nanoclusters/amino-functionalized graphene oxide (BSA-AuNCs/NH 2 -GO) hybrids was successfully realized. The BSA-AuNCs containing amounts of carboxyl groups could be absorbed on the surface of NH 2 -GO through the electrostatic interaction, which resulted in the fluorescence quenching of BSA-AuNCs with high efficiency. However, heparin, possessing high density of negative charge, could compete with BSA-AuNCs to bind NH 2 -GO and block the energy transfer from BSA-AuNCs to NH 2 -GO. The fluorescence recovery of BSA-AuNCs was closely related to the amount of heparin and there was a good linear relationship between fluorescence recovery of BSA-AuNCs and heparin over the range of 100ng/mL to 30μg/mL with a detection limit of 40ng/mL. What's more, the fluorescence assay was successfully applied for heparin sensing in human serums and intracellular imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Phosphorescence and delayed fluorescence properties of fluorone dyes in bio-related films

    International Nuclear Information System (INIS)

    Penzkofer, A.; Tyagi, A.; Slyusareva, E.; Sizykh, A.

    2010-01-01

    Graphical abstract: The spectral and temporal phosphorescence and delayed fluorescence behaviour of five fluorescein dyes in gelatine, starch, and chitosan is studied and basic parameters are determined. Research highlights: → Phosphorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Phosphorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → General theory of short-pulse excited phosphorescence and delayed fluorescence is presented and relevant parameters are extracted. - Abstract: The phosphorescence and delayed fluorescence behaviour of the fluorone dyes disodium fluorescein (FL, uranine), 4,5-dibromofluorescein (DBF), eosin Y (EO), erythrosine B (ER), and rose bengal (RB) in bio-films of gelatine, starch, and chitosan at room temperature is studied. Phosphorescence and delayed fluorescence quantum yields and lifetimes were measured. The singlet-triplet dynamics is described and applied to the fluorone dyes for parameter extraction. For uranine films at room temperature no phosphorescence could be resolved. The efficiency of singlet-triplet intersystem crossing increased in the order φ ISC (DBF) ISC (EO) ISC (ER) ISC (RB) due to the heavy atom effect on spin-orbit coupling. The phosphorescence quantum yields increased in the order φ P (DBF) P (EO) P (RB) P (ER). The phosphorescence lifetimes followed the order τ P (DBF) > τ P (EO) > τ P (ER) > τ P (RB).

  14. Determination of 40K radioactivity in the soil using energy dispersive X ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Lu Weiwei; Song Fuxiang; Zeng Liping; Lu Hongning

    2012-01-01

    The 40 K radioactive of' the pressed powder sample was determined by Epsilon 5 high-energy polarized energy dispersive X ray fluorescence (EDXRF) spectrometer. The correlation coefficient of the standard curve method was 0.9910, the precision was 2.98% and the relative deviation of the measurement standard samples was up to 6.40%, which showed that the precision and accuracy of the method were also good. Simultaneous measurement of seven soil samples using this method and γ-spectrometer were carried, the results of two analytical methods were compared using a paired t-test by SPSS program, which showed that there was no significant difference in the two sets of data, P>0.05. It indicated that EDXRF could be a potential simple method for analyzing 40 K radioactive in soil samples. (authors)

  15. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.

    Science.gov (United States)

    Park, Jae Woo; Rhee, Young Min

    2016-02-07

    For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.

  16. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  17. Generally Applicable Transformation Protocols for Fluorescent Nanodiamond Internalization into Cells

    NARCIS (Netherlands)

    Hemelaar, Simon R; van der Laan, Kiran J; Hinterding, Sophie R; Koot, Manon V; Ellermann, Else; Perona-Martinez, Felipe P; Roig, David; Hommelet, Severin; Novarina, Daniele; Takahashi, Hiroki; Chang, Michael; Schirhagl, Romana

    2017-01-01

    Fluorescent nanodiamonds (FNDs) are promising nanoprobes, owing to their stable and magnetosensitive fluorescence. Therefore they can probe properties as magnetic resonances, pressure, temperature or strain. The unprecedented sensitivity of diamond defects can detect the faint magnetic resonance of

  18. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  19. Nanoparticle-based, organic receptor coupled fluorescent chemosensors for the determination of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navneet, E-mail: navneetkaur@pu.ac.in [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Kaur, Simanpreet; Kaur, Amanpreet [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Saluja, Preeti; Sharma, Hemant [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Saini, Anu; Dhariwal, Nisha [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Singh, Ajnesh; Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2014-01-15

    The sensors have been developed using silver nanoparticles coated with organic ligands and are fully characterized with spectroscopic methods. The energy-dispersive X-ray (EDX) analysis revealed the presence of organic receptors on the surface of metal nanoparticles. These chemosensors were tested against a range of biological and environmentally relevant cations in the HEPES buffered DMSO/H{sub 2}O (8:2, v/v) solvent system. The fluorescence intensity of these chemosensors was quenched upon coordination with open shell metal ions such as Cu{sup 2+}/Fe{sup 3+}. Anion recognition properties of the corresponding metal complexes have been studied and the original fluorescence intensity of sensors was restored upon addition of phosphate (0–20 µM). Thus, a highly selective chemosensor has been devised for the micromolar estimation of phosphate in semi-aqueous medium. -- Highlights: • The silver nanoparticles have been decorated with organic receptors for chemosensor applications. • The sensor properties are developed for the estimation of phosphate anion. • Thus the sensor relies on the cation displacement assay. • The phosphate sensing event displays the “ON–OFF–ON” mode of switching in sensor.

  20. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  1. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that

  2. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  3. Fluorescent nanodiamond-bacteriophage conjugates maintain host specificity.

    Science.gov (United States)

    Trinh, Jimmy T; Alkahtani, Masfer H; Rampersaud, Isaac; Rampersaud, Arfaan; Scully, Marlan; Young, Ryland F; Hemmer, Philip; Zeng, Lanying

    2018-06-01

    Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies. © 2018 Wiley Periodicals, Inc.

  4. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    Science.gov (United States)

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-05-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.

  5. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  6. Spectral characterizations and photophysical properties of one-step synthesized blue fluorescent 4′-aryl substituted 2,2′:6′,2′′-terpyridine for OLEDs application

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, Raja [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Shivaprakash, Narayanapura Chennegowda [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Nair, Sindhu Sukumaran, E-mail: sindhunair@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India)

    2015-12-15

    We have synthesized a series of 4′-aryl substituted 2,2′:6′,2′′-terpyridine (terpy) derivatives, namely 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine (C-1), 4′-(2-furyl)-2,2′:6′2′′-terpyridine (C-2), and 4′-(3,4,5-trimethoxyphenyl)-2,2′:6′,2′′-terpyridine (C-3). The synthesized terpy compounds were characterized by elemental analyses, FTIR, NMR ({sup 1}H and {sup 13}C), and ESI-Mass spectrometry. Photophysical, electrochemical and thermal properties of terpy compounds were systematically studied. Maximum excitation band was observed between 240 and 330 nm using UV–visible spectra, and maximum emission peaks from PL spectra were observed at 385, 405 and 440 nm for C-1, C-2 and C-3 respectively. Fluorescence lifetime (τ) of the fluorophores was found to be 0.35 and 1.55 ns at the excitation wavelength of 406 nm for C-1 and C-2 respectively, and τ value for C-3 was found to be 0.29 ns at the excitation wavelength of 468 nm. We noticed that the calculated values of HOMO energy levels were increased from 5.96 (C-1) to 6.08 (C-3) eV, which confirms that C-3 derivative is more electrons donating in nature. The calculated electrochemical band gaps were 2.95, 2.82 and 3.02 eV for C-1, C-2 and C-3 respectively. These blue fluorescent emitter derivatives can be used as an electron transport and electroluminescent material to design the blue fluorescent organic light emitting diode (OLED) applications. - Highlights: • Facile one-step synthesized blue fluorescent emitter, 2,2′:6′,2′′-terpyridine derivatives. • The exceptionally broad emission band (365–525 nm) was achieved in the blue region. • Fast fluorescence life time and good thermal stability.

  7. Comparison between energy dispersive X-ray fluorescence and other nuclear analytical techniques in mineral exploration and mining

    International Nuclear Information System (INIS)

    Clayton, C.G.; Packer, T.W.; Wormald, M.R.

    1979-01-01

    At the present time there is an increasing awareness of the value and need for in-situ analytical methods throughout the general area of mineral exploration and mining. Of the alternative techniques, the measurement of natural gamma radiation is well established for uranium exploration and it is now being developed for sea-bed and lake-bed surveying. Energy dispersive X-ray fluorescence equipment is becoming more generally accepted, especially for mine control. Neutron techniques, for so long used routinely in oil well logging, are now being developed for a wide range of applications in all aspects of exploration and mining. It is believed that these techniques will result in major applications in the future. The present paper compares the principal characteristics of energy dispersive X-ray fluorescence and neutron techniques in particular, with special emphasis being given to those factors which affect the accuracy of analytical content; such as elemental resolution, matrix effects, material heterogeneity and neutron transport. A generalised comparison between the techniques is difficult to achieve because of the different nature of radiation interactions, but a range of applications is described and these show the complementary nature of the methods and point to the areas for more active development in the future. (author)

  8. The application of energy-dispersive X-Ray fluorescence spectrometry (EDXRF) to the analysis of ceramic glasses

    International Nuclear Information System (INIS)

    Ben Abdelwahed, Haifa; Reguigui, Nafaa; Ghdira, Lotfi; Khosrof, S.

    2005-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons, α particles or photons has been successfully used for non-destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 keV coupled to a TRUMP-8K multichannel analyzer has been used. Tow sources of annular geometry using 10 mCi 109Cd and 10 mCi 55Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavement witch are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, The kind of that analyzed glasses is of alkaline lead. we found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color that tile-pavement glasses

  9. The application of energy-dispersive X-Ray Fluorescence spectrometry (EDXRF) to the analysis of ceramic glasses

    International Nuclear Information System (INIS)

    Ben Abdelwahed, H.; Reguigui, N.; Ghidira, L.; Khosrof, S.

    2005-01-01

    The measurement of energies and intensities of fluorescent X-rays emitted from a given material when atoms are bombarded with suitable projectiles like electrons, protons,α particles or photons have been successfully used for non destructive elemental analysis in many applications, especially in the analysis of ceramic glasses. Use of radioisotopes as a source of excitation radiation in combination with high resolution semiconductor detectors in x-ray fluorescence has found wide applications in elemental analysis. A radioisotope excited X-ray fluorescence spectrometer consisting of a standard 5.45mm Si(Li) detector having a resolution of 200 eV at 5.9 KeV coupled to a TRUMP -8K multichannel analyser has been used. Two sources of annular geometry using 10 mCi 109 CD and 10 mCi 55 Fe together with PC AXIL software have been used for this study of tile-pavement glasses of ''Ksar Said'' in Tunisia. Analytical data shows that those tile pavements which are broken in the 19th century from France (Marseille) have not the same composition of Tunisian tile pavement. Referring to our data, the kind of that analysed glasses is of alkaline lead. We found also, through this study, the elemental compositions of different pigments (green, blue, brownish, yellow, white and red) used to color those tile-pavement glasses

  10. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    Science.gov (United States)

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is membrane domains using time-resolved FRET.

  11. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  12. X-ray fluorescence analyzer arrangement

    International Nuclear Information System (INIS)

    Vatai, Endre; Ando, Laszlo; Gal, Janos.

    1981-01-01

    An x-ray fluorescence analyzer for the quantitative determination of one or more elements of complex samples is reported. The novelties of the invention are the excitation of the samples by x-rays or γ-radiation, the application of a balanced filter pair as energy selector, and the measurement of the current or ion charge of ionization detectors used as sensors. Due to the increased sensitivity and accuracy, the novel design can extend the application fields of x-ray fluorescence analyzers. (A.L.)

  13. Synthesis, Crystal Structure and Luminescence Property of a New Silver(I) Dimer with Isonicotinic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Qi [Pharmacy College of Henan University, Kaifeng (China); Liu, Bing [Chinese Academy of Sciences, Fuzhou (China)

    2005-10-15

    The absorption spectrum was calculated from reflection spectrum by the Kubelka.Munk function. The energy gap of the title compound determined by extrapolation from the linear portion of the absorption edge in a (α/S) versus energy plot is 1.91 eV, which suggests that the title compound behaves as semiconductor. Isonicotinic acid (Iso), namely 4.pyridinecarboxylate, a multi.functional chelating and/or bridging ligand, has proved to be very powerful for the construction of multi. dimensional metal.organic coordination networks. Furthermore, The isonicotinic acid complexes has raised many interests in fluorescence probing with numerous potential applications for studies of microsecond diffusion and dynamics of membranes. Metal centers are potential carriers of electrochemical, magnetic, catalytic, or optical properties that may be introduced into the inorganic.organic hybrid materials. d{sup 10} metals with rich photophysical and photochemical character have focused attentions to synthesize polynuclear complexes. Considering the versatile coordination abilities of Iso, we employ the ligand to coordinate with silver nitrate to fabricate a coordination complex with excellent fluorescence property. Herein we report the synthesis, crystal structure and fluorescence property of a new d{sup 10} coordination dimer [Ag{sub 2}(Iso){sub 2}(NO{sub 3}){sub 2}].

  14. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  15. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  16. Energy dispersive X-ray fluorescence analysis of ancient coins: The case of Greek silver drachmae from the Emporion site in Spain

    International Nuclear Information System (INIS)

    Pitarch, A.; Queralt, I.

    2010-01-01

    Greek colonizers arrived at the Iberian Peninsula at the beginning of the sixth century B.C. and founded a small colony known as Emporion in north-east Spain. By the fifth century B.C., this colony became a small polis with a well-organized administrative structure. In this context, the necessity of coinage was a fact and the first coins were minted. Some of these coins were characterized by using energy dispersive X-ray fluorescence equipment. The analytical study focused on the elemental characterization of the coins minted from the fourth century to the first century B.C. and their compositional evolution during this period. The investigation has pointed out a very high fineness of the alloys throughout the time, with an average silver content around 98.32%, and the feasibility of energy dispersive X-ray fluorescence as a screening tool for the characterization of the alloys.

  17. Chlorophyll fluorescence, Orbital and Photosynthesis: practical activities integrating concepts of Chemistry, Physics and Biology

    Directory of Open Access Journals (Sweden)

    Elgion Lucio da Silva Loreto

    2013-11-01

    Full Text Available These laboratory activities explore the relationship between the reserve of energy that occur during photosynthesis and the chlorophyll fluorescence emission when in solution as opposed to absence of fluorescence when the chlorophyll are in intact chloroplasts. This proposal can be used as short demo or as  activities with longer duration, to show chlorophyll's properties associated with the photosynthesis. The materials proposed for the implementation of the activities are simple, and possible to building it by the students, enabling the development of various skills and experimental proposals. The protocols are based on observations and record key questions to continue the execution. During the activities, questions promotes pauses for moments of reflection and review of concepts. At the end are presented and discussed proposals for development of interdisciplinary projects.

  18. CsPbBr3 Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium.

    Science.gov (United States)

    Wang, Yuanwei; Zhu, Yihua; Huang, Jianfei; Cai, Jin; Zhu, Jingrun; Yang, Xiaoling; Shen, Jianhua; Jiang, Hao; Li, Chunzhong

    2016-11-03

    Perovskite quantum dots with excellent optical properties and robust durability stand as an appealing and desirable candidate for fluorescence resonance energy transfer (FRET) based fluorescence detection, a powerful technique featuring excellent accuracy and convenience. In this work, a monolithic superhydrophobic polystyrene fiber membrane with CsPbBr 3 perovskite quantum dots encapsulated within (CPBQDs/PS FM) was prepared via one-step electrospinning. Coupling CPBQDs with PS matrix, this CPBQDs/PS FM composite exhibits high quantum yields (∼91%), narrow half-peak width (∼16 nm), nearly 100% fluorescence retention after being exposed to water for 10 days and 79.80% fluorescence retention after 365 nm UV-light (1 mW/cm 2 ) illumination for 60 h. Thanks to the outstanding optical property of CPBQDs, an ultralow detection limit of 0.01 ppm was obtained for Rhodamine 6G (R6G) detection, with the FRET efficiency calculated to be 18.80% in 1 ppm R6G aqueous solution. Electrospun as well-designed fiber membranes, CPBQDs/PS FM composite also possesses good tailorability and recyclability, showing exciting potential for future implementation into practical applications.

  19. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  20. Crystal growth and characterization of fluorescent SiC

    DEFF Research Database (Denmark)

    Wellmann, P.; Kaiser, M.; Hupfer, T.

    -SiC co-doped with nitrogen and boron has been achieved [1][2]. The source is the rate determining step, and is expected to be determining the fluorescent properties by introducing dopants to the layer from the source. The optimization process of the polycrystalline, co-doped SiC:B,N source material...... and its impact on the FSPG epitaxial process, in particular the influence on the brightness of the is presented. In particular, the doping properties of the poly-SiC source material influence on the brightness of the fluorescent 6H-SiC. In addition we have investigated how the grain orientation...

  1. Angle-resolved polarimetry of antenna-mediated fluorescence

    NARCIS (Netherlands)

    Mohtashami, A.; Osorio, C.I.; Koenderink, A.F.

    2015-01-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the

  2. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  3. Clustering properties of dynamical dark energy models

    International Nuclear Information System (INIS)

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-01-01

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter

  4. Fluorescence properties of the anti-tumour alkaloid luotonin A and new synthetic analogues: pH modulation as an approach to their fluorimetric quantitation in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ruiz, Victor; Gonzalez-Cuevas, Yamisley; Arunachalam, Sankaralingam [S. D. Quimica Analitica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid (Spain); Martin, M. Antonia, E-mail: mantonia@farm.ucm.es [S. D. Quimica Analitica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid (Spain); Olives, Ana I. [S. D. Quimica Analitica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid (Spain); Ribelles, Pascual; Ramos, M. Teresa; Menendez, J. Carlos [D. Quimica Organica y Farmaceutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid (Spain)

    2012-09-15

    Luotonin A is an alkaloid structurally related to the natural anti-tumour agent camptothecin. The fluorescence behaviour of luotonin A and a series of six analogues is described in the present work. The influence of solvent polarity and pH on the native fluorescence properties of these alkaloids was studied, finding that in organic solvents or in aqueous solutions (pH 5.5-7.2) the neutral form of the luotonin derivatives emit in the region of 410-450 nm but, in both media, acidification to pH values below 3.0 causes a new emission band to appear at about 500 nm. An ESPT reaction occurs due to the protonation of the basic nitrogen atoms of the pentacyclic ring. Acid-base titrations of luotonin A and its derivatives in aqueous and acetonitrile media were carried out in order to determine their pK{sub a}{sup Low-Asterisk} values which were around 2, showing these compounds to be very weak bases. In aqueous media, the absence of an iso-emissive point in the emission spectra suggests the existence of more than two species in the proton transfer equilibria. The basicity of the luotonin A derivatives is increased in organic media, and a good correlation between the pK{sub a}{sup Low-Asterisk} values and the chemical structure was found. The protonation of luotonin A was also studied by {sup 1}H-NMR and {sup 13}C-NMR experiments, which proved the protonation of the nitrogen atoms at the positions 5 and 6 of the pentacyclic ring. The fluorescence quantum yields were determined in ethanol and in aqueous solutions under neutral and acidic conditions. The fluorescence quantum yields were higher in water for the case of the more polar compounds, and the opposite result was obtained for the more hydrophobic ones. The remarkable and interesting fluorescence properties of luotonin A prompted the development of its fluorimetric analytical quantitation, obtaining very good analytical features. - Highlights: Black-Right-Pointing-Pointer This is the first study on the fluorescence

  5. Is energy pooling necessary in ultraviolet matrix-assisted laser desorption/ionization?

    Science.gov (United States)

    Lin, Hou-Yu; Song, Botao; Lu, I-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-01-15

    Energy pooling has been suggested as the key process for generating the primary ions during ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI). In previous studies, decreases in fluorescence quantum yields as laser fluence increased for 2-aminobenzoic acid, 2,5-dihydroxybenzoic acid (2,5-DHB), and 3-hydroxypicolinic acid were used as evidence of energy pooling. This work extends the research to other matrices and addresses whether energy pooling is a universal property in UV-MALDI. Energy pooling was investigated in a time-resolved fluorescence experiment by using a short laser pulse (355 nm, 20 ps pulse width) for excitation and a streak camera (1 ps time resolution) for fluorescence detection. The excited-state lifetime of 2,5-DHB decreased with increases in laser fluence. This suggests that a reaction occurs between two excited molecules, and that energy pooling may be one of the possible reactions. However, the excited-state lifetime of 2,4,6-trihydroxyacetophenone (THAP) did not change with increases in laser fluence. The upper limit of the energy pooling rate constant for THAP is estimated to be approximately 100-500 times smaller than that of 2,5-DHB. The small energy pooling rate constant for THAP indicates that the potential contribution of the energy pooling mechanism to the generation of THAP matrix primary ions should be reconsidered. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides.

    Directory of Open Access Journals (Sweden)

    Manuel P Luitz

    Full Text Available Fluorescence spectroscopy techniques like Förster resonance energy transfer (FRET and fluorescence correlation spectroscopy (FCS have become important tools for the in vitro and in vivo investigation of conformational dynamics in biomolecules. These methods rely on the distance-dependent quenching of the fluorescence signal of a donor fluorophore either by a fluorescent acceptor fluorophore (FRET or a non-fluorescent quencher, as used in FCS with photoinduced electron transfer (PET. The attachment of fluorophores to the molecule of interest can potentially alter the molecular properties and may affect the relevant conformational states and dynamics especially of flexible biomolecules like intrinsically disordered proteins (IDP. Using the intrinsically disordered S-peptide as a model system, we investigate the impact of terminal fluorescence labeling on the molecular properties. We perform extensive molecular dynamics simulations on the labeled and unlabeled peptide and compare the results with in vitro PET-FCS measurements. Experimental and simulated timescales of end-to-end fluctuations were found in excellent agreement. Comparison between simulations with and without labels reveal that the π-stacking interaction between the fluorophore labels traps the conformation of S-peptide in a single dominant state, while the unlabeled peptide undergoes continuous conformational rearrangements. Furthermore, we find that the open to closed transition rate of S-peptide is decreased by at least one order of magnitude by the fluorophore attachment. Our approach combining experimental and in silico methods provides a benchmark for the simulations and reveals the significant effect that fluorescence labeling can have on the conformational dynamics of small biomolecules, at least for inherently flexible short peptides. The presented protocol is not only useful for comparing PET-FCS experiments with simulation results but provides a strategy to minimize the

  7. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Garraffo, S. [ITABC, CNR, Via Salaria km 29.300, 00016 Monterotondo, Roma (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2012-07-15

    The compositional analysis of archeological metals performed with the X-ray Fluorescence technique (XRF) provides information on the ancient technology. One of the most interesting case-study concerns the techniques used by Romans for silvering the surface of coins. Different metallurgical processes have been suggested in previous studies. Recently the investigation has been addressed to the mercury-silvering and to its possible use in the mass-production of coins minted during the late period (after 294 AD). In the present paper the non-destructive investigation of the silvering process used for manufacturing the Roman nummi - the important typology of coin introduced by Diocletian in his monetary reform - is approached by the combined use of the standard X-Ray Fluorescence (XRF) and the low energy micro-X-Ray Fluorescence (LE-{mu}XRF) portable methods. The research was focused on the systematic determination of the mercury presence in a large number of samples and on its correlation with silver in the surface of the coins. 1041 Roman nummi belonging to the Misurata Treasure were analyzed in situ, at the Leptis Magna Museum (Al Khums, Libya). The treasure, composed of about 108 thousand silvered coins, gives the unique opportunity to study the Roman coinage in a wide interval of time (about 40 years in the period 294-333 AD) and in almost all the imperial mints operating in the Roman world. - Highlights: Black-Right-Pointing-Pointer Custom-building of a high energy broad-beam and a low energy micro-beam XRF Black-Right-Pointing-Pointer In situ analysis of the silvering methods in late Roman nummi with plated surfaces Black-Right-Pointing-Pointer The broad-beam XRF was applied for the detection of mercury traces in the coin alloy. Black-Right-Pointing-Pointer The low energy micro-XRF was used to scan the surface patina of the coins. Black-Right-Pointing-Pointer The correlation between mercury and silver at the coin surface was evidenced.

  8. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    International Nuclear Information System (INIS)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  9. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    Science.gov (United States)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  10. Secondary electron emission and glow discharge properties of 12CaOcenterdot7Al2O3 electride for fluorescent lamp applications

    Directory of Open Access Journals (Sweden)

    Satoru Watanabe, Toshinari Watanabe, Kazuhiro Ito, Naomichi Miyakawa, Setsuro Ito, Hideo Hosono and Shigeo Mikoshiba

    2011-01-01

    Full Text Available 12CaOcenterdot7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaOcenterdot7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaOcenterdot7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaOcenterdot7Al2O3 were constructed and exhibited reasonable durability.

  11. An overview of remote sensing of chlorophyll fluorescence

    Science.gov (United States)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  12. Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.

    Science.gov (United States)

    Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao

    2007-09-01

    Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.

  13. Analysis of metals in organic compounds by energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Anjos, Marcelino J.; Lopes, Ricardo T.; Jesus, Edgar F.O. de

    2000-01-01

    Using energy dispersive X-ray fluorescence analysis with an X-ray tube filtered with Ti. It was possible to determine the concentration of the elements at ppm level of several elements: K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn As, Rb, Sr, Y, Zr, and Pb in two types of organic compound enough used in the agriculture: organic compound of urban garbage (Fertilurb) and aviary bed (birds manure). The experimental setup is composed of: x-ray tube (Oxford, 30 kV, 50 μA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray beam is quasi- monochromatic by using Ti filter. The samples were prepared in pellet form with superficial density in the range of 100 mg/cm 2 . The fundamental parameter method was used in order to verify the elemental concentration. The radiation transmission method was going used to the radiation absorption effects correction in the samples. (author)

  14. Measuring Photosynthetic Response to Drought Stress using Active and Passive Fluorescence

    Science.gov (United States)

    Helm, L.; Lerdau, M.; Wang, W.; Yang, X.

    2017-12-01

    Photosynthesis, the endothermic reactions involving the absorption of light and fixation and reduction of carbon dioxide by plants, plays important roles in carbon and water cycles, food security, and even weather and climate patterns. Solar radiation provides the energy for photosynthesis, but often plants absorb more solar energy than they can use to reduce carbon dioxide. This excess energy, which is briefly stored as high-energy electrons in the chloroplast, must be removed or damage to the leaf's photosynthetic machinery will occur. One important energy dissipation pathway is for the high energy electrons to return to their lower valance state and, in doing so, release radiation (fluorescence). This fluorescence (known as solar induced fluorescence (SIF) has been found to strongly correlate with gross photosynthesis. Recent advances in the remote sensing of SIF allow for large-scale real-time estimation of photosynthesis. In a warming climate with more frequent stress, remote sensing is necessary for measuring the spatial and temporal variability of photosynthesis. However, the mechanisms that link SIF and photosynthesis are unclear, particularly how the relationship may or may not change under stress. We present data from leaf-level measurements of gas exchange, pulse amplitude modulation (PAM) fluorescence, and SIF in two major tree species in North America. Water-stressed and well-watered plants were compared to determine how SIF and carbon dioxide exchange are modulated by drought diurnally and seasonally. Secondly, photosynthesis and fluorescence under high and low oxygen concentrations were compared to determine how photorespiration alters the relationship between SIF and gross photosynthesis. We find a strong correlation between SIF and steady-state fluorescence measured with conventional PAM fluorometry. Our results also indicate that drought-stress modulates the SIF-photosynthesis relationship, and this may be driven by drought-induced changes in

  15. Fluorescence of berberine in microheterogeneous systems

    Energy Technology Data Exchange (ETDEWEB)

    Colina, Ariel N.; Díaz, Marta S.; Gutiérrez, María Isela, E-mail: isela@unpata.edu.ar

    2013-12-15

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 3{sup 2} full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φ{sub f}) reveal that the highest values (Φ{sub f}≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems.

  16. Fluorescence of berberine in microheterogeneous systems

    International Nuclear Information System (INIS)

    Colina, Ariel N.; Díaz, Marta S.; Gutiérrez, María Isela

    2013-01-01

    Spectral properties of the alkaloid berberine were studied in micellar solution and microemulsions based on anionic sodium dodecyl sulfate, cationic cetyltrimethylammonium bromide and nonionic Triton X-100 surfactants. Absorption and fluorescence emission spectra were determined. For screening the influence of type and concentration of micelles on the fluorescence of berberine a 3 2 full factorial design was used. Higher responses were obtained when berberine was dissolved in sodium dodecyl sulfate micelles 0.01 M. Comparative results of fluorescence quantum yields (Φ f ) reveal that the highest values (Φ f ≥0.01) were observed in microemulsions. In the microheterogeneous systems investigated the most probable location of berberine is the micellar interfacial region. -- Highlights: • Spectroscopic propereies of berberine in microheterogeneous media were investigated. • Berberine shows enhanced fluorescence in SDS micelles as compared to water • Berberine is probably located in the interface of the microheterogeneous systems

  17. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    Science.gov (United States)

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Fluorescent probe based on heteroatom containing styrylcyanine: pH-sensitive properties and bioimaging in vivo

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Gao, Ya; Huang, Zhibing; Chen, Xiaohui; Ke, Zhiyong; Zhao, Peiliang; Yan, Yichen; Liu, Ruiyuan; Qu, Jinqing

    2015-01-01

    A novel fluorescent probe based on heteroatom containing styrylcyanine is synthesized. The fluorescence of probe is bright green in basic and neutral media but dark orange in strong acidic environments, which could be reversibly switched. Such behavior enables it to work as a fluorescent pH sensor in the solution state and a chemosensor for detecting acidic and basic volatile organic compounds. Analyses by NMR spectroscopy confirm that the protonation or deprotonation of pyridinyl moiety is responsible for the sensing process. In addition, the fluorescent microscopic images of probe in live cells and zebrafish are achieved successfully, suggesting that the probe has good cell membrane permeability and low cytotoxicity. - Graphical abstract: A novel styrylcyanine-based fluorescent pH probe was designed and synthesized, the fluorescence of which is bright green in basic and neutral media but dark orange in strong acidic environments. Such behavior enables it to work as a fluorescent pH sensor in solution states, and a chemosensor for detecting volatile organic compounds with high acidity and basicity in solid state. In addition, it can be used for fluorescent imaging in living cell and living organism. - Highlights: • Bright green fluorescence was observed in basic and neutral media. • Dark orange fluorescence was found in strong acidic environments. • Volatile organic compounds with high acidity and basicity could be detected. • Bioimaging in living cell and living organism was achieved successfully

  19. The use of Fluorescence Resonance Energy Transfer (FRET peptidesfor measurement of clinically important proteolytic enzymes

    Directory of Open Access Journals (Sweden)

    Adriana K. Carmona

    2009-09-01

    Full Text Available Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple pathological conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing a rapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme. The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz as fluorescent group and 2, 4-dinitrophenyl (Dnp or N-(2, 4-dinitrophenylethylenediamine (EDDnp as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo. Recently, Abz/Dnp FRET peptide libraries were developed allowing high-throughput screening of peptidases substrate specificity. This review presents the consolidation of our research activities undertaken between 1993 and 2008 on the synthesis of peptides and study of peptidases specificities.As enzimas proteolíticas têm um papel fundamental em muitos processos biológicos e estão associadas a vários estados patológicos. Por isso, o estudo da especificidade das peptidases pode ser importante para uma melhor compreensão da função destas enzimas e para o desenvolvimento de inibidores. Os substratos com supressão intramolecular de fluorescência constituem uma excelente ferramenta, pois permitem o monitoramento da reação de forma contínua, proporcionando um método prático e rápido para a determinação da

  20. Introducing Ratiometric Fluorescence to MnO2 Nanosheet-Based Biosensing: A Simple, Label-Free Ratiometric Fluorescent Sensor Programmed by Cascade Logic Circuit for Ultrasensitive GSH Detection.

    Science.gov (United States)

    Fan, Daoqing; Shang, Changshuai; Gu, Wenling; Wang, Erkang; Dong, Shaojun

    2017-08-09

    Glutathione (GSH) plays crucial roles in various biological functions, the level alterations of which have been linked to varieties of diseases. Herein, we for the first time expanded the application of oxidase-like property of MnO 2 nanosheet (MnO 2 NS) to fluorescent substrates of peroxidase. Different from previously reported fluorescent quenching phenomena, we found that MnO 2 NS could not only largely quench the fluorescence of highly fluorescent Scopoletin (SC) but also surprisingly enhance that of nonfluorescent Amplex Red (AR) via oxidation reaction. If MnO 2 NS is premixed with GSH, it will be reduced to Mn 2+ and lose the oxidase-like property, accompanied by subsequent increase in SC's fluorescence and decrease in AR's. On the basis of the above mechanism, we construct the first MnO 2 NS-based ratiometric fluorescent sensor for ultrasensitive and selective detection of GSH. Notably, this ratiometric sensor is programmed by the cascade logic circuit (an INHIBIT gate cascade with a 1 to 2 decoder). And a linear relationship between ratiometric fluorescent intensities of the two substrates and logarithmic values of GSH's concentrations is obtained. The detection limit of GSH is as low as 6.7 nM, which is much lower than previous ratiometric fluorescent sensors, and the lowest MnO 2 NS-based fluorescent GSH sensor reported so far. Furthermore, this sensor is simple, label-free, and low-cost; it also presents excellent applicability in human serum samples.

  1. Fluorescent nanodiamonds embedded in biocompatible translucent shells.

    Science.gov (United States)

    Rehor, Ivan; Slegerova, Jitka; Kucka, Jan; Proks, Vladimir; Petrakova, Vladimira; Adam, Marie-Pierre; Treussart, François; Turner, Stuart; Bals, Sara; Sacha, Pavel; Ledvina, Miroslav; Wen, Amy M; Steinmetz, Nicole F; Cigler, Petr

    2014-03-26

    High pressure high temperature (HPHT) nanodiamonds (NDs) represent extremely promising materials for construction of fluorescent nanoprobes and nanosensors. However, some properties of bare NDs limit their direct use in these applications: they precipitate in biological solutions, only a limited set of bio-orthogonal conjugation techniques is available and the accessible material is greatly polydisperse in shape. In this work, we encapsulate bright 30-nm fluorescent nanodiamonds (FNDs) in 10-20-nm thick translucent (i.e., not altering FND fluorescence) silica shells, yielding monodisperse near-spherical particles of mean diameter 66 nm. High yield modification of the shells with PEG chains stabilizes the particles in ionic solutions, making them applicable in biological environments. We further modify the opposite ends of PEG chains with fluorescent dyes or vectoring peptide using click chemistry. High conversion of this bio-orthogonal coupling yielded circa 2000 dye or peptide molecules on a single FND. We demonstrate the superior properties of these particles by in vitro interaction with human prostate cancer cells: while bare nanodiamonds strongly aggregate in the buffer and adsorb onto the cell membrane, the shell encapsulated NDs do not adsorb nonspecifically and they penetrate inside the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on germ toxicity of exciting energy resource 147Pm of fluorescent paint

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Lun Minyue; Tao Feng

    1993-02-01

    The germ toxicity of exciting energy resource 147 Pm of fluorescent paint was studied. It was shown that the placenta was a barrier for 147 Pm entering into the fetus. The retention T 1/2 was 105 days in testes. The retention value of 147 Pm in testis was high and hardly to excrete. The results showed that 147 Pm can induce abnormal sperms, most of them were non-hock sperms. The chromosome aberrations in germ cells also can be induced. Among the type of chromosome aberrations of spermatogonia, chromatid breakage was predominant. The 147 Pm can cause the chromosome fragment and translocations of primary spermatocytes, and increasing of lethality. The dominant skeletal aberrations in offspring is proportional to the accumulated radioactivity of 147 Pm in tests

  3. Fluorescence Resonance Energy Transfer of the Tb(III)-Nd(III) Binary System in Molten LiCl-KCl Eutectic Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, J. I. [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The lanthanides act as a neutron poison in nuclear reactor with large neutron absorption cross section. For that reason, very low amount of lanthanides is required in the recovered U/TRU ingot product from pyrochemical process. In view of that, the investigation of thermodynamic properties and chemical behaviors of lanthanides in molten chloride salt are necessary to estimate the performance efficiency of pyrochemical process. However, there are uncertainties about knowledge and understanding of basic mechanisms in pyrochemical process, such as chemical speciation and redox behaviors due to the lack of in-situ monitoring methods for high temperature molten salt. The spectroscopic analysis is one of the probable techniques for in-situ qualitative and quantitative analysis. Recently, a few fluorescence spectroscopic measurements on single lanthanide element in molten LiCl-KCl eutectic have been investigated. The fluorescence intensity and the fluorescence lifetime of Tb(III) were decreased as increasing the concentration of Nd(III), demonstrating collisional quenching between donor ions and acceptor ions. The Forster distance (..0) of Tb(III)-Nd(III) binary system in molten LiCl-KCl eutectic was determined in the specific range of .... (0.1-1.0) and .. (1.387-1.496)

  4. Optical properties of individual nano-sized gold particle pairs. Mie-scattering, fluorescence, and Raman-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Olk, Phillip

    2008-07-01

    This thesis examines and exploits the optical properties of pairs of MNPs. Pairs of MNPs offer two further parameters not existent at single MNPs, which both affect the local optical fields in their vicinity: the distance between them, and their relative orientation with respect to the polarisation of the excitation light. These properties are subject of three chapters: One section examines the distance-dependent and orientation-sensitive scattering cross section (SCS) of two equally sized MNPs. Both near- and far-field interactions affect the spectral position and spectral width of the SCS. Far-field coupling affects the SCS even in such a way that a two-particle system may show both a blue- and redshifted SCS, depending only on the distance between the two MNPs. The maximum distance for this effect is the coherence length of the illumination source - a fact of importance for SCS-based experiments using laser sources. Another part of this thesis examines the near-field between two MNPs and the dependence of the locally enhanced field on the relative particle orientation with respect to the polarisation of the excitation light. To attain a figure of merit, the intensity of fluorescence light from dye molecules in the surrounding medium was measured at various directions of polarisation. The field enhancement was turned into fluorescence enhancement, even providing a means for sensing the presence of very small MNPs of 12 nm in diameter. In order to quantify the near-field experimentally, a different technique is devised in a third section of this thesis - scanning particle-enhanced Raman microscopy (SPRM). This device comprises a scanning probe carrying an MNP which in turn is coated with a molecule of known Raman signature. By manoeuvring this outfit MNP into the vicinity of an illuminated second MNP and by measuring the Raman signal intensity, a spatial mapping of the field enhancement was possible. (orig.)

  5. NANODIAMONDS FOR FLUORESCENT CELL AND SENSOR NANOTECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. I. Nazarenko

    2013-10-01

    Full Text Available This review addresses the analysis of properties and applications of fluorescent nanodiamonds. They are carbon nanostructures with atomic arrangement of a diamond and carry all its properties, including record — high density, rigidity and refraction index. They are of almost spherical shape, and their small size (~4–10 nm creates substantial surface area that can be used for absorption of different compounds including drugs. Their surface is formed by different chemical groups (hydroxyls, carboxyls, etc. exhibits also chemical reactivity that allows different types of modifications. This opens innumerable possibilities for constructing different functional nanomaterials. The technologies have been developed for making these nanodiamonds fluorescent. Particularly, these properties are achieved by radioactive treatment with the formation of N–V impurities. These particles absorb and emit light in convenient for observation visible range of spectrum. They do not photobleach, which is very attractive for fluorescent microscopy of the cell. And, finally, these nanoparticles do not display toxicity on the cellular or whole — body level, and because of their biocompatibility they can be used in vivo as contrast agents and drug carriers. It is expected that future biotechnological applications of these nanoparticles will be connected with the creation of nanocomposites that combine multiple useful functions.

  6. Probing Local Heterogeneity in the Optoelectronic Properties of Organic-Inorganic Perovskites Using Fluorescence Microscopy

    Science.gov (United States)

    De Quilettes, Dane W.

    Unregulated emission of carbon dioxide and greenhouse gases into our atmosphere has led to an increase in the average global surface air temperature, to a disruption of weather patterns, and to the acidification of oceans all of which threaten the continued prosperity of our race and our planet. The transition to renewable sources of energy is therefore one of, if not the most, important challenge that the 21st century faces. Solar energy is predicted to play a major role in global energy production in the coming century, as the amount of energy hitting the earth's surface is far greater than the energy demands of industrialized human activity. Many current photovoltaic technologies show promise in contributing to a large fraction of global energy production, but in order to reach terawatt-scale production the photovoltaic modules will need to be scalable, cheap, and efficient. Perovskite-based photovoltaics hold exceptional potential in contributing to solar energy production. Thus far, the unprecedented rise in power conversion efficiencies over the past few years can be primarily attributed to improvements in film processing and device engineering. Although effective, the fundamental photophysical processes that govern charge generation, transport, recombination, and collection in these materials is still in its infancy. Historically in semiconductor technologies, this understanding has been essential in the rational design of optimized materials. Prior to these studies, much of the field had focused on bulk spectroscopic measurements to characterize the semiconducting properties of hybrid perovskite thin films. From our contributions as well as many others, microscopy has now given us a window into how this bulk behavior is composed of an ensemble of spatially varying structure and composition, which controls carrier transport and dynamics on the way to carrier extraction and power generation. This understanding has led to some exciting new discoveries on the

  7. The determination of Fe, Mn and Ca in sintered iron and blast-furnace slag by X-ray fluorescent analyses of energy and wave dispersion-comparison of results

    International Nuclear Information System (INIS)

    Dworak, B.; Gajek, Sz.

    1980-01-01

    The results of sintered iron and of blast-furnace slag examination obtained by X-ray fluorescent analyses of energy and of wave dispersion are compared. They show that the methods are comparable for such elements as Ca and Fe, whereas for Mn (in sinter) the X-ray fluorescent analysis of wave dispersion is less precise. (author)

  8. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    Science.gov (United States)

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  9. In situ synthesis of fluorescent magnetosomes using an organic membrane as a soft template.

    Science.gov (United States)

    Ke, Wenjing; Zhang, Juhua; An, Xueqin; Zhang, Bo

    2017-05-04

    A novel approach was presented for the in situ synthesis of fluorescent magnetosomes by biological mineralization and carbonization processes for the first time. The surface structures, magnetism and fluorescence were studied, and the cytotoxicity tests and fluorescent trace in liposomes were probed. The fluorescent magnetosomes exhibit not only unique fluorescence and ferromagnetic properties but also low toxicity and superior imaging capability.

  10. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Luminescence and energy transfer properties of Eu3+ and Gd3+ in ZrO2

    International Nuclear Information System (INIS)

    Villabona-Leal, E.G.; Diaz-Torres, L.A.; Desirena, H.; Rodríguez-López, J.L.; Pérez, Elías; Meza, Octavio

    2014-01-01

    Red luminescence emission in ZrO2:Gd 3+ –Eu 3+ nanocrystal under 250 nm radiation excitation is achieved. These materials exhibit a tetragonal phase that is retained by the presence of lanthanide ions. Thus, a study of the optical properties as a function of the dopant concentration was been carried out without the deleterious effects of having segregation of other crystalline phases. We analyze the emission and lifetime curves as a function of dopant concentration through a rate equation simulation, finding an excellent fitting. As results, the nonradiative and radiative relaxation constants, as well as a quantitative estimation of the energy transfer processes among Eu 3+ , Gd 3+ and O 2− ions are reported for the first time. The proposed model can be extended (or applicable) to explain the fluorescence dynamics in other nanomaterials doped with Eu 3+ and Gd 3+ under UV excitation. -- Highlights: • ZrO 2 nanocrystal exhibits a tetragonal phase in the presence of Eu and Gd dopants. • Emission and lifetimes as a function of dopant concentration were analyzed by rate equation model. • Quantitative estimation of the energy transfer processes among Eu 3+ , Gd 3+ and O 2− ions are reported

  12. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy

    International Nuclear Information System (INIS)

    Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Wang, Hongxin; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •An ultrasensitive FRET aptasensor was developed for staphylococcal enterotoxin B determination. •SEB was recognized by SEB aptamer with high affinity and specificity. •The Mn 2+ doped NaYF 4 :Yb/Er UCNPs used as donor to quencher dye (BHQ 3 ) in new FRET. •The fluorescence intensity was prominently amplified using an exonuclease-catalyzed target recycling strategy. -- Abstract: An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA 1 –UCNPs) and fluorescence quencher probes (complementary DNA 2 –Black Hole Quencher 3 (BHQ 3 )) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer–SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer–SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001–1 ng mL −1 and a lower detection limit (LOD) of 0.3 pg mL −1 SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a

  13. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    Science.gov (United States)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  14. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study.

    Science.gov (United States)

    Premvardhan, Lavanya; Réfrégiers, Matthieu; Büchel, Claudia

    2013-09-26

    The (auto)fluorescence from three diatom strains, Cyclotella meneghiniana (Cm), Phaeodactylum tricornutum 1a (Pt1a), and Phaeodactylum UTex (PtUTex), has been imaged in vivo to submicrometer resolution using confocal laser scanning fluorescence (CLSF) microscopy. The diatoms are excited at 473 and 532 nm, energy primarily absorbed by the carotenoid fucoxanthin (Fx) found within the fucoxanthin chlorophyll a/c proteins (FCPs). On the basis of the fluorescence spectra measured in each image voxel, we obtain information about the spatial and energetic distribution of the terminal Chl a emitters, localized in the FCPs and the reaction centers of the PSII protein complexes, and the nature and location of the primary absorbers that are linked to these emitters; 532 nm excites the highly efficient Fx(red) light harvesters, and lesser amounts of Fx(green)s, that are enriched in some FCPs and preferentially transfer energy to PSII, compared to 473 nm, which excites almost equal amounts of all three previously identified sets of Fx--Fx(red), Fx(green) and Fx(blue)--as well as Chl c. The heterogeneous Chl a emission observed from the (C)LSF images indicates that the different Fx's serve different final emitters in P. tricornutum and suggest, at least in C. meneghiniana , a localization of FCPs with relatively greater Fx(red) content at the chloroplast edges, but with overall higher FCP concentration in the interior of the plastid. To better understand our results, the concentration-dependent ensemble-averaged diatom solution spectra are compared to the (auto)fluorescence spectra of individual diatoms, which indicate that pigment packing effects at an intracellular level do affect the diatoms' spectral properties, in particular, concerning a 710 nm emission band apparent under stress conditions. A species-specific response of the spectral signature to the incident light is also discussed in terms of the presence of a silica shell in Cm but not in Pt1a nor PtUTex.

  15. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  16. Fluorescence and phosphorescence of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, Stanislav L., E-mail: bondarev@imaph.bas-net.by [Minsk State Higher Radioengineering College, 220005 Minsk (Belarus); Knyukshto, Valeri N. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2013-10-15

    Rutin is one of the most promising flavonoid from a pharmacological and biochemical point of view. Here we have explored its spectroscopic and photophysical properties at room temperature and 77 K using steady-state absorption-luminescence methods and pulse spectroscopy equipment. By excitation into the absorption band 1 of rutin in methanol at room temperature the normal Stokes' shifted fluorescence with a maximum at 415 nm and quantum yield of 2×10{sup −4} was revealed. However, by excitation into the bands 2 and 3 any emission wasn’t observed. At 77 K in ethanol glass we have observed fluorescence at 410 nm and phosphorescence at 540 nm for the first time. As a result the adequate energetic scheme including the lowest electronic excited singlet at 26000 cm{sup −1} and triplet at 19600 cm{sup −1} states was proposed. -- Highlights: • Rutin fluorescence and phosphorescence at 77 K were revealed for the first time. • Room temperature fluorescence is determined by maximum at 415 nm and yield of 2×10{sup −4}. • Violation of Vavilov–Kasha rule by excitation into the absorption bands 2 and 3. • Fluorescence and phosphorescence in rutin are caused by the allowed π, π{sup (⁎)} transitions.

  17. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  18. Fluorescence and physical properties of the organic salt 2-chloro-4-nitrobenzoate–3-ammonium-phenol

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Rajaboopathi, E-mail: mrajaboopathi@gmail.com [Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Rietveld, Ivo B.; Nicolaï, Béatrice [Laboratoire de Chimie Physique, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris (France); Varadharajan, Krishnakumar, E-mail: vkrishna_kumar@yahoo.com [Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Louhi-Kultanen, Marjatta [Department of Chemical Technology, Lappeenranta University of Technology, Lappeenranta 53851 (Finland); Narasimhan, Surumbarkuzhali [Department of Physics, Government Arts College (Autonomous), Salem 636 007, Tamilnadu (India)

    2015-09-08

    Highlights: • Organic salt of 2-chloro-4-nitrobenzoate–3-ammonium-phenol (CNBA{sup −} · AP{sup +}) was grown by solution growth technique. • Single crystal X-ray diffraction demonstrate that two molecules were linked via N{sup +}–H⋯O{sup −} interactions. • The narrow spatial overlap between HOMO and LUMO leads to low ΔE{sub ST} = 73 meV. • The fluorescence emission was observed at ≈338 nm with Stokes shift of 53 nm. • The melting point of CNBA{sup −} · AP{sup +} is 187 °C which is higher than the individual components. - Abstract: Organic salt 2-chloro-4-nitrobenzoate (CNBA{sup −}) 3-ammonium-phenol (AP{sup +}) exhibits fluorescence at 338 nm in solution and frontier molecular orbitals generated from TDDFT calculations indicate that the ground state and the excited state are physically separated on AP{sup +} and CNBA{sup −}. The crystal structure and physical–chemical properties of the CNBA{sup −} · AP{sup +} were investigated using X-ray single crystal and powder diffraction, SEM, FTIR, UV–Vis–NIR, and fluorescence spectrometry. X-ray diffraction demonstrates that the two molecules are linked via N{sup +}–H⋯O{sup −} ammonium–carboxylate interactions, as expected considering their interaction propensities. Proton transfer has been confirmed by FTIR analysis. The melting point of CNBA{sup −} · AP{sup +} was observed at 186 °C, which is higher than pure CNBA (140 °C) or AP (120 °C). The observation of a spatially separated HOMO and LUMO possessing a narrow ΔE{sub ST} = 73.3 meV and an emission in the blue region is promising as an alternative method for the production of OLED materials.

  19. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  20. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    International Nuclear Information System (INIS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-01-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  1. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Science.gov (United States)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  2. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Tong, Ruijie [Sichuan University, West China Medical Center (China); Song, Yanling [Shenyang University of Chemical Technology, College of Pharmaceutical and Biological Engineering (China); Xiong, Fang [Sichuan University, West China College of Stomatology (China); Li, Jiman [Sichuan Cancer Hospital, Pathology Department (China); Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei, E-mail: zzw2002400@126.com; Wu, Jiang, E-mail: jw@scu.edu.cn [Sichuan University, West China Medical Center (China)

    2017-04-15

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  3. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  4. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  5. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  6. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells

    Science.gov (United States)

    Goryashchenko, Alexander S.; Khrenova, Maria G.; Savitsky, Alexander P.

    2018-04-01

    Förster resonance energy transfer (FRET) sensors are widely used for the detection of protease activity in vitro and in vivo. Usually they consist of a FRET pair connected with a polypeptide linker containing a specific cleavage site for the relevant protease. Use of the fluorescent proteins as components of the FRET pair allows genetic encoding of such sensors and solves the problem of their delivery into live cells and animals. There are several ways to improve the properties of such sensors, mainly to increase FRET efficiency and therefore the dynamic range. One of the ways to achieve this is to use a non-fluorescent chromoprotein as an acceptor. Molecular dynamic simulations may assist in the construction of linker structures connecting donor and acceptor molecules. Estimation of the orientation factor κ 2 can be obtained by methods based on quantum theory and combined quantum mechanics/molecular mechanics approaches. The linker can be structured by hydrophobic interactions, bringing it into a closed conformation that shortens the distance between donor and acceptor and, consequently, increases FRET efficiency. We analyzed the effects of different linker structures on the detection of caspase-3 activity using a non-fluorescent acceptor. Also we have constructed the Tb3+- TagRFP sensor in which a complex of the terbium ion and terbium-binding peptide is used as a donor. This allowed us to use the unique property of lanthanide ions—fluorescence lifetime up to milliseconds—to perform measurements with time delay and exclude the nanosecond-order fluorescence. Using our systems as a starting point, by changing the recognition site in the linker it is possible to perform imaging of different protease activity in vitro or in vivo.

  8. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

    Science.gov (United States)

    Shi, Donglu; Sadat, M E; Dunn, Andrew W; Mast, David B

    2015-05-14

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  9. A study of fluorescence properties of citrinin in β-cyclodextrin aqueous solution and different solvents

    International Nuclear Information System (INIS)

    Zhou Youxiang; Chen Jianbiao; Dong Lina; Lu Liang; Chen Fusheng; Hu Dingjin; Wang Xiaohong

    2012-01-01

    Citrinin (CIT) is a nephrotoxic mycotoxin initially isolated from filamentous fungus Penicilliu citrinum. It was later isolated from several other species, such as Aspergillus and Monascus. It has a conjugated, planar structure that gives it a natural fluorescence ability, which can be used to develop sensitive methods for detecting CIT in food. In this paper, we used the spectrofluorescence technique to study the effects of pH value, β-cyclodextrin (β-CD) and organic solvents on the CIT fluorescence intensity. The results show that lower pH value, aceitc acid, β-CD and acetonitrile can induce a higher fluorescence intensity of CIT, but methanol or H 2 O has a decreasing effect on the fluorescence intensity of CIT. Findings in this study provide a theoretical basis for development of a high sensitivity fluorescence-based trace analysis for CIT detection. - Highlights: ► The effects of pH, solvents and β-CD on the fluorescence of citrinin are analyzed. ► [H] + , acetic acid, β-CD and acetonitrile can induce CIT fluorescence enhancement. ► Methanol and H 2 O can induce CIT fluorescence reduction. ► The 1:1 inclusion complex of CIT/β-CD can form in acidic phosphate solution.

  10. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Bueltzingsloewen, Christoph von; McEvoy, Aisling K.; McDonagh, Colette; MacCraith, Brian D.

    2003-01-01

    An optical sensor for the measurement of high levels of carbon dioxide in gas phase has been developed. It is based on fluorescence resonance energy transfer (FRET) between a long-lifetime ruthenium polypyridyl complex and the pH-active disazo dye Sudan III. The donor luminophore and the acceptor dye are both immobilised in a hydrophobic silica sol-gel/ethyl cellulose hybrid matrix material. Tetraoctylammonium hydroxide (TOA-OH) is used as an internal buffering system. Fluorescence lifetime is measured in the frequency domain, using low-cost phase modulation measurement technology. The use of Sudan III as an acceptor dye has enabled the sensor to have a dynamic range up to 100% carbon dioxide. The sensor displays 11.2 deg. phase shift between the limit of detection (LOD) of 0.06 and 100% CO 2 with a resolution of better than 2%. The encapsulation in the silica/polymer hybrid material has provided the sensor with good mechanical and chemical stability. The effect of molecular oxygen, humidity and temperature on the sensor performance was studied in detail

  11. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    Energy Technology Data Exchange (ETDEWEB)

    Echard, Jean-Philippe [Laboratoire de recherche et de restauration, Musee de la musique, Cite de la musique, 221, avenue Jean-Jaures, 75019 Paris (France)]. E-mail: jpechard@cite-musique.fr

    2004-10-08

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musee de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  12. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    International Nuclear Information System (INIS)

    Echard, Jean-Philippe

    2004-01-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musee de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed

  13. Near infrared fluorescence and energy transfer in Ce/Nd Co-doped Ca{sub x}Sr{sub 1-x}S

    Energy Technology Data Exchange (ETDEWEB)

    Meng Jianxin, E-mail: tmjx@jnu.edu.c [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wan Wenjiao; Fan Lili; Yang Chuangtao; Chen Qingqing [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Cao Liwei; Man Shiqing [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-01-15

    Novel near infrared (NIR) phosphors Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} were synthesized by a solid state reaction. The NIR emission was realized through an efficient absorption by the allowed 4f-5d transition of Ce{sup 3+} and efficient energy transfer to Nd{sup 3+} via well-matched energy levels. Ce{sup 3+} and Nd{sup 3+} content in CaS/SrS was optimized. It was found that CaS:Ce{sup 3+},Nd{sup 3+} gave much stronger NIR emission than that of SrS:Ce{sup 3+},Nd{sup 3+}. Further studies on Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} indicated that both visible emission of Ce{sup 3+} and NIR emission of Nd{sup 3+} were observably affected by Ca/Sr ratio. The energy transfer efficiency, which can be estimated from fluorescence lifetime of Ce{sup 3+}, increased from 52% to 74% for the Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} (x=0 to 1) series, accompanied with a shift of maximal emission wavelength of Ce{sup 3+} from 482 to 505 nm. The results showed that overlap between emission spectrum of Ce{sup 3+} and excitation spectrum of Nd{sup 3+} plays an important role in the energy transfer efficiency, and Ce{sup 3+} emitting in green or blue-greenish region sensitized the Nd{sup 3+} NIR fluorescence emission more efficiently than that in blue region.

  14. Enhancing fluorescence intensity of Ellagic acid in Borax-HCl-CTAB micelles

    Science.gov (United States)

    Wang, Feng; Huang, Wei; Zhang, Shuai; Liu, Guokui; Li, Kexiang; Tang, Bo

    2011-03-01

    Ellagic acid (C 14H 6O 8), a naturally occurring phytochemical, found mainly in berries and some nuts, has anticarcinogenic and antioxidant properties. It is found that fluorescence of Ellagic acid (EA) is greatly enhanced by micelle of cetyltrimethylammonium bromide (CTAB) surfactant. Based on this effect, a sensitive proposed fluorimetric method was applied for the determination of Ellagic acid in aqueous solution. In the Borax-HCl buffer, the fluorescence intensity of Ellagic acid in the presence of CTAB is proportional to the concentration of Ellagic acid in range from 8.0 × 10 -10 to 4.0 × 10 -5 mol L -1; and the detection limits are 3.2 × 10 -10 mol L -1 and 5.9 × 10 -10 mol L -1 excited at 266 nm and 388 nm, respectively. The actual samples of pomegranate rinds are simply manipulated and satisfactorily determined. The interaction mechanism studies argue that the negative EA-Borax complex is formed and solubilized in the cationic surfactant CTAB micelle in this system. The fluorescence intensity of EA enhances because the CTAB micelle provides a hydrophobic microenvironment for EA-Borax complex, which can prevent collision with water molecules and decrease the energy loss of EA-Borax complex.

  15. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer L.; Kim, Hanseong [Arizona State University, Tempe, AZ 85287-1604 (United States); Markwardt, Michele L. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Chen, Liqing; Fromme, Raimund [Arizona State University, Tempe, AZ 85287-1604 (United States); Rizzo, Mark A. [University of Maryland School of Medicine, Baltimore, MD 21201-1559 (United States); Wachter, Rebekka M., E-mail: rwachter@asu.edu [Arizona State University, Tempe, AZ 85287-1604 (United States)

    2013-05-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.

  16. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein

    International Nuclear Information System (INIS)

    Watkins, Jennifer L.; Kim, Hanseong; Markwardt, Michele L.; Chen, Liqing; Fromme, Raimund; Rizzo, Mark A.; Wachter, Rebekka M.

    2013-01-01

    The high resolution X-ray structure of the cyan fluorescent protein mCerulean3 demonstrates that different combinations of correlated residue substitutions can provide near optimum quantum yield values for fluorescence. Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed

  17. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J

    2012-01-03

    The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society

  18. Fluorescence spectral studies of Gum Arabic: Multi-emission of Gum Arabic in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dhenadhayalan, Namasivayam, E-mail: ndhena@gmail.com [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mythily, Rajan, E-mail: rajanmythily@gmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India); Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India)

    2014-11-15

    Gum Arabic (GA), a food hydrocolloid is a natural composite obtained from the stems and branches of Acacia Senegal and Acacia Seyal trees. GA structure is made up of highly branched arabinogalactan polysaccharides. Steady-state absorption, fluorescence, and time-resolved fluorescence spectral studies of acid hydrolyzed GA solutions were carried out at various pH conditions. The fluorescence in GA is predominantly attributed to the presence of tyrosine and phenylalanine amino acids. The presence of multi-emissive peaks at different pH condition is attributed to the exposure of the fluorescing amino acids to the aqueous phase, which contains several sugar units, hydrophilic and hydrophobic moieties. Time-resolved fluorescence studies of GA exhibits a multi-exponential decay with different fluorescence lifetime of varying amplitude which confirms that tyrosine is confined to a heterogeneous microenvironment. The existence of multi-emissive peaks with large variation in the fluorescence intensities were established by 3D emission contour spectral studies. The probable location of the fluorophore in a heterogeneous environment was further ascertained by constructing a time-resolved emission spectrum (TRES) and time-resolved area normalized emission spectrum (TRANES) plots. Fluorescence spectral technique is used as an analytical tool in understanding the photophysical properties of a water soluble complex food hydrocolloid containing an intrinsic fluorophore located in a multiple environment is illustrated. - Highlights: • The Manuscript deals with the steady state absorption, emission, fluorescence lifetime and time-resolved emission spectrum studies of Gum Arabic in aqueous medium at various pH conditions. • The fluorescence emanates from the tyrosine amino acid present in GA. • Change in pH results in marked variation in the fluorescence spectral properties of tyrosine. • Fluorescence spectral techniques are employed as a tool in establishing the

  19. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  20. Analytic properties of finite-temperature self-energies

    International Nuclear Information System (INIS)

    Weldon, H. Arthur

    2002-01-01

    The analytic properties in the energy variable k 0 of finite-temperature self-energies are investigated. A typical branch cut results from n particles being emitted into the heat bath and n ' being absorbed from the heat bath. There are three main results: First, in addition to the branch points at which the cuts terminate, there are also branch points attached to the cuts along their length. Second, branch points at k 0 =±k are ubiquitous and for massive particles they are essential singularities. Third, in a perturbative expansion using free particle propagators or in a resummed expansion in which the propagator pole occurs at a real energy, the self-energy will have a branch point at the pole location

  1. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects and provides new means for the modern life sciences

    Science.gov (United States)

    Pampaloni, Francesco; Ansari, Nari; Girard, Philippe; Stelzer, Ernst H. K.

    2011-07-01

    Most optical technologies are applied to flat, basically two-dimensional cellular systems. However, physiological meaningful information relies on the morphology, the mechanical properties and the biochemistry of a cell's context. A cell requires the complex three-dimensional relationship to other cells. However, the observation of multi-cellular biological specimens remains a challenge. Specimens scatter and absorb light, thus, the delivery of the probing light and the collection of the signal light become inefficient; many endogenous biochemical compounds also absorb light and suffer degradation of some sort (photo-toxicity), which induces malfunction of a specimen. In conventional and confocal fluorescence microscopy, whenever a single plane, the entire specimen is illuminated. Recording stacks of images along the optical Z-axis thus illuminates the entire specimen once for each plane. Hence, cells are illuminated 10-20 and fish 100-300 times more often than they are observed. This can be avoided by changing the optical arrangement. The basic idea is to use light sheets, which are fed into the specimen from the side and overlap with the focal plane of a wide-field fluorescence microscope. In contrast to an epi-fluorescence arrangement, such an azimuthal fluorescence arrangement uses two independently operated lenses for illumination and detection. Optical sectioning and no photo-toxic damage or photo-bleaching outside a small volume close to the focal plane are intrinsic properties. Light sheet-based fluorescence microscopy (LSFM) takes advantage of modern camera technologies. LSFM can be operated with laser cutters and for fluorescence correlation spectroscopy. During the last few years, LSFM was used to record zebrafish development from the early 32-cell stage until late neurulation with sub-cellular resolution and short sampling periods (60-90 sec/stack). The recording speed was five 4-Megapixel large frames/sec with a dynamic range of 12-14 bit. We followed

  2. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Hsieh, W.T.; Matthews, K.S.

    1985-01-01

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  3. Analysis of signal to background ratio in synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Gohshi, Yohichi; Iida, Atsuo.

    1988-01-01

    The signal to background (S/B) ratio in energy dispersive X-ray fluorescence using synchrotron radiation (SR) was quantitatively analyzed. The S/B ratio, which has been significantly improved by taking advantage of the polarized nature of SR, was found to be strongly dependent on geometrical factors of the measurement system. From the analysis on the origin of the scattered background, the dependence of the S/B ratio on the geometry was quantitatively explained, mainly by the polarization properties of SR. Experimental conditions could be optimized by adjusting the degree of polarization of the incident beam and the detector solid angle. (author)

  4. Energy-dispersive X-ray fluorescence analysis of organic-rich soils and sediments

    International Nuclear Information System (INIS)

    Parekh, P.P.

    1981-01-01

    A method has been developed for elemental analysis of environmental samples of soils and sediments rich in organic matter by energy-dispersive X-ray fluorescence spectrometry. It consists of three steps (i) determining the apparent concentration of elements by using calibration coefficients based on geochemical standards, (ii) subsequent assay of the total organic matter (TOM) from loss on ignition at 550 deg C, and (iii) evaluating the correct elemental concentration by normalizing for transparency from an empirical relationship. The main feature of the method is the sample analysis prior to ignition, which avoids any loss of trace elements - especially the volatile toxic elements, such as Zn, As, Se, and Pb - during heating. The method was tested on two organic-rich lake sediments (TOM> 30%). Concentrations of five elements (K, Mn, Fe, Zn, and Pb) determined by the present method and by atomic absorption spectrometry agreed within about +-10%. (author)

  5. Fluorescent nanoparticles present in Coca-Cola and Pepsi-Cola: physiochemical properties, cytotoxicity, biodistribution and digestion studies.

    Science.gov (United States)

    Li, Shen; Jiang, Chengkun; Wang, Haitao; Cong, Shuang; Tan, Mingqian

    2018-02-01

    Foodborne nanoparticles (NPs) have drawn great attention due to human health concerns. This study reports the detection of the presence of fluorescent NPs, about 5 nm, in two of the most popular beverages, Coca-Cola (Coke) and Pepsi-Cola (Pepsi). The NPs contain H, C and O, three elements with a tunable emission and with a quantum yield of 3.3 and 4.3% for Coke and Pepsi, respectively. The presence of sp 3 -hybridized carbon atoms of alcohols and ethers bonds was confirmed by NMR analysis. The NPs can be taken up by living cells and accumulate within cell membrane and cytoplasm. Evaluation of the acute toxicity of the NPs revealed that the BALB/c mice appeared healthy after administration of a single dose of 2 g kg -1 body weight. Analysis of glutamate pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), urea and creatinine showed that there were statistically, but not biologically, significant differences in some of these biochemical parameters between the test and control groups. No obvious organ damage or apparent histopathological abnormality was observed in the tested mice. The biodistribution study in major organs indicated that the NPs were easily accumulated in the digestive tract, and they were able to cross the blood-brain barrier and dispersed in the brain. In vitro digestion of the NPs showed a significant fluorescence quenching of the NPs. This work represents the first report of foodborne fluorescent NPs present in Coke and Pepsi, and provides valuable insights into physicochemical properties of these NPs and their toxicity characteristics both in vitro and in vivo.

  6. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  7. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    OpenAIRE

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-01-01

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based mi...

  8. Concentration Effect on Quenching of Chlorophyll a Fluorescence by All-Trans-β-Carotene in Photosynthesis

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2017-09-01

    Full Text Available Absorption, fluorescence spectra of chlorophyll a (Chl-a and all-trans-β-carotene (β-Car mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and β-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing β-Car concentration, which implies a Chl-a conformational change.

  9. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  10. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    Science.gov (United States)

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  11. Fluorescent nanodiamond for biomedicine

    International Nuclear Information System (INIS)

    Milos Nesladek

    2014-01-01

    NV centers in diamond have gained strong interest as a novel tool for quantum information processing, quantum computing and quantum photonics. These applications are based on fluorescent and spin properties of NV-centres. However, in some conditions NV- can lose an electron and turn to NV0. The occupation of NV0 and NV- charge states depend on the position of their ground states with respect to the Fermi level and the mechanism of the charge transfer. Interestingly, that the charge switch has important implications on applications of fluorescent nanodiamond (fND) to nano-biology and nano-medicine. fND can be used for bio-marking and bio-tracking but also for the monitoring of targeted delivery to the cells. In this presentation we review the current state-of-the art for using fND particles for fluorescent bio imaging in cells and discuss the charge transfer and its luminescence stability by using ultra high sensitive spectroscopy methods to study the NV0 and NV- state occupation. (author)

  12. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur

    Directory of Open Access Journals (Sweden)

    Tegexibaiyin Wang

    2017-01-01

    Full Text Available Har Gabur is the carbide obtained from pig manure by burning. The fluorescent carbon dots (CDs of Har Gabur were successfully synthesized through simulating the digestion process of human gastrointestinal tract. Transmission Electron Microscope (TEM analysis showed that the average size of the prepared Har Gabur CDs was 4 nm, with good solubility in water and strong fluorescence under UV irradiation. The X-ray and Raman results showed that the Har Gabur CDs were mainly composed of oxygen “O” and carbon “C” elements, in the forms of “C=O” and “C-O.” The bond energy results showed that the nitrogen “N” atom presented as “C-N” form, which indicated that Har Gabur CDs also contain “N.” In photobleaching assay, Har Gabur CDs showed excellent light stability compared with ordinary organic dye, fluorescein, and Rhodamine B. The fluorescence intensity of Har Gabur CDs was fairly stable within a wide pH range of 3–10. When L-lysine and L-cysteine were applied for the passivation stage, the relative quantum yields were improved by 1.53 and 3.68 times, respectively. Finally, the fluorescence properties of Har Gabur CDs were tested in cells and zebrafish, illustrating that Har Gabur CD has potential in the application of biological labeling and imaging.

  13. Fluorescence imaging of soybean flavonol isolines

    Science.gov (United States)

    Kim, Moon S.; Lee, Edward H.; Mulchi, Charles L.; McMurtrey, James E., III; Chappelle, Emmett W.; Rowland, Randy A.

    1998-07-01

    region of the spectrum when excited with radiation in the blue region of the spectrum. Thus, green fluorescence emission due to kaempferol glycosides excited by the blue fluorescent compounds with UV excitation (resonance energy excitation) could become a factor in the fluorescence studies of in vivo plants.

  14. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    Science.gov (United States)

    Hansen, Stephanie

    2017-10-01

    The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.

  15. Studying electron-PAG interactions using electron-induced fluorescence

    Science.gov (United States)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.

    2016-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.

  16. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    International Nuclear Information System (INIS)

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-01-01

    Highlights: ► An endothelial cell apoptosis assay using FRET-based biosensor was developed. ► The fluorescence of the cells changed from green to blue during apoptosis. ► This method was developed into a high-throughput assay in 96-well plates. ► This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z′ factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  17. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  18. Five different colours solid-state fluorescence of azastilbenes: a new ...

    Indian Academy of Sciences (India)

    effect of dipolar intermolecular interactions on their fluorescence properties, the results revealed that the emission spectra of 1−5 in ... lasers,1 fluores- cence sensors,2 fluorescent technology,3 nonlinear optics,4 ..... Royal Golden Jubilee Ph.D. Program (Grant no. ... Derrar S N, Sekkal-Rahal M, Guemra K and Derreumaux P.

  19. The sensitivity and selectivity properties of a fluorescence sensor based on quinoline-Bodipy

    Energy Technology Data Exchange (ETDEWEB)

    Nuri Kursunlu, Ahmed, E-mail: ankursunlu@gmail.com; Guler, Ersin

    2014-01-15

    A novel florescence sensor (Q-BODIPY) based on quinoline-Bodipy (quinoline-boradiazaindacene) was prepared by ‘click chemistry’ in several stages. The sensing actions of Q-BODIPY were confirmed by UV–vis titration, emission and excitation spectroscopic studies in presence of Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Sn{sup 2+}, Hg{sup 2+}, Pb{sup 2+}, La{sup 3+}, Ga{sup 3+}, Er{sup 3+} and Yb{sup 3+} ions in methanol:H{sub 2}O (1:1) medium. Whereas some metal ions can only cause quenching effect on the fluorescence intensity of Q-BODIPY, some of them show an increase in fluorescence intensity. The stoichiometry of host–guest complexes formed was determined by Job′s plot method. The binding constants were calculated by Stern–Volmer method. As a fluorescence sensor, Q-BODIPY shows the best selectivity performance against Zn{sup 2+} ions in according to all spectroscopic data. -- Highlights: • Q-BODIPY prepared by several techniques shows a fluorescent behavior toward p, d and f block metal ions. • Q-BODIPY has both a more sensitivity and more effective ability for the detection of Zn(II) ion. • The synthesis strategies to produce Bodipy′s with metal coordinating offer a new approach for the design of novel fluorescence sensors.

  20. Click strategies for single-molecule protein fluorescence.

    Science.gov (United States)

    Milles, Sigrid; Tyagi, Swati; Banterle, Niccolò; Koehler, Christine; VanDelinder, Virginia; Plass, Tilman; Neal, Adrian P; Lemke, Edward A

    2012-03-21

    Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.

  1. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  2. Fluorescent excitation of interstellar H2

    NARCIS (Netherlands)

    Black, J.H.; Dishoeck, van E.F.

    1987-01-01

    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature,

  3. Studies of fluorescence and Auger decay following inner-shell photoionization

    International Nuclear Information System (INIS)

    Levin, J.C.; Armen, G.B.

    2004-01-01

    Near inner-shell absorption edges, Auger and fluorescence spectra which characterize the first step of a complex cascade process exhibit properties which are well described by radiationless and radiative resonant Raman scattering theory. We present comparisons of our recent data and theory for Auger decay of argon K vacancies, xenon L vacancies, and of fluorescence decay of xenon L vacancies. A theoretical unification of Auger decay and fluorescence decay is presented which clarifies the similarities and differences between the two processes

  4. Gold and silver nanoparticles based superquenching of fluorescence: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debanjana; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com

    2015-04-15

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K{sub SV}~10{sup 7}–10{sup 10} mol{sup −1} dm{sup 3}) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10{sup 2} mol{sup −1} dm{sup 3}). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors.

  5. Gold and silver nanoparticles based superquenching of fluorescence: A review

    International Nuclear Information System (INIS)

    Ghosh, Debanjana; Chattopadhyay, Nitin

    2015-01-01

    The short review highlights the recent advances on the gold and silver nanoparticles induced efficient quenching of fluorescence from various fluorophores looking at their promising use as optical rulers and chemo-/bio- sensors. The fluorescence quenching often leads to the increase in the Stern–Volmer constant (K SV ~10 7 –10 10 mol −1 dm 3 ) several orders of magnitude higher than the values observed for the normal photochemical quenching processes (~10 2 mol −1 dm 3 ). This amplified quenching has been termed as “super-quenching” or “hyper-quenching”. Energy transfer (ET) is established from the donor to the metal nanoparticles rationalizing these fast quenching processes. Considering the distance dependence of the ET process, Förster resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) are ascribed to take place. These sensitive distance dependent phenomena serve as the spectroscopic ruler to measure the intra- or intermolecular distances between the interacting partners. In this account focus has been laid on the size dependent energy transfer and super- and hyper- quenching of the fluorescence of the donor moieties by the nanometals and their probable applications in sensing. Rationalization has been made for the nanoparticle induced huge enhancement in the quenching efficiency. The impact of this review lies in the possible application of these amplified quenching processes in designing high sensitive chemical and biological sensors. - Highlights: • Super efficient quenching of fluorescence of probes by gold and silver nanoparticles is highlighted. • The amplified fluorescence quenching of dyes and polymers is rationalized. • Energy transfer is assigned to be responsible for the efficient quenching process. • Amplified quenching has its potential use in designing sensitive chemical/biological sensors

  6. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    Science.gov (United States)

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  7. Structural characterization of the photoswitchable fluorescent protein Dronpa-C62S

    International Nuclear Information System (INIS)

    Nam, Ki-Hyun; Kwon, Oh Yeun; Sugiyama, Kanako; Lee, Won-Ho; Kim, Young Kwan; Song, Hyun Kyu; Kim, Eunice Eunkyung; Park, Sam-Yong; Jeon, Hyesung; Hwang, Kwang Yeon

    2007-01-01

    The photoswitching behavior of green fluorescent proteins (GFPs) or GFP-like proteins is increasingly recognized as a new technique for optical marking. Recently, Ando and his colleagues developed a new green fluorescent protein Dronpa, which possesses the unique photochromic property of being photoswitchable in a non-destructive manner. To better understand this mechanism, we determined the crystal structures of a new GFP Dronpa and its mutant C62S, at 1.9 A and 1.8 A, respectively. Determination of the structures demonstrates that a unique hydrogen-bonding network and the sulfur atom of the chromophore are critical to the photoswitching property of Dronpa. Reversible photoswitching was lost in cells expressing the Dronpa-C62S upon repetitive irradiation compared to the native protein. Structural and mutational analyses reveal the chemical basis for the functional properties of photoswitchable fluorescent proteins and provide the basis for subsequent coherent engineering of this subfamily of Dronpa homolog's

  8. A fluorescence quenching test for the detection of flavonoid transformation.

    Science.gov (United States)

    Schoefer, L; Braune, A; Blaut, M

    2001-11-13

    A novel fluorescence quenching test for the detection of flavonoid degradation by microorganisms was developed. The test is based on the ability of the flavonoids to quench the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH). Several members of the anthocyanidins, flavones, isoflavones, flavonols, flavanones, dihydroflavanones, chalcones, dihydrochalcones and catechins were tested with regard to their quenching properties. The anthocyanidins were the most potent quenchers of DPH fluorescence, while the flavanones, dihydroflavanones and dihydrochalcones, quenched the fluorescence only weakly. The catechins had no visible impact on DPH fluorescence. The developed test allows a quick and easy differentiation between flavonoid-degrading and flavonoid-non-degrading bacteria. The investigation of individual reactions of flavonoid transformation with the developed test system is also possible.

  9. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J

    2009-03-24

    Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

  10. Quality in the chemical analysis of biological matrices by fluorescence X-ray by energy dispersive

    International Nuclear Information System (INIS)

    Sousa, Evely E. de; Paiva, Jose Daniel S. de; Franca, Elvis J. de; Almeida, Macio E.S.; Cantinha, Rebeca S.; Hazin, Clovis A.

    2013-01-01

    The aim of this study was to obtain multielement analytical curves of high analytical rigor to the analysis of biological matrices by the technique of fluorescence x-ray energy dispersive - EDXRF. Calibration curves were constructed from the reference materials IAEA 140, IAEA 155, IAEA V8, V10 to the International Atomic Energy Agency - IAEA, and SRM1515, SRM 1547, SRM 1570a, SRM 1573a, SEM 1567a, to the National Institute of Standards and Technology - NIST. After energy calibration, all samples were subjected to vacuum to the analyzes by 100 seconds for each group of chemical elements. The voltages used were respectively 15 keV for chemical elements with less than atomic number 22 and 50 keV for the others. After the construction of the curves, the analytical quality was assessed by the analysis of a portion-test of the reference material SRM 2976, also produced by NIST. Based on the number of certified reference materials used for construction of calibration curves in this work, quality analytical protocol was originated with considerable reliability for quantification of chemical elements in biological samples by EDXR

  11. Ultrafast Dynamics of Sb-Corroles: A Combined Vis-Pump Supercontinuum Probe and Broadband Fluorescence Up-Conversion Study

    Directory of Open Access Journals (Sweden)

    Clark Zahn

    2017-07-01

    Full Text Available Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V-trans-difluoride (Sb-tpfc-F2. Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.

  12. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    Science.gov (United States)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  13. Fluorescence studies on 2-(het)aryl perimidine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Giani, Arianna Maria [Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2/3, I-28100 Novara (Italy); Lamperti, Marco; Maspero, Angelo; Cimino, Alessandro [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Negri, Roberto; Giovenzana, Giovanni Battista [Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2/3, I-28100 Novara (Italy); Palmisano, Giovanni [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Nardo, Luca, E-mail: luca.nardo@unimib.it [Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore 48, I-20900 Monza (Italy)

    2016-11-15

    Perimidines are extensively studied for their different therapeutic properties, including antiulcer, antifungal, antimicrobial, immunosuppressive and anticancer activities. Moreover, their heterocyclic structure embodies the naphthalene moiety, exploited in bio-imaging and biomolecules staining due to its high fluorescence. In this work we present the spectroscopic characterization of a family of perimidine derivatives, in order to obtain information potentially useful for the design of compounds combining biological activity and detectable fluorescence in physiological environment.

  14. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  15. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM) in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River

    Science.gov (United States)

    Para, J.; Coble, P. G.; Charrière, B.; Tedetti, M.; Fontana, C.; Sempéré, R.

    2010-12-01

    Seawater samples were collected monthly in surface waters (2 and 5 m depths) of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m-1) in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm-1) in summer than in fall and winter periods (0.017 ± 0.002 nm-1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30-21.94 QSU) and marine humic-like component (peak M; 0.55-5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34-2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2-3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peaks C and A). Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties

  16. An OFF–ON–OFF type of pH fluorescent sensor: Benzo[c,d]indole-based dimethine cyanine dye-synthesis, spectral properties and density functional theory studies

    International Nuclear Information System (INIS)

    Liu, Qi; Hong Su, Xiao; Ying Wang, Lan; Sun, Wei; Bo Lei, Yi; Yi Wen, Zhen

    2014-01-01

    We synthesized a novel OFF–ON–OFF type of pH-dependent fluorescent sensor: benzo[c,d]indole-based dimethine cyanine dye D1, with donor-π-acceptor (D-π-A) structure based on intramolecular charge transfer system (ICT), which employed dimethine cyanine dye as a fluorophore and pentavalent nitrogen NH + group as a pH modulator, respectively. The product was identified by 1 H NMR, 13 C NMR, IR, UV–vis and HRMS. The investigation of spectral properties found that dye D1 showed excellent spectroscopic properties and its absorption maxima and fluorescence quantum yield were basically larger in protic solvent than in aprotic solvent. Meanwhile, the absorption spectra of D1 were revealed to hypochromatic-shift and the absorption intensity was gradually decreased along with the increase of pH value. Interestingly, dye D1 showed remarkable fluorescence when pH value was in the range of 6.00–9.80 with the peak at 8.21, which was defined as an OFF–ON–OFF type of pH-dependent fluorescent sensors based on ICT. In addition, dye D1 exhibited a high selectivity for H + over other common ions, such as Cl − , K + , Fe 2+ etc. Theoretical calculations based on density functional theory (DFT) were employed to provide a better understanding of this particular dye sensor. These results indicated that D1 would be able to act as an efficient pH-sensor and had a potential to play an important role in biological and medical study. - Highlights: • A new benzo[c,d]indole-based pH fluorescent sensor was synthesized without adding catalyst. • The absorption spectra of dye D1 were associated with the solvents’ pK a value. • The sensor showed OFF–ON–OFF fluorescence in pH buffer, with the peak at 8.21. • The sensor had high sensitivity and selectivity

  17. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    Science.gov (United States)

    Echard, Jean-Philippe

    2004-10-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musée de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  18. Nanodiamond arrays on glass for quantification and fluorescence characterisation.

    Science.gov (United States)

    Heffernan, Ashleigh H; Greentree, Andrew D; Gibson, Brant C

    2017-08-23

    Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

  19. Endogenous synchronous fluorescence spectroscopy (SFS) of basal cell carcinoma-initial study

    Science.gov (United States)

    Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Penkov, N.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2016-01-01

    The human skin is a complex, multilayered and inhomogeneous organ with spatially varying optical properties. Analysis of cutaneous fluorescence spectra could be a very complicated task; therefore researchers apply complex mathematical tools for data evaluation, or try to find some specific approaches, that would simplify the spectral analysis. Synchronous fluorescence spectroscopy (SFS) allows improving the spectral resolution, which could be useful for the biological tissue fluorescence characterization and could increase the tumour detection diagnostic accuracy.

  20. Fluorescent halite from Bochnia salt mine, Poland

    Science.gov (United States)

    Waluś, Edyta; Głąbińska, Dobrochna; Puławska, Aleksandra; Flasza, Michał; Manecki, Maciej

    2016-04-01

    The photoluminescence of selected halite crystals from Bochnia Salt Mine (Bochnia, Poland) were discovered in 2014. This is a result of contemporary precipitation from percolating waters. In most cases the fluorescence is observed in whole crystals or in zones of crystals. Only clear parts of transparent crystals are orange-red fluorescent in short UV light (320 nm). Chemical microanalysis by scanning electron microscopy/energy dispersive spectroscopy SEM/EDS indicates that this is activated by Mn and Pb. The concentration of Mn is similar in fluorescent and inactive salt and equals to 0.13 - 0.27 wt.%. The concentration of Pb, however, averages to 3.8 wt.% in fluorescent parts reaching only 1.9 wt.% elsewhere. There is no difference in the unit cell parameters determined by powder X-ray diffraction. The percolating waters contain some Mn (ca. 3.9 ppm) but the concentration of Pb is below the detection limits. The experiments of precipitation of halite from the solutions containing various concentrations of Mn and Pb were performed to simulate this fenomenon using solutions containing: 1 mg Pb/L and 80 mg Mn/L; 1 mg Pb/L and 0.8 mg Mn/L; 1 mg Pb/L and 0.6 mg Mn/L; and 0 mg Pb/L and 80 mg Mn/L. The results indicate that fluorescence is apparent when halite forms from solutions containing more than 0.8 mg Mn/L and more than 1 mg Pb/L. The presence of lead as co-activator is necessary requirement: Mn alone does not activate the fluorescence of halite. This is in accordance with the results of previous work (Murata et al., 1946; Sidike et al., 2002). Rock salt in the mine does not show fluorescence at all. Fluorescence of contemporary salt in Bochnia salt mine is a result of mining activity and slight, sporadic contamination with traces of Mn and Pb. This work is partially funded by AGH research grant no 11.11.140.319. Murata K. J., Smith R. L., 1946. Manganese and lead as coactivators of red fluorescence in halite, American Mineralogist, Volume 31, pages 527

  1. 6-Aminocoumarin-naphthoquinone conjugates: design, synthesis, photophysical and electrochemical properties and DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Fabio S.; Ronconi, Celia M.; Sousa, Mikaelly O.B.; Silveira, Gleiciani Q.; Vargas, Maria D., E-mail: miranda@vm.uff.br, E-mail: mdvargascp@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica

    2014-01-15

    Four novel 6-aminocoumarin-naphthoquinone conjugates were synthesized and their photophysical and electrochemical properties, investigated. 2-Chloro-3-(2-oxo-2H-chromen-6- ylamino)-1,4-naphthoquinone 1 did not present appreciable fluorescence in solution in comparison with 6-aminocoumarin, 6-AC. In order to understand the reasons for the fluorescence quenching in this compound, two strategies were attempted. Firstly, compound 1 was N-methylated to remove the intramolecular N-H...O=C electrostatic interaction that maintained the two units fixed, but the emission properties of the product 2 were not significantly different from those of 1. Time-dependent density functional theory (TD-DFT) calculations of compounds 1 and 2 indicate that the fluorescence quenching is related to the electron acceptor character of the naphthoquinone ring. The second strategy, therefore, involved the substitution of the chlorine atom in position 2 of the naphthoquinone nucleus for different electron donor groups (compounds 3-5), but again the emission properties did not change significantly. To explain these experimental findings, TD-DFT calculations of the ground (S{sub 0}) and excited (S{sub 1}) states of all molecules in solution were carried out. The results suggest that the energy states in these conjugates are such that the fluorescent group (6-AC) donates electrons to the naphthoquinone LUMO resulting in an oxidative photoinduced electron transfer (oxidative-PET). (author)

  2. Energy properties of deuterium cluster impacts on TiD targets

    International Nuclear Information System (INIS)

    Yamamura, Yasunori

    1992-01-01

    In order to know the energy properties of deuterium atoms in the cluster impact region, the deuterium cluster impact phenomena have been simulated by using the time-evolution Monte Carlo simulation code DYACAT, where the (D) n (n being 100 to 500 ) with energy 500eV/atom are bombarded on TiD targets. For comparison, the energy properties of 500 eV/atom (Al) 500 cluster impacts on amorphous Au targets have also been simulated. In the case of the deuterium cluster impacts on TiD targets, the high energy tail of the energy distribution of deuterium atoms drops so fast. The temperature of the deuterium cluster impact region is less than 100 ev, and it decreases slightly as the cluster size increases due to the enhanced energy removal with reflected deuterium atoms and sputtered deuterium atoms. While in the case of 500 eV/atom (Al) 500 cluster impacts on Au the high-energy tail of the energy distribution of Al atoms due to the big cluster impact can be well described in terms of the Maxwell-Boltzmann function whose temperature is 270 ev. (author)

  3. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    Actinomycin D (Act D), an oncogenic c-Myc promoter binder, interferes with the action of RNA polymerase. There is great demand for high-throughput technology able to monitor the activity of DNA-binding drugs. To this end, binding of 7-aminoactinomycin D (7AAD) to the duplex c-Myc promoter...... pairs resulted in efficient energy transfer from drug to QD via fluorescen