WorldWideScience

Sample records for proper orthogonal decomposition

  1. Limited-memory adaptive snapshot selection for proper orthogonal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Oxberry, Geoffrey M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kostova-Vassilevska, Tanya [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Arrighi, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chand, Kyle [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-04-02

    Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full order model is recovered to within discretization error. The resulting method can be used on supercomputers to generate proper orthogonal decomposition-based reduced order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space.

  2. Modal analysis of fluid flows using variants of proper orthogonal decomposition

    Science.gov (United States)

    Rowley, Clarence; Dawson, Scott

    2017-11-01

    This talk gives an overview of several methods for analyzing fluid flows, based on variants of proper orthogonal decomposition. These methods may be used to determine simplified, approximate models that capture the essential features of these flows, in order to better understand the dominant physical mechanisms, and potentially to develop appropriate strategies for model-based flow control. We discuss balanced proper orthogonal decomposition as an approximation of balanced truncation, and explain connections with system identification methods such as the eigensystem realization algorithm. We demonstrate the methods on several canonical examples, including a linearized channel flow and the flow past a circular cylinder. Supported by AFOSR, Grant FA9550-14-1-0289.

  3. A turbulent jet in crossflow analysed with proper orthogonal decomposition

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Pedersen, Jakob Martin; Özcan, Oktay

    2007-01-01

    and pipe diameter was 2400 and the jet to crossflow velocity ratios were R = 3.3 and R = 1.3. The experimental data have been analysed by proper orthogonal decomposition (POD). For R = 3.3, the results in several different planes indicate that the wake vortices are the dominant dynamic flow structures...

  4. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    Science.gov (United States)

    2017-03-30

    Golinval, 2002, Physical interpretation of the proper orthogonal modes using the singular value decomposition, Journal of Sound and Vibration, 249...complex and contain contributions from the environment (e.g., wind, waves, currents) as well as artifacts associated with electromagnetic (EM) (wave...Although there is no physical basis/ interpretation inherent to the method because it is purely a mathematical tool, there has been an increasing

  5. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-01-01

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  6. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  7. Ocean Models and Proper Orthogonal Decomposition

    Science.gov (United States)

    Salas-de-Leon, D. A.

    2007-05-01

    The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.

  8. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    Science.gov (United States)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  9. Proper Orthogonal Decomposition and Dynamic Mode Decomposition in the Right Ventricle after Repair of Tetralogy of Fallot

    Science.gov (United States)

    Mikhail, Amanda; Kadem, Lyes; di Labbio, Giuseppe

    2017-11-01

    Tetralogy of Fallot accounts for 5% of all cyanotic congenital heart defects, making it the most predominant today. Approximately 1660 cases per year are seen in the United States alone. Once repaired at a very young age, symptoms such as pulmonary valve regurgitation seem to arise two to three decades after the initial operation. Currently, not much is understood about the blood flow in the right ventricle of the heart when regurgitation is present. In this study, the interaction between the diastolic interventricular flow and the regurgitating pulmonary valve are investigated. This experimental work aims to simulate and characterize this detrimental flow in a right heart simulator using time-resolved particle image velocimetry. Seven severities of regurgitation were simulated. Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) revealed intricate coherent flow structures. With regurgitation severity, the modal energies from POD are more distributed among the modes while DMD reveals more unstable modes. This study can contribute to the further investigation of the detrimental effects of right ventricle regurgitation.

  10. Multicrack Localization in Rotors Based on Proper Orthogonal Decomposition Using Fractal Dimension and Gapped Smoothing Method

    Directory of Open Access Journals (Sweden)

    Zhiwen Lu

    2016-01-01

    Full Text Available Multicrack localization in operating rotor systems is still a challenge today. Focusing on this challenge, a new approach based on proper orthogonal decomposition (POD is proposed for multicrack localization in rotors. A two-disc rotor-bearing system with breathing cracks is established by the finite element method and simulated sensors are distributed along the rotor to obtain the steady-state transverse responses required by POD. Based on the discontinuities introduced in the proper orthogonal modes (POMs at the locations of cracks, the characteristic POM (CPOM, which is sensitive to crack locations and robust to noise, is selected for cracks localization. Instead of using the CPOM directly, due to its difficulty to localize incipient cracks, damage indexes using fractal dimension (FD and gapped smoothing method (GSM are adopted, in order to extract the locations more efficiently. The method proposed in this work is validated to be effective for multicrack localization in rotors by numerical experiments on rotors in different crack configuration cases considering the effects of noise. In addition, the feasibility of using fewer sensors is also investigated.

  11. Investigating Coherent Structures in the Standard Turbulence Models using Proper Orthogonal Decomposition

    International Nuclear Information System (INIS)

    Eliassen, Lene; Andersen, Søren

    2016-01-01

    The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)

  12. Proper orthogonal decomposition applied to laminar thermal convection in a vertical two plate channel

    International Nuclear Information System (INIS)

    Alvarez-Herrera, C; Murillo-Ramírez, J G; Pérez-Reyes, I; Moreno-Hernández, D

    2015-01-01

    This work reports the thermal convection with imposed shear flow in a thin two-plate channel. Flow structures are investigated under heating asymmetric conditions and different laminar flow conditions. The dynamics of heat flow and the energy distribution were determined by visualization with the Schlieren technique and application of the proper orthogonal decomposition (POD) method. The obtained results from the POD mode analysis revealed that for some flow conditions the heat transfer is related to the energy of the POD modes and their characteristic numbers. It was possible to detect periodic motion in the two-plate channel flow from the POD mode analysis. It was also found that when the energy is distributed among many POD modes, the fluid flow is disorganized and unsteady. (paper)

  13. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    Science.gov (United States)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  14. Development of Boundary Condition Independent Reduced Order Thermal Models using Proper Orthogonal Decomposition

    Science.gov (United States)

    Raghupathy, Arun; Ghia, Karman; Ghia, Urmila

    2008-11-01

    Compact Thermal Models (CTM) to represent IC packages has been traditionally developed using the DELPHI-based (DEvelopment of Libraries of PHysical models for an Integrated design) methodology. The drawbacks of this method are presented, and an alternative method is proposed. A reduced-order model that provides the complete thermal information accurately with less computational resources can be effectively used in system level simulations. Proper Orthogonal Decomposition (POD), a statistical method, can be used to reduce the order of the degree of freedom or variables of the computations for such a problem. POD along with the Galerkin projection allows us to create reduced-order models that reproduce the characteristics of the system with a considerable reduction in computational resources while maintaining a high level of accuracy. The goal of this work is to show that this method can be applied to obtain a boundary condition independent reduced-order thermal model for complex components. The methodology is applied to the 1D transient heat equation.

  15. Proper generalized decompositions an introduction to computer implementation with Matlab

    CERN Document Server

    Cueto, Elías; Alfaro, Icíar

    2016-01-01

    This book is intended to help researchers overcome the entrance barrier to Proper Generalized Decomposition (PGD), by providing a valuable tool to begin the programming task. Detailed Matlab Codes are included for every chapter in the book, in which the theory previously described is translated into practice. Examples include parametric problems, non-linear model order reduction and real-time simulation, among others. Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation. .

  16. Comparing and improving proper orthogonal decomposition (POD) to reduce the complexity of groundwater models

    Science.gov (United States)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2017-04-01

    Physically-based modeling is a wide-spread tool in understanding and management of natural systems. With the high complexity of many such models and the huge amount of model runs necessary for parameter estimation and uncertainty analysis, overall run times can be prohibitively long even on modern computer systems. An encouraging strategy to tackle this problem are model reduction methods. In this contribution, we compare different proper orthogonal decomposition (POD, Siade et al. (2010)) methods and their potential applications to groundwater models. The POD method performs a singular value decomposition on system states as simulated by the complex (e.g., PDE-based) groundwater model taken at several time-steps, so-called snapshots. The singular vectors with the highest information content resulting from this decomposition are then used as a basis for projection of the system of model equations onto a subspace of much lower dimensionality than the original complex model, thereby greatly reducing complexity and accelerating run times. In its original form, this method is only applicable to linear problems. Many real-world groundwater models are non-linear, tough. These non-linearities are introduced either through model structure (unconfined aquifers) or boundary conditions (certain Cauchy boundaries, like rivers with variable connection to the groundwater table). To date, applications of POD focused on groundwater models simulating pumping tests in confined aquifers with constant head boundaries. In contrast, POD model reduction either greatly looses accuracy or does not significantly reduce model run time if the above-mentioned non-linearities are introduced. We have also found that variable Dirichlet boundaries are problematic for POD model reduction. An extension to the POD method, called POD-DEIM, has been developed for non-linear groundwater models by Stanko et al. (2016). This method uses spatial interpolation points to build the equation system in the

  17. Model Reduction Using Proper Orthogonal Decomposition and Predictive Control of Distributed Reactor System

    Directory of Open Access Journals (Sweden)

    Alejandro Marquez

    2013-01-01

    Full Text Available This paper studies the application of proper orthogonal decomposition (POD to reduce the order of distributed reactor models with axial and radial diffusion and the implementation of model predictive control (MPC based on discrete-time linear time invariant (LTI reduced-order models. In this paper, the control objective is to keep the operation of the reactor at a desired operating condition in spite of the disturbances in the feed flow. This operating condition is determined by means of an optimization algorithm that provides the optimal temperature and concentration profiles for the system. Around these optimal profiles, the nonlinear partial differential equations (PDEs, that model the reactor are linearized, and afterwards the linear PDEs are discretized in space giving as a result a high-order linear model. POD and Galerkin projection are used to derive the low-order linear model that captures the dominant dynamics of the PDEs, which are subsequently used for controller design. An MPC formulation is constructed on the basis of the low-order linear model. The proposed approach is tested through simulation, and it is shown that the results are good with regard to keep the operation of the reactor.

  18. Low-order modelling of shallow water equations for sensitivity analysis using proper orthogonal decomposition

    Science.gov (United States)

    Zokagoa, Jean-Marie; Soulaïmani, Azzeddine

    2012-06-01

    This article presents a reduced-order model (ROM) of the shallow water equations (SWEs) for use in sensitivity analyses and Monte-Carlo type applications. Since, in the real world, some of the physical parameters and initial conditions embedded in free-surface flow problems are difficult to calibrate accurately in practice, the results from numerical hydraulic models are almost always corrupted with uncertainties. The main objective of this work is to derive a ROM that ensures appreciable accuracy and a considerable acceleration in the calculations so that it can be used as a surrogate model for stochastic and sensitivity analyses in real free-surface flow problems. The ROM is derived using the proper orthogonal decomposition (POD) method coupled with Galerkin projections of the SWEs, which are discretised through a finite-volume method. The main difficulty of deriving an efficient ROM is the treatment of the nonlinearities involved in SWEs. Suitable approximations that provide rapid online computations of the nonlinear terms are proposed. The proposed ROM is applied to the simulation of hypothetical flood flows in the Bordeaux breakwater, a portion of the 'Rivière des Prairies' located near Laval (a suburb of Montreal, Quebec). A series of sensitivity analyses are performed by varying the Manning roughness coefficient and the inflow discharge. The results are satisfactorily compared to those obtained by the full-order finite volume model.

  19. An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system

    Science.gov (United States)

    Jin, Yulin; Lu, Kuan; Hou, Lei; Chen, Yushu

    2017-12-01

    The proper orthogonal decomposition (POD) method is a main and efficient tool for order reduction of high-dimensional complex systems in many research fields. However, the robustness problem of this method is always unsolved, although there are some modified POD methods which were proposed to solve this problem. In this paper, a new adaptive POD method called the interpolation Grassmann manifold (IGM) method is proposed to address the weakness of local property of the interpolation tangent-space of Grassmann manifold (ITGM) method in a wider parametric region. This method is demonstrated here by a nonlinear rotor system of 33-degrees of freedom (DOFs) with a pair of liquid-film bearings and a pedestal looseness fault. The motion region of the rotor system is divided into two parts: simple motion region and complex motion region. The adaptive POD method is compared with the ITGM method for the large and small spans of parameter in the two parametric regions to present the advantage of this method and disadvantage of the ITGM method. The comparisons of the responses are applied to verify the accuracy and robustness of the adaptive POD method, as well as the computational efficiency is also analyzed. As a result, the new adaptive POD method has a strong robustness and high computational efficiency and accuracy in a wide scope of parameter.

  20. Proper orthogonal decomposition analysis of scanning laser Doppler vibrometer measurements of plaster status at the U.S. Capitol

    Science.gov (United States)

    Vignola, Joseph F.; Bucaro, Joseph A.; Tressler, James F.; Ellingston, Damon; Kurdila, Andrew J.; Adams, George; Marchetti, Barbara; Agnani, Alexia; Esposito, Enrico; Tomasini, Enrico P.

    2004-06-01

    A large-scale survey (~700 m2) of frescos and wall paintings was undertaken in the U.S. Capitol Building in Washington, D.C. to identify regions that may need structural repair due to detachment, delamination, or other defects. The survey encompassed eight pre-selected spaces including: Brumidi's first work at the Capitol building in the House Appropriations Committee room; the Parliamentarian's office; the House Speaker's office; the Senate Reception room; the President's Room; and three areas of the Brumidi Corridors. Roughly 60% of the area surveyed was domed or vaulted ceilings, the rest being walls. Approximately 250 scans were done ranging in size from 1 to 4 m2. The typical mesh density was 400 scan points per square meter. A common approach for post-processing time series called Proper Orthogonal Decomposition, or POD, was adapted to frequency-domain data in order to extract the essential features of the structure. We present a POD analysis for one of these panels, pinpointing regions that have experienced severe substructural degradation.

  1. Spatiotemporal multiscaling analysis of impurity transport in plasma turbulence using proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Del-Castillo-Negrete, D.

    2009-01-01

    The spatiotemporal multiscale dynamics of the turbulent transport of impurities is studied in the context of the collisional drift wave turbulence. Two turbulence regimes are considered: a quasihydrodynamic regime and a quasiadiabatic regime. The impurity is assumed to be a passive scalar advected by the corresponding ExB turbulent flow in the presence of diffusion. Two mixing scenarios are studied: a freely decaying case, and a forced case in which the scalar is forced by an externally imposed gradient. The results of the direct numerical simulations are analyzed using proper orthogonal decomposition (POD) techniques. The multiscale analysis is based on a space-time separable POD of the impurity field. The low rank spatial POD eigenfunctions capture the large scale coherent structures and the high rank eigenfunctions capture the small scale fluctuations. The temporal evolution at each scale is dictated by the corresponding temporal POD eigenfunctions. Contrary to the decaying case in which the POD spectrum decays fast, the spectrum in the forced case is relatively flat. The most striking difference between these two mixing scenarios is in the temporal dynamics of the small scale structures. In the decaying case the POD reveals the presence of 'bursty' dynamics in which successively small (high POD rank) scales are intermittently activated during the mixing process. On the other hand, in the forced simulations the temporal dynamics exhibits stationary fluctuations. Spatial intermittency or 'patchiness' in the mixing process characterizes the distribution of the passive tracer in the decaying quasihydrodynamic regime. In particular, in this case the probability distribution function of the low rank POD spatial reconstruction error is non-Gaussian. The spatiotemporal POD scales exhibit a diffusive-type scaling in the quasiadiabatic regime. However, this scaling seems to be absent in the quasihydrodynamic regime that shows no scaling (in the decaying case) or two

  2. On Orthogonal Decomposition of a Sobolev Space

    OpenAIRE

    Lakew, Dejenie A.

    2016-01-01

    The theme of this short article is to investigate an orthogonal decomposition of a Sobolev space and look at some properties of the inner product therein and the distance defined from the inner product. We also determine the dimension of the orthogonal difference space and show the expansion of spaces as their regularity increases.

  3. Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

    International Nuclear Information System (INIS)

    Stefan, D; Rudolf, P

    2015-01-01

    The simulations of high head Francis turbine model (Tokke) are performed for three operating conditions - Part Load, Best Efficiency Point (BEP) and Full Load using software Ansys Fluent R15 and alternatively OpenFOAM 2.2.2. For both solvers the simulations employ Realizable k-e turbulence model. The unsteady pressure pulsations of pressure signal from two monitoring points situated in the draft tube cone and one behind the guide vanes are evaluated for all three operating conditions in order to compare frequencies and amplitudes with the experimental results. The computed velocity fields are compared with the experimental ones using LDA measurements in two locations situated in the draft tube cone. The proper orthogonal decomposition (POD) is applied on a longitudinal slice through the draft tube cone. The unsteady static pressure fields are decomposed and a spatio-temporal behavior of modes is correlated with amplitude-frequency results obtained from the pressure signal in monitoring points. The main application of POD is to describe which modes are related to an interaction between rotor (turbine runner) and stator (spiral casing and guide vanes) and cause dynamic flow behavior in the draft tube. The numerically computed efficiency is correlated with the experimental one in order to verify the simulation accuracy

  4. Application of the Proper Orthogonal Decomposition to Turbulent Czochralski Convective Flows

    International Nuclear Information System (INIS)

    Rahal, S; Cerisier, P; Azuma, H

    2007-01-01

    The aim of this work is to study the general aspects of the convective flow instabilities in a simulated Czochralski system. We considered the influence of the buoyancy and crystal rotation. Velocity fields, obtained by an ultrasonic technique, the corresponding 2D Fourier spectra and a correlation function, have been used. Steady, quasi-periodic and turbulent flows, are successively recognized, as the Reynolds number was increased, for a fixed Rayleigh number. The orthogonal decomposition method was applied and the numbers of modes, involved in the dynamics of turbulent flows, calculated. As far as we know, this method has been used for the first time to study the Czochralski convective flows. This method provides also information on the most important modes and allows simple theoretical models to be established. The large rotation rates of the crystal were found to stabilize the flow, and conversely the temperature gradients destabilize the flow. Indeed, the increase of the rotation effects reduces the number of involved modes and oscillations, and conversely, as expected, the increase of the buoyancy effects induces more modes to be involved in the dynamics. Thus, the flow oscillations can be reduced either by increasing the crystal rotation rate to the adequate value, as shown in this study or by imposing a magnetic field

  5. On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianzhi; Liu, Minghou; Gu, Hailin; Yao, Mengyun [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wu, Guang, E-mail: mhliu@ustc.edu.cn [Technical Services Engineer, ANSYS, Inc (United States)

    2017-02-15

    In the present work, the wakes behind a circular disk at various transitional regimes are numerically explored using fully 3D proper orthogonal decomposition (POD). The Reynolds numbers considered in this study (Re = 152, 170, 300 and 3000) cover four transitional states, i.e. the reflectional-symmetry-breaking (RSB) mode, the standing wave (SW) mode, a weakly chaotic state, and a higher-Reynolds-number state. Through analysis of the spatial POD modes at different wake states, it is found that a planar-symmetric vortex shedding mode characterized by the first mode pair is persistent in all the states. When the wake develops into a weakly chaotic state, a new vortex shedding mode characterized by the second mode pair begins to appear and completely forms at the higher-Reynolds-number state of Re = 3000, i.e. planar-symmetry-breaking vortex shedding mode. On the other hand, the coherent structure at Re = 3000 extracted from the first two POD modes shows a good resemblance to the wake configuration in the SW mode, while the coherent structure reconstructed from the first four POD modes shows a good resemblance to the wake configuration in the RSB mode. The present results indicate that the dynamics or flow instabilities observed at transitional RSB and SW modes are still preserved in a higher-Reynolds-number regime. (paper)

  6. Adaptive integrand decomposition in parallel and orthogonal space

    International Nuclear Information System (INIS)

    Mastrolia, Pierpaolo; Peraro, Tiziano; Primo, Amedeo

    2016-01-01

    We present the integrand decomposition of multiloop scattering amplitudes in parallel and orthogonal space-time dimensions, d=d ∥ +d ⊥ , being d ∥ the dimension of the parallel space spanned by the legs of the diagrams. When the number n of external legs is n≤4, the corresponding representation of multiloop integrals exposes a subset of integration variables which can be easily integrated away by means of Gegenbauer polynomials orthogonality condition. By decomposing the integration momenta along parallel and orthogonal directions, the polynomial division algorithm is drastically simplified. Moreover, the orthogonality conditions of Gegenbauer polynomials can be suitably applied to integrate the decomposed integrand, yielding the systematic annihilation of spurious terms. Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to irreducible scalar products of loop momenta and external ones. We revisit the one-loop decomposition, which turns out to be controlled by the maximum-cut theorem in different dimensions, and we discuss the integrand reduction of two-loop planar and non-planar integrals up to n=8 legs, for arbitrary external and internal kinematics. The proposed algorithm extends to all orders in perturbation theory.

  7. Adaptive integrand decomposition in parallel and orthogonal space

    Energy Technology Data Exchange (ETDEWEB)

    Mastrolia, Pierpaolo [Dipartimento di Fisica ed Astronomia, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,James Clerk Maxwell Building,Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland (United Kingdom); Primo, Amedeo [Dipartimento di Fisica ed Astronomia, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-08-29

    We present the integrand decomposition of multiloop scattering amplitudes in parallel and orthogonal space-time dimensions, d=d{sub ∥}+d{sub ⊥}, being d{sub ∥} the dimension of the parallel space spanned by the legs of the diagrams. When the number n of external legs is n≤4, the corresponding representation of multiloop integrals exposes a subset of integration variables which can be easily integrated away by means of Gegenbauer polynomials orthogonality condition. By decomposing the integration momenta along parallel and orthogonal directions, the polynomial division algorithm is drastically simplified. Moreover, the orthogonality conditions of Gegenbauer polynomials can be suitably applied to integrate the decomposed integrand, yielding the systematic annihilation of spurious terms. Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to irreducible scalar products of loop momenta and external ones. We revisit the one-loop decomposition, which turns out to be controlled by the maximum-cut theorem in different dimensions, and we discuss the integrand reduction of two-loop planar and non-planar integrals up to n=8 legs, for arbitrary external and internal kinematics. The proposed algorithm extends to all orders in perturbation theory.

  8. Decomposition of orthogonal polygons in a set of rectanglеs

    OpenAIRE

    Shestakov, E.; Voronov, A.

    2009-01-01

    Algorithm for covering orthogonal integrated circuit layout objects is considered. Objects of the research are special single-connected orthogonal polygons which are generated during decomposition of any multiply connected polygon in a set of single-connected orthogonal polygons. Developed algorithm for covering polygons based on the mathematical techinque of logic matrix transformation. Results described in this paper, can be applied in computer geometry and image analysis.

  9. Effectiveness of Modal Decomposition for Tapping Atomic Force Microscopy Microcantilevers in Liquid Environment.

    Science.gov (United States)

    Kim, Il Kwang; Lee, Soo Il

    2016-05-01

    The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.

  10. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    Science.gov (United States)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  11. A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems

    KAUST Repository

    Carlberg, Kevin

    2010-12-10

    A novel model reduction technique for static systems is presented. The method is developed using a goal-oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced-order model generates accurate approximations due to its goal-oriented construction and the explicit \\'training\\' of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right-hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem. © 2010 John Wiley & Sons, Ltd.

  12. A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems

    KAUST Repository

    Carlberg, Kevin; Farhat, Charbel

    2010-01-01

    A novel model reduction technique for static systems is presented. The method is developed using a goal-oriented framework, and it extends the concept of snapshots for proper orthogonal decomposition (POD) to include (sensitivity) derivatives of the state with respect to system input parameters. The resulting reduced-order model generates accurate approximations due to its goal-oriented construction and the explicit 'training' of the model for parameter changes. The model is less computationally expensive to construct than typical POD approaches, since efficient multiple right-hand side solvers can be used to compute the sensitivity derivatives. The effectiveness of the method is demonstrated on a parameterized aerospace structure problem. © 2010 John Wiley & Sons, Ltd.

  13. Proper orthogonal decomposition-based estimations of the flow field from particle image velocimetry wall-gradient measurements in the backward-facing step flow

    International Nuclear Information System (INIS)

    Nguyen, Thien Duy; Wells, John Craig; Mokhasi, Paritosh; Rempfer, Dietmar

    2010-01-01

    In this paper, particle image velocimetry (PIV) results from the recirculation zone of a backward-facing step flow, of which the Reynolds number is 2800 based on bulk velocity upstream of the step and step height (h = 16.5 mm), are used to demonstrate the capability of proper orthogonal decomposition (POD)-based measurement models. Three-component PIV velocity fields are decomposed by POD into a set of spatial basis functions and a set of temporal coefficients. The measurement models are built to relate the low-order POD coefficients, determined from an ensemble of 1050 PIV fields by the 'snapshot' method, to the time-resolved wall gradients, measured by a near-wall measurement technique called stereo interfacial PIV. These models are evaluated in terms of reconstruction and prediction of the low-order temporal POD coefficients of the velocity fields. In order to determine the estimation coefficients of the measurement models, linear stochastic estimation (LSE), quadratic stochastic estimation (QSE), principal component regression (PCR) and kernel ridge regression (KRR) are applied. We denote such approaches as LSE-POD, QSE-POD, PCR-POD and KRR-POD. In addition to comparing the accuracy of measurement models, we introduce multi-time POD-based estimations in which past and future information of the wall-gradient events is used separately or combined. The results show that the multi-time estimation approaches can improve the prediction process. Among these approaches, the proposed multi-time KRR-POD estimation with an optimized window of past wall-gradient information yields the best prediction. Such a multi-time KRR-POD approach offers a useful tool for real-time flow estimation of the velocity field based on wall-gradient data

  14. Kosambi and Proper Orthogonal Decomposition

    Indian Academy of Sciences (India)

    any meteorological station, or process and control pa- rameters in a chemical plant. All these are .... The power spectrum of turbulent kinetic energy is usu- ally expressed in ... to have been inspired by Kelvin's tidal machine, with templates and ...

  15. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    OpenAIRE

    Václav URUBA

    2010-01-01

    Separation of the turbulent boundary layer (BL) on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition) and its extension BOD (Bi-Orthogonal Decomposition) techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns) method. The study contributes...

  16. Orthogonal decomposition as a design tool: With application to a mixing impeller

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, Benjamin [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Digital manufacturing eliminates the expense and time required to develop custom products. By utilizing this technology, designers can quickly create a customized product specifically for their performance needs. But the timescale and expense from the engineering design workflows used to develop these customized products have not been adapted from the workflows used in mass production. In many cases these customized designs build upon already successful mass-produced products that were developed using conventional engineering design workflows. Many times as part of this conventional design process significant time is spent creating and validating high fidelity models that accurately predict the performance of the final design. These existing validated high fidelity models used for the mass-produced design can be reused for analysis and design of unknown products. This thesis explores the integration of reduced order modeling and detailed analysis into the engineering design workflow developing a customized design using digital manufacturing. Specifically, detailed analysis is coupled with proper orthogonal decomposition to enable the exploration of the design space while simultaneously shaping the model representing the design. This revised workflow is examined using the design of a laboratory scale overhead mixer impeller. The case study presented here is compared with the design of the Kar Dynamic Mixer impeller developed by The Dow Chemical Company. The result of which is a customized design for a refined set of operating conditions with improved performance.

  17. ORTHOGONAL REPRESENTATION OF THE PROPER TRANSFORMATION OF A PERSYMMETRIC MATRIX BASED ON ROTATION OPERATORS

    Directory of Open Access Journals (Sweden)

    V. M. Demko

    2018-01-01

    Full Text Available The mathematical substantiation of the algorithm for synthesis of the proper transformation and finding the eigenvalue formulae of a persymmetric matrix of dimension N = 2 k ( k =1, 4 based on orthogonal rotation operators is given. The proposed algorithm made it possible to improve the author's approach to calculating eigenvalues based on numerical examples for the maximal dimension of matrices 64×64, resulting the possibility to obtain analytical relations for calculating the eigenvalues of the persymmetric matrix. It is shown that the proper transformation has a factorized structure in the form of a product of rotation operators, each of which is a direct sum of elementary Givens and Jacobian rotation matrices. 

  18. Power system frequency estimation based on an orthogonal decomposition method

    Science.gov (United States)

    Lee, Chih-Hung; Tsai, Men-Shen

    2018-06-01

    In recent years, several frequency estimation techniques have been proposed by which to estimate the frequency variations in power systems. In order to properly identify power quality issues under asynchronously-sampled signals that are contaminated with noise, flicker, and harmonic and inter-harmonic components, a good frequency estimator that is able to estimate the frequency as well as the rate of frequency changes precisely is needed. However, accurately estimating the fundamental frequency becomes a very difficult task without a priori information about the sampling frequency. In this paper, a better frequency evaluation scheme for power systems is proposed. This method employs a reconstruction technique in combination with orthogonal filters, which may maintain the required frequency characteristics of the orthogonal filters and improve the overall efficiency of power system monitoring through two-stage sliding discrete Fourier transforms. The results showed that this method can accurately estimate the power system frequency under different conditions, including asynchronously sampled signals contaminated by noise, flicker, and harmonic and inter-harmonic components. The proposed approach also provides high computational efficiency.

  19. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  20. Intraocular pressure estimation using proper orthogonal decomposition

    CSIR Research Space (South Africa)

    Botha, N

    2012-07-01

    Full Text Available , The Netherlands, 2000. [8] Kniestedt C., Punjabi O., Lin S., Stamper R.L., ?Tonometry through the ages?. Survey of Ophthalmology. 53, 568-590, 2008. [9] Kwon T.H., Ghaboussi J., Pecknold D.A., Hashash Y.M.A., ?Effect of cornea material stiffness on measured...

  1. An application of the Proper Orthogonal Decomposition method to the thermo-economic optimization of a dual pressure, combined cycle powerplant

    International Nuclear Information System (INIS)

    Melli, Roberto; Sciubba, Enrico; Toro, Claudia

    2014-01-01

    Highlights: • The CCGT is modelled and simulated in CAMEL-Pro. • Economic costs of the system product are computed. • The POD–RBF procedure is applied to the thermoeconomic optimization of a CCGT power plant. • Economic optimal configuration is identified with POD–RBF procedure. - Abstract: This paper presents a thermo-economic optimization of a combined cycle power plant obtained via the Proper Orthogonal Decomposition–Radial Basis Functions (POD–RBF) procedure. POD, also known as “Karhunen–Loewe decomposition” or as “Method of Snapshots” is a powerful mathematical method for the low-order approximation of highly dimensional processes for which a set of initial data is known in the form of a discrete and finite set of experimental (or simulated) data: the procedure consists in constructing an approximated representation of a matricial operator that optimally “represents” the original data set on the basis of the eigenvalues and eigenvectors of the properly re-assembled data set. By combining POD and RBF it is possible to construct, by interpolation, a functional (parametric) approximation of such a representation. In this paper the set of starting data for the POD–RBF procedure has been obtained by the CAMEL-Pro™ process simulator. The proposed procedure does not require the generation of a complete simulated set of results at each iteration step of the optimization, because POD constructs a very accurate approximation to the function described by a relatively small number of initial simulations, and thus “new” points in design space can be extrapolated without recurring to additional and expensive process simulations. Thus, the often taxing computational effort needed to iteratively generate numerical process simulations of incrementally different configurations is substantially reduced by replacing much of it by easy-to-perform matrix operations. The object of the study was a fossil-fuelled, combined cycle powerplant of

  2. Strongly coupled partitioned FSI using proper orthogonal decomposition

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2012-12-01

    Full Text Available structural deformation. The structural and fluid field solvers employed for this problem are the open-source solvers Calculix and OpenFOAM. 1600 eight node hexahedral finite-volume elements and 96 twenty node quadratic brick finite elements are employed...

  3. The proper generalized decomposition for advanced numerical simulations a primer

    CERN Document Server

    Chinesta, Francisco; Leygue, Adrien

    2014-01-01

    Many problems in scientific computing are intractable with classical numerical techniques. These fail, for example, in the solution of high-dimensional models due to the exponential increase of the number of degrees of freedom. Recently, the authors of this book and their collaborators have developed a novel technique, called Proper Generalized Decomposition (PGD) that has proven to be a significant step forward. The PGD builds by means of a successive enrichment strategy a numerical approximation of the unknown fields in a separated form. Although first introduced and successfully demonstrated in the context of high-dimensional problems, the PGD allows for a completely new approach for addressing more standard problems in science and engineering. Indeed, many challenging problems can be efficiently cast into a multi-dimensional framework, thus opening entirely new solution strategies in the PGD framework. For instance, the material parameters and boundary conditions appearing in a particular mathematical mod...

  4. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  5. Decomposition of the swirling flow field downstream of Francis turbine runner

    International Nuclear Information System (INIS)

    Rudolf, P; Štefan, D

    2012-01-01

    Practical application of proper orthogonal decomposition (POD) is presented. Spatio-temporal behaviour of the coherent vortical structures in the draft tube of hydraulic turbine is studied for two partial load operating points. POD enables to identify the eigen modes, which compose the flow field and rank the modes according to their energy. Swirling flow fields are decomposed, which provides information about their streamwise and crosswise development and the energy transfer among modes. Presented methodology also assigns frequencies to the particular modes, which helps to identify the spectral properties of the flow with concrete mode shapes. Thus POD offers a complementary view to current time domain simulations or measurements.

  6. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    Science.gov (United States)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  7. Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells

    DEFF Research Database (Denmark)

    Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle

    2015-01-01

    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...... builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides, which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decomposition is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to express the modal...... vibro-acoustic waveguide is subjected to separate pressure and velocity acoustical excitations. Further, it has been found and justified that the bi-orthogonality conditions can be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the response of a fluid...

  8. Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable MT2

    Science.gov (United States)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun

    2010-07-01

    We propose a new model-independent technique for mass measurements in missing energy events at hadron colliders. We illustrate our method with the most challenging case of a single-step decay chain. We consider inclusive same-sign chargino pair production in supersymmetry, followed by leptonic decays to sneutrinos χ+χ+→ℓ+ℓ'+ν˜ℓν˜ℓ' and invisible decays ν˜ℓ→νℓχ˜10. We introduce two one-dimensional decompositions of the Cambridge MT2 variable: MT2∥ and MT2⊥, on the direction of the upstream transverse momentum P→T and the direction orthogonal to it, respectively. We show that the sneutrino mass Mc can be measured directly by minimizing the number of events N(M˜c) in which MT2 exceeds a certain threshold, conveniently measured from the end point MT2⊥max⁡(M˜c).

  9. Mode decomposition methods for flows in high-contrast porous media. A global approach

    KAUST Repository

    Ghommem, Mehdi; Calo, Victor M.; Efendiev, Yalchin R.

    2014-01-01

    We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

  10. Unsteady effects at the interface between impeller-vaned diffuser in a low pressure centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2013-03-01

    Full Text Available In this paper, Proper Orthogonal Decomposition (POD is applied to the analysis of the unsteady rotor-stator interaction in a low-pressure centrifugal compressor. Numerical simulations are carried out through finite volumes method using the Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS model. Proper Orthogonal Decomposition allows an accurate reconstruction of flow field using only a small number of modes; therefore, this method is one of the best tools for data storage. The POD results and the data obtained by the Adamczyk decomposition are compared. Both decompositions show the behavior of unsteady rotor-stator interaction, but the POD modes allow quantifying better the numerical errors.

  11. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson\\'s equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  12. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi; Akhtar, Imran; Hajj, M. R.

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson's equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  13. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  14. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi; Presho, Michael; Calo, Victor M.; Efendiev, Yalchin R.

    2013-01-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  15. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi

    2013-11-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  16. Quadrature Decomposition by Phase Conjugation and Projection in a Polarizing Beam Splitter

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Galili, Michael; Dalgaard, Kjeld

    2014-01-01

    We propose simultaneous decomposition of the two quadratures of an optical data signal to different outputs of a PBS by degenerate four-wave mixing with orthogonal pumps. The scheme is demonstrated by QPSK to 2×BPSK modulation format conversion with BER<10−9.......We propose simultaneous decomposition of the two quadratures of an optical data signal to different outputs of a PBS by degenerate four-wave mixing with orthogonal pumps. The scheme is demonstrated by QPSK to 2×BPSK modulation format conversion with BER−9....

  17. Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier--Stokes Equations

    KAUST Repository

    Tamellini, L.; Le Maî tre, O.; Nouy, A.

    2014-01-01

    In this paper we consider a proper generalized decomposition method to solve the steady incompressible Navier-Stokes equations with random Reynolds number and forcing term. The aim of such a technique is to compute a low-cost reduced basis approximation of the full stochastic Galerkin solution of the problem at hand. A particular algorithm, inspired by the Arnoldi method for solving eigenproblems, is proposed for an efficient greedy construction of a deterministic reduced basis approximation. This algorithm decouples the computation of the deterministic and stochastic components of the solution, thus allowing reuse of preexisting deterministic Navier-Stokes solvers. It has the remarkable property of only requiring the solution of m uncoupled deterministic problems for the construction of an m-dimensional reduced basis rather than M coupled problems of the full stochastic Galerkin approximation space, with m l M (up to one order of magnitudefor the problem at hand in this work). © 2014 Society for Industrial and Applied Mathematics.

  18. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Directory of Open Access Journals (Sweden)

    Moret Nicola

    2010-01-01

    Full Text Available Abstract We address the efficient realization of a filtered multitone (FMT modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT modulated filter bank (FB. It generalizes the popular orthogonal frequency division multiplexing (OFDM scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998, and Weiss and Stewart (2000, and Tonello (2006. A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  19. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Directory of Open Access Journals (Sweden)

    Andrea M. Tonello

    2010-01-01

    Full Text Available We address the efficient realization of a filtered multitone (FMT modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT modulated filter bank (FB. It generalizes the popular orthogonal frequency division multiplexing (OFDM scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998, and Weiss and Stewart (2000, and Tonello (2006. A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  20. Design of Orthogonal Filtered Multitone Modulation Systems and Comparison among Efficient Realizations

    Science.gov (United States)

    Moret, Nicola; Tonello, Andrea M.

    2010-12-01

    We address the efficient realization of a filtered multitone (FMT) modulation system and its orthogonal design. FMT modulation can be viewed as a Discrete Fourier Transform (DFT) modulated filter bank (FB). It generalizes the popular orthogonal frequency division multiplexing (OFDM) scheme by deploying frequency confined subchannel pulses. We compare three realizations that have been described by Cvetković and Vetterli (1998), and Weiss and Stewart (2000), and Tonello (2006). A detailed derivation of them is performed in the time-domain via the exploitation of different FB polyphase decompositions. We then consider the design of an orthogonal FMT system and we exploit the third realization which allows simplifying the orthogonal FB design and obtaining a block diagonal system matrix with independent subblocks. A numerical method is then presented to obtain an orthogonal FB with well frequency confined subchannel pulses for arbitrarily large number of subchannels. Several examples of pulses with minimal length are reported and their performance is evaluated in typical multipath fading channels. Finally, we compare the orthogonal FMT system with a cyclically prefixed OFDM system in the IEEE 802.11 wireless LAN channel. In this scenario, FMT with minimal length pulses and single tap subchannel equalization outperforms the OFDM system in achievable rate.

  1. Extraction of the mode shapes of a segmented ship model with a hydroelastic response

    Directory of Open Access Journals (Sweden)

    Yooil Kim

    2015-11-01

    Full Text Available The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the sim-plicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave ex-citation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were meas-ured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

  2. Structural System Identification with Extended Kalman Filter and Orthogonal Decomposition of Excitation

    Directory of Open Access Journals (Sweden)

    Y. Ding

    2014-01-01

    Full Text Available Both the structural parameter and external excitation have coupling influence on structural response. A new system identification method in time domain is proposed to simultaneously evaluate structural parameter and external excitation. The method can be used for linear and hysteresis nonlinear structural condition assessment based on incomplete structural responses. In this method, the structural excitation is decomposed by orthogonal approximation. With this approximation, the strongly time-variant excitation identification is transformed to gentle time-variant, even constant parameters identification. Then the extended Kalman filter is applied to simultaneously identify state vector including the structural parameters and excitation orthogonal parameters in state space based on incomplete measurements. The proposed method is validated numerically with the simulation of three-story linear and nonlinear structures subject to external force. The external force on the top floor and the structural parameters are simultaneously identified with the proposed system identification method. Results from both simulations indicate that the proposed method is capable of identifing the dynamic load and structural parameters fairly accurately with contaminated incomplete measurement for both of the linear and nonlinear structural systems.

  3. Tensor decompositions for the analysis of atomic resolution electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Spiegelberg, Jakob; Rusz, Ján [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Pelckmans, Kristiaan [Department of Information Technology, Uppsala University, Box 337, S-751 05 Uppsala (Sweden)

    2017-04-15

    A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term decompositions (BTD) on synthetic as well as experimental data is examined. - Highlights: • A scheme for compression and analysis of EELS or EDX data is proposed. • Several tensor decomposition techniques are presented for BSS on hyperspectral data. • Robust PCA and MLSVD are discussed for denoising of raw data.

  4. The experimental study of the coherent structures generated in the agitated vessels and effected by fluid viscosity

    Czech Academy of Sciences Publication Activity Database

    Jašíková, D.; Kysela, Bohuš; Kotek, M.; Kopecký, V.

    2015-01-01

    Roč. 9, č. 2015 (2015), s. 61-68 ISSN 1998-4448 Institutional support: RVO:67985874 Keywords : agitated vessels * oscillating pattern decomposition * proper orthogonal decomposition * time-resolved PIV Subject RIV: JP - Industrial Processing http://www.naun.org/main/NAUN/mechanics/2015/a162003-044.pdf

  5. Investigation of mixing characteristics in strut injectors using modal decomposition

    Science.gov (United States)

    Soni, Rahul Kumar; De, Ashoke

    2018-01-01

    Effect of a large-scale vortical structure on mixing and spreading of a shear layer is numerically investigated. Two strut configurations, namely, straight and tapered struts at two convective Mach numbers (Mc = 1.4 and 0.37) for two jet heights (0.6 and 1 mm) are investigated. The hydrogen jet is injected through a two-dimensional slot in oncoming coflow at Mach 2. An excellent agreement between simulated and experimental data is witnessed, whereas the instantaneous data reveal the presence of various large-scale structures in the flow field. From the instantaneous field, it becomes apparent that both the geometries have different vortical breakdown locations. It is also noticed that an early onset of vortex breakdown manifests itself into the mixing layer thickness enhancement, the effect of which is reflected in overall mixing characteristics. It becomes evident that the shear strength plays an important role in the near field mixing. The higher shear strength promotes the generation of large vortices. The analysis shows that the SS-0.6 case offers highest mixing efficiency being dominated by relatively large-scale structures. Eigenmodes obtained through Proper Orthogonal Decomposition (POD) confirm the presence of dominating structures and shed light into the series of events involved in vortex pairing/merging and breakdown. Dynamic modal decomposition also strengthens the observation made through the POD.

  6. On the Conditioning of Factors in the SR Decomposition

    Czech Academy of Sciences Publication Activity Database

    Fassbender, H.; Rozložník, Miroslav

    2016-01-01

    Roč. 505, 15 September (2016), s. 224-244 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : SR decomposition * symplectic matrices * skew-symmetric bilinear forms * orthogonalization * condition number Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  7. Inverse scale space decomposition

    DEFF Research Database (Denmark)

    Schmidt, Marie Foged; Benning, Martin; Schönlieb, Carola-Bibiane

    2018-01-01

    We investigate the inverse scale space flow as a decomposition method for decomposing data into generalised singular vectors. We show that the inverse scale space flow, based on convex and even and positively one-homogeneous regularisation functionals, can decompose data represented...... by the application of a forward operator to a linear combination of generalised singular vectors into its individual singular vectors. We verify that for this decomposition to hold true, two additional conditions on the singular vectors are sufficient: orthogonality in the data space and inclusion of partial sums...... of the subgradients of the singular vectors in the subdifferential of the regularisation functional at zero. We also address the converse question of when the inverse scale space flow returns a generalised singular vector given that the initial data is arbitrary (and therefore not necessarily in the range...

  8. A General Approach for Orthogonal 4-Tap Integer Multiwavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mingli Jing

    2010-01-01

    Full Text Available An algorithm for orthogonal 4-tap integer multiwavelet transforms is proposed. We compute the singular value decomposition (SVD of block recursive matrices of transform matrix, and then transform matrix can be rewritten in a product of two block diagonal matrices and a permutation matrix. Furthermore, we factorize the block matrix of block diagonal matrices into triangular elementary reversible matrices (TERMs, which map integers to integers by rounding arithmetic. The cost of factorizing block matrix into TERMs does not increase with the increase of the dimension of transform matrix, and the proposed algorithm is in-place calculation and without allocating auxiliary memory. Examples of integer multiwavelet transform using DGHM and CL are given, which verify that the proposed algorithm is an executable algorithm and outperforms the existing algorithm for orthogonal 4-tap integer multiwavelet transform.

  9. A Reduced-Order Model of Transport Phenomena for Power Plant Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Paul Cizmas; Brian Richardson; Thomas Brenner; Raymond Fontenot

    2009-09-30

    A reduced-order model based on proper orthogonal decomposition (POD) has been developed to simulate transient two- and three-dimensional isothermal and non-isothermal flows in a fluidized bed. Reduced-order models of void fraction, gas and solids temperatures, granular energy, and z-direction gas and solids velocity have been added to the previous version of the code. These algorithms are presented and their implementation is discussed. Verification studies are presented for each algorithm. A number of methods to accelerate the computations performed by the reduced-order model are presented. The errors associated with each acceleration method are computed and discussed. Using a combination of acceleration methods, a two-dimensional isothermal simulation using the reduced-order model is shown to be 114 times faster than using the full-order model. In the pursue of achieving the objectives of the project and completing the tasks planned for this program, several unplanned and unforeseen results, methods and studies have been generated. These additional accomplishments are also presented and they include: (1) a study of the effect of snapshot sampling time on the computation of the POD basis functions, (2) an investigation of different strategies for generating the autocorrelation matrix used to find the POD basis functions, (3) the development and implementation of a bubble detection and tracking algorithm based on mathematical morphology, (4) a method for augmenting the proper orthogonal decomposition to better capture flows with discontinuities, such as bubbles, and (5) a mixed reduced-order/full-order model, called point-mode proper orthogonal decomposition, designed to avoid unphysical due to approximation errors. The limitations of the proper orthogonal decomposition method in simulating transient flows with moving discontinuities, such as bubbling flows, are discussed and several methods are proposed to adapt the method for future use.

  10. Orthogonal polynomials

    CERN Document Server

    Freud, Géza

    1971-01-01

    Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc

  11. A non-orthogonal decomposition of flows into discrete events

    Science.gov (United States)

    Boxx, Isaac; Lewalle, Jacques

    1998-11-01

    This work is based on the formula for the inverse Hermitian wavelet transform. A signal can be interpreted as a (non-unique) superposition of near-singular, partially overlapping events arising from Dirac functions and/or its derivatives combined with diffusion.( No dynamics implied: dimensionless diffusion is related to the definition of the analyzing wavelets.) These events correspond to local maxima of spectral energy density. We successfully fitted model events of various orders on a succession of fields, ranging from elementary signals to one-dimensional hot-wire traces. We document edge effects, event overlap and its implications on the algorithm. The interpretation of the discrete singularities as flow events (such as coherent structures) and the fundamental non-uniqueness of the decomposition are discussed. The dynamics of these events will be examined in the companion paper.

  12. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  13. Subspace orthogonalization for substructuring preconditioners for nonsymmetric systems of linear equations

    Energy Technology Data Exchange (ETDEWEB)

    Starke, G. [Universitaet Karlsruhe (Germany)

    1994-12-31

    For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.

  14. Matrix-Inversion-Free Compressed Sensing With Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals.

    Science.gov (United States)

    Cheng, Yih-Chun; Tsai, Pei-Yun; Huang, Ming-Hao

    2016-05-19

    Low-complexity compressed sensing (CS) techniques for monitoring electrocardiogram (ECG) signals in wireless body sensor network (WBSN) are presented. The prior probability of ECG sparsity in the wavelet domain is first exploited. Then, variable orthogonal multi-matching pursuit (vOMMP) algorithm that consists of two phases is proposed. In the first phase, orthogonal matching pursuit (OMP) algorithm is adopted to effectively augment the support set with reliable indices and in the second phase, the orthogonal multi-matching pursuit (OMMP) is employed to rescue the missing indices. The reconstruction performance is thus enhanced with the prior information and the vOMMP algorithm. Furthermore, the computation-intensive pseudo-inverse operation is simplified by the matrix-inversion-free (MIF) technique based on QR decomposition. The vOMMP-MIF CS decoder is then implemented in 90 nm CMOS technology. The QR decomposition is accomplished by two systolic arrays working in parallel. The implementation supports three settings for obtaining 40, 44, and 48 coefficients in the sparse vector. From the measurement result, the power consumption is 11.7 mW at 0.9 V and 12 MHz. Compared to prior chip implementations, our design shows good hardware efficiency and is suitable for low-energy applications.

  15. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    Science.gov (United States)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  16. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi; Yu, Bo; Sun, Shuyu

    2017-01-01

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions

  17. Generalizations of orthogonal polynomials

    Science.gov (United States)

    Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.

    2005-07-01

    We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.

  18. Online Projective Integral with Proper Orthogonal Decomposition for Incompressible Flows Past NACA0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Sirod Sirisup

    2012-01-01

    the individual function of each POD mode used in the projective integration method. It is found that the first POD mode can capture basic flow behaviors but the overall dynamic is rather inaccurate. The second and the third POD modes assist the first mode by correcting magnitudes and phases of vorticity fields. However, adding the fifth POD mode in the model leads to some incorrect results in phase-shift forms for both drag and lift coefficients. This suggests the optimal number of POD modes to use in the projective integration method.

  19. Exterior domain problems and decomposition of tensor fields in weighted Sobolev spaces

    OpenAIRE

    Schwarz, Günter

    1996-01-01

    The Hodge decompOsition is a useful tool for tensor analysis on compact manifolds with boundary. This paper aims at generalising the decomposition to exterior domains G ⊂ IR n. Let L 2a Ω k(G) be the space weighted square integrable differential forms with weight function (1 + |χ|²)a, let d a be the weighted perturbation of the exterior derivative and δ a its adjoint. Then L 2a Ω k(G) splits into the orthogonal sum of the subspaces of the d a-exact forms with vanishi...

  20. Jitter-Robust Orthogonal Hermite Pulses for Ultra-Wideband Impulse Radio Communications

    Directory of Open Access Journals (Sweden)

    Ryuji Kohno

    2005-03-01

    Full Text Available The design of a class of jitter-robust, Hermite polynomial-based, orthogonal pulses for ultra-wideband impulse radio (UWB-IR communications systems is presented. A unified and exact closed-form expression of the auto- and cross-correlation functions of Hermite pulses is provided. Under the assumption that jitter values are sufficiently smaller than pulse widths, this formula is used to decompose jitter-shifted pulses over an orthonormal basis of the Hermite space. For any given jitter probability density function (pdf, the decomposition yields an equivalent distribution of N-by-N matrices which simplifies the convolutional jitter channel model onto a multiplicative matrix model. The design of jitter-robust orthogonal pulses is then transformed into a generalized eigendecomposition problem whose solution is obtained with a Jacobi-like simultaneous diagonalization algorithm applied over a subset of samples of the channel matrix distribution. Examples of the waveforms obtained with the proposed design and their improved auto- and cross-correlation functions are given. Simulation results are presented, which demonstrate the superior performance of a pulse-shape modulated (PSM- UWB-IR system using the proposed pulses, over the same system using conventional orthogonal Hermite pulses, in jitter channels with additive white Gaussian noise (AWGN.

  1. A copyright protection scheme for digital images based on shuffled singular value decomposition and visual cryptography.

    Science.gov (United States)

    Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta

    2016-01-01

    This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack.

  2. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  3. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  4. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  5. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  6. Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence

    Science.gov (United States)

    Wang, Wenkang; Pan, Chong; Wang, Jinjun

    2018-01-01

    The identification and separation of multi-scale coherent structures is a critical task for the study of scale interaction in wall-bounded turbulence. Here, we propose a quasi-bivariate variational mode decomposition (QB-VMD) method to extract structures with various scales from instantaneous two-dimensional (2D) velocity field which has only one primary dimension. This method is developed from the one-dimensional VMD algorithm proposed by Dragomiretskiy and Zosso (IEEE Trans Signal Process 62:531-544, 2014) to cope with a quasi-2D scenario. It poses the feature of length-scale bandwidth constraint along the decomposed dimension, together with the central frequency re-balancing along the non-decomposed dimension. The feasibility of this method is tested on both a synthetic flow field and a turbulent boundary layer at moderate Reynolds number (Re_{τ } = 3458) measured by 2D particle image velocimetry (PIV). Some other popular scale separation tools, including pseudo-bi-dimensional empirical mode decomposition (PB-EMD), bi-dimensional EMD (B-EMD) and proper orthogonal decomposition (POD), are also tested for comparison. Among all these methods, QB-VMD shows advantages in both scale characterization and energy recovery. More importantly, the mode mixing problem, which degrades the performance of EMD-based methods, is avoided or minimized in QB-VMD. Finally, QB-VMD analysis of the wall-parallel plane in the log layer (at y/δ = 0.12) of the studied turbulent boundary layer shows the coexistence of large- or very large-scale motions (LSMs or VLSMs) and inner-scaled structures, which can be fully decomposed in both physical and spectral domains.

  7. Performance Comparison of Orthogonal and Quasi-orthogonal Codes in Quasi-Synchronous Cellular CDMA Communication

    Science.gov (United States)

    Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat

    Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.

  8. Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhanqiang; Qu, Jianfeng; Chai, Yi; Tang, Qiu; Zhou, Yuming [Chongqing University, Chongqing (China)

    2017-02-15

    The gear vibration signal is nonlinear and non-stationary, gear fault diagnosis under variable conditions has always been unsatisfactory. To solve this problem, an intelligent fault diagnosis method based on Intrinsic time-scale decomposition (ITD)-Singular value decomposition (SVD) and Support vector machine (SVM) is proposed in this paper. The ITD method is adopted to decompose the vibration signal of gearbox into several Proper rotation components (PRCs). Subsequently, the singular value decomposition is proposed to obtain the singular value vectors of the proper rotation components and improve the robustness of feature extraction under variable conditions. Finally, the Support vector machine is applied to classify the fault type of gear. According to the experimental results, the performance of ITD-SVD exceeds those of the time-frequency analysis methods with EMD and WPT combined with SVD for feature extraction, and the classifier of SVM outperforms those for K-nearest neighbors (K-NN) and Back propagation (BP). Moreover, the proposed approach can accurately diagnose and identify different fault types of gear under variable conditions.

  9. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    Science.gov (United States)

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains

    Science.gov (United States)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2018-03-01

    We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.

  11. Compression of magnetohydrodynamic simulation data using singular value decomposition

    International Nuclear Information System (INIS)

    Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.

    2007-01-01

    Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data

  12. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  13. On the hadron mass decomposition

    Science.gov (United States)

    Lorcé, Cédric

    2018-02-01

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force.

  14. On the hadron mass decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [Universite Paris-Saclay, Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2018-02-15

    We argue that the standard decompositions of the hadron mass overlook pressure effects, and hence should be interpreted with great care. Based on the semiclassical picture, we propose a new decomposition that properly accounts for these pressure effects. Because of Lorentz covariance, we stress that the hadron mass decomposition automatically comes along with a stability constraint, which we discuss for the first time. We show also that if a hadron is seen as made of quarks and gluons, one cannot decompose its mass into more than two contributions without running into trouble with the consistency of the physical interpretation. In particular, the so-called quark mass and trace anomaly contributions appear to be purely conventional. Based on the current phenomenological values, we find that in average quarks exert a repulsive force inside nucleons, balanced exactly by the gluon attractive force. (orig.)

  15. Development of a Reduced-Order Model for Reacting Gas-Solids Flow using Proper Orthogonal Decomposition

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Dwayne [Florida International Univ., Miami, FL (United States); Dulikravich, George [Florida International Univ., Miami, FL (United States); Cizmas, Paul [Florida International Univ., Miami, FL (United States)

    2017-11-27

    This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.

  16. Fast Maximum-Likelihood Decoder for Quasi-Orthogonal Space-Time Block Code

    Directory of Open Access Journals (Sweden)

    Adel Ahmadi

    2015-01-01

    Full Text Available Motivated by the decompositions of sphere and QR-based methods, in this paper we present an extremely fast maximum-likelihood (ML detection approach for quasi-orthogonal space-time block code (QOSTBC. The proposed algorithm with a relatively simple design exploits structure of quadrature amplitude modulation (QAM constellations to achieve its goal and can be extended to any arbitrary constellation. Our decoder utilizes a new decomposition technique for ML metric which divides the metric into independent positive parts and a positive interference part. Search spaces of symbols are substantially reduced by employing the independent parts and statistics of noise. Symbols within the search spaces are successively evaluated until the metric is minimized. Simulation results confirm that the proposed decoder’s performance is superior to many of the recently published state-of-the-art solutions in terms of complexity level. More specifically, it was possible to verify that application of the new algorithms with 1024-QAM would decrease the computational complexity compared to state-of-the-art solution with 16-QAM.

  17. Simultaneous orthogonal plane imaging.

    Science.gov (United States)

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Multiscale decomposition for heterogeneous land-atmosphere systems

    Science.gov (United States)

    Liu, Shaofeng; Shao, Yaping; Hintz, Michael; Lennartz-Sassinek, Sabine

    2015-02-01

    The land-atmosphere system is characterized by pronounced land surface heterogeneity and vigorous atmospheric turbulence both covering a wide range of scales. The multiscale surface heterogeneities and multiscale turbulent eddies interact nonlinearly with each other. Understanding these multiscale processes quantitatively is essential to the subgrid parameterizations for weather and climate models. In this paper, we propose a method for surface heterogeneity quantification and turbulence structure identification. The first part of the method is an orthogonal transform in the probability density function (PDF) domain, in contrast to the orthogonal wavelet transforms which are performed in the physical space. As the basis of the whole method, the orthogonal PDF transform (OPT) is used to asymptotically reconstruct the original signals by representing the signal values with multilevel approximations. The "patch" idea is then applied to these reconstructed fields in order to recognize areas at the land surface or in turbulent flows that are of the same characteristics. A patch here is a connected area with the same approximation. For each recognized patch, a length scale is then defined to build the energy spectrum. The OPT and related energy spectrum analysis, as a whole referred to as the orthogonal PDF decomposition (OPD), is applied to two-dimensional heterogeneous land surfaces and atmospheric turbulence fields for test. The results show that compared to the wavelet transforms, the OPD can reconstruct the original signal more effectively, and accordingly, its energy spectrum represents the signal's multiscale variation more accurately. The method we propose in this paper is of general nature and therefore can be of interest for problems of multiscale process description in other geophysical disciplines.

  19. A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

    Directory of Open Access Journals (Sweden)

    Tagade Piyush M.

    2017-06-01

    Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

  20. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  1. Art of spin decomposition

    International Nuclear Information System (INIS)

    Chen Xiangsong; Sun Weimin; Wang Fan; Goldman, T.

    2011-01-01

    We analyze the problem of spin decomposition for an interacting system from a natural perspective of constructing angular-momentum eigenstates. We split, from the total angular-momentum operator, a proper part which can be separately conserved for a stationary state. This part commutes with the total Hamiltonian and thus specifies the quantum angular momentum. We first show how this can be done in a gauge-dependent way, by seeking a specific gauge in which part of the total angular-momentum operator vanishes identically. We then construct a gauge-invariant operator with the desired property. Our analysis clarifies what is the most pertinent choice among the various proposals for decomposing the nucleon spin. A similar analysis is performed for extracting a proper part from the total Hamiltonian to construct energy eigenstates.

  2. Scattering theory and orthogonal polynomials

    International Nuclear Information System (INIS)

    Geronimo, J.S.

    1977-01-01

    The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms

  3. Entanglement and tensor product decomposition for two fermions

    International Nuclear Information System (INIS)

    Caban, P; Podlaski, K; Rembielinski, J; Smolinski, K A; Walczak, Z

    2005-01-01

    The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not the proper entanglement measure in this case. The explicit formula for the entanglement of formation is found. This formula shows that the entanglement of a given state depends on the tensor product decomposition of a Hilbert space. It is shown that the set of separable states is narrower than in the two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space. (letter to the editor)

  4. Orthogonality and Dimensionality

    Directory of Open Access Journals (Sweden)

    Olivier Brunet

    2013-12-01

    Full Text Available In this article, we present what we believe to be a simple way to motivate the use of Hilbert spaces in quantum mechanics. To achieve this, we study the way the notion of dimension can, at a very primitive level, be defined as the cardinality of a maximal collection of mutually orthogonal elements (which, for instance, can be seen as spatial directions. Following this idea, we develop a formalism based on two basic ingredients, namely an orthogonality relation and matroids which are a very generic algebraic structure permitting to define a notion of dimension. Having obtained what we call orthomatroids, we then show that, in high enough dimension, the basic constituants of orthomatroids (more precisely the simple and irreducible ones are isomorphic to generalized Hilbert lattices, so that their presence is a direct consequence of an orthogonality-based characterization of dimension.

  5. Primal Decomposition-Based Method for Weighted Sum-Rate Maximization in Downlink OFDMA Systems

    Directory of Open Access Journals (Sweden)

    Weeraddana Chathuranga

    2010-01-01

    Full Text Available We consider the weighted sum-rate maximization problem in downlink Orthogonal Frequency Division Multiple Access (OFDMA systems. Motivated by the increasing popularity of OFDMA in future wireless technologies, a low complexity suboptimal resource allocation algorithm is obtained for joint optimization of multiuser subcarrier assignment and power allocation. The algorithm is based on an approximated primal decomposition-based method, which is inspired from exact primal decomposition techniques. The original nonconvex optimization problem is divided into two subproblems which can be solved independently. Numerical results are provided to compare the performance of the proposed algorithm to Lagrange relaxation based suboptimal methods as well as to optimal exhaustive search-based method. Despite its reduced computational complexity, the proposed algorithm provides close-to-optimal performance.

  6. Orthogonal Multiwavelet Frames in L2Rd

    Directory of Open Access Journals (Sweden)

    Liu Zhanwei

    2012-01-01

    Full Text Available We characterize the orthogonal frames and orthogonal multiwavelet frames in L2Rd with matrix dilations of the form (Df(x=detAf(Ax, where A is an arbitrary expanding d×d matrix with integer coefficients. Firstly, through two arbitrarily multiwavelet frames, we give a simple construction of a pair of orthogonal multiwavelet frames. Then, by using the unitary extension principle, we present an algorithm for the construction of arbitrarily many orthogonal multiwavelet tight frames. Finally, we give a general construction algorithm for orthogonal multiwavelet tight frames from a scaling function.

  7. An analogue of Wagner's theorem for decompositions of matrix algebras

    International Nuclear Information System (INIS)

    Ivanov, D N

    2004-01-01

    Wagner's celebrated theorem states that a finite affine plane whose collineation group is transitive on lines is a translation plane. The notion of an orthogonal decomposition (OD) of a classically semisimple associative algebra introduced by the author allows one to draw an analogy between finite affine planes of order n and ODs of the matrix algebra M n (C) into a sum of subalgebras conjugate to the diagonal subalgebra. These ODs are called WP-decompositions and are equivalent to the well-known ODs of simple Lie algebras of type A n-1 into a sum of Cartan subalgebras. In this paper we give a detailed and improved proof of the analogue of Wagner's theorem for WP-decompositions of the matrix algebra of odd non-square order an outline of which was earlier published in a short note in 'Russian Math. Surveys' in 1994. In addition, in the framework of the theory of ODs of associative algebras, based on the method of idempotent bases, we obtain an elementary proof of the well-known Kostrikin-Tiep theorem on irreducible ODs of Lie algebras of type A n-1 in the case where n is a prime-power.

  8. Orthogonal decomposition of core loss along rolling and transverse directions of non-grain oriented silicon steels

    Directory of Open Access Journals (Sweden)

    Xuezhi Wan

    2017-05-01

    Full Text Available Rotational core loss of the silicon steel laminations are measured under elliptical rotating excitation. The core loss decomposition model is very important in magnetic core design, in which the decomposition coefficients are calculated through the measurement data. By using the transformation of trigonometric function, the elliptical rotational magnetic flux can be decomposed into two parts along two directions. It is assumed that the rotating core loss is the sum of alternating core losses along rolling and transverse directions. The magnetic strength vector H of non-grain oriented (NGO silicon steel 35WW270 along rolling and transverse directions is measured by a novel designed 3-D magnetic properties tester. Alternating core loss along the rolling, transverse directions and rotating core loss in the xoy-plane of this specimen in different frequencies such as 50 Hz, 100 Hz, and 200 Hz. Experimental results show that the core loss model is more accurate and useful to predict the total core loss.

  9. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    Science.gov (United States)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  10. Model reduction of parametrized systems

    CERN Document Server

    Ohlberger, Mario; Patera, Anthony; Rozza, Gianluigi; Urban, Karsten

    2017-01-01

    The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters ca...

  11. Orthogonal and symplectic

    CERN Document Server

    Mason, A M

    2018-01-01

    In this paper the authors apply to the zeros of families of L-functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the n-correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or L-functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of L-functions have an underlying symmetry relating to one of the classical compact groups U(N), O(N) and USp(2N). Here the authors complete the work already done with U(N) (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the n-level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the n-level densities of zeros of L-functions with orthogonal or symplectic symmetry, including al...

  12. [Orthogonal Vector Projection Algorithm for Spectral Unmixing].

    Science.gov (United States)

    Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li

    2015-12-01

    Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.

  13. Improving the Remote Sensing Retrieval of Phytoplankton Functional Types (PFT Using Empirical Orthogonal Functions: A Case Study in a Coastal Upwelling Region

    Directory of Open Access Journals (Sweden)

    Marco Correa-Ramirez

    2018-03-01

    Full Text Available An approach that improves the spectral-based PHYSAT method for identifying phytoplankton functional types (PFT in satellite ocean-color imagery is developed and applied to one study case. This new approach, called PHYSTWO, relies on the assumption that the dominant effect of chlorophyll-a (Chl-a in the normalized water-leaving radiance (nLw spectrum can be effectively isolated from the signal of accessory pigment biomarkers of different PFT by using Empirical Orthogonal Function (EOF decomposition. PHYSTWO operates in the dimensionless plane composed by the first two EOF modes generated through the decomposition of a space–nLw matrix at seven wavelengths (412, 443, 469, 488, 531, 547, and 555 nm. PFT determination is performed using orthogonal models derived from the acceptable ranges of anomalies proposed by PHYSAT but adjusted with the available regional and global data. In applying PHYSTWO to study phytoplankton community structures in the coastal upwelling system off central Chile, we find that this method increases the accuracy of PFT identification, extends the application of this tool to waters with high Chl-a concentration, and significantly decreases (~60% the undetermined retrievals when compared with PHYSAT. The improved accuracy of PHYSTWO and its applicability for the identification of new PFT are discussed.

  14. A Robust Color Image Watermarking Scheme Using Entropy and QR Decomposition

    Directory of Open Access Journals (Sweden)

    L. Laur

    2015-12-01

    Full Text Available Internet has affected our everyday life drastically. Expansive volumes of information are exchanged over the Internet consistently which causes numerous security concerns. Issues like content identification, document and image security, audience measurement, ownership, copyrights and others can be settled by using digital watermarking. In this work, robust and imperceptible non-blind color image watermarking algorithm is proposed, which benefit from the fact that watermark can be hidden in different color channel which results into further robustness of the proposed technique to attacks. Given method uses some algorithms such as entropy, discrete wavelet transform, Chirp z-transform, orthogonal-triangular decomposition and Singular value decomposition in order to embed the watermark in a color image. Many experiments are performed using well-known signal processing attacks such as histogram equalization, adding noise and compression. Experimental results show that proposed scheme is imperceptible and robust against common signal processing attacks.

  15. Orthogonality preserving infinite dimensional quadratic stochastic operators

    International Nuclear Information System (INIS)

    Akın, Hasan; Mukhamedov, Farrukh

    2015-01-01

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators

  16. Low-dimensional modeling of a driven cavity flow with two free parameters

    DEFF Research Database (Denmark)

    Jørgensen, Bo Hoffmann; Sørensen, Jens Nørkær; Brøns, Morten

    2003-01-01

    . By carrying out such a procedure one obtains a low-dimensional model consisting of a reduced set of Ordinary Differential Equations (ODEs) which models the original equations. A technique called Sequential Proper Orthogonal Decomposition (SPOD) is developed to perform decompositions suitable for low...... parameters to appear in the inhomogeneous boundary conditions without the addition of any constraints. This is necessary because both the driving lid and the rotating rod are controlled simultaneously. Apparently, the results reported for this model are the first to be obtained for a low-dimensional model...

  17. Theoretical Models for Orthogonal Cutting

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”......This review of simple models for orthogonal cutting was extracted from: “L. De Chiffre: Metal Cutting Mechanics and Applications, D.Sc. Thesis, Technical University of Denmark, 1990.”...

  18. Orthogonal Polynomials and Special Functions

    CERN Document Server

    Assche, Walter

    2003-01-01

    The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.

  19. On orthogonality preserving quadratic stochastic operators

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd [Department of Computational and Theoretical Sciences, Faculty of Science International Islamic University Malaysia, P.O. Box 141, 25710 Kuantan, Pahang Malaysia (Malaysia)

    2015-05-15

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.

  20. On orthogonality preserving quadratic stochastic operators

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd

    2015-01-01

    A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too

  1. Non-Orthogonal Opportunistic Beamforming: Performance Analysis and Implementation

    KAUST Repository

    Xia, Minghua; Wu, Yik-Chung; Aissa, Sonia

    2012-01-01

    be successfully served within a single transmission, non-orthogonal OBF can be applied to obtain lower worst-case delay among the users. On the other hand, if user traffic is heavy, non-orthogonal OBF is inferior to orthogonal OBF in terms of sum-rate and packet

  2. Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...

    African Journals Online (AJOL)

    ... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner

  3. Non-Archimedean analogues of orthogonal and symmetric operators

    International Nuclear Information System (INIS)

    Albeverio, S; Bayod, J M; Perez-Garsia, C; Khrennikov, A Yu; Cianci, R

    1999-01-01

    We study orthogonal and symmetric operators on non-Archimedean Hilbert spaces in connection with the p-adic quantization. This quantization describes measurements with finite precision. Symmetric (bounded) operators on p-adic Hilbert spaces represent physical observables. We study the spectral properties of one of the most important quantum operators, namely, the position operator (which is represented on p-adic Hilbert L 2 -space with respect to the p-adic Gaussian measure). Orthogonal isometric isomorphisms of p-adic Hilbert spaces preserve the precision of measurements. We study properties of orthogonal operators. It is proved that every orthogonal operator on non-Archimedean Hilbert space is continuous. However, there are discontinuous operators with dense domain of definition that preserve the inner product. There exist non-isometric orthogonal operators. We describe some classes of orthogonal isometric operators on finite-dimensional spaces. We study some general questions in the theory of non-Archimedean Hilbert spaces (in particular, general connections between the topology, norm and inner product)

  4. LES of turbulent jet in cross flow: Part 2 – POD analysis and identification of coherent structures

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    The paper presents results of a Proper Orthogonal Decomposition (POD) investigation of the LES based numerical simulation of the jet-in-crossflow (JICF) flowfield with Reynolds number based on the cross flow velocity and jet diameter Re=2400 and the velocity ratio of R=3.3. LES results are valida......The paper presents results of a Proper Orthogonal Decomposition (POD) investigation of the LES based numerical simulation of the jet-in-crossflow (JICF) flowfield with Reynolds number based on the cross flow velocity and jet diameter Re=2400 and the velocity ratio of R=3.3. LES results...... results are directly compared and found to be in close agreement with results of a Particle Image Velocimetry (PIV) based planar (2D) snapshot POD analysis by Meyer et al. (JFM 583, p. 199–227, 2007), indicating that LES is able to predict the same large scale flow dynamics as that captured by PIV. Some...... for the creation of wake vortices and that the wake vortex originates from the hanging vortex, but grows quickly by “sucking up” the wall boundary layer fluid and vorticity....

  5. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    Science.gov (United States)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  6. Hypergeometric series recurrence relations and some new orthogonal functions

    International Nuclear Information System (INIS)

    Wilson, J.A.

    1978-01-01

    A set of hypergeometric orthogonal polynomials, a set of biorthogonal rational functions generalizing them, and some new three-term relations for hypergeometric series containing properties of these functions are exhibited. The orthogonal polynomials depend on four free parameters, and their orthogonality relations include as special or limiting cases the orthogonalities for the classical polynomials, the Hahn and dual Hahn polynomials, Pollaczek's polynomials orthogonal on an infinite interval, and the 6-j symbols of angular momentum in quantum mechanics. Their properties include a second-order difference equation and a Rodrigues-type formula involving a divided difference operator

  7. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    Science.gov (United States)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence

  8. An introduction to orthogonal polynomials

    CERN Document Server

    Chihara, Theodore S

    1978-01-01

    Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some

  9. Many-body orthogonal polynomial systems

    International Nuclear Information System (INIS)

    Witte, N.S.

    1997-03-01

    The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)

  10. A novel orthogonally linearly polarized Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Xing-Peng, Yan; Qiang, Liu; Hai-Long, Chen; Xing, Fu; Ma-Li, Gong; Dong-Sheng, Wang

    2010-01-01

    We presented a novel orthogonally linearly polarized Nd:YVO 4 laser. Two pieces of α-cut grown-together composite YVO 4 /Nd:YVO 4 crystals were placed in the resonant cavity with the c-axis of the two crystals orthogonally. The polarization and power performance of the orthogonally polarized laser were investigated. A 26.2-W orthogonally linearly polarized laser was obtained. The power ratio between the two orthogonally polarized lasers was varied with the pump power caused by the polarized mode coupling. The longitudinal modes competition and the corresponding variable optical beats were also observed from the orthogonally polarized laser. We also adjusted the crystals with their c-axis parallele to each other, and a 40.7-W linearly polarized TEM 00 laser was obtained, and the beam quality factors were M x 2 = 1.37 and M y 2 = 1.25. (classical areas of phenomenology)

  11. Sign patterns of J-orthogonal matrices

    Czech Academy of Sciences Publication Activity Database

    Hall, F.J.; Li, Z.; Parnass, C.; Rozložník, Miroslav

    2017-01-01

    Roč. 5, č. 1 (2017), s. 225-241 ISSN 2300-7451 Institutional support: RVO:67985840 Keywords : G-matrix * J-orthogonal matrix * sign pattern matrix * sign patterns that allow J-orthogonality Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics https://www.degruyter.com/view/j/spma.2017.5.issue-1/spma-2017-0016/spma-2017-0016.xml?format=INT

  12. Sign patterns of J-orthogonal matrices

    Czech Academy of Sciences Publication Activity Database

    Hall, F.J.; Li, Z.; Parnass, C.; Rozložník, Miroslav

    2017-01-01

    Roč. 5, č. 1 (2017), s. 225-241 ISSN 2300-7451 Institutional support: RVO:67985840 Keywords : G-matrix * J-orthogonal matrix * sign pattern matrix * sign patterns that allow J-orthogonality Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics https://www.degruyter.com/view/j/spma.2017.5.issue-1/spma-2017-0016/spma-2017-0016. xml ?format=INT

  13. Effective Results Analysis for the Similar Software Products’ Orthogonality

    Directory of Open Access Journals (Sweden)

    Ion Ivan

    2009-10-01

    Full Text Available It is defined the concept of similar software. There are established conditions of archiving the software components. It is carried out the orthogonality evaluation and the correlation between the orthogonality and the complexity of the homogenous software components is analyzed. Shall proceed to build groups of similar software products, belonging to the orthogonality intervals. There are presented in graphical form the results of the analysis. There are detailed aspects of the functioning of the software product allocated for the orthogonality.

  14. Non-Orthogonal Opportunistic Beamforming: Performance Analysis and Implementation

    KAUST Repository

    Xia, Minghua

    2012-04-01

    Aiming to achieve the sum-rate capacity in multi-user multi-antenna systems where $N_t$ antennas are implemented at the transmitter, opportunistic beamforming (OBF) generates~$N_t$ orthonormal beams and serves $N_t$ users during each channel use, which results in high scheduling delay over the users, especially in densely populated networks. Non-orthogonal OBF with more than~$N_t$ transmit beams can be exploited to serve more users simultaneously and further decrease scheduling delay. However, the inter-beam interference will inevitably deteriorate the sum-rate. Therefore, there is a tradeoff between sum-rate and scheduling delay for non-orthogonal OBF. In this context, system performance and implementation of non-orthogonal OBF with $N>N_t$ beams are investigated in this paper. Specifically, it is analytically shown that non-orthogonal OBF is an interference-limited system as the number of users $K \\\\to \\\\infty$. When the inter-beam interference reaches its minimum for fixed $N_t$ and~$N$, the sum-rate scales as $N\\\\ln\\\\left(\\\\frac{N}{N-N_t}\\ ight)$ and it degrades monotonically with the number of beams $N$ for fixed $N_t$. On the contrary, the average scheduling delay is shown to scale as $\\\\frac{1}{N}K\\\\ln{K}$ channel uses and it improves monotonically with $N$. Furthermore, two practical non-orthogonal beamforming schemes are explicitly constructed and they are demonstrated to yield the minimum inter-beam interference for fixed $N_t$ and $N$. This study reveals that, if user traffic is light and one user can be successfully served within a single transmission, non-orthogonal OBF can be applied to obtain lower worst-case delay among the users. On the other hand, if user traffic is heavy, non-orthogonal OBF is inferior to orthogonal OBF in terms of sum-rate and packet delay.

  15. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  16. Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Tanaka, Ken; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of orthogonal frequency division multiplexing (OFDM) and time-domain spreading, while multi-carrier code division multiple access (MC-CDMA) is a combination of OFDM and frequency-domain spreading. In MC-CDMA, a good bit error rate (BER) performance can be achieved by using frequency-domain equalization (FDE), since the frequency diversity gain is obtained. On the other hand, the conventional orthogonal MC DS-CDMA fails to achieve any frequency diversity gain. In this paper, we propose a new orthogonal MC DS-CDMA that can obtain the frequency diversity gain by applying FDE. The conditional BER analysis is presented. The theoretical average BER performance in a frequency-selective Rayleigh fading channel is evaluated by the Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the orthogonal MC DS-CDMA signal transmission.

  17. Skew-orthogonal polynomials and random matrix theory

    CERN Document Server

    Ghosh, Saugata

    2009-01-01

    Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...

  18. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  19. A stabilized MFE reduced-order extrapolation model based on POD for the 2D unsteady conduction-convection problem.

    Science.gov (United States)

    Xia, Hong; Luo, Zhendong

    2017-01-01

    In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.

  20. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    Directory of Open Access Journals (Sweden)

    Sancarlos-González Abel

    2017-12-01

    Full Text Available AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases’ conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases’ conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors. In this way, a general “virtual chart” solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  1. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    Science.gov (United States)

    Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose

    2017-12-01

    AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  2. Proton mass decomposition

    Science.gov (United States)

    Yang, Yi-Bo; Chen, Ying; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2018-03-01

    We report the results on the proton mass decomposition and also on the related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of Nf = 2 + 1 DWF configurations with three lattice spacings and volumes, and several pion masses including the physical pion mass. With 1-loop pertur-bative calculation and proper normalization of the glue operator, we find that the u, d, and s quark masses contribute 9(2)% to the proton mass. The quark energy and glue field energy contribute 31(5)% and 37(5)% respectively in the MS scheme at µ = 2 GeV. The trace anomaly gives the remaining 23(1)% contribution. The u, d, s and glue momentum fractions in the MS scheme are consistent with the global analysis at µ = 2 GeV.

  3. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  4. A stabilized MFE reduced-order extrapolation model based on POD for the 2D unsteady conduction-convection problem

    Directory of Open Access Journals (Sweden)

    Hong Xia

    2017-05-01

    Full Text Available Abstract In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE reduced-order extrapolation (SMFEROE model holding seldom unknowns for the two-dimensional (2D unsteady conduction-convection problem via the proper orthogonal decomposition (POD technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.

  5. Harmonic analysis of traction power supply system based on wavelet decomposition

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, AC drive electric locomotive and EMU large-scale operation in the country on the ground, the electrified railway has become the main harmonic source of China's power grid. In response to this phenomenon, the need for timely monitoring of power quality problems of electrified railway, assessment and governance. Wavelet transform is developed on the basis of Fourier analysis, the basic idea comes from the harmonic analysis, with a rigorous theoretical model, which has inherited and developed the local thought of Garbor transformation, and has overcome the disadvantages such as window fixation and lack of discrete orthogonally, so as to become a more recently studied spectral analysis tool. The wavelet analysis takes the gradual and precise time domain step in the high frequency part so as to focus on any details of the signal being analyzed, thereby comprehensively analyzing the harmonics of the traction power supply system meanwhile use the pyramid algorithm to increase the speed of wavelet decomposition. The matlab simulation shows that the use of wavelet decomposition of the traction power supply system for harmonic spectrum analysis is effective.

  6. Volume-of-fluid algorithm on a non-orthogonal grid

    International Nuclear Information System (INIS)

    Jang, W.; Lien, F.S.; Ji, H.

    2005-01-01

    In the present study, a novel VOF method on a non-orthogonal grid is proposed and tested for several benchmark problems, including a simple translation test, a reversed single vortex flow and a shearing flow, with the objective to demonstrate the feasibility and accuracy of the present approach. Excellent agreement between the solutions obtained on both orthogonal and non-orthogonal meshes is achieved. The sensitivity of various methods to the L 1 error in evaluating the interface normal and volume flux at each face of a non-orthogonal cell is examined. Time integration methods based on the operator-splitting approach in curvilinear coordinates, including the explicit-implicit (EX-IM) and explicit-explicit (EX-EX) combinations, are tested. (author)

  7. Orthogonality catastrophe and fractional exclusion statistics

    Science.gov (United States)

    Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.

    2018-02-01

    We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  8. Effective Results Analysis for the Similar Software Products’ Orthogonality

    OpenAIRE

    Ion Ivan; Daniel Milodin

    2009-01-01

    It is defined the concept of similar software. There are established conditions of archiving the software components. It is carried out the orthogonality evaluation and the correlation between the orthogonality and the complexity of the homogenous software components is analyzed. Shall proceed to build groups of similar software products, belonging to the orthogonality intervals. There are presented in graphical form the results of the analysis. There are detailed aspects of the functioning o...

  9. Representations for the extreme zeros of orthogonal polynomials

    NARCIS (Netherlands)

    van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

    2009-01-01

    We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the

  10. Processing of dual-orthogonal cw polarimetric radar signals

    NARCIS (Netherlands)

    Babur, G.

    2009-01-01

    The thesis consists of two parts. The first part is devoted to the theory of dual-orthogonal polarimetric radar signals with continuous waveforms. The thesis presents a comparison of the signal compression techniques, namely correlation and de-ramping methods, for the dual-orthogonal sophisticated

  11. Reconstruction of spatiotemporal capture data by means of orthogonal functions: the case of skipjack tuna (Katsuwonus pelamis in the central-east Atlantic

    Directory of Open Access Journals (Sweden)

    Unai Ganzedo

    2013-10-01

    Full Text Available The information provided by the International Commission for the Conservation of Atlantic Tunas (ICCAT on captures of skipjack tuna (Katsuwonus pelamis in the central-east Atlantic has a number of limitations, such as gaps in the statistics for certain fleets and the level of spatiotemporal detail at which catches are reported. As a result, the quality of these data and their effectiveness for providing management advice is limited. In order to reconstruct missing spatiotemporal data of catches, the present study uses Data INterpolating Empirical Orthogonal Functions (DINEOF, a technique for missing data reconstruction, applied here for the first time to fisheries data. DINEOF is based on an Empirical Orthogonal Functions decomposition performed with a Lanczos method. DINEOF was tested with different amounts of missing data, intentionally removing values from 3.4% to 95.2% of data loss, and then compared with the same data set with no missing data. These validation analyses show that DINEOF is a reliable methodological approach of data reconstruction for the purposes of fishery management advice, even when the amount of missing data is very high.

  12. Orthogonal Coupling in Cavity BPM with Slots

    CERN Document Server

    Lipka, D; Siemens, M; Vilcins, S; Caspers, Friedhelm; Stadler, M; Treyer, DM; Maesaka, H; Shintake, T

    2009-01-01

    XFELs require high precision orbit control in their long undulator sections. Due to the pulsed operation of drive linacs the high precision has to be reached by single bunch measurements. So far only cavity BPMs achieve the required performance and will be used at the European XFEL, one between each of the up to 116 undulators. Coupling between the orthogonal planes limits the performance of beam position measurements. A first prototype build at DESY shows a coupling between orthogonal planes of about -20 dB, but the requirement is lower than -40 dB (1%). The next generation cavity BPM was build with tighter tolerances and mechanical changes, the orthogonal coupling is measured to be lower than -43 dB. This report discusses the various observations, measurements and improvements which were done.

  13. Modeling of a pitching and plunging airfoil using experimental flow field and load measurements

    Science.gov (United States)

    Troshin, Victor; Seifert, Avraham

    2018-01-01

    The main goal of the current paper is to outline a low-order modeling procedure of a heaving airfoil in a still fluid using experimental measurements. Due to its relative simplicity, the proposed procedure is applicable for the analysis of flow fields within complex and unsteady geometries and it is suitable for analyzing the data obtained by experimentation. Currently, this procedure is used to model and predict the flow field evolution using a small number of low profile load sensors and flow field measurements. A time delay neural network is used to estimate the flow field. The neural network estimates the amplitudes of the most energetic modes using four sensory inputs. The modes are calculated using proper orthogonal decomposition of the flow field data obtained experimentally by time-resolved, phase-locked particle imaging velocimetry. To permit the use of proper orthogonal decomposition, the measured flow field is mapped onto a stationary domain using volume preserving transformation. The analysis performed by the model showed good estimation quality within the parameter range used in the training procedure. However, the performance deteriorates for cases out of this range. This situation indicates that, to improve the robustness of the model, both the decomposition and the training data sets must be diverse in terms of input parameter space. In addition, the results suggest that the property of volume preservation of the mapping does not affect the model quality as long as the model is not based on the Galerkin approximation. Thus, it may be relaxed for cases with more complex geometry and kinematics.

  14. Discriminants and functional equations for polynomials orthogonal on the unit circle

    International Nuclear Information System (INIS)

    Ismail, M.E.H.; Witte, N.S.

    2000-01-01

    We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle

  15. LES of flow in the street canyon

    OpenAIRE

    Brechler Josef; Fuka Vladimír

    2012-01-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  16. LES of flow in the street canyon

    Science.gov (United States)

    Fuka, Vladimír; Brechler, Josef

    2012-04-01

    Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model) and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment) are compared with results with a free top boundary.

  17. Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials

    Directory of Open Access Journals (Sweden)

    Oksana Bihun

    2018-01-01

    Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.

  18. Orthogonal serialisation for Haskell

    DEFF Research Database (Denmark)

    Berthold, Jost

    2010-01-01

    support for parallel Haskell on distributed memory platforms. This serialisation has highly desirable and so-far unrivalled properties: it is truly orthogonal to evaluation and also does not require any type class mechanisms. Especially, (almost) any kind of value can be serialised, including functions...

  19. Orthogonal Algorithm of Logic Probability and Syndrome-Testable Analysis

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    A new method,orthogonal algoritm,is presented to compute the logic probabilities(i.e.signal probabilities)accurately,The transfer properties of logic probabilities are studied first,which are useful for the calculation of logic probability of the circuit with random independent inputs.Then the orthogonal algoritm is described to compute the logic probability of Boolean function realized by a combinational circuit.This algorithm can make Boolean function “ORTHOGONAL”so that the logic probabilities can be easily calculated by summing up the logic probabilities of all orthogonal terms of the Booleam function.

  20. Riemannian geometry in an orthogonal frame

    CERN Document Server

    Cartan, Elie Joseph

    2001-01-01

    Foreword by S S Chern. In 1926-27, Cartan gave a series of lectures in which he introduced exterior forms at the very beginning and used extensively orthogonal frames throughout to investigate the geometry of Riemannian manifolds. In this course he solved a series of problems in Euclidean and non-Euclidean spaces, as well as a series of variational problems on geodesics. In 1960, Sergei P Finikov translated from French into Russian his notes of these Cartan's lectures and published them as a book entitled Riemannian Geometry in an Orthogonal Frame. This book has many innovations, such as the n

  1. Differential recurrence formulae for orthogonal polynomials

    Directory of Open Access Journals (Sweden)

    Anton L. W. von Bachhaus

    1995-11-01

    Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.

  2. Orthogonalization of correlated states

    International Nuclear Information System (INIS)

    Fantoni, S.; Pandharipande, V.R.

    1988-01-01

    A scheme for orthogonalizing correlated states while preserving the diagonal matrix elements of the Hamiltonian is developed. Conventional perturbation theory can be used with the orthonormal correlated basis obtained from this scheme. Advantages of using orthonormal correlated states in calculations of the response function and correlation energy are discussed

  3. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  4. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  5. On some orthogonality properties of Maxwell's multipole vectors

    International Nuclear Information System (INIS)

    Gramada, Apostol

    2007-01-01

    We determine the location of the expansion points with respect to which the two Maxwell's multipole vectors of the quadrupole moment and the dipole vector of a distribution of charge form an orthogonal trihedron. We find that with respect to these 'orthogonality centres' both the dipole and the quadrupole moments are each characterized by a single real parameter. We further show that the orthogonality centres coincide with the stationary points of the magnitude of the quadrupole moment and, therefore, they can be seen as an extension of the concept of centre of the dipole moment of a neutral system introduced previously in the literature. The nature of the stationary points then provides the means for the classification of a distribution of charge in two different categories

  6. A novel anisotropic inversion approach for magnetotelluric data from subsurfaces with orthogonal geoelectric strike directions

    Science.gov (United States)

    Schmoldt, Jan-Philipp; Jones, Alan G.

    2013-12-01

    The key result of this study is the development of a novel inversion approach for cases of orthogonal, or close to orthogonal, geoelectric strike directions at different depth ranges, for example, crustal and mantle depths. Oblique geoelectric strike directions are a well-known issue in commonly employed isotropic 2-D inversion of MT data. Whereas recovery of upper (crustal) structures can, in most cases, be achieved in a straightforward manner, deriving lower (mantle) structures is more challenging with isotropic 2-D inversion in the case of an overlying region (crust) with different geoelectric strike direction. Thus, investigators may resort to computationally expensive and more limited 3-D inversion in order to derive the electric resistivity distribution at mantle depths. In the novel approaches presented in this paper, electric anisotropy is used to image 2-D structures in one depth range, whereas the other region is modelled with an isotropic 1-D or 2-D approach, as a result significantly reducing computational costs of the inversion in comparison with 3-D inversion. The 1- and 2-D versions of the novel approach were tested using a synthetic 3-D subsurface model with orthogonal strike directions at crust and mantle depths and their performance was compared to results of isotropic 2-D inversion. Structures at crustal depths were reasonably well recovered by all inversion approaches, whereas recovery of mantle structures varied significantly between the different approaches. Isotropic 2-D inversion models, despite decomposition of the electric impedance tensor and using a wide range of inversion parameters, exhibited severe artefacts thereby confirming the requirement of either an enhanced or a higher dimensionality inversion approach. With the anisotropic 1-D inversion approach, mantle structures of the synthetic model were recovered reasonably well with anisotropy values parallel to the mantle strike direction (in this study anisotropy was assigned to the

  7. Skew-orthogonal polynomials, differential systems and random matrix theory

    International Nuclear Information System (INIS)

    Ghosh, S.

    2007-01-01

    We study skew-orthogonal polynomials with respect to the weight function exp[-2V (x)], with V (x) = Σ K=1 2d (u K /K)x K , u 2d > 0, d > 0. A finite subsequence of such skew-orthogonal polynomials arising in the study of Orthogonal and Symplectic ensembles of random matrices, satisfy a system of differential-difference-deformation equation. The vectors formed by such subsequence has the rank equal to the degree of the potential in the quaternion sense. These solutions satisfy certain compatibility condition and hence admit a simultaneous fundamental system of solutions. (author)

  8. Biogeography-Based Optimization with Orthogonal Crossover

    Directory of Open Access Journals (Sweden)

    Quanxi Feng

    2013-01-01

    Full Text Available Biogeography-based optimization (BBO is a new biogeography inspired, population-based algorithm, which mainly uses migration operator to share information among solutions. Similar to crossover operator in genetic algorithm, migration operator is a probabilistic operator and only generates the vertex of a hyperrectangle defined by the emigration and immigration vectors. Therefore, the exploration ability of BBO may be limited. Orthogonal crossover operator with quantization technique (QOX is based on orthogonal design and can generate representative solution in solution space. In this paper, a BBO variant is presented through embedding the QOX operator in BBO algorithm. Additionally, a modified migration equation is used to improve the population diversity. Several experiments are conducted on 23 benchmark functions. Experimental results show that the proposed algorithm is capable of locating the optimal or closed-to-optimal solution. Comparisons with other variants of BBO algorithms and state-of-the-art orthogonal-based evolutionary algorithms demonstrate that our proposed algorithm possesses faster global convergence rate, high-precision solution, and stronger robustness. Finally, the analysis result of the performance of QOX indicates that QOX plays a key role in the proposed algorithm.

  9. LES of flow in the street canyon

    Directory of Open Access Journals (Sweden)

    Brechler Josef

    2012-04-01

    Full Text Available Results of computer simulation of flow over a series of street canyons are presented in this paper. The setup is adapted from an experimental study by [4] with two different shapes of buildings. The problem is simulated by an LES model CLMM (Charles University Large Eddy Microscale Model and results are analysed using proper orthogonal decomposition and spectral analysis. The results in the channel (layout from the experiment are compared with results with a free top boundary.

  10. Orthogonally Based Digital Content Management Applicable to Projects-bases

    Directory of Open Access Journals (Sweden)

    Daniel MILODIN

    2009-01-01

    Full Text Available There is defined the concept of digital content. The requirements of an efficient management of the digital content are established. There are listed the quality characteristics of digital content. Orthogonality indicators of digital content are built up. They are meant to measure the image, the sound as well as the text orthogonality as well. Projects-base concept is introduced. There is presented the model of structuring the content in order to maximize orthogonality via a convergent iterative process. The model is instantiated for the digital content of a projects-base. It is introduced the application used to test the model. The paper ends with conclusions.

  11. Construction of MDS self-dual codes from orthogonal matrices

    OpenAIRE

    Shi, Minjia; Sok, Lin; Solé, Patrick

    2016-01-01

    In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.

  12. Intrinsic Regularization in a Lorentz invariant non-orthogonal Euclidean Space

    OpenAIRE

    Tornow, Carmen

    2006-01-01

    It is shown that the Lorentz transformations can be derived for a non-orthogonal Euclidean space. In this geometry one finds the same relations of special relativity as the ones known from the orthogonal Minkowski space. In order to illustrate the advantage of a non-orthogonal Euclidean metric the two-point Green’s function at x = 0 for a self-interacting scalar field is calculated. In contrast to the Minkowski space the one loop mass correction derived from this function gives a convergent r...

  13. The Fractional Orthogonal Difference with Applications

    Directory of Open Access Journals (Sweden)

    Enno Diekema

    2015-06-01

    Full Text Available This paper is a follow-up of a previous paper of the author published in Mathematics journal in 2015, which treats the so-called continuous fractional orthogonal derivative. In this paper, we treat the discrete case using the fractional orthogonal difference. The theory is illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolutel value of the modulus of the frequency response. These make clear that for a good insight into the behavior of a fractional differentiating filter, one has to look for the modulus of its frequency response in a log-log plot, rather than for plots in the time domain.

  14. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  15. KINERJA PENGELOLAAN LIMBAH HOTEL PESERTA PROPER DAN NON PROPER DI KABUPATEN BADUNG, PROVINSI BALI

    Directory of Open Access Journals (Sweden)

    Putri Nilakandi Perdanawati Pitoyo

    2016-07-01

    Full Text Available Bali tourism development can lead to positive and negative impacts that threatening environmental sustainability. This research evaluates the hotel performance of the waste management that includes management of waste water, emission, hazardous, and solid waste by hotel that participate at PROPER and non PROPER. Research using qualitative descriptive method. Not all of non PROPER doing test on waste water quality, chimney emissions quality, an inventory of hazardous waste and solid waste sorting. Wastewater discharge of PROPER hotels ranged from 290.9 to 571.8 m3/day and non PROPER ranged from 8.4 to 98.1 m3/day with NH3 parameter values that exceed the quality standards. The quality of chimney emissions were still below the quality standard. The volume of the hazardous waste of PROPER hotels ranged from 66.1 to 181.9 kg/month and non PROPER ranged from 5.003 to 103.42 kg/month. Hazardous waste from the PROPER hotel which has been stored in the TPS hazardous waste. The volume of the solid waste of PROPER hotel ranged from 342.34 to 684.54 kg/day and non PROPER ranged from 4.83 to 181.51 kg/day. The PROPER and non PROPER hotel not sort the solid waste. The hotel performance in term of wastewater management, emission, hazardous, and solid waste is better at the PROPER hotel compared to non PROPER participants.

  16. Orthogonal polynomials derived from the tridiagonal representation approach

    Science.gov (United States)

    Alhaidari, A. D.

    2018-01-01

    The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.

  17. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    Science.gov (United States)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  18. Orthogonal polynomials on the unit circle part 2 spectral theory

    CERN Document Server

    Simon, Barry

    2013-01-01

    This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrödinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po

  19. Orthogonal polynomials on the unit circle part 1 classical theory

    CERN Document Server

    2009-01-01

    This two-part book is a comprehensive overview of the theory of probability measures on the unit circle, viewed especially in terms of the orthogonal polynomials defined by those measures. A major theme involves the connections between the Verblunsky coefficients (the coefficients of the recurrence equation for the orthogonal polynomials) and the measures, an analog of the spectral theory of one-dimensional Schrodinger operators. Among the topics discussed along the way are the asymptotics of Toeplitz determinants (Szegő's theorems), limit theorems for the density of the zeros of orthogonal po

  20. Orthogonal experimental study on high frequency cascade thermoacoustic engine

    International Nuclear Information System (INIS)

    Hu Zhongjun; Li Qing; Li Zhengyu; Li Qiang

    2008-01-01

    Orthogonal experiment design and variance analysis were adopted to investigate a miniature cascade thermoacoustic engine, which consisted of one standing wave stage and one traveling wave stage in series, operating at about 470 Hz, using helium as the working gas. Optimum matching of the heater powers between stages was very important for the performance of a cascade thermoacoustic engine, which was obtained from the orthogonal experiments. The orthogonal experiment design considered three experimental factors, i.e. the charging pressure and the heater powers in the two stages, which varied on five different levels, respectively. According to the range analysis and variance analysis from the orthogonal experiments, the charging pressure was the most sensitive factor influencing the dynamic pressure amplitude and onset temperature. The total efficiency and the dynamic pressure amplitude increased when the traveling wave stage heater power increased. The optimum ratio of the heater powers between the traveling wave stage and the standing wave stage was about 1.25, compromising the total efficiency with the dynamic pressure amplitude

  1. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  2. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  3. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal

  4. Effective method for construction of low-dimensional models for heat transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics

    2004-12-01

    A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)

  5. The Characteristics of Turbulence in Curved Pipes under Highly Pulsatile Flow Conditions

    Science.gov (United States)

    Kalpakli, A.; Örlü, R.; Tillmark, N.; Alfredsson, P. Henrik

    High speed stereoscopic particle image velocimetry has been employed to provide unique data from a steady and highly pulsatile turbulent flow at the exit of a 90 degree pipe bend. Both the unsteady behaviour of the Dean cells under steady conditions, the so called "swirl switching" phenomenon, as well as the secondary flow under pulsations have been reconstructed through proper orthogonal decomposition. The present data set constitutes - to the authors' knowledge - the first detailed investigation of a turbulent, pulsatile flow through a pipe bend.

  6. A zonal Galerkin-free POD model for incompressible flows

    Science.gov (United States)

    Bergmann, Michel; Ferrero, Andrea; Iollo, Angelo; Lombardi, Edoardo; Scardigli, Angela; Telib, Haysam

    2018-01-01

    A domain decomposition method which couples a high and a low-fidelity model is proposed to reduce the computational cost of a flow simulation. This approach requires to solve the high-fidelity model in a small portion of the computational domain while the external field is described by a Galerkin-free Proper Orthogonal Decomposition (POD) model. We propose an error indicator to determine the extent of the interior domain and to perform an optimal coupling between the two models. This zonal approach can be used to study multi-body configurations or to perform detailed local analyses in the framework of shape optimisation problems. The efficiency of the method to perform predictive low-cost simulations is investigated for an unsteady flow and for an aerodynamic shape optimisation problem.

  7. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hua [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-08-20

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  8. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Science.gov (United States)

    Gao, Hua; Ho, Luis C.

    2017-08-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R-band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  9. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    International Nuclear Information System (INIS)

    Gao Hua; Ho, Luis C.

    2017-01-01

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  10. Consequences of wave function orthogonality for medium energy nuclear reactions

    International Nuclear Information System (INIS)

    Noble, J.V.

    1978-01-01

    In the usual models of high-energy bound-state to continuum transitions no account is taken of the orthogonality of the bound and continuum wave functions. This orthogonality induces considerable cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p), (γ,p), and (π,N), which are simply not included in the distorted-wave Born-approximation calculations which to date remain the only computationally feasible heirarchy of approximations. The object of this paper is to present a new formulation of the bound-state to continuum transition problem, based upon flux conservation, in which the orthogonality of wave functions is taken into account ab initio. The new formulation, while exact if exact wave functions are used, offers the possibility of using approximate wave functions for the continuum states without doing violence to the cancellations induced by orthogonality. The method is applied to single-particle states obeying the Schroedinger and Dirac equations, as well as to a coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several types of absorption vertex are considered, and in the (π,N) case the equivalence of pseudoscalar and pseudovector πNN coupling is seen to follow directly from wave function orthogonality

  11. On the non-orthogonal sampling scheme for Gabor's signal expansion

    NARCIS (Netherlands)

    Bastiaans, M.J.; Leest, van A.J.; Veen, J.P.

    2000-01-01

    Gabor's signal expansion and the Gabor transform are formulated on a non-orthogonal time-frequency lattice instead of on the traditional rectangular lattice [1,2]. The reason for doing so is that a non-orthogonal sampling geometry might be better adapted to the form of the window functions (in the

  12. A note on the zeros of Freud-Sobolev orthogonal polynomials

    Science.gov (United States)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  13. Solution of the ratchet-shakedown Bree problem with an extra orthogonal primary load

    International Nuclear Information System (INIS)

    Bradford, R.A.W.

    2015-01-01

    The complete shakedown and ratcheting solution is derived analytically for a flat plate subject to unequal biaxial primary membrane stresses and a cyclic secondary bending stress in one in-plane direction (x). The Tresca yield condition and elastic-perfectly plastic behaviour are assumed. It is shown that the results can be expressed in the form of a “universal” ratchet diagram applicable for all magnitudes of orthogonal load. For sufficiently large cyclic bending stresses, tensile ratcheting can occur in the x direction if the x direction primary membrane stress exceeds half that in the orthogonal direction. Conversely, for sufficiently large cyclic bending stresses ratcheting in the x direction will be compressive if the x direction primary membrane stress is less than half that in the orthogonal direction. When the x direction primary membrane stress is exactly half that in the orthogonal direction ratcheting cannot occur however large the cyclic secondary bending stress. - Highlights: • A complete shakedown and ratcheting solution is derived analytically. • The problem is Bree-like but with an extra orthogonal primary load. • The ratchet diagram can be expressed in a form applicable to any orthogonal load. • Tensile ratcheting can occur if the primary load exceeds half the orthogonal load. • Compressive ratcheting can occur for smaller primary loads

  14. Influence of 3D particle shape on the mechanical behaviour through a novel characterization method

    Directory of Open Access Journals (Sweden)

    Ouhbi Noura

    2017-01-01

    Full Text Available The sensitivity of the mechanical behaviour of railway ballast to particle shape variation is studied through Discrete Element Method (DEM numerical simulations, focusing on some basic parameters such as solid fraction, coordination number, or force distribution. We present an innovative method to characterize 3D particle shape using Proper Orthogonal Decomposition (POD of scanned ballast grains with a high accuracy. The method enables not only shape characterization but also the generation of 3D distinct and angular shapes. Algorithms are designed for face and edge recognition.

  15. Wake characterization methods of a circulation control wing

    Science.gov (United States)

    El Sayed Mohamed, Y.; Semaan, R.; Sattler, S.; Radespiel, R.

    2017-10-01

    We propose a three-pronged methodology to characterise the wake behind a circulation control wing. The study relies on time-resolved particle image velocimetry (TR-PIV) measurements in a water tunnel for a range of blowing intensities. The first method is the well-known proper orthogonal decomposition (POD). The second tool is a new implementation of the power spectrum. Finally, a modified Q-criterion vortex detection and quantification method is presented. The results show the complementary advantage of the three methods in analysing wake flows with varying conditions.

  16. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

    DEFF Research Database (Denmark)

    Arvesú, J.; Esposito, Chiara

    2012-01-01

    A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

  17. Implementation of domain decomposition and data decomposition algorithms in RMC code

    International Nuclear Information System (INIS)

    Liang, J.G.; Cai, Y.; Wang, K.; She, D.

    2013-01-01

    The applications of Monte Carlo method in reactor physics analysis is somewhat restricted due to the excessive memory demand in solving large-scale problems. Memory demand in MC simulation is analyzed firstly, it concerns geometry data, data of nuclear cross-sections, data of particles, and data of tallies. It appears that tally data is dominant in memory cost and should be focused on in solving the memory problem. Domain decomposition and tally data decomposition algorithms are separately designed and implemented in the reactor Monte Carlo code RMC. Basically, the domain decomposition algorithm is a strategy of 'divide and rule', which means problems are divided into different sub-domains to be dealt with separately and some rules are established to make sure the whole results are correct. Tally data decomposition consists in 2 parts: data partition and data communication. Two algorithms with differential communication synchronization mechanisms are proposed. Numerical tests have been executed to evaluate performance of the new algorithms. Domain decomposition algorithm shows potentials to speed up MC simulation as a space parallel method. As for tally data decomposition algorithms, memory size is greatly reduced

  18. Bounds and asymptotics for orthogonal polynomials for varying weights

    CERN Document Server

    Levin, Eli

    2018-01-01

    This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals.  Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics.  This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .

  19. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  20. Parallel and orthogonal stimulus in ultradiluted neural networks

    International Nuclear Information System (INIS)

    Sobral, G. A. Jr.; Vieira, V. M.; Lyra, M. L.; Silva, C. R. da

    2006-01-01

    Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0

  1. MRI isotropic resolution reconstruction from two orthogonal scans

    Science.gov (United States)

    Tamez-Pena, Jose G.; Totterman, Saara; Parker, Kevin J.

    2001-07-01

    An algorithm for the reconstructions of ISO-resolution volumetric MR data sets from two standard orthogonal MR scans having anisotropic resolution has been developed. The reconstruction algorithm starts by registering a pair of orthogonal volumetric MR data sets. The registration is done by maximizing the correlation between the gradient magnitude using a simple translation-rotation model in a multi-resolution approach. Then algorithm assumes that the individual voxels on the MR data are an average of the magnetic resonance properties of an elongated imaging volume. Then, the process is modeled as the projection of MR properties into a single sensor. This model allows the derivation of a set of linear equations that can be used to recover the MR properties of every single voxel in the SO-resolution volume given only two orthogonal MR scans. Projections on convex sets (POCS) was used to solve the set of linear equations. Experimental results show the advantage of having a ISO-resolution reconstructions for the visualization and analysis of small and thin muscular structures.

  2. Image compression based on orthogonal balanced multiwavelets with symmetry/antisymmetry

    Science.gov (United States)

    Zhang, Liping; Zhao, Yi

    2018-03-01

    Multiwavelets have orthogonality, compacted support and symmetry simultaneously, these properties are very important for signal processing. However, most of Multiwavelets require related prefilters. An approach to construction of symmetry/antisymmetry orthogonal filter is proposed and its corresponding balanced filter is constructed, no any prefilter is necessary. Experimental results prove its performance is superior to DGHM and CL multiwavelets, higher than Bi9/7.

  3. Problems of the orthogonalized plane wave method. 1

    International Nuclear Information System (INIS)

    Farberovich, O.V.; Kurganskii, S.I.; Domashevskaya, E.P.

    1979-01-01

    The main problems of the orthogonalized plane wave method are discussed including (a) consideration of core states; (b) effect of overlap of wave functions of external core states upon the band structure; (c) calculation of d-type states. The modified orthogonal plane wave method (MOPW method) of Deegan and Twose is applied in a general form to solve the problems of the usual OPW method. For the first time the influence on the spectrum of the main parameters of the MOPW method is studied systematically by calculating the electronic energy spectrum in the transition metals Nb and V. (author)

  4. Dynamic model reduction: An overview of available techniques with application to power systems

    Directory of Open Access Journals (Sweden)

    Đukić Savo D.

    2012-01-01

    Full Text Available This paper summarises the model reduction techniques used for the reduction of large-scale linear and nonlinear dynamic models, described by the differential and algebraic equations that are commonly used in control theory. The groups of methods discussed in this paper for reduction of the linear dynamic model are based on singular perturbation analysis, modal analysis, singular value decomposition, moment matching and methods based on a combination of singular value decomposition and moment matching. Among the nonlinear dynamic model reduction methods, proper orthogonal decomposition, the trajectory piecewise linear method, balancing-based methods, reduction by optimising system matrices and projection from a linearised model, are described. Part of the paper is devoted to the techniques commonly used for reduction (equivalencing of large-scale power systems, which are based on coherency, synchrony, singular perturbation analysis, modal analysis and identification. Two (most interesting of the described techniques are applied to the reduction of the commonly used New England 10-generator, 39-bus test power system.

  5. Non invasive transcostal focusing based on the decomposition of the time reversal operator: in vitro validation

    Science.gov (United States)

    Cochard, Étienne; Prada, Claire; Aubry, Jean-François; Fink, Mathias

    2010-03-01

    Thermal ablation induced by high intensity focused ultrasound has produced promising clinical results to treat hepatocarcinoma and other liver tumors. However skin burns have been reported due to the high absorption of ultrasonic energy by the ribs. This study proposes a method to produce an acoustic field focusing on a chosen target while sparing the ribs, using the decomposition of the time-reversal operator (DORT method). The idea is to apply an excitation weight vector to the transducers array which is orthogonal to the subspace of emissions focusing on the ribs. The ratio of the energies absorbed at the focal point and on the ribs has been enhanced up to 100-fold as demonstrated by the measured specific absorption rates.

  6. Performance and thermal decomposition analysis of foaming agent NPL-10 for use in heavy oil recovery by steam injection

    Directory of Open Access Journals (Sweden)

    Zhao Fa-Jun

    2018-02-01

    Full Text Available Foaming agents, despite holding potential in steam injection technology for heavy oil recovery, are still poorly investigated. In this work, we analyzed the performance of the foaming agent NPL-10 in terms of foam height and half-life under various conditions of temperature, pH, salinity, and oil content by orthogonal experiments. The best conditions of use for NPL-10 among those tested are T=220°C, pH 7, salinity 10000 mg·L–1 and oil content 10 g·L–1. Thermal decomposition of NPL-10 was also studied by thermogravimetric and differential thermal analyses. NPL-10 decomposes above 220°C, and decomposition is a two-step process. The kinetic triplet (activation energy, kinetic function and pre-exponential factor and the corresponding rate law were calculated for each step. Steps 1 and 2 follow kinetics of different order (n = 2 and ½, respectively. These findings provide some criteria for the selection of foaming agents for oil recovery by steam injection.

  7. Definite Integrals using Orthogonality and Integral Transforms

    Directory of Open Access Journals (Sweden)

    Howard S. Cohl

    2012-10-01

    Full Text Available We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.

  8. Nonclassical Orthogonal Polynomials and Corresponding Quadratures

    CERN Document Server

    Fukuda, H; Alt, E O; Matveenko, A V

    2004-01-01

    We construct nonclassical orthogonal polynomials and calculate abscissas and weights of Gaussian quadrature for arbitrary weight and interval. The program is written by Mathematica and it works if moment integrals are given analytically. The result is a FORTRAN subroutine ready to utilize the quadrature.

  9. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  10. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    Science.gov (United States)

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  11. A new description of orthogonal bases

    NARCIS (Netherlands)

    Coecke, Bob; Pavlovic, Dusko; Vicary, Jamie

    2012-01-01

    We show that an orthogonal basis for a finite-dimensional Hilbert space can be equivalently characterised as a commutative †-Frobenius monoid in the category FdHilb, which has finite-dimensional Hilbert spaces as objects and continuous linear maps as morphisms, and tensor product for the monoidal

  12. HOLA: Human-like Orthogonal Network Layout.

    Science.gov (United States)

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  13. Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

  14. Aspects of Orthogonality in the Development of the National Digital Wealth (NDW

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2014-01-01

    Full Text Available There are presented aspects of orthogonality in the development of the national digital wealth. There is presented the concept of NDW. Are identified quality characteristics. Are built orthogonality metrics for software development applications which are parts of NDW.

  15. Crossover ensembles of random matrices and skew-orthogonal polynomials

    International Nuclear Information System (INIS)

    Kumar, Santosh; Pandey, Akhilesh

    2011-01-01

    Highlights: → We study crossover ensembles of Jacobi family of random matrices. → We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. → We use the method of skew-orthogonal polynomials and quaternion determinants. → We prove universality of spectral correlations in crossover ensembles. → We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.

  16. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  17. Decompositions of manifolds

    CERN Document Server

    Daverman, Robert J

    2007-01-01

    Decomposition theory studies decompositions, or partitions, of manifolds into simple pieces, usually cell-like sets. Since its inception in 1929, the subject has become an important tool in geometric topology. The main goal of the book is to help students interested in geometric topology to bridge the gap between entry-level graduate courses and research at the frontier as well as to demonstrate interrelations of decomposition theory with other parts of geometric topology. With numerous exercises and problems, many of them quite challenging, the book continues to be strongly recommended to eve

  18. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  19. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  20. Secrecy Capacity of a Class of Orthogonal Relay Eavesdropper Channels

    Directory of Open Access Journals (Sweden)

    Aggarwal Vaneet

    2009-01-01

    Full Text Available The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multiantenna point-to-point channel with a multiantenna eavesdropper. The outer bounds are shown to be tight for two subclasses of channels. The first subclass is one in which the source and relay are clustered, and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a subclass in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.

  1. Spin nematic and orthogonal nematic states in S=1 non-Heisenberg magnet

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Klevets, Ph.N.

    2013-01-01

    Phases of S=1 non-Heisenberg magnet at various relationships between the exchange integrals are studied in the mean-field limit at zero temperature. It is shown that four phases can be realized in the system under consideration: the ferromagnetic, antiferromagnetic, nematic, and the orthogonal nematic states. The phase diagram is constructed. It is shown that the phase transitions between the ferromagnetic phase and the orthogonal nematic phase and between the antiferromagnetic phase and the orthogonal nematic phase are the degenerated first-order transitions. For the first time the spectra of elementary excitations in all phases are obtained within the mean-field limit. - Highlights: ► We investigated phases of S=1 non-Heisenberg magnet. ► Found four phases: ferromagnetic, antiferromagnetic, nematic, and orthogonal nematic. ► The phase diagram is determined. ► The spectra of elementary excitations are obtained in all phases for the first time.

  2. Study on vibration alleviating properties of glass fiber reinforced polymer concrete through orthogonal tests

    International Nuclear Information System (INIS)

    Bai Wenfeng; Zhang Jianhua; Yan Peng; Wang Xinli

    2009-01-01

    Polymer concrete (PC), because of its good vibration alleviating properties, is a proper material for elementary machine parts in high-precision machine tools. Glass fiber was applied in PC to improve its mechanical properties, and the material obtained is called glass fiber reinforced polymer concrete (GFRPC). The best parameter to estimate the vibration alleviating property is damping ratio. Orthogonal tests were carried out to prepare GFRPC specimens with different component proportions. Damping ratio of the GFRPC specimens was measured. The effect of the factors considered in the experiments on damping ratio of GFRPC was studied. Results of the tests show that granite proportion plays the most important role in determining damping ratio of GFRPC, then flexibilizer dosage and glass fiber length, while epoxy resin dosage and glass fiber dosage play a comparatively less important part. Detailed descriptions were made about how the considered factors affect damping ratio of GFRPC in this paper

  3. Bio-inspired supramolecular materials by orthogonal self-assembly of hydrogelators and phospholipids

    NARCIS (Netherlands)

    Boekhoven, J.; Brizard, AMA; Stuart, M. C A; Florusse, L.J.; Raffy, G.; Del Guerzo, A.; van Esch, J.H.

    2016-01-01

    The orthogonal self-assembly of multiple components is a powerful strategy towards the formation of complex biomimetic architectures, but so far the rules for designing such systems are unclear. Here we show how to identify orthogonal self-assembly at the supramolecular level and describe

  4. An optimized ensemble local mean decomposition method for fault detection of mechanical components

    International Nuclear Information System (INIS)

    Zhang, Chao; Chen, Shuai; Wang, Jianguo; Li, Zhixiong; Hu, Chao; Zhang, Xiaogang

    2017-01-01

    Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error ( Relative RMSE ) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE , corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions. (paper)

  5. An optimized ensemble local mean decomposition method for fault detection of mechanical components

    Science.gov (United States)

    Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang

    2017-03-01

    Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.

  6. Feeling-of-knowing for proper names.

    Science.gov (United States)

    Izaute, Marie; Chambres, Patrick; Larochelle, Serge

    2002-12-01

    The main objective of the presented study was to study feeling-of-knowing (FOK) in proper name retrieval. Many studies show that FOK can predict performance on a subsequent criterion test. Although feeling-of-knowing studies involve questions about proper names, none make this distinction between proper names and common names. Nevertheless, the specific character of proper names as a unique label referring to a person should allow participants to target precisely the desired verbal label. Our idea here was that the unique character of proper name information should result in more accurate FOK evaluations. In the experiment, participants evaluated feeling-of-knowing for proper and common name descriptions. The study demonstrates that FOK judgments are more accurate for proper names than for common names. The implications of the findings for proper names are briefly discussed in terms of feeling-of-knowing hypotheses.

  7. Efficiency Improvements of Antenna Optimization Using Orthogonal Fractional Experiments

    Directory of Open Access Journals (Sweden)

    Yen-Sheng Chen

    2015-01-01

    Full Text Available This paper presents an extremely efficient method for antenna design and optimization. Traditionally, antenna optimization relies on nature-inspired heuristic algorithms, which are time-consuming due to their blind-search nature. In contrast, design of experiments (DOE uses a completely different framework from heuristic algorithms, reducing the design cycle by formulating the surrogates of a design problem. However, the number of required simulations grows exponentially if a full factorial design is used. In this paper, a much more efficient technique is presented to achieve substantial time savings. By using orthogonal fractional experiments, only a small subset of the full factorial design is required, yet the resultant response surface models are still effective. The capability of orthogonal fractional experiments is demonstrated through three examples, including two tag antennas for radio-frequency identification (RFID applications and one internal antenna for long-term-evolution (LTE handheld devices. In these examples, orthogonal fractional experiments greatly improve the efficiency of DOE, thereby facilitating the antenna design with less simulation runs.

  8. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  9. Plane waves and structures in turbulent channel flow

    Science.gov (United States)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  10. Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    is difficult to capture experimentally since the flow is fully three-dimensional and also varies in time. A measurement in a point or in a plane will by itself not give the full picture of the flow.Measurement with Particle Image Velocimetry (PIV) analyzed with Proper Orthogonal Decomposition (POD......) and that the presence of helical vortices can be detected. However, the interpretation of the resulting flow still is done with an element of guessing on whether a specific variation is caused by an actual time variation of a structure or is caused by the rotation of a three-dimensional structure.The present work...

  11. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  12. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    Science.gov (United States)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  13. Polar plate theory for orthogonal anisotropy

    Science.gov (United States)

    Bailey, Michelle D.

    1998-11-01

    The following paper discusses the derivation and evaluation of the plate equations for a circular composite disk with orthogonal anisotropy. The work will be on a macromechanical level and include buckling, static and dynamic load applications. Necessary to a complete examination of the circular disk is the conversion of the stiffness matrix to cylindrical coordinates. In the transformed state, these coefficients are no longer constant, adding to the complexity of the proposed differential equations. Laminated fiber-reinforced (or filamentary) composites are used today for their high strength-to weight and stiffness-to-weight ratios. However, because of the typical anisotropic behavior of composites, determining the material properties on a microscopic level and the mechanics on a macroscopic level is much more difficult. This difficulty manifests itself particularly well in the evaluation of material properties and governing differential equations of a circular disk with the fibers of the lamina oriented orthogonally. One could encounter such a situation in space structures that require a circular geometry. For example, determining fastener pull through in a circular composite plate would best be performed in a polar coordinate system. In order to calculate the strain (which is a function of the angle, θ) from the displacements, the stiffness matrix and boundary conditions would need to be expressed in cylindrical coordinates. Naturally the composite would be constructed with fibers in orthogonal directions, then the necessary geometry would be cut out, thus the required lengthy transformation of coordinate systems. To bypass this derivation, numerical methods have been used and finite element models have been attempted. FEM over predicts plate stiffness by 20% and underpredicts failure by 70%. Obviously there is a need to transform classical plate theory to a cylindrical coordinate system.

  14. Orthogonal Expansions for VIX Options Under Affine Jump Diffusions

    DEFF Research Database (Denmark)

    Barletta, Andrea; Nicolato, Elisa

    2017-01-01

    In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel. Orthogo......In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel...

  15. Reduced basis methods for partial differential equations an introduction

    CERN Document Server

    Quarteroni, Alfio; Negri, Federico

    2016-01-01

    This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization.  The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures.  More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis.  The whole mathematical presentation is made more stimulating by the use of representative examp...

  16. Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.

  17. COMPUTER GRAPHICAL REPRESENTATION, IN TREBLE ORTHOGONAL PROJECTION, OF A POINT

    Directory of Open Access Journals (Sweden)

    SLONOVSCHI Andrei

    2017-05-01

    Full Text Available In the stages of understanding and study, by students, of descriptive geometry, the treble orthogonal projection of a point, creates problems in the situations in that one or more descriptive coordinates are zero. Starting from these considerations the authors have created an original computer program which offers to the students the possibility to easily understanding of the way in which a point is represented, in draught, in the treble orthogonal projection whatever which are its values of the descriptive coordinates.

  18. Wavelet Decomposition Method for $L_2/$/TV-Image Deblurring

    KAUST Repository

    Fornasier, M.

    2012-07-17

    In this paper, we show additional properties of the limit of a sequence produced by the subspace correction algorithm proposed by Fornasier and Schönlieb [SIAM J. Numer. Anal., 47 (2009), pp. 3397-3428 for L 2/TV-minimization problems. An important but missing property of such a limiting sequence in that paper is the convergence to a minimizer of the original minimization problem, which was obtained in [M. Fornasier, A. Langer, and C.-B. Schönlieb, Numer. Math., 116 (2010), pp. 645-685 with an additional condition of overlapping subdomains. We can now determine when the limit is indeed a minimizer of the original problem. Inspired by the work of Vonesch and Unser [IEEE Trans. Image Process., 18 (2009), pp. 509-523], we adapt and specify this algorithm to the case of an orthogonal wavelet space decomposition for deblurring problems and provide an equivalence condition to the convergence of such a limiting sequence to a minimizer. We also provide a counterexample of a limiting sequence by the algorithm that does not converge to a minimizer, which shows the necessity of our analysis of the minimizing algorithm. © 2012 Society for Industrial and Applied Mathematics.

  19. A summation procedure for expansions in orthogonal polynomials

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Grinstein, F.F.

    1977-01-01

    Approximants to functions defined by formal series expansions in orthogonal polynomials are introduced. They are shown to be convergent even out of the elliptical domain where the original expansion converges

  20. Quantum secret sharing using orthogonal multiqudit entangled states

    Science.gov (United States)

    Bai, Chen-Ming; Li, Zhi-Hui; Liu, Cheng-Ji; Li, Yong-Ming

    2017-12-01

    In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the ( n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

  1. A computer program for generating two-dimensional boundary-fitted orthogonal curvilinear coordinate systems

    Energy Technology Data Exchange (ETDEWEB)

    Barbaro, M. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione

    1997-11-01

    A numerical method is described which generates an orthogonal curvilinear mesh, subject to the constraint that mesh lines are matched to all boundaries of a closed, simply connected two-dimensional region of arbitrary shape. The method is based on the solution, by an iterative finite-difference technique, of an elliptic differential system of equations for the Cartesian coordinates of the orthogonal grid nodes. The interior grid distribution is controlled by a technique which ensures that coordinate lines can be concentrated as desired. Examples of orthogonal meshes inscribed in various geometrical figures are included.

  2. No need for external orthogonality in subsystem density-functional theory.

    Science.gov (United States)

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  3. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  4. Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials

    Science.gov (United States)

    Horozov, Emil

    2016-05-01

    We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.

  5. The advantages of orthogonal acceleration in ICP time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Gaal, Andrew

    2004-01-01

    The OptiMass 8000 incorporates an orthogonal acceleration time-of-flight mass spectrometer. A general schematic of the instrument is given. The continuous ion beam is chopped by an orthogonal accelerator. A push out pulse supply is coupled to the accelerator for providing repetitive push-out voltages at a frequency of 30 kHz. The ion packets that are sliced out of the beam then travel within the field free space towards the SMARTGATE ion blanker. Orthogonal accelerator parameters are set to enable temporal-spatial focusing at the SMARTGATE ion blanker, so that iso-mass ion packets are resolved in time. Any ion packets of unwanted specie are ejected from the direction of travel by supplying pulsed voltages onto the deflection plates of the SMARTGATE. The ions to be measured are let through SMARTGATE and travel further down the field free space, to enter the ion reflectron. The ion reflectron increases the resolution of the mass spectrometer by means of temporal-energy focussing. After reflection, the ions travel within the field free space towards the discrete-dynode detector. In comparison to other acceleration geometries used in elemental time-of-flight mass spectrometry the OptiMass 8000 orthogonal acceleration geometry ultimately leads to superior resolution. As the energy spread is about 3 orders of magnitude lower in the time-of-flight direction for an oaTOFMS in comparison to an on-axis system, aberration acquired in the initial stages of acceleration are much lower. As a result the orthogonal acceleration scheme provides superior resolution at the first spatial focus point and the detector. The orthogonal acceleration time-of-flight analyzer of the OptiMass 8000 is able to provide resolution of at least 1800 at mass 238. (author)

  6. Minimal parameter solution of the orthogonal matrix differential equation

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  7. Representations for the extreme zeros of orthogonal polynomials (vol 233, pg 847, 2009)

    NARCIS (Netherlands)

    van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

    2013-01-01

    We correct representations for the endpoints of the true interval of orthogonality of a sequence of orthogonal polynomials that were stated by us in the Journal of Computational and Applied Mathematics 233 (2009) 847-851. (c) 2013 Elsevier B.V. All rights reserved.

  8. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  9. Julia Sets of Orthogonal Polynomials

    DEFF Research Database (Denmark)

    Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg

    2018-01-01

    For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....

  10. Rotation of 2D orthogonal polynomials

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Flusser, Jan; Kautský, J.

    2018-01-01

    Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf

  11. Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    International Nuclear Information System (INIS)

    Wocjan, Pawel

    2006-01-01

    The task of decoupling, i.e., removing unwanted internal couplings of a quantum system and its couplings to an environment, plays an important role in quantum control theory. There are many efficient decoupling schemes based on combinatorial concepts such as orthogonal arrays, difference schemes, and Hadamard matrices. So far these combinatorial decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control, Viola and Knill proposed a method called 'Eulerian decoupling' that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the local structure of internal couplings and couplings to an environment that typically occur in multipartite quantum systems. In this paper we define a combinatorial structure called Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be used to remove both internal couplings and couplings to an environment of a multipartite quantum system. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes

  12. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent

    Czech Academy of Sciences Publication Activity Database

    Wall, D.H.; Bradford, M.A.; John, M.G.St.; Trofymow, J.A.; Behan-Pelletier, V.; Bignell, D.E.; Dangerfield, J.M.; Parton, W.J.; Rusek, Josef; Voigt, W.; Wolters, V.; Gardel, H.Z.; Ayuke, F. O.; Bashford, R.; Beljakova, O.I.; Bohlen, P.J.; Brauman, A.; Flemming, S.; Henschel, J.R.; Johnson, D.L.; Jones, T.H.; Kovářová, Marcela; Kranabetter, J.M.; Kutny, L.; Lin, K.-Ch.; Maryati, M.; Masse, D.; Pokarzhevskii, A.; Rahman, H.; Sabará, M.G.; Salamon, J.-A.; Swift, M.J.; Varela, A.; Vasconcelos, H.L.; White, D.; Zou, X.

    2008-01-01

    Roč. 14, č. 11 (2008), s. 2661-2677 ISSN 1354-1013 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z60050516 Keywords : climate decomposition index * decomposition * litter Subject RIV: EH - Ecology, Behaviour Impact factor: 5.876, year: 2008

  13. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  14. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  15. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  16. Using orthogonal design to determine optimal conditions for ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Because of the narrow genetic diversity of common wheat and elite agronomic traits of many wild relatives, it is very ... Key words: Protoplast, fusion, orthogonal design method, Mingxian 169, Y2155a.

  17. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.

    Science.gov (United States)

    Kozyra, Jerzy; Ceccarelli, Alessandro; Torelli, Emanuela; Lopiccolo, Annunziata; Gu, Jing-Ying; Fellermann, Harold; Stimming, Ulrich; Krasnogor, Natalio

    2017-07-21

    Nanotechnology and synthetic biology are rapidly converging, with DNA origami being one of the leading bridging technologies. DNA origami was shown to work well in a wide array of biotic environments. However, the large majority of extant DNA origami scaffolds utilize bacteriophages or plasmid sequences thus severely limiting its future applicability as a bio-orthogonal nanotechnology platform. In this paper we present the design of biologically inert (i.e., "bio-orthogonal") origami scaffolds. The synthetic scaffolds have the additional advantage of being uniquely addressable (unlike biologically derived ones) and hence are better optimized for high-yield folding. We demonstrate our fully synthetic scaffold design with both DNA and RNA origamis and describe a protocol to produce these bio-orthogonal and uniquely addressable origami scaffolds.

  18. On rational classical orthogonal polynomials and their application for explicit computation of inverse Laplace transforms

    Directory of Open Access Journals (Sweden)

    Masjed-Jamei Mohammad

    2005-01-01

    Full Text Available From the main equation ( a x 2 +bx+c y ″ n ( x +( dx+e y ′ n ( x −n( ( n−1 a+d y n ( x =0 , n∈ ℤ + , six finite and infinite classes of orthogonal polynomials can be extracted. In this work, first we have a survey on these classes, particularly on finite classes, and their corresponding rational orthogonal polynomials, which are generated by Mobius transform x=p z −1 +q , p≠0 , q∈ℝ . Some new integral relations are also given in this section for the Jacobi, Laguerre, and Bessel orthogonal polynomials. Then we show that the rational orthogonal polynomials can be a very suitable tool to compute the inverse Laplace transform directly, with no additional calculation for finding their roots. In this way, by applying infinite and finite rational classical orthogonal polynomials, we give three basic expansions of six ones as a sample for computation of inverse Laplace transform.

  19. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  20. Orthogonal worldviews in a cultural landscape of a power plant technology : multicultural communities of Chinese and Malay

    NARCIS (Netherlands)

    Shamsudin, F.; Midden, C.J.H.

    2007-01-01

    In this study, we explore whether people’s worldviews are orthogonal. An orthogonal structure of worldviews was found from two independent studies in multi-cultural communities to be affected by a coal power plant technology. The two-dimensional worldview orientations were in rectangular(orthogonal)

  1. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  2. Fourier series and orthogonal polynomials

    CERN Document Server

    Jackson, Dunham

    2004-01-01

    This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe

  3. Orthogonal polynomials and random matrices

    CERN Document Server

    Deift, Percy

    2000-01-01

    This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.

  4. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  5. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  6. Data-driven sensor placement from coherent fluid structures

    Science.gov (United States)

    Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.

  7. Larmor time and proper time

    Energy Technology Data Exchange (ETDEWEB)

    Kudaka, Shoju [Department of Physics, University of the Ryukyus, Okinawa 903-0129 (Japan); Matsumoto, Shuichi, E-mail: shuichi@edu.u-ryukyu.ac.jp [Department of Mathematics, University of the Ryukyus, Okinawa 903-0129 (Japan)

    2012-10-01

    The idea of a Larmor clock is reexamined in the relativistic regime. We propose a concept of proper time for quantum theoretical particles. The Larmor clock can measure, under some relevant conditions, the proper time that passes while the particle stays in a space region. Our approach to Larmor clock is different than those of other researchers in the following two aspects: our concept of Larmor clock does not distinguish whether the particle is transmitted or reflected at the end of its stay, and pointer of our Larmor clock is not the spin but the total angular momentum. -- Highlights: ► The idea of a Larmor clock is reexamined in the relativistic regime. ► We propose a concept of proper time for quantum theoretical particles. ► The Larmor clock measures the passage of this quantum theoretical proper time.

  8. 7 CFR 29.112 - Proper light.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Proper light. 29.112 Section 29.112 Agriculture... INSPECTION Regulations Inspectors, Samplers, and Weighers § 29.112 Proper light. Tobacco shall not be inspected or sampled for the purposes of the Act except when displayed in proper light for correct...

  9. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    Science.gov (United States)

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  10. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel.......We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  11. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field...... with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD...... package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics....

  12. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  13. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi

    2017-01-25

    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  14. Computer simulation of mucosal waves on vibrating human vocal folds

    Czech Academy of Sciences Publication Activity Database

    Vampola, T.; Horáček, Jaromír; Klepáček, I.

    2016-01-01

    Roč. 36, č. 3 (2016), s. 451-465 ISSN 0208-5216 R&D Projects: GA ČR GA16-01246S; GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61388998 Keywords : biomechanics of human voice * 3D FE model of human larynx * finite element method * proper orthogonal decomposition analysis Subject RIV: BI - Acoustics Impact factor: 1.031, year: 2016 http://ac.els-cdn.com/S0208521616300298/1-s2.0-S0208521616300298-main.pdf?_tid=e0b15360-28a9-11e6-9119-00000aab0f27&acdnat=1464862256_9ef3bcd835b40b3ce495106c65295508

  15. LES of the interaction between a premixed flame and complex turbulent swirling flow

    International Nuclear Information System (INIS)

    Iudiciani, P; Duwig, C; Szasz, R Z; Fuchs, L; Gutmark, E

    2011-01-01

    In this paper the Triple Annular Research Swirler, a fuel injector characterized by complex design with three concentric air passages, has been studied numerically. A swirl-stabilized lean premixed flame has been simulated by means of Large Eddy Simulation. The computations characterize successfully the dynamics of the flame and their interactions with the complex swirling flow. The flame is stabilized upstream the fuel injector exit, and the dynamics are led by a Precessing Vortex Core which seems to originate in the inner air passage. The results obtained by Proper Orthogonal Decomposition analysis are in agreement with previous findings in the context of swirling flows/flames.

  16. Experimental investigation of the effects of high-frequency electroactive morphing on the shear-layer

    Science.gov (United States)

    Scheller, Johannes; Rizzo, Karl-Joseph; Jodin, Gurvan; Duhayon, Eric; Rouchon, Jean-François; Hunt, Julian; Braza, Marianna

    2015-11-01

    Time-resolved PIV measurements are conducted at a Reynolds number of 270 . 000 downstream of the trailing edge of a NACA4412 airfoil equipped with trailing-edge piezoelectric tab actuators to investigate the high-frequency low-amplitude actuation's effect on the shear-layer. A comparison of the time-averaged Reynolds stress tensor components at different actuation frequency reveals a significant impact of the actuation on the shear-layer dynamics. A proper orthogonal decomposition analysis is conducted in order to investigate the actuation's impact on the vortex breakdown. It will be shown that a specific low-amplitude actuation frequency enables a reduction of the predominant shear-layer frequencies.

  17. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  18. Some nonlinear space decomposition algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  19. An Integrated Approach for Non-Recursive Formulation of Connection-Coefficients of Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    Monika GARG

    2012-08-01

    Full Text Available In this paper, an integrated approach is proposed for non-recursive formulation of connection coefficients of different orthogonal functions in terms of a generic orthogonal function. The application of these coefficients arises when the product of two orthogonal basis functions are to be expressed in terms of single basis functions. Two significant advantages are achieved; one, the non-recursive formulations avoid memory and stack overflows in computer implementations; two, the integrated approach provides for digital hardware once-designed can be used for different functions. Computational savings achieved with the proposed non-recursive formulation vis-à-vis recursive formulation, reported in the literature so far, have been demonstrated using MATLAB PROFILER.

  20. Towards orthogonal Haskell data serialisation

    DEFF Research Database (Denmark)

    Berthold, Jost

    2010-01-01

    This paper investigates a novel approach to serialisation of Haskell data structures with a high degree of flexibility, based on runtime support for parallel Haskell on distributed memory platforms. This serialisation has highly desirable and so-far unrivalled properties: it is truly orthogonal...... to evaluation and does not require any type class mechanisms. Especially, (almost) any kind of value can be serialised, including functions and IO actions. We outline the runtime support on which our serialisation is based, and present different versions of the wrapper code in Haskell which can ensure type...

  1. Introduction to Real Orthogonal Polynomials

    Science.gov (United States)

    1992-06-01

    uses Green’s functions. As motivation , consider the Dirichlet problem for the unit circle in the plane, which involves finding a harmonic function u(r...xv ; a, b ; q) - TO [q-N ab+’q ; q, xq b. Orthogoy RMotion O0 (bq :q)x p.(q* ; a, b ; q) pg(q’ ; a, b ; q) (q "q), (aq)x (q ; q), (I -abq) (bq ; q... motivation and justi- fication for continued study of the intrinsic structure of orthogonal polynomials. 99 LIST OF REFERENCES 1. Deyer, W. M., ed., CRC

  2. Application of fast orthogonal search to linear and nonlinear stochastic systems

    DEFF Research Database (Denmark)

    Chon, K H; Korenberg, M J; Holstein-Rathlou, N H

    1997-01-01

    Standard deterministic autoregressive moving average (ARMA) models consider prediction errors to be unexplainable noise sources. The accuracy of the estimated ARMA model parameters depends on producing minimum prediction errors. In this study, an accurate algorithm is developed for estimating...... linear and nonlinear stochastic ARMA model parameters by using a method known as fast orthogonal search, with an extended model containing prediction errors as part of the model estimation process. The extended algorithm uses fast orthogonal search in a two-step procedure in which deterministic terms...

  3. Qualitative Analysis of Chang'e-1 γ-ray Spectrometer Spectra Using Noise Adjusted Singular Value Decomposition Method

    International Nuclear Information System (INIS)

    Yang Jia; Ge Liangquan; Xiong Shengqing

    2010-01-01

    From the features of spectra shape of Chang'e-1 γ-ray spectrometer(CE1-GRS) data, it is difficult to determine elemental compositions on the lunar surface. Aimed at this problem, this paper proposes using noise adjusted singular value decomposition (NASVD) method to extract orthogonal spectral components from CE1-GRS data. Then the peak signals in the spectra of lower-order layers corresponding to the observed spectrum of each lunar region are respectively analyzed. Elemental compositions of each lunar region can be determined based upon whether the energy corresponding to each peak signal equals to the energy corresponding to the characteristic gamma-ray line emissions of specific elements. The result shows that a number of elements such as U, Th, K, Fe, Ti, Si, O, Al, Mg, Ca and Na are qualitatively determined by this method. (authors)

  4. Application of Orthogonal Design to Optimize Extraction of ...

    African Journals Online (AJOL)

    Purpose: To optimize the extraction technology of polysaccharides from Cynomorium songaricum Rupr by ultrasonic-assisted extraction (UAE). Methods: Four parameters including ultrasonic power, ratio of raw material to water, extraction temperature, and extraction time were optimized by orthogonal design. The effects of ...

  5. Decomposition of Multi-player Games

    Science.gov (United States)

    Zhao, Dengji; Schiffel, Stephan; Thielscher, Michael

    Research in General Game Playing aims at building systems that learn to play unknown games without human intervention. We contribute to this endeavour by generalising the established technique of decomposition from AI Planning to multi-player games. To this end, we present a method for the automatic decomposition of previously unknown games into independent subgames, and we show how a general game player can exploit a successful decomposition for game tree search.

  6. Non-orthogonal transmission in multi-user systems with Grassmannian beamforming

    KAUST Repository

    Xia, Minghua

    2011-06-01

    Aiming to achieve the sum-rate capacity in multiuser multi-input multi-output (MIMO) channels with N t antennas implemented at the transmitter, opportunistic beamforming (OBF) generates N t orthonormal beams and serves N t users during each transmission, which results in high scheduling delay over the users, especially in densely populated wireless networks. Non-orthogonal OBF with more than N t transmit beams can be exploited to serve more users simultaneously and further decreases scheduling delay. However, the inter-beam interference will inevitably deteriorate the sum-rate. Therefore, there is a tradeoff between the sum-rate and the increasing number of transmit beams. In this context, the sum-rate of non-orthogonal OBF with N > N t beams are studied, where the transmitter is based on the Grassmannian beamforming. Our results show that non-orthogonal OBF is an interference-limited system. Moreover, when the inter-beam interference reaches its minimum for fixed N t and N, the sum-rate scales as N ln (N/N-N t) and it decreases monotonically with N for fixed N t. Numerical results corroborate the accuracy of our analyses. © 2011 IEEE.

  7. Short-Term Memory in Orthogonal Neural Networks

    Science.gov (United States)

    White, Olivia L.; Lee, Daniel D.; Sompolinsky, Haim

    2004-04-01

    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.

  8. A class of orthogonal nonrecursive binomial filters.

    Science.gov (United States)

    Haddad, R. A.

    1971-01-01

    The time- and frequency-domain properties of the orthogonal binomial sequences are presented. It is shown that these sequences, or digital filters based on them, can be generated using adders and delay elements only. The frequency-domain behavior of these nonrecursive binomial filters suggests a number of applications as low-pass Gaussian filters or as inexpensive bandpass filters.

  9. Short-term memory in orthogonal neural networks

    International Nuclear Information System (INIS)

    White, Olivia L.; Lee, Daniel D.; Sompolinsky, Haim

    2004-01-01

    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size

  10. Characterizing locally distinguishable orthogonal product states

    OpenAIRE

    Feng, Yuan; Shi, Yaoyun

    2007-01-01

    Bennett et al. \\cite{BDF+99} identified a set of orthogonal {\\em product} states in the $3\\otimes 3$ Hilbert space such that reliably distinguishing those states requires non-local quantum operations. While more examples have been found for this counter-intuitive ``nonlocality without entanglement'' phenomenon, a complete and computationally verifiable characterization for all such sets of states remains unknown. In this Letter, we give such a characterization for the $3\\otimes 3$ space.

  11. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    Science.gov (United States)

    Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  12. Differentiation by integration using orthogonal polynomials, a survey

    NARCIS (Netherlands)

    Diekema, E.; Koornwinder, T.H.

    2012-01-01

    This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we

  13. Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures...

  14. Proper Acknowledgment?

    Science.gov (United States)

    East, Julianne

    2005-01-01

    The concern in Australian universities about the prevalence of plagiarism has led to the development of policies about academic integrity and in turn focused attention on the need to inform students about how to avoid plagiarism and how to properly acknowledge. Teaching students how to avoid plagiarism can appear to be straightforward if based on…

  15. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  16. Multilinear operators for higher-order decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara Gibson

    2006-04-01

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

  17. Synthesis of an Orthogonal Topological Analogue of Helicene

    DEFF Research Database (Denmark)

    Wixe, Torbjörn; Wallentin, Carl‐Johan; Johnson, Magnus T.

    2013-01-01

    The synthesis of an orthogonal topological pentamer analogue of helicene is presented. This analogue forms a tubular structure with its aromatic systems directed parallel to the axis of propagation, which creates a cavity with the potential to function as a host molecule. The synthetic strategy r...

  18. Constructing General Orthogonal Fractional Factorial Split-Plot Designs

    NARCIS (Netherlands)

    Sartono, B.; Goos, P.; Schoen, E.

    2015-01-01

    While the orthogonal design of split-plot fractional factorial experiments has received much attention already, there are still major voids in the literature. First, designs with one or more factors acting at more than two levels have not yet been considered. Second, published work on nonregular

  19. On Linear Combinations of Two Orthogonal Polynomial Sequences on the Unit Circle

    Directory of Open Access Journals (Sweden)

    Suárez C

    2010-01-01

    Full Text Available Let be a monic orthogonal polynomial sequence on the unit circle. We define recursively a new sequence of polynomials by the following linear combination: , , . In this paper, we give necessary and sufficient conditions in order to make be an orthogonal polynomial sequence too. Moreover, we obtain an explicit representation for the Verblunsky coefficients and in terms of and . Finally, we show the relation between their corresponding Carathéodory functions and their associated linear functionals.

  20. Performance of an Orthogonal Multicarrier CDMA System in a Multicell/Multipath Environment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W.S. [Ajou University, Suwon (Korea)

    1999-08-01

    We have considered an improved orthogonal multicarrier (MC) CDMA system. This system combines the advantages of both DS-CDMA with a concatenated spreading scheme and an MC modulation technique to combat the effects of a multipath fading channel and intersymbol interference (IS). The performance of the system is analyzed under a multicell, multiuser, and multipath Rician fading channel. The system is shown to outperform the orthogonal MC-CDMA system with a conventional PN sequence. (author). 4 refs., 3 figs.

  1. Cache-Oblivious Planar Orthogonal Range Searching and Counting

    DEFF Research Database (Denmark)

    Arge, Lars; Brodal, Gerth Stølting; Fagerberg, Rolf

    2005-01-01

    present the first cache-oblivious data structure for planar orthogonal range counting, and improve on previous results for cache-oblivious planar orthogonal range searching. Our range counting structure uses O(Nlog2 N) space and answers queries using O(logB N) memory transfers, where B is the block...... size of any memory level in a multilevel memory hierarchy. Using bit manipulation techniques, the space can be further reduced to O(N). The structure can also be modified to support more general semigroup range sum queries in O(logB N) memory transfers, using O(Nlog2 N) space for three-sided queries...... and O(Nlog22 N/log2log2 N) space for four-sided queries. Based on the O(Nlog N) space range counting structure, we develop a data structure that uses O(Nlog2 N) space and answers three-sided range queries in O(logB N+T/B) memory transfers, where T is the number of reported points. Based...

  2. Circular parameters of polynomials orthogonal on several arcs of the unit circle

    International Nuclear Information System (INIS)

    Lukashov, A L

    2004-01-01

    The asymptotic behaviour of the circular parameters (a n ) of the polynomials orthogonal on the unit circle with respect to Geronimus measures is analysed. It is shown that only when the harmonic measures of the arcs making up the support of the orthogonality measure are rational do the corresponding parameters form a pseudoperiodic sequence starting from some index (that is, after a suitable rotation of the circle and the corresponding modification of the orthogonality measures they form a periodic sequence). In addition it is demonstrated that if the harmonic measures of these arcs are linearly independent over the field of rational numbers, then the sets of limit points of the sequences of absolute values of the circular parameters |a n | and of their ratios (a n+k /a n ) n=1 ∞ are a closed interval on the real line and a continuum in the complex plane, respectively.

  3. Decomposition of tetrachloroethylene by ionizing radiation

    International Nuclear Information System (INIS)

    Hakoda, T.; Hirota, K.; Hashimoto, S.

    1998-01-01

    Decomposition of tetrachloroethylene and other chloroethenes by ionizing radiation were examined to get information on treatment of industrial off-gas. Model gases, airs containing chloroethenes, were confined in batch reactors and irradiated with electron beam and gamma ray. The G-values of decomposition were larger in the order of tetrachloro- > trichloro- > trans-dichloro- > cis-dichloro- > monochloroethylene in electron beam irradiation and tetrachloro-, trichloro-, trans-dichloro- > cis-dichloro- > monochloroethylene in gamma ray irradiation. For tetrachloro-, trichloro- and trans-dichloroethylene, G-values of decomposition in EB irradiation increased with increase of chlorine atom in a molecule, while those in gamma ray irradiation were almost kept constant. The G-value of decomposition for tetrachloroethylene in EB irradiation was the largest of those for all chloroethenes. In order to examine the effect of the initial concentration on G-value of decomposition, airs containing 300 to 1,800 ppm of tetrachloroethylene were irradiated with electron beam and gamma ray. The G-values of decomposition in both irradiation increased with the initial concentration. Those in electron beam irradiation were two times larger than those in gamma ray irradiation

  4. Some p-ranks related to orthogonal spaces

    NARCIS (Netherlands)

    Blokhuis, A.; Moorhouse, G.E.

    1995-01-01

    We determine the p-rank of the incidence matrix of hyperplanes of PG(n, p e) and points of a nondegenerate quadric. This yields new bounds for ovoids and the size of caps in finite orthogonal spaces. In particular, we show the nonexistence of ovoids in O10+ (2e ),O10+ (3e ),O9 (5e ),O12+ (5e

  5. Non-orthogonally transitive G2 spike solution

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2015-01-01

    We generalize the orthogonally transitive (OT) G 2 spike solution to the non-OT G 2 case. This is achieved by applying Geroch’s transformation on a Kasner seed. The new solution contains two more parameters than the OT G 2 spike solution. Unlike the OT G 2 spike solution, the new solution always resolves its spike. (fast track communication)

  6. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  7. Proper motions and distances of quasars

    International Nuclear Information System (INIS)

    Varshni, Y.P.

    1982-01-01

    The author's theory that quasars are stars raises the question of their proper motions. From the evidence presented in a previous paper, it is hypothesised that planetary nuclei and quasars are related objects and that their distributions in the galaxy are not very different. Proper motions of 30 quasars, calculated from existing measurements, are discussed. It is shown that three of these, namely PHL 1033, LB 8956 and LB 8991, have proper motions comparable to the largest proper motion known amongst the planetary nuclei. From this it is estimated that these three quasars lie within a few hundred parsecs from the sun. The evidence presented in a previous paper and the present one clearly supports the theory that quasars are stars. The possibility of using the interstellar K and H lines as distance indicators of quasars is discussed and the available evidence summarised. The desirability of determining more accurate values of the proper motions of quasars is emphasised. (Auth.)

  8. Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization

    International Nuclear Information System (INIS)

    Zahran, A.M.; Abbas, S.E.; Abd El-baki, S.A.; Saber, Y.M.

    2009-01-01

    Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Sostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

  9. Thermal decomposition of γ-irradiated lead nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Kumar, T.S.S.

    1990-01-01

    The thermal decomposition of unirradiated and γ-irradiated lead nitrate was studied by the gas evolution method. The decomposition proceeds through initial gas evolution, a short induction period, an acceleratory stage and a decay stage. The acceleratory and decay stages follow the Avrami-Erofeev equation. Irradiation enhances the decomposition but does not affect the shape of the decomposition curve. (author) 10 refs.; 7 figs.; 2 tabs

  10. Decomposing Nekrasov decomposition

    International Nuclear Information System (INIS)

    Morozov, A.; Zenkevich, Y.

    2016-01-01

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  11. Decomposing Nekrasov decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); Institute for Information Transmission Problems,19-1 Bolshoy Karetniy, Moscow, 127051 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Zenkevich, Y. [ITEP,25 Bolshaya Cheremushkinskaya, Moscow, 117218 (Russian Federation); National Research Nuclear University MEPhI,31 Kashirskoe highway, Moscow, 115409 (Russian Federation); Institute for Nuclear Research of Russian Academy of Sciences,6a Prospekt 60-letiya Oktyabrya, Moscow, 117312 (Russian Federation)

    2016-02-16

    AGT relations imply that the four-point conformal block admits a decomposition into a sum over pairs of Young diagrams of essentially rational Nekrasov functions — this is immediately seen when conformal block is represented in the form of a matrix model. However, the q-deformation of the same block has a deeper decomposition — into a sum over a quadruple of Young diagrams of a product of four topological vertices. We analyze the interplay between these two decompositions, their properties and their generalization to multi-point conformal blocks. In the latter case we explain how Dotsenko-Fateev all-with-all (star) pair “interaction” is reduced to the quiver model nearest-neighbor (chain) one. We give new identities for q-Selberg averages of pairs of generalized Macdonald polynomials. We also translate the slicing invariance of refined topological strings into the language of conformal blocks and interpret it as abelianization of generalized Macdonald polynomials.

  12. Non-orthogonal tensor diagonalization

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Phan, A. H.; Cichocki, A.

    2017-01-01

    Roč. 138, č. 1 (2017), s. 313-320 ISSN 0165-1684 R&D Projects: GA ČR(CZ) GA14-13713S; GA ČR GA17-00902S Institutional support: RVO:67985556 Keywords : multilinear models * canonical polyadic decomposition * parallel factor analysis Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/tichavsky-0474387.pdf

  13. Freeman-Durden Decomposition with Oriented Dihedral Scattering

    Directory of Open Access Journals (Sweden)

    Yan Jian

    2014-10-01

    Full Text Available In this paper, when the azimuth direction of polarimetric Synthetic Aperature Radars (SAR differs from the planting direction of crops, the double bounce of the incident electromagnetic waves from the terrain surface to the growing crops is investigated and compared with the normal double bounce. Oriented dihedral scattering model is developed to explain the investigated double bounce and is introduced into the Freeman-Durden decomposition. The decomposition algorithm corresponding to the improved decomposition is then proposed. The airborne polarimetric SAR data for agricultural land covering two flight tracks are chosen to validate the algorithm; the decomposition results show that for agricultural vegetated land, the improved Freeman-Durden decomposition has the advantage of increasing the decomposition coherency among the polarimetric SAR data along the different flight tracks.

  14. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    Science.gov (United States)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  15. Danburite decomposition by hydrochloric acid

    International Nuclear Information System (INIS)

    Mamatov, E.D.; Ashurov, N.A.; Mirsaidov, U.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by hydrochloric acid. The interaction of boron containing ores of Ak-Arkhar Deposit of Tajikistan with mineral acids, including hydrochloric acid was studied. The optimal conditions of extraction of valuable components from danburite composition were determined. The chemical composition of danburite of Ak-Arkhar Deposit was determined as well. The kinetics of decomposition of calcined danburite by hydrochloric acid was studied. The apparent activation energy of the process of danburite decomposition by hydrochloric acid was calculated.

  16. Interactive 3D segmentation using connected orthogonal contours

    NARCIS (Netherlands)

    de Bruin, P. W.; Dercksen, V. J.; Post, F. H.; Vossepoel, A. M.; Streekstra, G. J.; Vos, F. M.

    2005-01-01

    This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours

  17. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects.

    Science.gov (United States)

    Zeng, Zhaoli; Qu, Xueming; Tan, Yidong; Tan, Runtao; Zhang, Shulian

    2015-06-29

    A simple and high-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects is presented. The single high-order feedback effect is realized when dual-frequency laser reflects numerous times in a Fabry-Perot cavity and then goes back to the laser resonator along the same route. In this case, two orthogonally polarized feedback fringes with nanoscale resolution are obtained. This self-mixing interferometer has the advantages of higher sensitivity to weak signal than that of conventional interferometer. In addition, two orthogonally polarized fringes are useful for discriminating the moving direction of measured object. The experiment of measuring 2.5nm step is conducted, which shows a great potential in nanometrology.

  18. A novel calibration method for non-orthogonal shaft laser theodolite measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin, E-mail: wubin@tju.edu.cn, E-mail: xueting@tju.edu.cn; Yang, Fengting; Ding, Wen [State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072 (China); Xue, Ting, E-mail: wubin@tju.edu.cn, E-mail: xueting@tju.edu.cn [College of Electrical Engineering and Automation, Tianjin Key Laboratory of Process Measurement and Control, Tianjin University, Tianjin 300072 (China)

    2016-03-15

    Non-orthogonal shaft laser theodolite (N-theodolite) is a new kind of large-scale metrological instrument made up by two rotary tables and one collimated laser. There are three axes for an N-theodolite. According to naming conventions in traditional theodolite, rotary axes of two rotary tables are called as horizontal axis and vertical axis, respectively, and the collimated laser beam is named as sight axis. And the difference between N-theodolite and traditional theodolite is obvious, since the former one with no orthogonal and intersecting accuracy requirements. So the calibration method for traditional theodolite is no longer suitable for N-theodolite, while the calibration method applied currently is really complicated. Thus this paper introduces a novel calibration method for non-orthogonal shaft laser theodolite measurement system to simplify the procedure and to improve the calibration accuracy. A simple two-step process, calibration for intrinsic parameters and for extrinsic parameters, is proposed by the novel method. And experiments have shown its efficiency and accuracy.

  19. LMDI decomposition approach: A guide for implementation

    International Nuclear Information System (INIS)

    Ang, B.W.

    2015-01-01

    Since it was first used by researchers to analyze industrial electricity consumption in the early 1980s, index decomposition analysis (IDA) has been widely adopted in energy and emission studies. Lately its use as the analytical component of accounting frameworks for tracking economy-wide energy efficiency trends has attracted considerable attention and interest among policy makers. The last comprehensive literature review of IDA was reported in 2000 which is some years back. After giving an update and presenting the key trends in the last 15 years, this study focuses on the implementation issues of the logarithmic mean Divisia index (LMDI) decomposition methods in view of their dominance in IDA in recent years. Eight LMDI models are presented and their origin, decomposition formulae, and strengths and weaknesses are summarized. Guidelines on the choice among these models are provided to assist users in implementation. - Highlights: • Guidelines for implementing LMDI decomposition approach are provided. • Eight LMDI decomposition models are summarized and compared. • The development of the LMDI decomposition approach is presented. • The latest developments of index decomposition analysis are briefly reviewed.

  20. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets.

    Science.gov (United States)

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-04-13

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. © 2016 The Authors.

  1. Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet

    Science.gov (United States)

    Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark

    2017-11-01

    Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.

  2. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  3. FDG decomposition products

    International Nuclear Information System (INIS)

    Macasek, F.; Buriova, E.

    2004-01-01

    In this presentation authors present the results of analysis of decomposition products of [ 18 ]fluorodexyglucose. It is concluded that the coupling of liquid chromatography - mass spectrometry with electrospray ionisation is a suitable tool for quantitative analysis of FDG radiopharmaceutical, i.e. assay of basic components (FDG, glucose), impurities (Kryptofix) and decomposition products (gluconic and glucuronic acids etc.); 2-[ 18 F]fluoro-deoxyglucose (FDG) is sufficiently stable and resistant towards autoradiolysis; the content of radiochemical impurities (2-[ 18 F]fluoro-gluconic and 2-[ 18 F]fluoro-glucuronic acids in expired FDG did not exceed 1%

  4. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  5. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions.

    Science.gov (United States)

    Kozma, Eszter; Demeter, Orsolya; Kele, Péter

    2017-03-16

    Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.

    Science.gov (United States)

    Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang

    2013-01-01

    A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.

  7. Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

    Directory of Open Access Journals (Sweden)

    Claudia M. Colciago

    2018-06-01

    Full Text Available This paper deals with fast simulations of the hemodynamics in large arteries by considering a reduced model of the associated fluid-structure interaction problem, which in turn allows an additional reduction in terms of the numerical discretisation. The resulting method is both accurate and computationally cheap. This goal is achieved by means of two levels of reduction: first, we describe the model equations with a reduced mathematical formulation which allows to write the fluid-structure interaction problem as a Navier-Stokes system with non-standard boundary conditions; second, we employ numerical reduction techniques to further and drastically lower the computational costs. The non standard boundary condition is of a generalized Robin type, with a boundary mass and boundary stiffness terms accounting for the arterial wall compliance. The numerical reduction is obtained coupling two well-known techniques: the proper orthogonal decomposition and the reduced basis method, in particular the greedy algorithm. We start by reducing the numerical dimension of the problem at hand with a proper orthogonal decomposition and we measure the system energy with specific norms; this allows to take into account the different orders of magnitude of the state variables, the velocity and the pressure. Then, we introduce a strategy based on a greedy procedure which aims at enriching the reduced discretization space with low offline computational costs. As application, we consider a realistic hemodynamics problem with a perturbation in the boundary conditions and we show the good performances of the reduction techniques presented in the paper. The results obtained with the numerical reduction algorithm are compared with the one obtained by a standard finite element method. The gains obtained in term of CPU time are of three orders of magnitude.

  8. The onset of dynamic stall revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mulleners, Karen; Raffel, Markus [German Aerospace Center (DLR), Goettingen (Germany)

    2012-03-15

    Dynamic stall on a helicopter rotor blade comprises a series of complex aerodynamic phenomena in response to the unsteady change of the blade's angle of attack. It is accompanied by a lift overshoot and delayed massive flow separation with respect to static stall. The classical hallmark of the dynamic stall phenomenon is the dynamic stall vortex. The flow over an oscillating OA209 airfoil under dynamic stall conditions was investigated by means of unsteady surface pressure measurements and time-resolved particle image velocimetry. The characteristic features of the unsteady flow field were identified and analysed utilising different coherent structure identification methods. An Eulerian and a Lagrangian procedure were adopted to locate the axes of vortices and the edges of Lagrangian coherent structures, respectively; a proper orthogonal decomposition of the velocity field revealed the energetically dominant coherent flow patterns and their temporal evolution. Based on the complementary information obtained by these methods the dynamics and interaction of vortical structures were analysed within a single dynamic stall life cycle leading to a classification of the unsteady flow development into five successive stages: the attached flow stage; the stall development stage; stall onset; the stalled stage; and flow reattachment. The onset of dynamic stall was specified here based on a characteristic mode of the proper orthogonal decomposition of the velocity field. Variations in the flow field topology that accompany the stall onset were verified by the Lagrangian coherent structure analysis. The instantaneous effective unsteadiness was defined as a single representative parameter to describe the influence of the motion parameters. Dynamic stall onset was found to be promoted by increasing unsteadiness. The mechanism that results in the detachment of the dynamic stall vortex from the airfoil was identified as vortex-induced separation caused by strong viscous

  9. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, G., E-mail: giacomino.bandini@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Polidori, M. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Gerschenfeld, A.; Pialla, D.; Li, S. [Commissariat à l’Energie Atomique (CEA) (France); Ma, W.M.; Kudinov, P.; Jeltsov, M.; Kööp, K. [Royal Institute of Technology (KTH) (Sweden); Huber, K.; Cheng, X.; Bruzzese, C.; Class, A.G.; Prill, D.P. [Karlsruhe Institute of Technology (KIT) (Germany); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Geffray, C.; Macian-Juan, R. [Technische Universität München (TUM) (Germany); Maas, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2015-01-15

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes.

  10. Effect of trailing edge ramp on cavity flow structures and pressure drag

    International Nuclear Information System (INIS)

    Pey, Yin Yin; Chua, Leok Poh; Siauw, Wei Long

    2014-01-01

    Highlights: • Trailing edge ramps were used to reduce unsteadiness and pressure drag of a cavity. • Proper Orthogonal Decomposition was used to educe the coherent structures. • The 30° ramp was successful in redistributing the energy content within the cavity. • The 30° ramp guides the flow smoothly out of the cavity, reducing flow impingement. • A substantial reduction of pressure drag was achieved by the 30° ramp. -- Abstract: The effects of trailing edge ramp modifications on time-averaged velocity and pressure distributions within a cavity with a length to depth ratio of 2, at a speed of 15 m/s were investigated. The ramp angles were varied at 30°, 45° and 60° and ramp heights were varied at 0.25 times and 0.5 times of cavity depth. The mean flow within the cavity differed significantly from the baseline case when ramp angle was 30° and 45° with ramp height 0.5 times of cavity depth. At these 2 configurations, moment about the center of the cavity floor was reduced significantly. These could be attributed to the more steady flow within the cavity as compared to the baseline case. Spatial correlation of velocity in the cavity of ramp angle 30° showed that internal cavity flow was less sensitive to flow changes in the shear layer as compared to the baseline case. In the same cavity, snapshot Proper Orthogonal Decomposition revealed a redistribution of energy content where energetic structures exist only in the shear layer as opposed to energetic structures in both the shear layer and internal cavity for the baseline case. A reduction of pressure drag was also observed as the gentle ramp angle of 30° guides the flow smoothly out of the cavity and reduces trailing edge impingement

  11. Using the computed tomography in comparison to the orthogonal radiography based treatment planning in high dose rate (HDR) brachytherapy in cervical uteri cancer patients; a single institution feasibility study.

    Science.gov (United States)

    Bahadur, Yasir A; El-Sayed, Mohamed E; El-Taher, Zeinab H; Zaza, Khaled O; Moftah, Belal A; Hassouna, Ashraf H; Ghassal, Noor M

    2008-03-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram lpar;DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy+/-1.2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy+/-1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the corresponding p

  12. Using the Computed Tomography in Comparison to the Orthogonal Radiography Based Treatment Planning in High dose Rate (HDR) Brachytherapy in Cervical Uteri Cancer Patients; A Single Institution Feasibility Study

    International Nuclear Information System (INIS)

    BAHADUR, Y.A.; EL-SAYED, M.E.; HASSOUNA, A.H.; EL-TAHER, Z.H.; GHASSAL, N.M.; ZAZA, Kh.O.M.D.; OFTAH, B.A.

    2008-01-01

    Brachytherapy is an integral part in the treatment of cervical uteri cancer patients. Orthogonal treatment planning is the standard mode of calculation based on reference points. Introduction of the innovative 3-D computer based treatment planning allows accurate calculation based on volumetric information as regards the target volume and organs at risk (OAR). Also provide dose volume histogram (DVH) for proper estimation of the dose in relation to the volume. Aim: To correlate and compare the information obtained from the two approaches for high dose rate brachytherapy of cervical uteri cancer; the orthogonal conventional method and the computerized tomography (CT) three dimensions (3D) based calculation method in relation to the target and organ at risk (OAR). Methods: From 6 patients of cervical uteri cancer, 21 applications with orthogonal planning using the Brachy Vision treatment planning system version 7.3.10 were performed. In 10 applications; comparison between orthogonal and CT based planning was done. In orthogonal planning; the dose to point A, rectum and bladder were defined according to the American Brachytherapy Society (ABS) recommendation. From the CT based planning the target volume and dose volume histogram (DVH) were calculated for the clinical target volume (CTV), rectum and bladder. From these two sets, information was obtained and compared and mean values were derived. Results: For dose prescription at point A, an average of 63.5% of CTV received the prescribed dose. The mean ICRU dose to the bladder point is 2.9 Gy±l .2 SD (Standard Deviation) and 17% of the bladder volume derived from CT was encompassed by 2.9 Gy isodose line. The mean ICRU dose at the rectum point is 3.4 Gy±1.2 SD and 21% of the rectum volume from CT was encompassed by 3.4 Gy isodose line. The maximum dose to the rectum and the bladder derived from the CT and compared to the maximal dose at ICRU is 1.7 and 2.8 times higher than the orthogonal reference points; with the

  13. Orthogonal designs Hadamard matrices, quadratic forms and algebras

    CERN Document Server

    Seberry, Jennifer

    2017-01-01

    Orthogonal designs have proved fundamental to constructing code division multiple antenna systems for more efficient mobile communications. Starting with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories.

  14. G-matrices, J-orthogonal Matrices, and Their Sign Patterns

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.; Rozložník, Miroslav

    -, subm. 2015 (2018) ISSN 0024-3795 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:67985807 Keywords : G-matrix * J-orthogonal matrich * Cauchy matrix * sign pattern matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016

  15. Towards proper name generation : A corpus analysis

    NARCIS (Netherlands)

    Castro Ferreira, Thiago; Wubben, Sander; Krahmer, Emiel

    We introduce a corpus for the study of proper name generation. The corpus consists of proper name references to people in webpages, extracted from the Wikilinks corpus. In our analyses, we aim to identify the different ways, in terms of length and form, in which a proper names are produced

  16. Photochemical decomposition of catecholamines

    International Nuclear Information System (INIS)

    Mol, N.J. de; Henegouwen, G.M.J.B. van; Gerritsma, K.W.

    1979-01-01

    During photochemical decomposition (lambda=254 nm) adrenaline, isoprenaline and noradrenaline in aqueous solution were converted to the corresponding aminochrome for 65, 56 and 35% respectively. In determining this conversion, photochemical instability of the aminochromes was taken into account. Irradiations were performed in such dilute solutions that the neglect of the inner filter effect is permissible. Furthermore, quantum yields for the decomposition of the aminochromes in aqueous solution are given. (Author)

  17. Investigating hydrogel dosimeter decomposition by chemical methods

    International Nuclear Information System (INIS)

    Jordan, Kevin

    2015-01-01

    The chemical oxidative decomposition of leucocrystal violet micelle hydrogel dosimeters was investigated using the reaction of ferrous ions with hydrogen peroxide or sodium bicarbonate with hydrogen peroxide. The second reaction is more effective at dye decomposition in gelatin hydrogels. Additional chemical analysis is required to determine the decomposition products

  18. Adaptive PID control based on orthogonal endocrine neural networks.

    Science.gov (United States)

    Milovanović, Miroslav B; Antić, Dragan S; Milojković, Marko T; Nikolić, Saša S; Perić, Staniša Lj; Spasić, Miodrag D

    2016-12-01

    A new intelligent hybrid structure used for online tuning of a PID controller is proposed in this paper. The structure is based on two adaptive neural networks, both with built-in Chebyshev orthogonal polynomials. First substructure network is a regular orthogonal neural network with implemented artificial endocrine factor (OENN), in the form of environmental stimuli, to its weights. It is used for approximation of control signals and for processing system deviation/disturbance signals which are introduced in the form of environmental stimuli. The output values of OENN are used to calculate artificial environmental stimuli (AES), which represent required adaptation measure of a second network-orthogonal endocrine adaptive neuro-fuzzy inference system (OEANFIS). OEANFIS is used to process control, output and error signals of a system and to generate adjustable values of proportional, derivative, and integral parameters, used for online tuning of a PID controller. The developed structure is experimentally tested on a laboratory model of the 3D crane system in terms of analysing tracking performances and deviation signals (error signals) of a payload. OENN-OEANFIS performances are compared with traditional PID and 6 intelligent PID type controllers. Tracking performance comparisons (in transient and steady-state period) showed that the proposed adaptive controller possesses performances within the range of other tested controllers. The main contribution of OENN-OEANFIS structure is significant minimization of deviation signals (17%-79%) compared to other controllers. It is recommended to exploit it when dealing with a highly nonlinear system which operates in the presence of undesirable disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The elementary discussion of volumetric modulated arc therapy using the orthogonal plane dose verification

    International Nuclear Information System (INIS)

    Shi Jinping; Chen Lixin; Xie Qiuying; Zhang Liwen; Teng Jianjian

    2012-01-01

    Objective: This study was to explore the feasibility of using the orthogonal plane dose formed by the coronal and sagittal plane to verify the volumetric modulated arc therapy (VMAT) plan. Methods: The VMAT plans of 12 patients were included in this study. The orthogonal plane dose formed by the coronal and sagittal plane were measured based on the combination of 2D ionization chamber array and multicube phantom, and the point dose were measured based on a multiple hole cylindrical phantom attached with two 0.125 cm 3 ionization chamber probes. Results: In the measurement of the point dose, the average error was 1.5% in high dose area (more than 80% of maximum), and 1.7% in low dose area (less than 80% of maximum), respectively. The discrepancy of point dose measurement was 1.3% between the 2D ionization chamber array and the VMAT planning system. In the measurement of the orthogonal plane dose, the pass rate of γ were 93.7% for 2%/2 mm and 97.2% for 3%/3 mm. Conclusion: It is reliable for using the orthogonal plane dose formed by the coronal and sagittal plane to verify the VMAT plan. (authors)

  20. Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media

    KAUST Repository

    Ghommem, Mehdi

    2015-04-22

    In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.

  1. Large Eddy Simulation (LES for IC Engine Flows

    Directory of Open Access Journals (Sweden)

    Kuo Tang-Wei

    2013-10-01

    Full Text Available Numerical computations are carried out using an engineering-level Large Eddy Simulation (LES model that is provided by a commercial CFD code CONVERGE. The analytical framework and experimental setup consist of a single cylinder engine with Transparent Combustion Chamber (TCC under motored conditions. A rigorous working procedure for comparing and analyzing the results from simulation and high speed Particle Image Velocimetry (PIV experiments is documented in this work. The following aspects of LES are analyzed using this procedure: number of cycles required for convergence with adequate accuracy; effect of mesh size, time step, sub-grid-scale (SGS turbulence models and boundary condition treatments; application of the proper orthogonal decomposition (POD technique.

  2. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate

    International Nuclear Information System (INIS)

    Pan, Chong; Wang, Hongping; Wang, Jinjun

    2013-01-01

    This work mainly deals with the proper orthogonal decomposition (POD) time coefficient method used for extracting phase information from quasi-periodic flow. The mathematical equivalence between this method and the traditional cross-correlation method is firstly proved. A two-dimensional circular cylinder wake flow measured by time-resolved particle image velocimetry within a range of Reynolds numbers is then used to evaluate the reliability of this method. The effect of both the sampling rate and Reynolds number on the identification accuracy is finally discussed. It is found that the POD time coefficient method provides a convenient alternative for phase identification, whose feasibility in low-sampling-rate measurement has additional advantages for experimentalists. (paper)

  3. PropeR revisited

    NARCIS (Netherlands)

    van der Linden, Helma; Talmon, Jan; Tange, Huibert; Grimson, Jane; Hasman, Arie

    2005-01-01

    INTRODUCTION: The PropeR EHR system (PropeRWeb) is a multidisciplinary electronic health record (EHR) system for multidisciplinary use in extramural patient care for stroke patients. DESIGN: The system is built using existing open source components and is based on open standards. It is implemented

  4. High-frequency Total Focusing Method (TFM) imaging in strongly attenuating materials with the decomposition of the time reversal operator associated with orthogonal coded excitations

    Science.gov (United States)

    Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire

    2017-02-01

    In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.

  5. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    DEFF Research Database (Denmark)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af

    2013-01-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking...... of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path....... For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm...

  6. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  7. Multilevel index decomposition analysis: Approaches and application

    International Nuclear Information System (INIS)

    Xu, X.Y.; Ang, B.W.

    2014-01-01

    With the growing interest in using the technique of index decomposition analysis (IDA) in energy and energy-related emission studies, such as to analyze the impacts of activity structure change or to track economy-wide energy efficiency trends, the conventional single-level IDA may not be able to meet certain needs in policy analysis. In this paper, some limitations of single-level IDA studies which can be addressed through applying multilevel decomposition analysis are discussed. We then introduce and compare two multilevel decomposition procedures, which are referred to as the multilevel-parallel (M-P) model and the multilevel-hierarchical (M-H) model. The former uses a similar decomposition procedure as in the single-level IDA, while the latter uses a stepwise decomposition procedure. Since the stepwise decomposition procedure is new in the IDA literature, the applicability of the popular IDA methods in the M-H model is discussed and cases where modifications are needed are explained. Numerical examples and application studies using the energy consumption data of the US and China are presented. - Highlights: • We discuss the limitations of single-level decomposition in IDA applied to energy study. • We introduce two multilevel decomposition models, study their features and discuss how they can address the limitations. • To extend from single-level to multilevel analysis, necessary modifications to some popular IDA methods are discussed. • We further discuss the practical significance of the multilevel models and present examples and cases to illustrate

  8. Magnitude conversion to unified moment magnitude using orthogonal regression relation

    Science.gov (United States)

    Das, Ranjit; Wason, H. R.; Sharma, M. L.

    2012-05-01

    Homogenization of earthquake catalog being a pre-requisite for seismic hazard assessment requires region based magnitude conversion relationships. Linear Standard Regression (SR) relations fail when both the magnitudes have measurement errors. To accomplish homogenization, techniques like Orthogonal Standard Regression (OSR) are thus used. In this paper a technique is proposed for using such OSR for preparation of homogenized earthquake catalog in moment magnitude Mw. For derivation of orthogonal regression relation between mb and Mw, a data set consisting of 171 events with observed body wave magnitudes (mb,obs) and moment magnitude (Mw,obs) values has been taken from ISC and GCMT databases for Northeast India and adjoining region for the period 1978-2006. Firstly, an OSR relation given below has been developed using mb,obs and Mw,obs values corresponding to 150 events from this data set. M=1.3(±0.004)m-1.4(±0.130), where mb,proxy are body wave magnitude values of the points on the OSR line given by the orthogonality criterion, for observed (mb,obs, Mw,obs) points. A linear relation is then developed between these 150 mb,obs values and corresponding mb,proxy values given by the OSR line using orthogonality criterion. The relation obtained is m=0.878(±0.03)m+0.653(±0.15). The accuracy of the above procedure has been checked with the rest of the data i.e., 21 events values. The improvement in the correlation coefficient value between mb,obs and Mw estimated using the proposed procedure compared to the correlation coefficient value between mb,obs and Mw,obs shows the advantage of OSR relationship for homogenization. The OSR procedure developed in this study can be used to homogenize any catalog containing various magnitudes (e.g., ML, mb, MS) with measurement errors, by their conversion to unified moment magnitude Mw. The proposed procedure also remains valid in case the magnitudes have measurement errors of different orders, i.e. the error variance ratio is

  9. Thermic decomposition of biphenyl; Decomposition thermique du biphenyle

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    Liquid and vapour phase pyrolysis of very pure biphenyl obtained by methods described in the text was carried out at 400 C in sealed ampoules, the fraction transformed being always less than 0.1 per cent. The main products were hydrogen, benzene, terphenyls, and a deposit of polyphenyls strongly adhering to the walls. Small quantities of the lower aliphatic hydrocarbons were also found. The variation of the yields of these products with a) the pyrolysis time, b) the state (gas or liquid) of the biphenyl, and c) the pressure of the vapour was measured. Varying the area and nature of the walls showed that in the absence of a liquid phase, the pyrolytic decomposition takes place in the adsorbed layer, and that metallic walls promote the reaction more actively than do those of glass (pyrex or silica). A mechanism is proposed to explain the results pertaining to this decomposition in the adsorbed phase. The adsorption seems to obey a Langmuir isotherm, and the chemical act which determines the overall rate of decomposition is unimolecular. (author) [French] Du biphenyle tres pur, dont la purification est decrite, est pyrolyse a 400 C en phase vapeur et en phase liquide dans des ampoules scellees sous vide, a des taux de decomposition n'ayant jamais depasse 0,1 pour cent. Les produits provenant de la pyrolyse sont essentiellement: l' hydrogene, le benzene, les therphenyles, et un depot de polyphenyles adherant fortement aux parois. En plus il se forme de faibles quantites d'hydrocarbures aliphatiques gazeux. On indique la variation des rendements des differents produits avec la duree de pyrolyse, l'etat gazeux ou liquide du biphenyle, et la pression de la vapeur. Variant la superficie et la nature des parois, on montre qu'en absence de liquide la pyrolyse se fait en phase adsorbee. La pyrolyse est plus active au contact de parois metalliques que de celles de verres (pyrex ou silice). A partir des resultats experimentaux un mecanisme de degradation du biphenyle en phase

  10. Bender-Dunne Orthogonal Polynomials, Quasi-Exact Solvability and Asymptotic Iteration Method for Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Yahiaoui, S.-A.; Bentaiba, M.

    2011-01-01

    We present a method for obtaining the quasi-exact solutions of the Rabi Hamiltonian in the framework of the asymptotic iteration method (AIM). The energy eigenvalues, the eigenfunctions and the associated Bender-Dunne orthogonal polynomials are deduced. We show (i) that orthogonal polynomials are generated from the upper limit (i.e., truncation limit) of polynomial solutions deduced from AIM, and (ii) prove to have nonpositive norm. (authors)

  11. Primary decomposition of torsion R[X]-modules

    Directory of Open Access Journals (Sweden)

    William A. Adkins

    1994-01-01

    Full Text Available This paper is concerned with studying hereditary properties of primary decompositions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if an R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M determines a primary decomposition of the submodule. This is a generalization of the classical fact from linear algebra that a diagonalizable linear transformation on a vector space restricts to a diagonalizable linear transformation of any invariant subspace. Additionally, primary decompositions are considered under direct sums and tensor product.

  12. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  13. Differential Decomposition Among Pig, Rabbit, and Human Remains.

    Science.gov (United States)

    Dautartas, Angela; Kenyhercz, Michael W; Vidoli, Giovanna M; Meadows Jantz, Lee; Mundorff, Amy; Steadman, Dawnie Wolfe

    2018-03-30

    While nonhuman animal remains are often utilized in forensic research to develop methods to estimate the postmortem interval, systematic studies that directly validate animals as proxies for human decomposition are lacking. The current project compared decomposition rates among pigs, rabbits, and humans at the University of Tennessee's Anthropology Research Facility across three seasonal trials that spanned nearly 2 years. The Total Body Score (TBS) method was applied to quantify decomposition changes and calculate the postmortem interval (PMI) in accumulated degree days (ADD). Decomposition trajectories were analyzed by comparing the estimated and actual ADD for each seasonal trial and by fuzzy cluster analysis. The cluster analysis demonstrated that the rabbits formed one group while pigs and humans, although more similar to each other than either to rabbits, still showed important differences in decomposition patterns. The decomposition trends show that neither nonhuman model captured the pattern, rate, and variability of human decomposition. © 2018 American Academy of Forensic Sciences.

  14. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Science.gov (United States)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  15. Orthogonal and symplectic Yangians and Yang–Baxter R-operators

    International Nuclear Information System (INIS)

    Isaev, A.P.; Karakhanyan, D.; Kirschner, R.

    2016-01-01

    Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.

  16. Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution

    International Nuclear Information System (INIS)

    Liang Wen-Ye; Yin Zhen-Qiang; Chen Hua; Li Hong-Wei; Chen Wei; Han Zheng-Fu; Wen Hao

    2015-01-01

    At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. (paper)

  17. Orthogonal and symplectic Yangians and Yang–Baxter R-operators

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, A.P., E-mail: isaevap@theor.jinr.ru [Bogoliubov Lab., Joint Institute of Nuclear Research, Dubna (Russian Federation); Karakhanyan, D., E-mail: karakhan@yerphi.am [Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan (Armenia); Kirschner, R., E-mail: Roland.Kirschner@itp.uni-leipzig.de [Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig (Germany)

    2016-03-15

    Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.

  18. Orthogonal and symplectic Yangians and Yang–Baxter R-operators

    Directory of Open Access Journals (Sweden)

    A.P. Isaev

    2016-03-01

    Full Text Available Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.

  19. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    Science.gov (United States)

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  20. Least squares orthogonal polynomial approximation in several independent variables

    International Nuclear Information System (INIS)

    Caprari, R.S.

    1992-06-01

    This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab

  1. USC orthogonal multiprocessor for image processing with neural networks

    Science.gov (United States)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  2. Pitfalls in VAR based return decompositions: A clarification

    DEFF Research Database (Denmark)

    Engsted, Tom; Pedersen, Thomas Quistgaard; Tanggaard, Carsten

    in their analysis is not "cashflow news" but "inter- est rate news" which should not be zero. Consequently, in contrast to what Chen and Zhao claim, their decomposition does not serve as a valid caution against VAR based decompositions. Second, we point out that in order for VAR based decompositions to be valid......Based on Chen and Zhao's (2009) criticism of VAR based return de- compositions, we explain in detail the various limitations and pitfalls involved in such decompositions. First, we show that Chen and Zhao's interpretation of their excess bond return decomposition is wrong: the residual component...

  3. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  4. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    Science.gov (United States)

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  5. Sparse orthogonal population representation of spatial context in the retrosplenial cortex.

    Science.gov (United States)

    Mao, Dun; Kandler, Steffen; McNaughton, Bruce L; Bonin, Vincent

    2017-08-15

    Sparse orthogonal coding is a key feature of hippocampal neural activity, which is believed to increase episodic memory capacity and to assist in navigation. Some retrosplenial cortex (RSC) neurons convey distributed spatial and navigational signals, but place-field representations such as observed in the hippocampus have not been reported. Combining cellular Ca 2+ imaging in RSC of mice with a head-fixed locomotion assay, we identified a population of RSC neurons, located predominantly in superficial layers, whose ensemble activity closely resembles that of hippocampal CA1 place cells during the same task. Like CA1 place cells, these RSC neurons fire in sequences during movement, and show narrowly tuned firing fields that form a sparse, orthogonal code correlated with location. RSC 'place' cell activity is robust to environmental manipulations, showing partial remapping similar to that observed in CA1. This population code for spatial context may assist the RSC in its role in memory and/or navigation.Neurons in the retrosplenial cortex (RSC) encode spatial and navigational signals. Here the authors use calcium imaging to show that, similar to the hippocampus, RSC neurons also encode place cell-like activity in a sparse orthogonal representation, partially anchored to the allocentric cues on the linear track.

  6. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  7. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2007-12-15

    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

    International Nuclear Information System (INIS)

    Duran, Antonio J; Gruenbaum, F Alberto

    2006-01-01

    The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein

  9. New discrete orthogonal moments for signal analysis

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, Barmak; Flusser, Jan

    2017-01-01

    Roč. 141, č. 1 (2017), s. 57-73 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Moment functions * Z-transform * Rodrigues formula * Hypergeometric form Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0475248.pdf

  10. Orthogonality-breaking sensing model based on the instantaneous Stokes vector and the Mueller calculus

    Science.gov (United States)

    Ortega-Quijano, Noé; Fade, Julien; Roche, Muriel; Parnet, François; Alouini, Mehdi

    2016-04-01

    Polarimetric sensing by orthogonality breaking has been recently proposed as an alternative technique for performing direct and fast polarimetric measurements using a specific dual-frequency dual-polarization (DFDP) source. Based on the instantaneous Stokes-Mueller formalism to describe the high-frequency evolution of the DFDP beam intensity, we thoroughly analyze the interaction of such a beam with birefringent, dichroic and depolarizing samples. This allows us to confirm that orthogonality breaking is produced by the sample diattenuation, whereas this technique is immune to both birefringence and diagonal depolarization. We further analyze the robustness of this technique when polarimetric sensing is performed through a birefringent waveguide, and the optimal DFDP source configuration for fiber-based endoscopic measurements is subsequently identified. Finally, we consider a stochastic depolarization model based on an ensemble of random linear diattenuators, which makes it possible to understand the progressive vanishing of the detected orthogonality breaking signal as the spatial heterogeneity of the sample increases, thus confirming the insensitivity of this method to diagonal depolarization. The fact that the orthogonality breaking signal is exclusively due to the sample dichroism is an advantageous feature for the precise decoupled characterization of such an anisotropic parameter in samples showing several simultaneous effects.

  11. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    Science.gov (United States)

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  13. A Comparative Study for Orthogonal Subspace Projection and Constrained Energy Minimization

    National Research Council Canada - National Science Library

    Du, Qian; Ren, Hsuan; Chang, Chein-I

    2003-01-01

    ...: orthogonal subspace projection (OSP) and constrained energy minimization (CEM). It is shown that they are closely related and essentially equivalent provided that the noise is white with large SNR...

  14. Modeling of Particle Emission During Dry Orthogonal Cutting

    Science.gov (United States)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  15. Orthogonal bases of radial functions for charge density refinements

    International Nuclear Information System (INIS)

    Restori, R.

    1990-01-01

    Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)

  16. Orthogonal Projector Kit (OPK) as a new teaching aids with ...

    African Journals Online (AJOL)

    ... as a new teaching aids with innovation ICT in teaching and learning 21 st century. ... Mathematics education filled with abstract concepts, the use of teaching aids is ... This article aims to introduce and express the importance of Orthogonal ...

  17. Local Fractional Adomian Decomposition and Function Decomposition Methods for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Yan

    2014-01-01

    Full Text Available We perform a comparison between the local fractional Adomian decomposition and local fractional function decomposition methods applied to the Laplace equation. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.

  18. Integrated, Dual Orthogonal Antennas for Polarimetric Ground Penetrating Radar

    Science.gov (United States)

    Pauli, Mario; Wiesbeck, Werner

    2015-04-01

    Ground penetrating radar systems are mostly equipped with single polarized antennas, for example with single linear polarization or with circular polarization. The radiated waves are partly reflected at the ground surface and very often the penetrating waves are distorted in their polarization. The distortion depends on the ground homogeneity and the orientation of the antennas relative to the ground structure. The received signals from the reflecting objects may most times only be classified according to their coverage and intensity. This makes the recognition of the objects difficult or impossible. In airborne and spaceborne Remote Sensing the systems are meanwhile mostly equipped with front ends with dual orthogonal polarized antennas for a full polarimetric operation. The received signals, registered in 2x2 scattering matrices according to co- and cross polarization, are processed for the evaluation of all features of the targets. Ground penetrating radars could also profit from the scientific results of Remote Sensing. The classification of detected objects for their structure and orientation requires more information in the reflected signal than can be measured with a single polarization [1, 2]. In this paper dual linear, orthogonal polarized antennas with a common single, frequency independent phase center, are presented [3]. The relative bandwidth of these antennas can be 1:3, up to 1:4. The antenna is designed to work in the frequency range between 3 GHz and 11 GHz, but can be easily adapted to the GPR frequency range by scaling. The size of the antenna scaled for operation in typical GPR frequencies would approximately be 20 by 20 cm2. By the implementation in a dielectric carrier it could be reduced in size if required. The major problem for ultra wide band, dual polarized antennas is the frequency independent feed network, realizing the required phase shifts. For these antennas a network, which is frequency independent over a wide range, has been

  19. Constructive quantum Shannon decomposition from Cartan involutions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Byron; Love, Peter [Department of Physics, 370 Lancaster Ave., Haverford College, Haverford, PA 19041 (United States)], E-mail: plove@haverford.edu

    2008-10-03

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions.

  20. Constructive quantum Shannon decomposition from Cartan involutions

    International Nuclear Information System (INIS)

    Drury, Byron; Love, Peter

    2008-01-01

    The work presented here extends upon the best known universal quantum circuit, the quantum Shannon decomposition proposed by Shende et al (2006 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25 1000). We obtain the basis of the circuit's design in a pair of Cartan decompositions. This insight gives a simple constructive factoring algorithm in terms of the Cartan involutions corresponding to these decompositions

  1. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    International Nuclear Information System (INIS)

    Weyna, S

    2014-01-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above 'cut-off' frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  2. Differential forms orthogonal to holomorphic functions or forms, and their properties

    CERN Document Server

    Aizenberg, L A

    1983-01-01

    The authors consider the problem of characterizing the exterior differential forms which are orthogonal to holomorphic functions (or forms) in a domain D\\subset {\\mathbf C}^n with respect to integration over the boundary, and some related questions. They give a detailed account of the derivation of the Bochner-Martinelli-Koppelman integral representation of exterior differential forms, which was obtained in 1967 and has already found many important applications. They study the properties of \\overline \\partial-closed forms of type (p, n - 1), 0\\leq p\\leq n - 1, which turn out to be the duals (with respect to the orthogonality mentioned above) to holomorphic functions (or forms) in several complex variables, and resemble holomorphic functions of one complex variable in their properties.

  3. The Role of Orthogonal Polynomials in Tailoring Spherical Distributions to Kurtosis Requirements

    Directory of Open Access Journals (Sweden)

    Luca Bagnato

    2016-08-01

    Full Text Available This paper carries out an investigation of the orthogonal-polynomial approach to reshaping symmetric distributions to fit in with data requirements so as to cover the multivariate case. With this objective in mind, reference is made to the class of spherical distributions, given that they provide a natural multivariate generalization of univariate even densities. After showing how to tailor a spherical distribution via orthogonal polynomials to better comply with kurtosis requirements, we provide operational conditions for the positiveness of the resulting multivariate Gram–Charlier-like expansion, together with its kurtosis range. Finally, the approach proposed here is applied to some selected spherical distributions.

  4. In situ study of glasses decomposition layer

    International Nuclear Information System (INIS)

    Zarembowitch-Deruelle, O.

    1997-01-01

    The aim of this work is to understand the involved mechanisms during the decomposition of glasses by water and the consequences on the morphology of the decomposition layer, in particular in the case of a nuclear glass: the R 7 T 7 . The chemical composition of this glass being very complicated, it is difficult to know the influence of the different elements on the decomposition kinetics and on the resulting morphology because several atoms have a same behaviour. Glasses with simplified composition (only 5 elements) have then been synthesized. The morphological and structural characteristics of these glasses have been given. They have then been decomposed by water. The leaching curves do not reflect the decomposition kinetics but the solubility of the different elements at every moment. The three steps of the leaching are: 1) de-alkalinization 2) lattice rearrangement 3) heavy elements solubilization. Two decomposition layer types have also been revealed according to the glass heavy elements rate. (O.M.)

  5. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  6. Highly sensitive rotation sensing based on orthogonal fiber-optic structures

    Science.gov (United States)

    Yang, Yi; Wang, Zi-nan; Xu, Lian-yu; Wang, Cui-yun; Jia, Lei; Yu, Xiao-qi; Shao, Shan; Li, Zheng-bin

    2011-08-01

    In traditional fiber-optic gyroscopes (FOG), the polarization state of counter propagating waves is critically controlled, and only the mode polarized along one particular direction survives. This is important for a traditional single mode fiber gyroscope as the requirement of reciprocity. However, there are some fatal defects such as low accuracy and poor bias stability in traditional structures. In this paper, based on the idea of polarization multiplexing, a double-polarization structure is put forward and experimentally studied. In highly birefringent fibers or standard single mode fibers with induced anisotropy, two orthogonal polarization modes can be used at the same time. Therefore, in polarization maintaining fibers (PMF), each pair of counter propagating beams preserve reciprocity within their own polarization state. Two series of sensing results are gotten in the fast and slow axes in PMF. The two sensing results have their own systematic drifts and the correlation of random noise in them is approximately zero. So, beams in fast and slow axes work as two independent and orthogonal gyroscopes. In this way, amount of information is doubled, providing opportunity to eliminate noise and improve sensitivity. Theoretically, this double-polarization structure can achieve a sensitivity of 10-18 deg/h. Computer simulation demonstrates that random noise and systematic drifts are largely reduced in this novel structure. In experiment, a forty-hour stability test targeting the earth's rotation velocity is carried out. Experiment result shows that the orthogonal fiber-optic structure has two big advantages compared with traditional ones. Firstly, the structure gets true value without any bias correction in any axis and even time-varying bias does not affect the acquisition of true value. The unbiasedness makes the structure very attractive when sudden disturbances or temperature drifts existing in working environment. Secondly, the structure lowers bias for more than

  7. Decomposition studies of group 6 hexacarbonyl complexes. Pt. 2. Modelling of the decomposition process

    Energy Technology Data Exchange (ETDEWEB)

    Usoltsev, Ilya; Eichler, Robert; Tuerler, Andreas [Paul Scherrer Institut (PSI), Villigen (Switzerland); Bern Univ. (Switzerland)

    2016-11-01

    The decomposition behavior of group 6 metal hexacarbonyl complexes (M(CO){sub 6}) in a tubular flow reactor is simulated. A microscopic Monte-Carlo based model is presented for assessing the first bond dissociation enthalpy of M(CO){sub 6} complexes. The suggested approach superimposes a microscopic model of gas adsorption chromatography with a first-order heterogeneous decomposition model. The experimental data on the decomposition of Mo(CO){sub 6} and W(CO){sub 6} are successfully simulated by introducing available thermodynamic data. Thermodynamic data predicted by relativistic density functional theory is used in our model to deduce the most probable experimental behavior of the corresponding Sg carbonyl complex. Thus, the design of a chemical experiment with Sg(CO){sub 6} is suggested, which is sensitive to benchmark our theoretical understanding of the bond stability in carbonyl compounds of the heaviest elements.

  8. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  9. Dynamic imaging of skeletal muscle contraction in three orthogonal directions

    NARCIS (Netherlands)

    Lopata, R.G.; van Dijk, J.P; Pillen, S.; Nillisen, M.M.; Maas, H.; Thijssen, J.M.; Stegeman, D.F.; Korte, C.L.

    2010-01-01

    In this study, a multidimensional strain estimation method using biplane ultrasound is presented to assess local relative deformation (i.e., local strain) in three orthogonal directions in skeletal muscles during induced and voluntary contractions. The method was tested in the musculus biceps

  10. Dynamic imaging of skeletal muscle contraction in three orthogonal directions.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Dijk, J.P. van; Pillen, S.; Nillesen, M.M.; Maas, H.; Thijssen, J.M.; Stegeman, D.F.; Korte, C.L. de

    2010-01-01

    In this study, a multidimensional strain estimation method using biplane ultrasound is presented to assess local relative deformation (i.e., local strain) in three orthogonal directions in skeletal muscles during induced and voluntary contractions. The method was tested in the musculus biceps

  11. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  12. A New Modular Approach to Nanoassembly: Stable and Addressable DNA Nanoconstructs via Orthogonal Click Chemistries

    KAUST Repository

    Gerrard, Simon R.

    2012-10-23

    Thermodynamic instability is a problem when assembling and purifying complex DNA nanostructures formed by hybridization alone. To address this issue, we have used photochemical fixation and orthogonal copper-free, ring-strain-promoted, click chemistry for the synthesis of dimeric, trimeric, and oligomeric modular DNA scaffolds from cyclic, double-stranded, 80-mer DNA nanoconstructs. This particular combination of orthogonal click reactions was more effective for nanoassembly than others explored. The complex nanostructures are stable to heat and denaturation agents and can therefore be purified and characterized. They are addressable in a sequence-specific manner by triplex formation, and they can be reversibly and selectively deconstructed. Nanostructures utilizing this orthogonal, chemical fixation methodology can be used as building blocks for nanomachines and functional DNA nanoarchitectures. © 2012 American Chemical Society.

  13. Microbiological decomposition of bagasse after radiation pasteurization

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Ishigaki, Isao

    1987-01-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms. (author)

  14. Microbiological decomposition of bagasse after radiation pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Ishigaki, Isao

    1987-11-01

    Microbiological decomposition of bagasse was studied for upgrading to animal feeds after radiation pasteurization. Solid-state culture media of bagasse were prepared with addition of some amount of inorganic salts for nitrogen source, and after irradiation, fungi were infected for cultivation. In this study, many kind of cellulosic fungi such as Pleurotus ostreatus, P. flavellatus, Verticillium sp., Coprinus cinereus, Lentinus edodes, Aspergillus niger, Trichoderma koningi, T. viride were used for comparison of decomposition of crude fibers. In alkali nontreated bagasse, P. ostreatus, P. flavellatus, C. cinereus and Verticillium sp. could decompose crude fibers from 25 to 34 % after one month of cultivation, whereas other fungi such as A. niger, T. koningi, T. viride, L. edodes decomposed below 10 %. On the contrary, alkali treatment enhanced the decomposition of crude fiber by A. niger, T. koningi and T. viride to be 29 to 47 % as well as Pleurotus species or C. cinereus. Other species of mushrooms such as L. edodes had a little ability of decomposition even after alkali treatment. Radiation treatment with 10 kGy could not enhance the decomposition of bagasse compared with steam treatment, whereas higher doses of radiation treatment enhanced a little of decomposition of crude fibers by microorganisms.

  15. Renormalization-group theory of spinodal decomposition

    International Nuclear Information System (INIS)

    Mazenko, G.F.; Valls, O.T.; Zhang, F.C.

    1985-01-01

    Renormalization-group (RG) methods developed previously for the study of the growth of order in unstable systems are extended to treat the spinodal decomposition of the two-dimensional spin-exchange kinetic Ising model. The conservation of the order parameter and fixed-length sum rule are properly preserved in the theory. Various correlation functions in both coordinate and momentum space are calculated as functions of time. The scaling function for the structure factor is extracted. We compare our results with direct Monte Carlo (MC) simulations and find them in good agreement. The time rescaling parameter entering the RG analysis is temperature dependent, as was determined in previous work through a RG analysis of MC simulations. The results exhibit a long-time logarithmic growth law for the typical domain size, both analytically and numerically. In the time region where MC simulations have previously been performed, the logarithmic growth law can be fitted to a power law with an effective exponent. This exponent is found to be in excellent agreement with the result of MC simulations. The logarithmic growth law agrees with a physical model of interfacial motion which involves an interplay between the local curvature and an activated jump across the interface

  16. Self-decomposition of radiochemicals. Principles, control, observations and effects

    International Nuclear Information System (INIS)

    Evans, E.A.

    1976-01-01

    The aim of the booklet is to remind the established user of radiochemicals of the problems of self-decomposition and to inform those investigators who are new to the applications of radiotracers. The section headings are: introduction; radionuclides; mechanisms of decomposition; effects of temperature; control of decomposition; observations of self-decomposition (sections for compounds labelled with (a) carbon-14, (b) tritium, (c) phosphorus-32, (d) sulphur-35, (e) gamma- or X-ray emitting radionuclides, decomposition of labelled macromolecules); effects of impurities in radiotracer investigations; stability of labelled compounds during radiotracer studies. (U.K.)

  17. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    Science.gov (United States)

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  18. Bifurcations in two-image photometric stereo for orthogonal illuminations

    Science.gov (United States)

    Kozera, R.; Prokopenya, A.; Noakes, L.; Śluzek, A.

    2017-07-01

    This paper discusses the ambiguous shape recovery in two-image photometric stereo for a Lambertian surface. The current uniqueness analysis refers to linearly independent light-source directions p = (0, 0, -1) and q arbitrary. For this case necessary and sufficient condition determining ambiguous reconstruction is governed by a second-order linear partial differential equation with constant coefficients. In contrast, a general position of both non-colinear illumination directions p and q leads to a highly non-linear PDE which raises a number of technical difficulties. As recently shown, the latter can also be handled for another family of orthogonal illuminations parallel to the OXZ-plane. For the special case of p = (0, 0, -1) a potential ambiguity stems also from the possible bifurcations of sub-local solutions glued together along a curve defined by an algebraic equation in terms of the data. This paper discusses the occurrence of similar bifurcations for such configurations of orthogonal light-source directions. The discussion to follow is supplemented with examples based on continuous reflectance map model and generated synthetic images.

  19. State orthogonality, boson bunching parameter and bosonic enhancement factor

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2016-04-01

    It is emphasized that the bunching parameter β ≡ p B / p D , i.e. the ratio between the probability to measure two bosons and two distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2 / (1 + I 2), where I is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter I (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal.

  20. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    Science.gov (United States)

    Hartmann, L.

    2002-01-01

    As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react

  1. Self-orthogonal codes from some bush-type Hadamard matrices ...

    African Journals Online (AJOL)

    By means of a construction method outlined by Harada and Tonchev, we determine some non-binary self-orthogonal codes obtained from the row span of orbit matrices of Bush-type Hadamard matrices that admit a xed-point-free and xed-block-free automorphism of prime order. We show that the code [20; 15; 4]5 obtained ...

  2. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  3. Determination of proper motions in the Pleiades cluster

    Science.gov (United States)

    Schilbach, E.

    1991-04-01

    For 458 stars in the Pleiades field from the catalog of Eichhorn et al. (1970) proper motions were derived on Tautenburg and CERGA Schmidt telescope plates measured with the automated measuring machine MAMA in Paris. The catalog positions were considered as first epoch coordinates with an epoch difference of ca. 33 years to the observations. The results show good coincidence of proper motions derived with both Schmidt telescopes within the error bars. Comparison with proper motions determined by Vasilevskis et al. (1979) displays some significant differences but no systematic effects depending on plate coordinates or magnitudes could be found. An accuracy of 0.3 arcsec/100a for one proper motion component was estimated. According to the criterion of common proper motion 34 new cluster members were identified.

  4. On the Determination of Proper Time

    OpenAIRE

    Hurl, Bing; Zhang, Zhi-Yong Wang Hai-Dong

    1998-01-01

    Through the analysis of the definition of the duration of proper time of a particle given by the length of its world line, we show that there is no transitivity of the coordinate time function derived from the definition, so there exists an ambiguity in the determination of the duration of the proper time for the particle. Its physical consequence is illustrated with quantum measurement effect.

  5. Reduction of snapshots for MIMO radar detection by block/group orthogonal matching pursuit

    KAUST Repository

    Ali, Hussain El Hosiny

    2014-10-01

    Multiple-input multiple-output (MIMO) radar works on the principle of transmission of independent waveforms at each element of its antenna array and is widely used for surveillance purposes. In this work, we investigate MIMO radar target localization problem with compressive sensing. Specifically, we try to solve the problem of estimation of target location in MIMO radar by group and block sparsity algorithms. It will lead us to a reduced number of snapshots required and also we can achieve better radar resolution. We will use group orthogonal matching pursuit (GOMP) and block orthogonal matching pursuit (BOMP) for our problem. © 2014 IEEE.

  6. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon)

    International Nuclear Information System (INIS)

    Ismail, I.M.K.; Hawkins, T.

    2005-01-01

    Recently, interest in aluminium hydride (alane) as a rocket propulsion ingredient has been renewed due to improvements in its manufacturing process and an increase in thermal stability. When alane is added to solid propellant formulations, rocket performance is enhanced and the specific impulse increases. Preliminary work was performed at AFRL on the characterization and evaluation of two alane samples. Decomposition kinetics were determined from gravimetric TGA data and volumetric vacuum thermal stability (VTS) results. Chemical analysis showed the samples had 88.30% (by weight) aluminium and 9.96% hydrogen. The average density, as measured by helium pycnometery, was 1.486 g/cc. Scanning electron microscopy showed that the particles were mostly composed of sharp edged crystallographic polyhedral such as simple cubes, cubic octahedrons and hexagonal prisms. Thermogravimetric analysis was utilized to investigate the decomposition kinetics of alane in argon atmosphere and to shed light on the mechanism of alane decomposition. Two kinetic models were successfully developed and used to propose a mechanism for the complete decomposition of alane and to predict its shelf-life during storage. Alane decomposes in two steps. The slowest (rate-determining) step is solely controlled by solid state nucleation of aluminium crystals; the fastest step is due to growth of the crystals. Thus, during decomposition, hydrogen gas is liberated and the initial polyhedral AlH 3 crystals yield a final mix of amorphous aluminium and aluminium crystals. After establishing the kinetic model, prediction calculations indicated that alane can be stored in inert atmosphere at temperatures below 10 deg. C for long periods of time (e.g., 15 years) without significant decomposition. After 15 years of storage, the kinetic model predicts ∼0.1% decomposition, but storage at higher temperatures (e.g. 30 deg. C) is not recommended

  7. Dynamical electron diffraction simulation for non-orthogonal crystal system by a revised real space method.

    Science.gov (United States)

    Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G

    2015-01-01

    In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Science.gov (United States)

    Blount, Benjamin A.; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions. PMID:22442681

  9. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology.

    Science.gov (United States)

    Blount, Benjamin A; Weenink, Tim; Vasylechko, Serge; Ellis, Tom

    2012-01-01

    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex "multi-wire" logic functions.

  10. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    Science.gov (United States)

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  11. John Leask Lumley: Whither Turbulence?

    Science.gov (United States)

    Leibovich, Sidney; Warhaft, Zellman

    2018-01-01

    John Lumley's contributions to the theory, modeling, and experiments on turbulent flows played a seminal role in the advancement of our understanding of this subject in the second half of the twentieth century. We discuss John's career and his personal style, including his love and deep knowledge of vintage wine and vintage cars. His intellectual contributions range from abstract theory to applied engineering. Here we discuss some of his major advances, focusing on second-order modeling, proper orthogonal decomposition, path-breaking experiments, research on geophysical turbulence, and important contributions to the understanding of drag reduction. John Lumley was also an influential teacher whose books and films have molded generations of students. These and other aspects of his professional career are described.

  12. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  13. Neural network modeling for near wall turbulent flow

    International Nuclear Information System (INIS)

    Milano, Michele; Koumoutsakos, Petros

    2002-01-01

    A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control

  14. POD Analysis of Flow Behind a Four-wing Vortex Generator

    Science.gov (United States)

    Hosseinali, Mahdi; Wilkins, Stephen; Hall, Joseph

    2015-11-01

    Wing-tip vortices that persist long after the passage of large aircraft are of major concern to aircraft controllers and are responsible for considerable delays between aircraft take-off times. Understanding these vortices is extremely important, with the ultimate goal to reduce or eliminate delays altogether. Simple theoretical models of vortices can be studied experimentally using a four-wing vortex generator. The cross-stream planes are measured with a two-component Particle Image Velocimetry (PIV) system, and the resulting vector fields were analyzed with a Proper Orthogonal Decomposition (POD) via the method of snapshots. POD analysis will be employed both before and after removing vortex core meandering to investigate the meandering effect on POD modes for a better understanding of it.

  15. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  16. Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide.

    Science.gov (United States)

    Han, Dongxue; Han, Jianlei; Huo, Shengwei; Qu, Zuoming; Jiao, Tifeng; Liu, Minghua; Duan, Pengfei

    2018-05-29

    The orthogonal- or co-assembly of achiral perylene bisimide (PBI) with chiral gelators can be regulated by solvents. While the coassembly leads to the formation of chiroptical nanofibers through chirality transfer, the orthogonal assemblies could not. Moreover, protonation on the coassembled nanofibers could light up the circularly polarized luminescence (CPL).

  17. Mathematical modelling of the decomposition of explosives

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2010-01-01

    Studies on mathematical modelling of the molecular and supramolecular structures of explosives and the elementary steps and overall processes of their decomposition are analyzed. Investigations on the modelling of combustion and detonation taking into account the decomposition of explosives are also considered. It is shown that solution of problems related to the decomposition kinetics of explosives requires the use of a complex strategy based on the methods and concepts of chemical physics, solid state physics and theoretical chemistry instead of empirical approach.

  18. Economic Inequality in Presenting Vision in Shahroud, Iran: Two Decomposition Methods.

    Science.gov (United States)

    Mansouri, Asieh; Emamian, Mohammad Hassan; Zeraati, Hojjat; Hashemi, Hasan; Fotouhi, Akbar

    2017-04-22

    Visual acuity, like many other health-related problems, does not have an equal distribution in terms of socio-economic factors. We conducted this study to estimate and decompose economic inequality in presenting visual acuity using two methods and to compare their results in a population aged 40-64 years in Shahroud, Iran. The data of 5188 participants in the first phase of the Shahroud Cohort Eye Study, performed in 2009, were used for this study. Our outcome variable was presenting vision acuity (PVA) that was measured using LogMAR (logarithm of the minimum angle of resolution). The living standard variable used for estimation of inequality was the economic status and was constructed by principal component analysis on home assets. Inequality indices were concentration index and the gap between low and high economic groups. We decomposed these indices by the concentration index and BlinderOaxaca decomposition approaches respectively and compared the results. The concentration index of PVA was -0.245 (95% CI: -0.278, -0.212). The PVA gap between groups with a high and low economic status was 0.0705 and was in favor of the high economic group. Education, economic status, and age were the most important contributors of inequality in both concentration index and Blinder-Oaxaca decomposition. Percent contribution of these three factors in the concentration index and Blinder-Oaxaca decomposition was 41.1% vs. 43.4%, 25.4% vs. 19.1% and 15.2% vs. 16.2%, respectively. Other factors including gender, marital status, employment status and diabetes had minor contributions. This study showed that individuals with poorer visual acuity were more concentrated among people with a lower economic status. The main contributors of this inequality were similar in concentration index and Blinder-Oaxaca decomposition. So, it can be concluded that setting appropriate interventions to promote the literacy and income level in people with low economic status, formulating policies to address

  19. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  20. Early stage litter decomposition across biomes

    Science.gov (United States)

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  1. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  2. Optimization and kinetics decomposition of monazite using NaOH

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti; Deddy Husnurrofiq

    2015-01-01

    Decomposition of monazite with NaOH has been done. Decomposition performed at high temperature on furnace. The parameters studied were the comparison NaOH / monazite, temperature and time decomposition. From the research decomposition for 100 grams of monazite with NaOH, it can be concluded that the greater the ratio of NaOH / monazite, the greater the conversion. In the temperature influences decomposition 400 - 700°C, the greater the reaction rate constant with increasing temperature greater decomposition. Comparison NaOH / monazite optimum was 1.5 and the optimum time of 3 hours. Relations ratio NaOH / monazite with conversion (x) following the polynomial equation y = 0.1579x 2 – 0.2855x + 0.8301 (y = conversion and x = ratio of NaOH/monazite). Decomposition reaction of monazite with NaOH was second orde reaction, the relationship between temperature (T) with a reaction rate constant (k), k = 6.106.e - 1006.8 /T or ln k = - 1006.8/T + 6.106, frequency factor A = 448.541, activation energy E = 8.371 kJ/mol. (author)

  3. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  4. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  5. Gabor's signal expansion based on a non-orthogonal sampling geometry

    NARCIS (Netherlands)

    Bastiaans, M.J.; Caulfield, H. J.

    2002-01-01

    Gabor’s signal expansion and the Gabor transform are formulated on a nonorthogonal time-frequency lattice instead of on the traditional rectangular lattice. The reason for doing so is that a non-orthogonal sampling geometry might be better adapted to the form of the window functions (in the

  6. Cospectral Graphs and Regular Orthogonal Matrices of Level 2

    NARCIS (Netherlands)

    Abiad Monge, A.; Haemers, W.H.

    2012-01-01

    Abstract: For a graph Γ with adjacency matrix A, we consider a switching operation that takes Γ into a graph Γ' with adjacency matrix A', defined by A' = QtAQ, where Q is a regular orthogonal matrix of level 2 (that is, QtQ = I, Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an

  7. Cospectral graphs and regular orthogonal matrices of level 2

    NARCIS (Netherlands)

    Abiad Monge, A.; Haemers, W.H.

    2012-01-01

    For a graph Γ with adjacency matrix A , we consider a switching operation that takes Γ into a graph Γ′ with adjacency matrix A′ , defined by A′ = Q⊤AQ , where Q is a regular orthogonal matrix of level 2 (that is, Q⊤Q=I , Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an

  8. Decompositional equivalence: A fundamental symmetry underlying quantum theory

    OpenAIRE

    Fields, Chris

    2014-01-01

    Decompositional equivalence is the principle that there is no preferred decomposition of the universe into subsystems. It is shown here, by using simple thought experiments, that quantum theory follows from decompositional equivalence together with Landauer's principle. This demonstration raises within physics a question previously left to psychology: how do human - or any - observers agree about what constitutes a "system of interest"?

  9. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    International Nuclear Information System (INIS)

    Cai, Yu; Sha, Shuang

    2016-01-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/ N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers. (paper)

  10. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.

    Science.gov (United States)

    Revathy, M; Saravanan, R

    2015-01-01

    Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.

  11. A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications

    Directory of Open Access Journals (Sweden)

    M. Revathy

    2015-01-01

    Full Text Available Low-density parity-check (LDPC codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax, and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.

  12. Algorithm of orthogonal bi-axle for auto-separating of watermelon seeds

    Science.gov (United States)

    Sun, Yong; Guan, Miao; Yu, Daoqin; Wang, Jing

    2007-11-01

    During the process of watermelon seeds characteristic extraction as well as separation, watermelon seeds' major and minor axes, the length and width ratio have played a very important role in appearance regulating degree evaluation. It is quite difficult to find the answer of orthogonal bi-axes because the watermelon seeds are flat and irregular in shape and what's more there is no rule to follow. After a lot of experiments and research, the author proposed the algorithm of orthogonal bi-axes algorithm for granulated object. It has been put into practice and proved in the application of auto-separation system for watermelon seeds. This algorithm has the advantage of lower time complexity and higher precision compared with other algorithms. The algorithm can be used in the solution of other similar granulated objects, and has the widespread application value.

  13. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  14. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2015-01-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  15. Modal Structures in flow past a cylinder

    Science.gov (United States)

    Murshed, Mohammad

    2017-11-01

    With the advent of data, there have been opportunities to apply formalism to detect patterns or simple relations. For instance, a phenomenon can be defined through a partial differential equation which may not be very useful right away, whereas a formula for the evolution of a primary variable may be interpreted quite easily. Having access to data is not enough to move on since doing advanced linear algebra can put strain on the way computations are being done. A canonical problem in the field of aerodynamics is the transient flow past a cylinder where the viscosity can be adjusted to set the Reynolds number (Re). We observe the effect of the critical Re on the certain modes of behavior in time scale. A 2D-velocity field works as an input to analyze the modal structure of the flow using the Proper Orthogonal Decomposition and Koopman Mode/Dynamic Mode Decomposition. This will enable prediction of the solution further in time (taking into account the dependence on Re) and help us evaluate and discuss the associated error in the mechanism.

  16. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal

    2015-08-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  17. A new design and rationale for 3D orthogonally oversampled k-space trajectories.

    Science.gov (United States)

    Pipe, James G; Zwart, Nicholas R; Aboussouan, Eric A; Robison, Ryan K; Devaraj, Ajit; Johnson, Kenneth O

    2011-11-01

    A novel center-out 3D trajectory for sampling magnetic resonance data is presented. The trajectory set is based on a single Fermat spiral waveform, which is substantially undersampled in the center of k-space. Multiple trajectories are combined in a "stacked cone" configuration to give very uniform sampling throughout a "hub," which is very efficient in terms of gradient performance and uniform trajectory spacing. The fermat looped, orthogonally encoded trajectories (FLORET) design produces less gradient-efficient trajectories near the poles, so multiple orthogonal hub designs are shown. These multihub designs oversample k-space twice with orthogonal trajectories, which gives unique properties but also doubles the minimum scan time for critical sampling of k-space. The trajectory is shown to be much more efficient than the conventional stack of cones trajectory, and has nearly the same signal-to-noise ratio efficiency (but twice the minimum scan time) as a stack of spirals trajectory. As a center-out trajectory, it provides a shorter minimum echo time than stack of spirals, and its spherical k-space coverage can dramatically reduce Gibbs ringing. Copyright © 2011 Wiley Periodicals, Inc.

  18. Generalized Fisher index or Siegel-Shapley decomposition?

    International Nuclear Information System (INIS)

    De Boer, Paul

    2009-01-01

    It is generally believed that index decomposition analysis (IDA) and input-output structural decomposition analysis (SDA) [Rose, A., Casler, S., Input-output structural decomposition analysis: a critical appraisal, Economic Systems Research 1996; 8; 33-62; Dietzenbacher, E., Los, B., Structural decomposition techniques: sense and sensitivity. Economic Systems Research 1998;10; 307-323] are different approaches in energy studies; see for instance Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763]. In this paper it is shown that the generalized Fisher approach, introduced in IDA by Ang et al. [Ang, B.W., Liu, F.L., Chung, H.S., A generalized Fisher index approach to energy decomposition analysis. Energy Economics 2004; 26; 757-763] for the decomposition of an aggregate change in a variable in r = 2, 3 or 4 factors is equivalent to SDA. They base their formulae on the very complicated generic formula that Shapley [Shapley, L., A value for n-person games. In: Kuhn H.W., Tucker A.W. (Eds), Contributions to the theory of games, vol. 2. Princeton University: Princeton; 1953. p. 307-317] derived for his value of n-person games, and mention that Siegel [Siegel, I.H., The generalized 'ideal' index-number formula. Journal of the American Statistical Association 1945; 40; 520-523] gave their formulae using a different route. In this paper tables are given from which the formulae of the generalized Fisher approach can easily be derived for the cases of r = 2, 3 or 4 factors. It is shown that these tables can easily be extended to cover the cases of r = 5 and r = 6 factors. (author)

  19. Computation of Asteroid Proper Elements: Recent Advances

    Science.gov (United States)

    Knežević, Z.

    2017-12-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  20. Orthogonal polynomials on $R^+$ and birth-death processes with killing

    NARCIS (Netherlands)

    Coolen-Schrijner, Pauline; Coolen-Schrijner, Pauline; van Doorn, Erik A.; Elaydi, S.; Cushing, J.; Lasser, R.; Ruffing, A.; Papageorgiou, V.; Van Assche, W.

    2007-01-01

    The purpose of this paper is to extend some results of Karlin and McGregor's and Chihara's concerning the three-terms recurrence relation for polynomials orthogonal with respect to a measure on the nonnegative real axis. Our findings are relevant for the analysis of a type of Markov chains known as

  1. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-01-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h 3 ) convergence in the grid-size h=O(n -1 ). Moreover, this requires O(3rn+r 3 ) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH 4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10 -6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  2. Orthogonal frequency division multiple access fundamentals and applications

    CERN Document Server

    Jiang, Tao; Zhang, Yan

    2010-01-01

    Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative coverage of the history, fundamental principles, key techniques, and critical design issues of OFDM systems. Covering various techniques of effective resource management for OFDM/OFDMA-based wireless communication systems, this cutting-edge reference:Add

  3. Complexity reduction of multi-phase flows in heterogeneous porous media

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in highly heterogeneous porous media. We propose intrusive and non-intrusive model reduction approaches that enable a significant reduction in the dimension of the flow problem size while capturing the behavior of the fully-resolved solutions. In one approach, we employ the dynamic mode decomposition (DMD) and the discrete empirical interpolation method (DEIM). This approach does not require any modification of the reservoir simulation code but rather postprocesses a set of global snapshots to identify the dynamically-relevant structures associated with the flow behavior. In a second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper orthogonal decomposition (POD) modes. Furthermore, we use DEIM to approximate the mobility related term in the global system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE 10 benchmark permeability field and present a variety of numerical examples of two-phase flow and transport. The proposed model reduction methods can be efficiently used when performing uncertainty quantification or optimization studies and history matching.

  4. State orthogonality, boson bunching parameter and bosonic enhancement factor

    International Nuclear Information System (INIS)

    Marchewka, A.; Granot, E.

    2016-01-01

    Bosons bunching is the tendency of bosons to bunch together with respect to distinguishable particles. It is emphasized that the bunching parameter β = p_B/p_D, i.e. the ratio between the probability to measure 2 bosons and 2 distinguishable particles at the same state, is a constant of motion and depends only on the overlap between the initial wavefunctions. This ratio is equal to β = 2/(1 + l"2), where l is the overlap integral between the initial wavefunctions. That is, only when the initial wavefunctions are orthogonal this ratio is equal to 2, however, this bunching ratio can be reduced to 1, when the two wavefunctions are identical. This simple equation explains the experimental evidences of a beam splitter. A straightforward conclusion is that by measuring the local bunching parameter β (at any point in space and time) it is possible to evaluate a global parameter l (the overlap between the initial wavefunctions). The bunching parameter is then generalized to arbitrary number of particles, and in an analogy to the two-particles scenario, the well-known bosonic enhancement appears only when all states are orthogonal

  5. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    Science.gov (United States)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  6. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  7. TEACHING BASIC ELEMENTS IN TECHNICAL DRAWING – ORTHOGONAL PROJECTIONS

    Directory of Open Access Journals (Sweden)

    CLINCIU Ramona

    2017-05-01

    Full Text Available The paper presents applications developed using AutoCAD and 3D Studio MAX programs. These applications are constructed such as to enable, gradually, the development of the spatial abilities of the students and, at the same time, to enable the understanding of the principles for the representation of the orthogonal projections of the parts, as well as for the construction of their axonometric projections.

  8. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations.

    Science.gov (United States)

    Schure, Mark R; Davis, Joe M

    2017-11-10

    Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions

  9. Crop residue decomposition in Minnesota biochar amended plots

    OpenAIRE

    S. L. Weyers; K. A. Spokas

    2014-01-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with ...

  10. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  11. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  12. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Antonio J [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo (PO BOX) 1160, 41080 Sevilla (Spain); Gruenbaum, F Alberto [Department of Mathematics, University of California, Berkeley, CA 94720 (United States)

    2006-04-07

    The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein.

  13. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  14. Can continuous scans in orthogonal planes improve diagnostic performance of shear wave elastography for breast lesions?

    Science.gov (United States)

    Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang

    2015-01-01

    Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.

  15. Cataclysmic variables in the SUPERBLINK proper motion survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N.; Thorstensen, John R. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States); Lépine, Sébastien, E-mail: jns@dartmouth.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA 30303 (United States)

    2014-12-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup −1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  16. Multi hollow needle to plate plasmachemical reactor for pollutant decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Kriha, V.; Viden, I.; Pospisil, M.

    2001-01-01

    Modification of the classical multipin to plate plasmachemical reactor for pollutant decomposition is proposed in this paper. In this modified reactor a mixture of air and pollutant flows through the needles, contrary to the classical reactor where a mixture of air and pollutant flows around the pins or through the channel plus through the hollow needles. We give the results of comparison of toluene decomposition efficiency for (a) a reactor with the main stream of a mixture through the channel around the needles and a small flow rate through the needles and (b) a modified reactor. It was found that for similar flow rates and similar energy deposition, the decomposition efficiency of toluene was increased more than six times in the modified reactor. This new modified reactor was also experimentally tested for the decomposition of volatile hydrocarbons from gasoline distillation range. An average efficiency of VOC decomposition of about 25% was reached. However, significant differences in the decomposition of various hydrocarbon types were observed. The best results were obtained for the decomposition of olefins (reaching 90%) and methyl-tert-butyl ether (about 50%). Moreover, the number of carbon atoms in the molecule affects the quality of VOC decomposition. (author)

  17. Parallel decomposition of the tight-binding fictitious Lagrangian algorithm for molecular dynamics simulations of semiconductors

    International Nuclear Information System (INIS)

    Yeh, M.; Kim, J.; Khan, F.S.

    1995-01-01

    We present a parallel decomposition of the tight-binding fictitious Lagrangian algorithm for the Intel iPSC/860 and the Intel Paragon parallel computers. We show that it is possible to perform long simulations, of the order of 10 000 time steps, on semiconducting clusters consisting of as many as 512 atoms, on a time scale of the order of 20 h or less. We have made a very careful timing analysis of all parts of our code, and have identified the bottlenecks. We have also derived formulas which can predict the timing of our code, based on the number of processors, message passing bandwidth, floating point performance of each node, and the set up time for message passing, appropriate to the machine being used. The time of the simulation scales as the square of the number of particles, if the number of processors is made to scale linearly with the number of particles. We show that for a system as large as 512 atoms, the main bottleneck of the computation is the orthogonalization of the wave functions, which consumes about 90% of the total time of the simulation

  18. Advanced Oxidation: Oxalate Decomposition Testing With Ozone

    International Nuclear Information System (INIS)

    Ketusky, E.; Subramanian, K.

    2012-01-01

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  19. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration

  20. A handbook of decomposition methods in analytical chemistry

    International Nuclear Information System (INIS)

    Bok, R.

    1984-01-01

    Decomposition methods of metals, alloys, fluxes, slags, calcine, inorganic salts, oxides, nitrides, carbides, borides, sulfides, ores, minerals, rocks, concentrates, glasses, ceramics, organic substances, polymers, phyto- and biological materials from the viewpoint of sample preparation for analysis have been described. The methods are systemitized according to decomposition principle: thermal with the use of electricity, irradiation, dissolution with participation of chemical reactions and without it. Special equipment for different decomposition methods is described. Bibliography contains 3420 references

  1. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  2. Radiation decomposition of alcohols and chloro phenols in micellar systems

    International Nuclear Information System (INIS)

    Moreno A, J.

    1998-01-01

    The effect of surfactants on the radiation decomposition yield of alcohols and chloro phenols has been studied with gamma doses of 2, 3, and 5 KGy. These compounds were used as typical pollutants in waste water, and the effect of the water solubility, chemical structure, and the nature of the surfactant, anionic or cationic, was studied. The results show that anionic surfactant like sodium dodecylsulfate (SDS), improve the radiation decomposition yield of ortho-chloro phenol, while cationic surfactant like cetyl trimethylammonium chloride (CTAC), improve the radiation decomposition yield of butyl alcohol. A similar behavior is expected for those alcohols with water solubility close to the studied ones. Surfactant concentrations below critical micellar concentration (CMC), inhibited radiation decomposition for both types of alcohols. However radiation decomposition yield increased when surfactant concentrations were bigger than the CMC. Aromatic alcohols decomposition was more marked than for linear alcohols decomposition. On a mixture of alcohols and chloro phenols in aqueous solution the radiation decomposition yield decreased with increasing surfactant concentration. Nevertheless, there were competitive reactions between the alcohols, surfactants dimers, hydroxyl radical and other reactive species formed on water radiolysis, producing a catalytic positive effect in the decomposition of alcohols. Chemical structure and the number of carbons were not important factors in the radiation decomposition. When an alcohol like ortho-chloro phenol contained an additional chlorine atom, the decomposition of this compound was almost constant. In conclusion the micellar effect depend on both, the nature of the surfactant (anionic or cationic) and the chemical structure of the alcohols. The results of this study are useful for wastewater treatment plants based on the oxidant effect of the hydroxyl radical, like in advanced oxidation processes, or in combined treatment such as

  3. Birth-death processes with killing : orthogonal polynomials and quasi-stationary distributions

    NARCIS (Netherlands)

    Coolen-Schrijner, Pauline; van Doorn, Erik A.

    2005-01-01

    The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state

  4. Note on Symplectic SVD-Like Decomposition

    Directory of Open Access Journals (Sweden)

    AGOUJIL Said

    2016-02-01

    Full Text Available The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-like decomposition of a 2n-by-m rectangular real matrix A, based on symplectic refectors.This approach used a canonical Schur form of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAA^T.

  5. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    Science.gov (United States)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual

  6. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  7. Decomposition and flame structure of hydrazinium nitroformate

    NARCIS (Netherlands)

    Louwers, J.; Parr, T.; Hanson-Parr, D.

    1999-01-01

    The decomposition of hydrazinium nitroformate (HNF) was studied in a hot quartz cell and by dropping small amounts of HNF on a hot plate. The species formed during the decomposition were identified by ultraviolet-visible absorption experiments. These experiments reveal that first HONO is formed. The

  8. Spectral decomposition of tent maps using symmetry considerations

    International Nuclear Information System (INIS)

    Ordonez, G.E.; Driebe, D.J.

    1996-01-01

    The spectral decompostion of the Frobenius-Perron operator of maps composed of many tents is determined from symmetry considerations. The eigenstates involve Euler as well as Bernoulli polynomials. The authors have introduced some new techniques, based on symmetry considerations, enabling the construction of spectral decompositions in a much simpler way than previous construction algorithms, Here we utilize these techniques to construct the spectral decomposition for one- dimensional maps of the unit interval composed of many tents. The construction uses the knowledge of the spectral decomposition of the r-adic map, which involves Bernoulli polynomials and their duals. It will be seen that the spectral decomposition of the tent maps involves both Bernoulli polynomials and Euler polynomials along with the appropriate dual states

  9. A general boundary capability embedded in an orthogonal mesh

    International Nuclear Information System (INIS)

    Hewett, D.W.; Yu-Jiuan Chen

    1995-01-01

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously

  10. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  11. Decomposition of forest products buried in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  12. Parallel processing for pitch splitting decomposition

    Science.gov (United States)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  13. Proper time axis of a closed relativistic system

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Fadeev, N.G.; Shavokhina, N.S.

    1997-01-01

    The definition of a proper time axis of a closed relativistic system of colliding particles is given. The solution of the proper time axis problem is presented. If the light velocity c equals the imaginary unit i, then in the case of a plane motion of the system the problem about the proper time axis turns out to be equivalent to the known in engineering mechanics problem about the reduction of any system of forces, applied to a rigid body, to the dynamic screw. In the general case, when c=i, the problem about the proper time axis turns out to be equivalent to the problem about the reduction to the dynamic screw of a system of forces, applied to a rigid body in a four-dimensional Euclidean space

  14. Preparation of uranium dioxide by thermal decomposition and direct reduction of ammonium uranate

    International Nuclear Information System (INIS)

    Hernandez R, R.

    1995-01-01

    The thermal decomposition of ammonium uranate has been studied by infrared spectroscopy, and X-ray diffraction. It has been show that ammonia remains in the solid until substantially 350 Centigrade degrees, when gaseous nitrogen is released. It is concluded that compounds derived from the calcination of ammonium uranate at atmospheric pressure, produced amorphous U O 3 at about 350-400 Centigrade degrees and transform to U 3 O 8 via α - U O 3 and/or α - U O 3 . The object of this study was to obtain reliable fundamental information regarding the character of the pure carbon monoxide-ammonium uranate-uranium trioxide-uranium octaoxide reaction, in the range of temperatures that has been used in commercial reduction processes. Through the use of high-purity samples and by the proper control of incidental variable, this object was realized. (Author)

  15. Corrigendum to “Representations for the extreme zeros of orthogonal polynomials” [J. Comput. Appl. Math. 233 (2009) 847–851

    OpenAIRE

    van Doorn, Erik A.; van Foreest, N.D.; Zeifman, Alexander I.

    2013-01-01

    We correct representations for the endpoints of the true interval of orthogonality of a sequence of orthogonal polynomials that were stated by us in the Journal of Computational and Applied Mathematics 233 (2009) 847–851.

  16. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    Science.gov (United States)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension

  17. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  18. Climate fails to predict wood decomposition at regional scales

    Science.gov (United States)

    Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King

    2014-01-01

    Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...

  19. Formation of volatile decomposition products by self-radiolysis of tritiated thymidine

    International Nuclear Information System (INIS)

    Shiba, Kazuhiro; Mori, Hirofumi

    1997-01-01

    In order to estimate the internal exposure dose in an experiment using tritiated thymidine, the rate of volatile 3 H-decomposition of several tritiated thymidine samples was measured. The decomposition rate of (methyl- 3 H)thymidine in water was over 80% in less than one year after initial analysis. (methyl- 3 H)thymidine was decomposed into volatile and non-volatile 3 H-decomposition products. The ratio of volatile 3 H-decomposition products increased with increasing the rate of the decomposition of (methyl- 3 H) thymidine. The volatile 3 H-decomposition products consisted of two components, of which the main component was tritiated water. Internal exposure dose caused by the inhalation of such volatile 3 H-decomposition products of (methyl- 3 H) thymidine was assumed to be several μSv. (author)

  20. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  2. PIV study of large-scale flow organisation in slot jets

    International Nuclear Information System (INIS)

    Shestakov, Maxim V.; Dulin, Vladimir M.; Tokarev, Mikhail P.; Sikovsky, Dmitrii Ph.; Markovich, Dmitriy M.

    2015-01-01

    Highlights: • Volumetric velocity measurements are perfumed by PIV to analyse 3D flow organisation in a slot jet. • Proper orthogonal decomposition is used to extract coherent flow motion. • Movement of quasi-two-dimensional large-scale vortices is associated with jet meandering. • Amplitude of jet meandering is found to be aperiodically modulated. • Secondary longitudinal vortex rolls are important for cross-stream mixing and momentum transfer. - Abstract: The paper reports on particle image velocimetry (PIV) measurements in turbulent slot jets bounded by two solid walls with the separation distance smaller than the jet width (5–40%). In the far-field such jets are known to manifest features of quasi-two dimensional, two component turbulence. Stereoscopic and tomographic PIV systems were used to analyse local flows. Proper orthogonal decomposition (POD) was applied to extract coherent modes of the velocity fluctuations. The measurements were performed both in the initial region close to the nozzle exit and in the far fields of the developed turbulent slot jets for Re ⩾ 10,000. A POD analysis in the initial region indicates a correlation between quasi-2D vortices rolled-up in the shear layer and local flows in cross-stream planes. While the near-field turbulence shows full 3D features, the wall-normal velocity fluctuations day out gradually due to strong wall-damping resulting in an almost two-component turbulence. On the other hand, the longitudinal vortex rolls take over to act as the main agents in wall-normal and spanwise mixing and momentum transfer. The quantitative analysis indicates that the jet meandering amplitude was aperiodically modulated when arrangement of the large-scale quasi-2D vortices changed between asymmetric and symmetric pattern relatively to the jet axis. The paper shows that the dynamics of turbulent slot jets are more complex than those of 2D, plane and rectangular 3D jets. In particular, the detected secondary longitudinal

  3. The geometric and arithmetic volume of Shimura varieties of orthogonal type

    CERN Document Server

    Hörmann, Fritz

    2015-01-01

    This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula-an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special d...

  4. A Data Forward Stepwise Fitting Algorithm Based on Orthogonal Function System

    Directory of Open Access Journals (Sweden)

    Li Han-Ju

    2017-01-01

    Full Text Available Data fitting is the main method of functional data analysis, and it is widely used in the fields of economy, social science, engineering technology and so on. Least square method is the main method of data fitting, but the least square method is not convergent, no memory property, big fitting error and it is easy to over fitting. Based on the orthogonal trigonometric function system, this paper presents a data forward stepwise fitting algorithm. This algorithm takes forward stepwise fitting strategy, each time using the nearest base function to fit the residual error generated by the previous base function fitting, which makes the residual mean square error minimum. In this paper, we theoretically prove the convergence, the memory property and the fitting error diminishing character for the algorithm. Experimental results show that the proposed algorithm is effective, and the fitting performance is better than that of the least square method and the forward stepwise fitting algorithm based on the non-orthogonal function system.

  5. On the 2-orthogonal polynomials and the generalized birth and death processes

    Directory of Open Access Journals (Sweden)

    Zerouki Ebtissem

    2006-01-01

    Full Text Available We discuss the connections between the 2-orthogonal polynomials and the generalized birth and death processes. Afterwards, we find the sufficient conditions to give an integral representation of the transition probabilities from these processes.

  6. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  7. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    Science.gov (United States)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  8. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    Science.gov (United States)

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  9. Thermal decomposition of UO3-2H20

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The first part of the report summarizes the literature data regarding the uranium trioxide water system. In the second part, the experimental aspects are presented. An experimental program has been set up to determine the steps and species involved in decomposition of uranium oxide di-hydrate. Particular attention has been paid to determine both loss of free water (moisture in the fuel) and loss of chemically bound water (decomposition of hydrates). The influence of water pressure on decomposition has been taken into account

  10. Orthogonal cutting of laser beam melted parts

    Science.gov (United States)

    Götze, Elisa; Zanger, Frederik; Schulze, Volker

    2018-05-01

    The finishing process of parts manufactured by laser beam melting is of high concern due to the lack of surface accuracy. Therefore, the focus of this work lies on the influence of the build-up direction of the parts and their effect on the finishing process. The orthogonal cutting reveals findings in the fields of chip formation, involved forces and temperatures appearing during machining. In the investigations, the cutting depth was varied between 0.05 and 0.15 mm representing a finishing process and the cutting velocity ranges from 30 to 200 m/min depending on the material. The experiments contain the materials stainless steel (AISI 316L), titanium (Ti6Al4V) and nickel-base alloy (IN718). The two materials named latter are of high interest in the aerospace sector and at the same time titanium is used in the medical field due to its biocompatibility. For the materials IN718 and Ti6Al4V a negative rake angle of -7.5° and for stainless steel a rake angle of 12.5° are chosen for the cutting experiments. The results provide the base for processing strategies. Therefore, the specimens were solely laser beam melted without post-processing like heat treatment. The evaluation of the experiments shows that an increase in cutting speed has different effects depending on the material. For stainless steel the measured forces regarding the machining direction to the layers approach the same values. In contrast, the influence of the layers regarding the forces appearing during orthogonal cutting of the materials IN718 and Ti6Al4V differ for lower cutting speeds.

  11. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.

    Science.gov (United States)

    Eising, Selma; Xin, Bo-Tao; Kleinpenning, Fleur; Heming, Juriaan; Florea, Bogdan; Overkleeft, Herman; Bonger, Kimberly Michelle

    2018-05-28

    Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality present. Recent developments in the field provided orthogonal bioorthogonal reactions for modification of multiple biomolecules simultaneously. During our research, we have observed exceptional high reaction rates in the bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction between non-strained vinylboronic acids (VBAs) and dipyridyl-s-tetrazines relative to that of tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesize that coordination of the pyridyl nitrogen to the boronic acid promotes the tetrazine ligation. Here, we explore the molecular basis and scope of the VBA-tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be carried out in living cells by labelling of the proteasome using a non-selective probe equipped with a VBA and a subunit-selective one bearing a norbornene. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Steganography based on pixel intensity value decomposition

    Science.gov (United States)

    Abdulla, Alan Anwar; Sellahewa, Harin; Jassim, Sabah A.

    2014-05-01

    This paper focuses on steganography based on pixel intensity value decomposition. A number of existing schemes such as binary, Fibonacci, Prime, Natural, Lucas, and Catalan-Fibonacci (CF) are evaluated in terms of payload capacity and stego quality. A new technique based on a specific representation is proposed to decompose pixel intensity values into 16 (virtual) bit-planes suitable for embedding purposes. The proposed decomposition has a desirable property whereby the sum of all bit-planes does not exceed the maximum pixel intensity value, i.e. 255. Experimental results demonstrate that the proposed technique offers an effective compromise between payload capacity and stego quality of existing embedding techniques based on pixel intensity value decomposition. Its capacity is equal to that of binary and Lucas, while it offers a higher capacity than Fibonacci, Prime, Natural, and CF when the secret bits are embedded in 1st Least Significant Bit (LSB). When the secret bits are embedded in higher bit-planes, i.e., 2nd LSB to 8th Most Significant Bit (MSB), the proposed scheme has more capacity than Natural numbers based embedding. However, from the 6th bit-plane onwards, the proposed scheme offers better stego quality. In general, the proposed decomposition scheme has less effect in terms of quality on pixel value when compared to most existing pixel intensity value decomposition techniques when embedding messages in higher bit-planes.

  13. Wood decomposition as influenced by invertebrates.

    Science.gov (United States)

    Ulyshen, Michael D

    2016-02-01

    The diversity and habitat requirements of invertebrates associated with dead wood have been the subjects of hundreds of studies in recent years but we still know very little about the ecological or economic importance of these organisms. The purpose of this review is to examine whether, how and to what extent invertebrates affect wood decomposition in terrestrial ecosystems. Three broad conclusions can be reached from the available literature. First, wood decomposition is largely driven by microbial activity but invertebrates also play a significant role in both temperate and tropical environments. Primary mechanisms include enzymatic digestion (involving both endogenous enzymes and those produced by endo- and ectosymbionts), substrate alteration (tunnelling and fragmentation), biotic interactions and nitrogen fertilization (i.e. promoting nitrogen fixation by endosymbiotic and free-living bacteria). Second, the effects of individual invertebrate taxa or functional groups can be accelerative or inhibitory but the cumulative effect of the entire community is generally to accelerate wood decomposition, at least during the early stages of the process (most studies are limited to the first 2-3 years). Although methodological differences and design limitations preclude meta-analysis, studies aimed at quantifying the contributions of invertebrates to wood decomposition commonly attribute 10-20% of wood loss to these organisms. Finally, some taxa appear to be particularly influential with respect to promoting wood decomposition. These include large wood-boring beetles (Coleoptera) and termites (Termitoidae), especially fungus-farming macrotermitines. The presence or absence of these species may be more consequential than species richness and the influence of invertebrates is likely to vary biogeographically. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  15. Orthogonality and quantum geometry: Towards a relational reconstruction of quantum theory

    NARCIS (Netherlands)

    Zhong, S.

    2015-01-01

    This thesis is an in-depth mathematical study of the non-orthogonality relation between the (pure) states of quantum systems. In Chapter 2, I define quantum Kripke frames, the protagonists of this thesis. A quantum Kripke frame is a Kripke frame in which the binary relation possesses some simple

  16. Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)

    2015-10-15

    Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.

  17. The investigation of the non-orthogonal basis expansion method for a three-fermion system

    International Nuclear Information System (INIS)

    Baoqiu Chen; Kentucky Univ., Lexington, KY

    1992-01-01

    In this paper, the non-orthogonal basis expansion method has been extended to solve a three-fermion system. The radial wavefunction of such a system is expanded in terms of a non-orthogonal Gaussian basis. All matrix elements of the Hamiltonian, including the central, tensor and spin-orbit potentials are derived in analytical forms. The new method simplifies the three-body system calculations, which are usually rather tedious by other methods. The method can be used to calculate energies for both the ground state and low excited states and has been used further to investigate the other nuclear properties of a three-body system such as Λ 3 H. (Author)

  18. Radiolytic decomposition of 4-bromodiphenyl ether

    International Nuclear Information System (INIS)

    Tang Liang; Xu Gang; Wu Wenjing; Shi Wenyan; Liu Ning; Bai Yulei; Wu Minghong

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) spread widely in the environment are mainly removed by photochemical and anaerobic microbial degradation. In this paper, the decomposition of 4-bromodiphenyl ether (BDE -3), the PBDEs homologues, is investigated by electron beam irradiation of its ethanol/water solution (reduction system) and acetonitrile/water solution (oxidation system). The radiolytic products were determined by GC coupled with electron capture detector, and the reaction rate constant of e sol - in the reduction system was measured at 2.7 x 10 10 L · mol -1 · s -1 by pulsed radiolysis. The results show that the BDE-3 concentration affects strongly the decomposition ratio in the alkali solution, and the reduction system has a higher BDE-3 decomposition rate than the oxidation system. This indicates that the BDE-3 was reduced by effectively capturing e sol - in radiolytic process. (authors)

  19. Dynamic characteristics of an orthogonal turbine and output-control systems for TPP with high-voltage frequency converter

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V.; Murav' ev, O. A.; Golubev, A. V.

    2012-03-15

    A mathematical description of a closed control system with allowance for pressure fluctuations in the head system, which makes it possible to analyze the regime stability of orthogonal generating sets at tidal electric power plants when operating in the complete range of heads, outputs, and rotational speeds, and to select parameters of the control system, is obtained for an orthogonal hydroturbine and a generator with a load regulator.

  20. Dynamic characteristics of an orthogonal turbine and output-control systems for TPP with high-voltage frequency converter

    International Nuclear Information System (INIS)

    Berlin, V. V.; Murav’ev, O. A.; Golubev, A. V.

    2012-01-01

    A mathematical description of a closed control system with allowance for pressure fluctuations in the head system, which makes it possible to analyze the regime stability of orthogonal generating sets at tidal electric power plants when operating in the complete range of heads, outputs, and rotational speeds, and to select parameters of the control system, is obtained for an orthogonal hydroturbine and a generator with a load regulator.