WorldWideScience

Sample records for pronucleus formation rates

  1. The nucleolus in the mouse oocyte is required for the early step of both female and male pronucleus organization.

    Science.gov (United States)

    OGUSHI, Sugako; SAITOU, Mitinori

    2010-10-01

    During oocyte growth in the ovary, the nucleolus is mainly responsible for ribosome biogenesis. However, in the fully-grown oocyte, all transcription ceases, including ribosomal RNA synthesis, and the nucleolus adopts a specific monotonous fibrillar morphology without chromatin. The function of this inactive nucleolus in oocytes and embryos is still unknown. We previously reported that the embryo lacking an inactive nucleolus failed to develop past the first few cleavages, indicating the requirement of a nucleolus for preimplantation development. Here, we reinjected the nucleolus into oocytes and zygotes without nucleoli at various time points to examine the timing of the nucleolus requirement during meiosis and early embryonic development. When we put the nucleolus back into oocytes lacking a nucleolus at the germinal vesicle (GV) stage and at second metaphase (MII), these oocytes were fertilized, formed pronuclei with nucleoli and developed to full term. When the nucleolus was reinjected at the pronucleus (PN) stage, most of the reconstructed zygotes cleaved and formed nuclei with nucleoli at the 2-cell stage, but the rate of blastocyst formation and the numbers of surviving pups were profoundly reduced. Moreover, the zygotes without nucleoli showed a disorder of higher chromatin organization not only in the female pronucleus but also, interestingly, in the male pronucleus. Thus, the critical time point when the nucleolus is required for progression of early embryonic development appears to be at the point of the early step of pronucleus organization.

  2. Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.

    Science.gov (United States)

    Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M

    2018-02-01

    To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.

  3. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.

    Science.gov (United States)

    Payne, D; Flaherty, S P; Barry, M F; Matthews, C D

    1997-03-01

    In this study, we have used time-lapse video cinematography to study fertilization in 50 human oocytes that had undergone intracytoplasmic sperm injection (ICSI). Time-lapse recording commenced shortly after ICSI and proceeded for 17-20 h. Oocytes were cultured in an environmental chamber which was maintained under standard culture conditions. Overall, 38 oocytes (76%) were fertilized normally, and the fertilization rate and embryo quality were not significantly different from 487 sibling oocytes cultured in a conventional incubator. Normal fertilization followed a defined course of events, although the timing of these events varied markedly between oocytes. In 35 of the 38 fertilized oocytes (92%), there were circular waves of granulation within the ooplasm which had a periodicity of 20-53 min. The sperm head decondensed during this granulation phase. The second polar body was then extruded, and this was followed by the central formation of the male pronucleus. The female pronucleus formed in the cytoplasm adjacent to the second polar body at the same time as, or slightly after, the male pronucleus, and was subsequently drawn towards the male pronucleus until the two abutted. Both pronuclei then increased in size, the nucleoli moved around within the pronuclei and some nucleoli coalesced. During pronuclear growth, the organelles contracted from the cortex towards the centre of the oocyte, leaving a clear cortical zone. The oocyte decreased in diameter from 112 to 106 microm (P cinematography is an excellent tool for studying fertilization and early embryo development, and have demonstrated that human fertilization comprises numerous complex dynamic events.

  4. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  5. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  6. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  7. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  8. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    Science.gov (United States)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency ( ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion ( ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  9. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chang, Philip; Murray, Norman, E-mail: evelee@berkeley.edu [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  10. Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes

    Directory of Open Access Journals (Sweden)

    Wenqiang Liu

    2014-03-01

    Full Text Available It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.

  11. THE ABSOLUTE RATE OF LGRB FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J. F.; Schady, P. [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2016-06-01

    We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.

  12. Formation rate of water masses in the Japan Sea

    International Nuclear Information System (INIS)

    Kawamura, Hideyuki; Ito, Toshimichi; Yoon, Jong-Hwan

    2007-01-01

    Water masses in the subsurface and the intermediate layer are actively formed due to strong winter convection in the Japan Sea. It is probable that some fraction of pollution is carried into the layer below the sea surface together with these water masses, so it is important to estimate the formation rate and turnover time of water masses to study the fate of pollutants. The present study estimates the annual formation rate and the turnover time of water masses using a three-dimensional ocean circulation model and a particle chasing method. The total annual formation rate of water masses below the sea surface amounted to about 3.53±0.55 Sv in the Japan Sea. Regarding representative intermediate water masses, the annual formation rate of the Upper portion of the Japan Sea Proper Water (UJSPW) and the Japan Sea Intermediate Water (JSIW) were estimated to be about 0.38±0.11 and 1.43±0.16 Sv, respectively, although there was little evidence of the formation of deeper water masses below a depth of about 1500 m in a numerical experiment. An estimate of turnover time shows that the UJSPW and the JSIW circulate in the intermediate layer of the Japan Sea with timescales of about 22.1 and 2.2 years, respectively. (author)

  13. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  14. The effect of FF-MAS on porcine cumulus-oocyte complex maturation, fertilization and pronucleus formation in vitro

    DEFF Research Database (Denmark)

    Færge, Inger; Strejcek, Frantisek; Laurincik, Jozef

    2006-01-01

    mechanically using a fine glass pipette under constant pH and in vitro fertilized with fresh semen (5 x 105 spermatozoa/ml). The presumptive zygotes were evaluated 18 h after fertilization. The addition of pFF increased the monospermic as well as the polyspermic penetration of oocytes. In the absence of p......FF, the addition of FF-MAS decreased the polyspermic penetration rate, wehreas FF-MAS in combination with pFF decreased monospermic and increased polyspermic penetration. The degeneration rate of ova decreased in the presence of FF-MAS irrespective of the presence or absence of pFF. In the absence of pFF, FF...

  15. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  16. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  17. The Chromosomal Constitution of Embryos Arising from Monopronuclear Oocytes in Programmes of Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    Bernd Rosenbusch

    2014-01-01

    Full Text Available The assessment of oocytes showing only one pronucleus during assisted reproduction is associated with uncertainty. A compilation of data on the genetic constitution of different developmental stages shows that affected oocytes are able to develop into haploid, diploid, and mosaic embryos with more or less complex chromosomal compositions. In the majority of cases (~80%, haploidy appears to be caused by gynogenesis, whereas parthenogenesis or androgenesis is less common. Most of the diploid embryos result from a fertilization event involving asynchronous formation of the two pronuclei or pronuclear fusion at a very early stage. Uniparental diploidy may sometimes occur if one pronucleus fails to develop and the other pronucleus already contains a diploid genome or alternatively a haploid genome undergoes endoreduplication. In general, the chance of obtaining a biparental diploid embryo appears higher after conventional in vitro fertilization than after intracytoplasmic sperm injection. If a transfer of embryos obtained from monopronuclear oocytes is envisaged, it should be tried to culture them up to the blastocyst since most haploid embryos are not able to reach this stage. Comprehensive counselling of patients on potential risks is advisable before transfer and a preimplantation genetic diagnosis could be offered if available.

  18. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2010-01-01

    In this paper, we investigate the level of star formation activity within nearby molecular clouds. We employ a uniform set of infrared extinction maps to provide accurate assessments of cloud mass and structure and compare these with inventories of young stellar objects within the clouds. We present evidence indicating that both the yield and rate of star formation can vary considerably in local clouds, independent of their mass and size. We find that the surface density structure of such clouds appears to be important in controlling both these factors. In particular, we find that the star formation rate (SFR) in molecular clouds is linearly proportional to the cloud mass (M 0.8 ) above an extinction threshold of A K ∼ 0.8 mag, corresponding to a gas surface density threshold of Σ gas ∼ 116 M sun pc 2 . We argue that this surface density threshold corresponds to a gas volume density threshold which we estimate to be n(H 2 ) ∼ 10 4 cm -3 . Specifically, we find SFR (M sun yr -1 ) = 4.6 ± 2.6 x 10 -8 M 0.8 (M sun ) for the clouds in our sample. This relation between the rate of star formation and the amount of dense gas in molecular clouds appears to be in excellent agreement with previous observations of both galactic and extragalactic star-forming activity. It is likely the underlying physical relationship or empirical law that most directly connects star formation activity with interstellar gas over many spatial scales within and between individual galaxies. These results suggest that the key to obtaining a predictive understanding of the SFRs in molecular clouds and galaxies is to understand those physical factors which give rise to the dense components of these clouds.

  19. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  20. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  1. Approximations to galaxy star formation rate histories: properties and uses of two examples

    Science.gov (United States)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  2. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  3. Muon cycling rate in D/T mixture including doubly muonic molecule formation

    Directory of Open Access Journals (Sweden)

    M. R. Eskandari

    2002-06-01

    Full Text Available   In the present work, the fundamental behavior of four body molecule formations of pt μμ , pd μμ , dt μμ , tt μμ , and pp μμ in a D/T fusion are considered. Their higher fusion rate, specially the available data for dt μμ , encouraged us to study the muon cycling rate in D/T fusion in the temperature range of (100-1400 K, density and deuterium-tritium concentration ratio. For this purpose, various values for the doubly muonic molecule formation are chosen and with the comparison to the experimental results, the doubly muonic formation rate of 109 s-1 is predicted theoretically. Our calculated cycling rate has shown that having not considered the doubly muonic formation in previous calculations had made no serious changes in the previously calculated values.

  4. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    International Nuclear Information System (INIS)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R.; Siwarungsun, N.; Mitchel, R.E.J.

    2000-01-01

    We have compared dose-rate effects for γ-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  5. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  6. Exchange rate formation in Ukraine and its impact on macroeconomic indicators

    OpenAIRE

    Koroliuk Tatiana Aleksandrovna

    2014-01-01

    The factors of exchange rate formation in Ukraine are analyzes in this paper, the influence of exchange rate on macroeconomic indicators of development and the main priorities of the exchange rate policy are determined exchange.

  7. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    Science.gov (United States)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  8. Variations of comoving volume and their effects on the star formation rate density

    Science.gov (United States)

    Kim, Sungeun; Physics and Astronomy, Sejong University, Seoul, Korea (the Republic of).

    2018-01-01

    To build a comprehensive picture of star formation in the universe, we havedeveloped an application to calculate the comoving volume at a specific redshift and visualize the changes of spaceand time. The application is based on the star formation rates of about a few thousands of galaxies and their redshiftvalues. Three dimensional modeling of these galaxies using the redshift, comoving volume, and star formation ratesas input data allows calculation of the star formation rate density corresponding to the redshift. This work issupported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP)(no. 2017037333).

  9. THE ESTIMATION OF STAR FORMATION RATES AND STELLAR POPULATION AGES OF HIGH-REDSHIFT GALAXIES FROM BROADBAND PHOTOMETRY

    International Nuclear Information System (INIS)

    Lee, Seong-Kook; Ferguson, Henry C.; Somerville, Rachel S.; Wiklind, Tommy; Giavalisco, Mauro

    2010-01-01

    We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high-redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates, and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies (LBGs). For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially declining model overpredicts the age by 100% and 120% for B- and V-dropouts, on average, while for a linearly increasing model, the age is overpredicted by 9% and 16%, respectively. Similarly, the exponential model underpredicts star formation rates by 56% and 60%, while the linearly increasing model underpredicts by 15% and 22%, respectively. For U-dropouts, the models where the star formation rate has a peak (near z ∼ 3) provide the best match for age-overprediction is reduced from 110% to 26%-and star formation rate-underprediction is reduced from 58% to 22%. We classify different types of star formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

  10. The Reliability of [C II] as a Star Formation Rate Indicator

    Directory of Open Access Journals (Sweden)

    De Looze Ilse

    2011-09-01

    Full Text Available We present a calibration of the star formation rate (SFR as a function of the [C II] 157.74 μm luminosity for a sample of 24 star-forming galaxies in the nearby universe. In order to calibrate the SFR against the line luminosity, we rely on both GALEX FUV data, which is an ideal tracer of the unobscured star formation, and Spitzer MIPS 24 μm, to probe the dust-enshrouded fraction of star formation. For this sample of normal star-forming galaxies, the [C II] luminosity correlates well with the star formation rate. However, the extension of this relation to more quiescent (Hα EW≤10 Å or ultra luminous galaxies (LTIR ≥1012 L⊙ should be handled with caution, since these objects show a non-linearity in the L[C II]-to-LFIR ratio as a function of LFIR (and thus, their star formation activity. Two possible scenarios can be invoked to explain the tight correlation between the [C II] emission and the star formation activity on a global galaxy-scale. The first interpretation could be that the [C II] emission from photo dissociation regions arises from the immediate surroundings of actively star-forming regions and contributes a more or less constant fraction on a global galaxy-scale. Alternatively, we consider the possibility that the [C II] emission is associated to the cold interstellar medium, which advocates an indirect link with the star formation activity in a galaxy through the Schmidt law.

  11. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity.

    Directory of Open Access Journals (Sweden)

    Kyeoung-Hwa Kim

    Full Text Available Previously, we found that the growth arrest-specific gene 6 (Gas6 is more highly expressed in germinal vesicle (GV oocytes than in metaphase II (MII oocytes using annealing control primer (ACP-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi. Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%. After stimulation with Sr(2+, Gas6-silenced MII oocytes had markedly reduced Ca(2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1 the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2 the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.

  12. The luminosity function and formation rate history of GRBs

    International Nuclear Information System (INIS)

    Firmani, C.; Avila-Reese, V.; Ghisellini, G.; Tutukov, A.V.

    2005-01-01

    The isotropic luminosity function (LF) and formation rate history (FRH) of long GRBs is by the first time constrained by using jointly both the observed GRB peak-flux and redshift distributions. Our results support an evolving LF and a FRH that keeps increasing after z = 2. We discuss some interesting implications related to these results

  13. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  14. Let's go formative: continuous student ratings with Web 2.0 application Twitter.

    Science.gov (United States)

    Stieger, Stefan; Burger, Christoph

    2010-04-01

    Student ratings have been a controversial but important method for the improvement of teaching quality during the past several decades. Most universities rely on summative evaluations conducted at the end of a term or course. A formative approach in which each course unit is evaluated may be beneficial for students and teachers but has rarely been applied. This is most probably due to the time constraints associated with various procedures inherent in formative evaluation (numerous evaluations, high amounts of aggregated data, high administrative investment). In order to circumvent these disadvantages, we chose the Web 2.0 Internet application Twitter as evaluation tool and tested whether it is useful for the implementation of a formative evaluation. After a first pilot and subsequent experimental study, the following conclusions were drawn: First, the formative evaluation did not come to the same results as the summative evaluation at the end of term, suggesting that formative evaluations tap into different aspects of course evaluation than summative evaluations do. Second, the results from an offline (i.e., paper-pencil) summative evaluation were identical with those from an online summative evaluation of the same course conducted a week later. Third, the formative evaluation did not influence the ratings of the summative evaluation at the end of the term. All in all, we can conclude that Twitter is a useful tool for evaluating a course formatively (i.e., on a weekly basis). Because of Twitter's simple use and the electronic handling of data, the administrative effort remains small.

  15. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  16. Observation of human embryonic behavior in vitro by high-resolution time-lapse cinematography.

    Science.gov (United States)

    Iwata, Kyoko; Mio, Yasuyuki

    2016-07-01

    Assisted reproductive technology (ART) has yielded vast amounts of information and knowledge on human embryonic development in vitro; however, still images provide limited data on dynamic changes in the developing embryos. Using our high-resolution time-lapse cinematography (hR-TLC) system, we were able to describe normal human embryonic development continuously from the fertilization process to the hatched blastocyst stage in detail. Our hR-TLC observation also showed the embryonic abnormality of a third polar body (PB)-like substance likely containing a small pronucleus being extruded and resulting in single-pronucleus (1PN) formation, while our molecular biological investigations suggested the possibility that some 1PN embryos could be diploid, carrying both maternal and paternal genomes. Furthermore, in some embryos the extruded third PB-like substance was eventually re-absorbed into the ooplasm resulting in the formation of an uneven-sized, two-PN zygote. In addition, other hR-TLC observations showed that cytokinetic failure was correlated with equal-sized, multi-nucleated blastomeres that were also observed in the embryo showing early initiation of compaction. Assessment combining our hR-TLC with molecular biological techniques enables a better understanding of embryonic development and potential improvements in ART outcomes.

  17. Calibration of Star Formation Rates Across the Electromagnetic Spectrum

    Science.gov (United States)

    Cardiff, Ann H.

    2011-01-01

    Measuring and mapping star-forming activity in galaxies is a key element for our understanding of their broad- band spectra, and their structure and evolution in our local, as well as the high-redshift Universe. The main tool we use for these measurements is the observed luminosity in various spectral lines and/or continuum bands. However, the available star-formation rate (SFR) indicators are often discrepant and subject to physical biases and calibration uncertainties. We are organizing a special session at the 2012 IAU General Assembly in Beijing, China (August 20-31, 2012) in order to bring together theoreticians and observers working in different contexts of star-formation to discuss the status of current SFR indicators, to identify open issues and to define a strategic framework for their resolution. The is an ideal time to synthesize information from the current golden era of space astrophysics and still have influence on the upcoming missions that will broaden our view of star-formation. We will be including high-energy constraints on SFR in the program and encourage participation from the high energy astrophysics community.

  18. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    Science.gov (United States)

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia

    International Nuclear Information System (INIS)

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; Hamzah, Khaidzir bin; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-01-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h −1 to 1237 nGy h −1 with a mean value of 151 nGy h −1 . The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D G,S ) with the gamma dose rate based on geological formation (D G ) or soil type (D s ). A very good correlation was found between D G,S and D G or D G,S and D s . A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. - Highlights: • A very good correlation coefficient was found between D G,S and D G or D G,S and D s . • The contribution of the gamma dose rate from geological formation (GDR) is 0.594. • The contribution of the GDR from soil type was found to be 0.399. • A 83% of examined data were accepted the null hypotheses. • The model

  20. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging

    Directory of Open Access Journals (Sweden)

    R. Cai

    2017-10-01

    Full Text Available A new balance formula to estimate new particle formation rate is proposed. It is derived from the aerosol general dynamic equation in the discrete form and then converted into an approximately continuous form for analyzing data from new particle formation (NPF field campaigns. The new formula corrects the underestimation of the coagulation scavenging effect that occurred in the previously used formulae. It also clarifies the criteria for determining the upper size bound in measured aerosol size distributions for estimating new particle formation rate. An NPF field campaign was carried out from 7 March to 7 April 2016 in urban Beijing, and a diethylene glycol scanning mobility particle spectrometer equipped with a miniature cylindrical differential mobility analyzer was used to measure aerosol size distributions down to ∼ 1 nm. Eleven typical NPF events were observed during this period. Measured aerosol size distributions from 1 nm to 10 µm were used to test the new formula and the formulae widely used in the literature. The previously used formulae that perform well in a relatively clean atmosphere in which nucleation intensity is not strong were found to underestimate the comparatively high new particle formation rate in urban Beijing because of their underestimation or neglect of the coagulation scavenging effect. The coagulation sink term is the governing component of the estimated formation rate in the observed NPF events in Beijing, and coagulation among newly formed particles contributes a large fraction to the coagulation sink term. Previously reported formation rates in Beijing and in other locations with intense NPF events might be underestimated because the coagulation scavenging effect was not fully considered; e.g., estimated formation rates of 1.5 nm particles in this campaign using the new formula are 1.3–4.3 times those estimated using the formula neglecting coagulation among particles in the nucleation mode.

  1. New proposal to measure NO2 formation rate from NO emissions in the atmosphere

    International Nuclear Information System (INIS)

    Frins, Erna; Osorio, MatIas; Casaballe, Nicolas; Wagner, Thomas; Platt, Ulrich

    2011-01-01

    As result from combustion processes, SO 2 , NO, NO 2 and other substances are emitted in the atmosphere. We present a new method to measure the formation rate of a trace gas (e.g., NO 2 ), whose precursor (NO) was emitted in the atmosphere by a source like a stack. In the case under study, the presence of ozone determines the formation of NO 2 . We will demonstrate that measuring the slant column densities across the emitted plume and knowing the flux of another trace gas (e.g. SO 2 ), also emitted by the source but that could be considered stable under the conditions of the observation, it is possible to monitor remotely (from an arbitrary location) the formation rate of NO 2 due to conversion of NO to NO 2 .

  2. Star formation rate in Holmberg IX dwarf galaxy

    Directory of Open Access Journals (Sweden)

    Anđelić M.M.

    2011-01-01

    Full Text Available In this paper we use previously determined Hα fluxes for dwarf galaxy Holmberg IX (Arbutina et al. 2009 to calculate star formation rate (SFR in this galaxy. We discuss possible contaminations of Hα flux and, for the first time, we take into account optical emission from supernova remnants (SNRs as a possible source of contamination of Hα flux. Derived SFR for Holmberg IX is 3:4 x 10-4M.yr-1. Our value is lower then in previous studies, due to luminous shock-heated source M&H 9-10, possible hypernova remnant, which we excluded from the total Hα flux in our calculation of SFR.

  3. GAMMA-RAY BURST AND STAR FORMATION RATES: THE PHYSICAL ORIGIN FOR THE REDSHIFT EVOLUTION OF THEIR RATIO

    International Nuclear Information System (INIS)

    Trenti, Michele; Perna, Rosalba; Tacchella, Sandro

    2013-01-01

    Gamma-ray bursts (GRBs) and galaxies at high redshift represent complementary probes of the star formation history of the universe. In fact, both the GRB rate and the galaxy luminosity density are connected to the underlying star formation. Here, we combine a star formation model for the evolution of the galaxy luminosity function from z = 0 to z = 10 with a metallicity-dependent efficiency for GRB formation to simultaneously predict the comoving GRB rate. Our model sheds light on the physical origin of the empirical relation often assumed between GRB rate and luminosity density-derived star formation rate: n-dot GRB (z)=ε(z)× ρ-dot * obs (z), with ε(z)∝(1 + z) 1.2 . At z ∼ ☉ ) ☉ ) > 0. Models with total suppression of GRB formation at log (Z/Z ☉ ) ∼> 0 are disfavored. At z ∼> 4, most of the star formation happens in low-metallicity hosts with nearly saturated efficiency of GRB production per unit stellar mass. However, at the same epoch, galaxy surveys miss an increasing fraction of the predicted luminosity density because of flux limits, driving an accelerated evolution of ε(z) compared to the empirical power-law fit from lower z. Our findings are consistent with the non-detections of GRB hosts in ultradeep imaging at z > 5, and point toward current galaxy surveys at z > 8 only observing the top 15%-20% of the total luminosity density

  4. The History and Rate of Star Formation within the G305 Complex

    Science.gov (United States)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour

  5. Fibronectin alters the rate of formation and structure of the fibrin matrix.

    Science.gov (United States)

    Ramanathan, Anand; Karuri, Nancy

    2014-01-10

    Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0-0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots. Copyright © 2014. Published by Elsevier Inc.

  6. Role of Fe substitution and quenching rate on the formation of ...

    Indian Academy of Sciences (India)

    Unknown

    (~ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasi- periodic direction of the decagonal ... shown that Al–Cu–Fe system exhibits the face-centred icosahedral while Al–Cu–Cr ... system that as the quenching rate increases the icosahedral phase formation increases ...

  7. Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Da Ros, Francesco; Guan, Pengyu

    2017-01-01

    We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....

  8. RING STAR FORMATION RATES IN BARRED AND NONBARRED GALAXIES

    International Nuclear Information System (INIS)

    Grouchy, R. D.; Buta, R. J.; Salo, H.; Laurikainen, E.

    2010-01-01

    Nonbarred ringed galaxies are relatively normal galaxies showing bright rings of star formation in spite of lacking a strong bar. This morphology is interesting because it is generally accepted that a typical galactic disk ring forms when material collects near a resonance, set up by the pattern speed of a bar or bar-like perturbation. Our goal in this paper is to examine whether the star formation properties of rings are related to the strength of a bar or, in the absence of a bar, to the non-axisymmetric gravity potential in general. For this purpose, we obtained Hα emission line images and calculated the line fluxes and star formation rates (SFRs) for 16 nonbarred SA galaxies and four weakly barred SAB galaxies with rings. For comparison, we combine our new observations with a re-analysis of previously published data on five SA, seven SAB, and 15 SB galaxies with rings, three of which are duplicates from our sample. With these data, we examine what role a bar may play in the star formation process in rings. Compared to barred ringed galaxies, we find that the inner ring SFRs and Hα+[N II] equivalent widths in nonbarred ringed galaxies show a similar range and trend with absolute blue magnitude, revised Hubble type, and other parameters. On the whole, the star formation properties of inner rings, excluding the distribution of H II regions, are independent of the ring shapes and the bar strength in our small samples. We confirm that the deprojected axis ratios of inner rings correlate with maximum relative gravitational force Q g ; however, if we consider all rings, a better correlation is found when a local bar forcing at the radius of the ring, Q r , is used. Individual cases are described and other correlations are discussed. By studying the physical properties of these galaxies, we hope to gain a better understanding of their placement in the scheme of the Hubble sequence and how they formed rings without the driving force of a bar.

  9. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3

    International Nuclear Information System (INIS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht; Altieri, Bruno; Andreani, Paola; Aussel, Herve; Daddi, Emanuele; Elbaz, David; Bongiovanni, Angel; Cepa, Jordi; Garcia, Ana Perez; Cimatti, Andrea; Koekemoer, Anton M.; Maiolino, Roberto; McGrath, Elizabeth J.

    2011-01-01

    We compare multi-wavelength star formation rate (SFR) indicators out to z ∼ 3 in the GOODS-South field. Our analysis uniquely combines U to 8 μm photometry from FIREWORKS, MIPS 24 μm and PACS 70, 100, and 160 μm photometry from the PEP, and Hα spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 μm to total infrared luminosity yields estimates of L IR that are in the median consistent with the L IR derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR IR /SFR UV ratios, typically occuring at the highest SFRs (SFR UV+ I R ∼> 100 M sun yr -1 ) and redshifts (z ∼> 2.5) probed. Finally, we confirm that Hα-based SFRs at 1.5 SED and SFR UV+IR provided extra attenuation toward H II regions is taken into account (A V,neb = A V,continuum /0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  10. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    OpenAIRE

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; Bosch, Frank C. van den

    2014-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy ...

  11. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-01-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ∼100 day-1; (2) neutron star-black hole mergers: ∼450 day-1; (3) collapsars: ∼104 day-1; (4) helium star black hole mergers: ∼1000 day-1; and (5) white dwarf-black hole mergers: ∼20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (f Ω <1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host

  12. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  13. Formation rate of ammonium nitrate in the off-gas line of SRAT and SME in DWPF

    International Nuclear Information System (INIS)

    Lee, L.

    1992-01-01

    A mathematical model for the formation rate of ammonium nitrate in the off-gas line of the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mixed Evaporator (SME) in DWPF has been developed. The formation rate of ammonium nitrate in the off-gas line depends on pH, temperature, volume and total concentration of ammonia and ammonium ion. Based on a typical SRAT and SME cycle in DWPF, this model predicts the SRAT contributes about 50 lbs of ammonium nitrate while SME contributes about 60 lbs of ammonium nitrate to the off-gas line

  14. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/¿-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  15. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/y-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  16. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Zoltán Németh

    2016-11-01

    Full Text Available Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.

  17. Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation

    NARCIS (Netherlands)

    Navarchian, AH; Picchioni, F; Janssen, LPBM

    In this article, the rheokinetics of polyurethane formation and the influence of shear rate on its kinetics have been studied. Two different linear polyurethane systems with 0% and 100% hard segments are examined in a cone and plate rheometer. The isothermal increase of viscosity during polyurethane

  18. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Louis E.; Gladders, Michael D. [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Poggianti, Bianca [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta, E-mail: labramson@uchicago.edu [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  19. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    Science.gov (United States)

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  20. A protocol for adult somatic cell nuclear transfer in medaka fish (Oryzias latipes) with a high rate of viable clone formation.

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Adachi, Tomoko; Hashimoto, Hisashi; Kinoshita, Masato; Wakamatsu, Yuko

    2013-12-01

    Previously, we successfully generated fully grown, cloned medaka (the Japanese rice fish, Oryzias latipes) using donor nuclei from primary culture cells of adult caudal fin tissue and nonenucleated recipient eggs that were heat shock-treated to induce diploidization of the nuclei. However, the mechanism of clone formation using this method is unknown, and the rate of adult clone formation is not high enough for studies in basic and applied sciences. To gain insight into the mechanism and increase the success rate of this method of clone formation, we tested two distinct nuclear transfer protocols. In one protocol, the timing of transfer of donor nuclei was changed, and in the other, the size of the donor cells was changed; each protocol was based on our original methodology. Ultimately, we obtained an unexpectedly high rate of adult clone formation using the protocol that differed with respect to the timing of donor nuclei transfer. Specifically, 17% of the transplants that developed to the blastula stage ultimately developed into adult clones. The success rate with this method was 13 times higher than that obtained using the original method. Analyses focusing on the reasons for this high success rate of clone formation will help to elucidate the mechanism of clone formation that occurs with this method.

  1. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  2. The mass-metallicity-star formation rate relation under the STARLIGHT microscope

    Science.gov (United States)

    Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.

    2014-10-01

    The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.

  3. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  4. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  5. GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Brassington, Nicola [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); Da Cunha, Elisabete [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117, Heidelberg (Germany); Hayward, Christopher C. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg (Germany); Jonsson, Patrik, E-mail: llanz@head.cfa.harvard.edu [Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250 (United States)

    2013-05-01

    We measured and modeled spectral energy distributions (SEDs) in 28 bands from the ultraviolet to the far-infrared (FIR) for 31 interacting galaxies in 14 systems. The sample is drawn from the Spitzer Interacting Galaxy Survey, which probes a range of galaxy interaction parameters at multiple wavelengths with an emphasis on the infrared bands. The subset presented in this paper consists of all galaxies for which FIR Herschel SPIRE observations are publicly available. Our SEDs combine the Herschel photometry with multi-wavelength data from Spitzer, GALEX, Swift UVOT, and 2MASS. While the shapes of the SEDs are broadly similar across our sample, strongly interacting galaxies typically have more mid-infrared emission relative to their near-infrared and FIR emission than weakly or moderately interacting galaxies. We modeled the full SEDs to derive host galaxy star formation rates (SFRs), specific star formation rates (sSFRs), stellar masses, dust temperatures, dust luminosities, and dust masses. We find increases in the dust luminosity and mass, SFR, and cold (15-25 K) dust temperature as the interaction progresses from moderately to strongly interacting and between non-interacting and strongly interacting galaxies. We also find increases in the SFR between weakly and strongly interacting galaxies. In contrast, the sSFR remains unchanged across all the interaction stages. The ultraviolet photometry is crucial for constraining the age of the stellar population and the SFR, while dust mass is primarily determined by SPIRE photometry. The SFR derived from the SED modeling agrees well with rates estimated by proportionality relations that depend on infrared emission.

  6. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals

    Science.gov (United States)

    Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

    2008-01-01

    Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

  7. Studies on muon cycling rates in muon catalyzed D-T fusion system with possible four-body muonic molecules formation

    International Nuclear Information System (INIS)

    Eskandri, M.R.; Hosini Motlagh, N.; Hataf, A.

    2000-01-01

    In recent studies, it is shown that the fusion rate for four-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ, is considerably larger than that of similar three-body molecules of ppμμ, ddμμ, ptμμ, pdμμ, dtμμ, ttμμ. It is shown that for dtμμ, fusion rate is R f (dt) ≅ 3 * 10 13 - 6 * * 10 13 S -1 which is 40 times higher than fusion rate of dtμμ molecule. In this paper we have looked for the effect of these molecules formation in muon catalyzed D-T fusion. The required data for all possible branches do not exist, so the main dtμμ branch are considered here. By choosing a variable value for dtμμ molecule formation rate and comparing obtained cycling rates with existing experimental values, the order of this parameter is evaluated to be ≅ 10 9 S -1 . Using obtained data in different conditions of D-T muon cycling rate calculations have shown that considering of four-body molecule formations in existing muon injection intensities do not make considerable change in three-body muonic molecule cycling rate

  8. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP

    DEFF Research Database (Denmark)

    Teilum, K; Kragelund, B B; Knudsen, J

    2000-01-01

    A burst phase in the early folding of the four-helix two-state folder protein acyl-coenzyme A binding protein (ACBP) has been detected using quenched-flow in combination with site-specific NMR-detected hydrogen exchange. Several of the burst phase structures coincide with a structure consisting...... of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...

  9. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  10. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  11. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  12. Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Cardoso, A. F. R.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2018-06-01

    Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin  +  tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.

  13. On the rate of formation of e-caprolactam upon equilibration of extracted poly-e-aminocaproic acid polymers

    NARCIS (Netherlands)

    Heikens, D.; Hermans, P.H.; Smith, S.

    1959-01-01

    The data of Smith (CA 53, 763b) on the rate of formation of e-caprolactam (I) at 250 Deg in previously extd. lactam-free polymers are interpreted in terms of the mechanism and math. relations, developed by the authors to describe the polymerization of I in systems contg. H2O. A lactam formation

  14. ON THE INCONSISTENCY BETWEEN COSMIC STELLAR MASS DENSITY AND STAR FORMATION RATE UP TO z ∼ 8

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.; Wang, F. Y., E-mail: fayinwang@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-04-01

    In this paper, we test the discrepancy between the stellar mass density (SMD) and instantaneous star formation rate in the redshift range 0 < z < 8 using a large observational data sample. We first compile the measurements of SMDs up to z ∼ 8. Comparing the observed SMDs with the time-integral of instantaneous star formation history (SFH), we find that the observed SMDs are lower than that implied from the SFH at z < 4. We also use the Markov chain Monte Carlo (MCMC) method to derive the best-fitting SFH from the observed SMD data. At 0.5 < z < 6, the observed star formation rate densities are larger than the best-fitting one, especially at z ∼ 2 where they are larger by a factor of about two. However, at lower (z < 0.5) and higher redshifts (z > 6), the derived SFH is consistent with the observations. This is the first time that the discrepancy between the observed SMD and instantaneous star formation rate has been tested up to very high redshift z ≈ 8 using the MCMC method and a varying recycling factor. Several possible reasons for this discrepancy are discussed, such as underestimation of SMD, initial mass function, and evolution of cosmic metallicity.

  15. ON THE INCONSISTENCY BETWEEN COSMIC STELLAR MASS DENSITY AND STAR FORMATION RATE UP TO z ∼ 8

    International Nuclear Information System (INIS)

    Yu, H.; Wang, F. Y.

    2016-01-01

    In this paper, we test the discrepancy between the stellar mass density (SMD) and instantaneous star formation rate in the redshift range 0 < z < 8 using a large observational data sample. We first compile the measurements of SMDs up to z ∼ 8. Comparing the observed SMDs with the time-integral of instantaneous star formation history (SFH), we find that the observed SMDs are lower than that implied from the SFH at z < 4. We also use the Markov chain Monte Carlo (MCMC) method to derive the best-fitting SFH from the observed SMD data. At 0.5 < z < 6, the observed star formation rate densities are larger than the best-fitting one, especially at z ∼ 2 where they are larger by a factor of about two. However, at lower (z < 0.5) and higher redshifts (z > 6), the derived SFH is consistent with the observations. This is the first time that the discrepancy between the observed SMD and instantaneous star formation rate has been tested up to very high redshift z ≈ 8 using the MCMC method and a varying recycling factor. Several possible reasons for this discrepancy are discussed, such as underestimation of SMD, initial mass function, and evolution of cosmic metallicity

  16. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  17. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd{sub 2}Fe{sub 14}B system

    Energy Technology Data Exchange (ETDEWEB)

    Branagan, D.J. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering; McCallum, R.W. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering

    1995-04-26

    In order to evaluate the effects of additions on the solidification behavior of Nd{sub 2}Fe{sub 14}B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BH{sub max} versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling. ((orig.)).

  18. Fiber Bragg grating based notch filter for bit-rate-transparent NRZ to PRZ format conversion with two-degree-of-freedom optimization

    International Nuclear Information System (INIS)

    Cao, Hui; Zuo, Jun; Xiong, Bangyun; Cheng, Jianqun; Shu, Xuewen; Shen, Fangcheng; Liu, Xin; Atai, Javid

    2015-01-01

    We propose a novel notch-filtering scheme for bit-rate transparent all-optical NRZ-to-PRZ format conversion. The scheme is based on a two-degree-of-freedom optimally designed fiber Bragg grating. It is shown that a notch filter optimized for any specific operating bit rate can be used to realize high-Q-factor format conversion over a wide bit rate range without requiring any tuning. (paper)

  19. Reconfigurable Digital Coherent Receiver for Metro-Access Networks Supporting Mixed Modulation Formats and Bit-rates

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil; Arlunno, Valeria

    2013-01-01

    A single, reconfigurable, digital coherent receiver is proposed and experimentally demonstrated for converged wireless and optical fiber transport. The capacity of reconstructing the full transmitted optical field allows for the demodulation of mixed modulation formats and bit-rates. We performed...

  20. Micronucleus formation compared to the survival rate of human melanoma cells after X-ray and neutron irradiation and hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    van Beuningen, D.; Streffer, C.; Bertholdt, G.

    1981-09-01

    After neutron and X-ray irradiation and combined X-ray irradiation and hyperthermia (3 hours, 42/sup 0/C), the survival rate of human melanoma cells was measured by means of the colony formation test and compared to the formation of micronuclei. Neutrons had a stronger effect on the formation of micronuclei than the combination of X-rays and hyperthermia. X-rays had the lowest effect. The dose effect curve showed a break at that dose level at which a reduction of cells was observed in the cultures. A good relation between survival rate and formation of micronuclei was found for the X-ray irradiation, but not for the neutron irradiation and the combined treatment. These observations are discussed. At least for X-rays, the micronucleus test has turned out to be a good screening method for the radiosensitivity of a biologic system.

  1. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance

    Science.gov (United States)

    Jason R. Price; Michael A. Velbel; Lina C. Patino

    2005-01-01

    Rates of clay formation in three watersheds located at the Coweeta Hydrologic Laboratory, western North Carolina, have been determined from solute flux-based mass balance methods. A system of mass balance equations with enough equations and unknowns to allow calculation of secondary mineral formation rates as well as the more commonly determined primary-...

  2. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    Science.gov (United States)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  3. Age- and gender-specific estimates of partnership formation and dissolution rates in the Seattle sex survey.

    Science.gov (United States)

    Nelson, Sara J; Hughes, James P; Foxman, Betsy; Aral, Sevgi O; Holmes, King K; White, Peter J; Golden, Matthew R

    2010-04-01

    Partnership formation and dissolution rates are primary determinants of sexually transmitted infection (STI) transmission dynamics. The authors used data on persons' lifetime sexual experiences from a 2003-2004 random digit dialing survey of Seattle residents aged 18-39 years (N=1,194) to estimate age- and gender-specific partnership formation and dissolution rates. Partnership start and end dates were used to estimate participants' ages at the start of each partnership and partnership durations, and partnerships not enumerated in the survey were imputed. Partnership formation peaked at age 19 at 0.9 (95% confidence interval [CI]: 0.76-1.04) partnerships per year and decreased to 0.1 to 0.2 after age 30 for women and peaked at age 20 at 1.4 (95% CI: 1.08-1.64) and declined to 0.5 after age 30 for men. Nearly one fourth (23.7%) of partnerships ended within 1 week and more than one half (51.2%) ended within 12 weeks. Most (63.5%) individuals 30 to 39 years of age had not formed a new sexual partnership in the past 3 years. A large proportion of the heterosexual population is no longer at substantial STI risk by their early 30s, but similar analyses among high-risk populations may give insight into reasons for the profound disparities in STI rates across populations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    Science.gov (United States)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  5. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  6. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  7. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  8. Back decay of muonic molecular resonances and the measured value of dμd - formation rate in muon-catalyzed fusion in deuterium

    International Nuclear Information System (INIS)

    Gula, A.; Adamczak, A.; Bubak, M.

    1985-01-01

    It is shown that the experimental values of dμd formation rate, obtained without taking into account the decay of the μ-molecular resonance compound [(dμd) + dee] * back to the formation channel dμ+D 2 , are underestimated.The correction depends on the rate of this resonance back decay and the rates of processes leading to fusion in dμd. For their current estimates the correction significantly exceeds the experimental error of the uncorrected dμd formation rate λ m obs = 2.76 ± 0.08 μs -1 reported recently. It is argued that back decay may lead to variation of λ m obs with target density which may provide useful information on the parameters of muon-catalyzed fusion. 18 refs., 2 figs. (author)

  9. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    Science.gov (United States)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  10. The structure, dynamics, and star formation rate of the Orion nebula cluster

    International Nuclear Information System (INIS)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-01-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t ff ). This implies a star formation efficiency per t ff of ε ff ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  11. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie [Institute for Astronomy, Department of Physics, ETH Zurich, CH-8093 Zurich (Switzerland); Renzini, Alvio [Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131 Padova (Italy)

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  12. DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P. G.; Donley, J. L.; Alonso-Herrero, A.; Blaylock, M.; Marcillac, D.

    2009-01-01

    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ∼ 10 10 L sun range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M sun yr -1 ) = 7.8 x 10 -10 L(24 μm, L sun ) from L(TIR) = 5x 10 9 L sun to 10 11 L sun and SFR = 7.8 x 10 -10 L(24 μm, L sun )(7.76 x 10 -11 L(24)) 0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10 10 L sun , these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10 11 L sun , we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5x 10 9 to 10 13 L sun . All of these templates are made available online.

  13. CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Mitchell, Noah P. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, S.E., Minneapolis, MN 55455 (United States); Dolphin, Andrew E., E-mail: kmcquinn@astro.umn.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2015-08-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction corrected integrated ultraviolet (UV) emission from resolved galaxies with color–magnitude diagram (CMD) based star formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV–SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ∼53% larger than previous relations.

  14. Supernova Driving. IV. The star-formation rate of molecular clouds

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2017-01-01

    We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range...... of cloud physical parameters with realistic statistical distributions, which is an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, SFRff, on the virial parameter, αvir, found in previous...... MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs....

  15. The empirical role of the exchange rate on the crude-oil price formation

    International Nuclear Information System (INIS)

    Yousefi, A.; Wirjanto, T.S.; University of Waterloo, Ont.

    2004-01-01

    This paper adopts a novel empirical approach to the crude-oil price formation for the purpose of understanding the price reactions of OPEC member countries to changes in the exchange rate of the US dollar against other major currencies and prices of other members. The results are broadly consistent with the view of the absence of a unified OPEC determined price in the international crude market literature. In addition, the results also highlight a cross regional dimension of the crude oil market. (author)

  16. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  17. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    Science.gov (United States)

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  18. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Directory of Open Access Journals (Sweden)

    Ralph M. Barnes

    2016-11-01

    Full Text Available A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive and numeric format (percentage, natural frequency on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2 and 730 undergraduate college students (Experiments 1, 3, and 4 indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  19. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Science.gov (United States)

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  20. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    Science.gov (United States)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  1. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    Science.gov (United States)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  2. Rate of formation of neutron stars in the galaxy estimated from stellar statistics

    International Nuclear Information System (INIS)

    Endal, A.S.

    1979-01-01

    Stellar statistics and stellar evolution models can be used to estimate the rate of formation of neutron stars in the Galaxy. A recent analysis by Hills suggests that the mean interval between neutron-star births is greater than 27 years. This is incompatible with estimates based on pulsar statistics. However, a closer examination of the stellar data shows that Hill's result is incorrect. A mean interval between neutron-star births as short as 4 years is consistent with (though certainly not required by) stellar evolution theory

  3. In vivo repair of DNA damage induced by X-rays in the early stages of mouse fertilization, and the influence of maternal PARP1 ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pacchierotti, F., E-mail: francesca.pacchierotti@enea.it [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Ranaldi, R. [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Derijck, A.A.; Heijden, G.W. van der; Boer, P. de [Radboud University Nijmegen Medical Centre, Department of Obstetrics and Gynaecology, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2011-09-01

    Highlights: {yields} We measure {gamma}H2AX and chromosome aberrations in mouse zygotes irradiated in vivo. {yields} We compare effects between zygotes obtained from wild type or Parp1 knockout females. {yields} The rate of chromosome aberrations is as high as that previously induced in vitro. {yields} The rate of radiation-induced {gamma}H2AX foci is lower than that measured in other cells. {yields} Without Parp1 there are more {gamma}H2AX foci but chromosome aberration rate is unaffected. - Abstract: The early pronucleus stage of the mouse zygote has been characterised in vitro as radiosensitive, due to a high rate of induction of chromosome-type chromosome abnormalities (CA). We have investigated the repair of irradiation induced double strand DNA breaks in vivo by {gamma}H2AX foci and first cleavage metaphase analysis. Breaks were induced in sperm and in the early zygote stages comprising sperm chromatin remodelling and early pronucleus expansion. Moreover, the role of PARP1 in the formation and repair of spontaneous and radiation-induced double strand breaks in the zygote was evaluated by comparing observations in C57BL/6J and PARP1 genetically ablated females. The results confirmed in vivo that the rate of chromosome aberration induction by X-rays was approximately 3-fold higher in the zygote than in mouse lymphocytes. This finding was related to a diminished efficiency of double strand break signalling, as shown by a lower rate of {gamma}H2AX radiation-induced foci compared to that measured in most other somatic cell types. The spontaneous frequency of CA in PARP1 depleted zygotes was slightly but significantly higher than in wild type zygotes. Also, these zygotes showed some impairment of the radiation-induced DNA Damage Response when exposed closer to the start of S-phase, revealed by a higher number of {gamma}H2AX foci and a longer cell cycle delay. The rate of chromosome aberrations, however, was not elevated over that of wild type zygotes, possibly

  4. Microtwin formation in the α phase of duplex titanium alloys affected by strain rate

    International Nuclear Information System (INIS)

    Lin, Yi-Hsiang; Wu, Shu-Ming; Kao, Fang-Hsin; Wang, Shing-Hoa; Yang, Jer-Ren; Yang, Chia-Chih; Chiou, Chuan-Sheng

    2011-01-01

    Research highlights: → The long and dense twins in α phase of SP700 alloy occurring at lower strain rates promote a good ductility. → The deformation in SP700 alloy changed to micro twins-controlled mechanism in α as the strain rate decreases. → The material has time to redistribute the deformed strain between α and β as the strain rate decreases. - Abstract: The effect of tensile strain rate on deformation microstructure was investigated in Ti-6-4 (Ti-6Al-4V) and SP700 (Ti-4.5Al-3V-2Mo-2Fe) of the duplex titanium alloys. Below a strain rate of 10 -2 s -1 , Ti-6-4 alloy had a higher ultimate tensile strength than SP700 alloy. However, the yield strength of SP700 was consistently greater than Ti-6-4 at different strain rates. The ductility of SP700 alloy associated with twin formation (especially at the slow strain rate of 10 -4 s -1 ), always exceeded that of Ti-6-4 alloy at different strain rates. It is caused by a large quantity of deformation twins took place in the α phase of SP700 due to the lower stacking fault energy by the β stabilizer of molybdenum alloying. In addition, the local deformation more was imposed on the α grains from the surrounding β-rich grains by redistributing strain as the strain rate decreased in SP700 duplex alloy.

  5. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  6. Impact of star formation inhomogeneities on merger rates and interpretation of LIGO results

    International Nuclear Information System (INIS)

    O'Shaughnessy, R; Kopparapu, R K; Belczynski, K

    2012-01-01

    Within the next decade, ground based gravitational-wave detectors are in principle capable of determining the compact object merger rate per unit volume of the local universe to better than 20% with more than 30 detections. These measurements will constrain our models of stellar, binary and star cluster evolution in the nearby present-day and ancient universe. We argue that the stellar models are sensitive to heterogeneities (in age and metallicity at least) in such a way that the predicted merger rates are subject to an additional 30-50% systematic errors unless these heterogeneities are taken into account. Without adding new electromagnetic constraints on massive binary evolution or relying on more information from each merger (e.g., binary masses and spins), as few as the 5 merger detections could exhaust the information available in a naive comparison to merger rate predictions. As a concrete example immediately relevant to analysis of initial and enhanced LIGO results, we use a nearby-universe catalog to demonstrate that no one tracer of stellar content can be consistently used to constrain merger rates without introducing a systematic error of order O(30%) at 90% confidence (depending on the type of binary involved). For example, though binary black holes typically take many Gyr to merge, binary neutron stars often merge rapidly; different tracers of stellar content are required for these two types. More generally, we argue that theoretical binary evolution can depend sufficiently sensitively on star-forming conditions-even assuming no uncertainty in binary evolution model-that the distribution of star-forming conditions must be incorporated to reduce the systematic error in merger rate predictions below roughly 40%. We emphasize that the degree of sensitivity to star-forming conditions depends on the binary evolution model and on the amount of relevant variation in star-forming conditions. For example, if after further comparison with electromagnetic and

  7. GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy)

    2017-01-20

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  8. Acute Effects of Different Formats of Small-Sided and Conditioned Handball Games on Heart Rate Responses in Female Students During PE Classes

    Directory of Open Access Journals (Sweden)

    Filipe Manuel Clemente

    2014-06-01

    Full Text Available The aim of this study was to analyze the impact of different formats (2-a-side, 3-a-side and 4-a-side on heart rate responses of female students during small-sided and conditioned handball games. The heart rate responses were measured using heart rate monitors during physical education classes. Eight female students participated in the study (15 ± 0.0 years. The one-way ANOVA showed statistical differences with moderate effect between the three different formats (F(2, 1674 = 86.538; p-value ˂ 0.001;  = 0.094; Power = 1.0. The results showed that smaller formats (2-a-side and 3-a-side increased the heart rate responses of female students during small-sided and conditioned handball games during physical education (PE classes. The results also suggested that 2-a-side games can be used for anaerobic workouts and the 3-a-side and 4-a-side games can be better used to reach lactate-threshold and for aerobic workouts of high intensity.

  9. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  10. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  11. Rate of Pu(IV) polymer formation in nitric acid solutions. A parametric study

    Energy Technology Data Exchange (ETDEWEB)

    Toth, L.M.; Osborne, M.M.

    1984-07-01

    The kinetics of Pu(IV) polymer formation has been examined with the intent of developing a simple mathematical equation that would predict the appearance of polymer. The fundamental polymerization rate has been found to be dependent on [Pu(IV)]{sup 1} {sup 2} and [HNO{sub 3}]{sup -6}. The activation energy for polymer formation is real temperature dependent, varying from 66.9 kJ/mol (16 kcal/mol) at 25{sup 0}C to 150.5 kJ/mol (36 kcal/mol) at 105{sup 0}C. These relationships have guided the developement of an empirical model that gives time to form 2% polymer in hours, t = [Pu/sub T/]/sup a/[HNO{sub 3}]/sup b/ Ae/sup c/T/, where a = -1.6, b = 4.6, c = 12.300 K, and A = 7.66 x 10{sup -16} h M{sup -3}; [Pu/sub T/] is the total plutonium concentration, mol/L; and [HNO{sub 3}] is the makeup nitric acid concentration, mol/L. 11 references, 26 figures, 1 table.

  12. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  13. Determination of the stability constants of a number of metal fluoride complexes and their rates of formation

    International Nuclear Information System (INIS)

    Hammer, R.R.

    1979-08-01

    The stability constants of the fluoride complexes of Al +3 , H 3 BO 3 , Cr +3 , Cr +6 , Fe +3 , Gd +3 , Nb +5 , UO 2 +2 , and Zr +4 were determined in 0.96 and 2.88 M HNO 3 solutions in the temperature range 25 to 60 0 C with a fluoride specific ion electrode. These data can be used to calculate the concentration of chemical species in solution and will be used to correlate solution properties with solution composition. The solubilities of some fluoride precipitates were also measured in nitric acid solutions. The rates of formation of the fluoborates, aluminum fluoride, and zirconium fluoride complexes were measured with a fluoride specific ion electrode at 25, 35, and 45 0 C. The rates of formation of all complexes, except BF 4 - , AlF +2 , and a fluoride complex with aluminum containing more than three fluorides associated with it, were too fast to measure with the instrumentation used

  14. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    Science.gov (United States)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  15. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  16. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ≤ z ≤ 6.5 IN CANDELS

    International Nuclear Information System (INIS)

    Salmon, Brett; Papovich, Casey; Tilvi, Vithal; Finkelstein, Steven L.; Finlator, Kristian; Behroozi, Peter; Lu, Yu; Wechsler, Risa H.; Dahlen, Tomas; Ferguson, Henry C.; Davé, Romeel; Dekel, Avishai; Dickinson, Mark; Giavalisco, Mauro; Long, James; Mobasher, Bahram; Reddy, Naveen; Somerville, Rachel S.

    2015-01-01

    Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 ≤ z ≤ 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR ∼ M ⋆ a with a =0.54 ± 0.16 at z ∼ 6 and 0.70 ± 0.21 at z ∼ 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, σ(log SFR/M ☉ yr –1 ) < 0.3-0.4 dex, for galaxies with log M * /M ☉ > 9 dex. Assuming that the SFR is tied to the net gas inflow rate (SFR ∼ M-dot gas ), then the scatter in the gas inflow rate is also smaller than 0.3–0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation

  17. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam [Indian Institute of Science, Department of Aerospace Engineering (India); Raha, S. [Indian Institute of Science, Department of Computational and Data Sciences (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Indian Institute of Science, Department of Aerospace Engineering (India)

    2017-02-15

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  18. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  19. Study of cooling rates during metallic glass formation in a hammer and anvil apparatus

    International Nuclear Information System (INIS)

    Kroeger, D.M.; Coghlan, W.A.; Easton, D.S.; Koch, C.C.; Scarbrough, J.O.

    1982-01-01

    A model is presented of the simultaneous spreading and cooling of the liquid drop in a hammer and anvil apparatus for rapid quenching of liquid metals. The viscosity of the melt is permitted to vary with temperature, and to avoid mathematical complications which would be associated with spatial variation of the viscosity, Newtonian cooling is assumed. From an expression for the force required to spread the specimen, coupled equations for the mechanical energy balance for the system and the heat transfer from the sample to the hearth and hammer were obtained, and solved numerically. The sample reaches its final thickness when the force required to deform it becomes greater than the force exerted on it by the decelerating hammer. The model was fit to measurements of sample thickness versus hammer speed, using the interface heat transfer coefficient, h, as an adjustable parameter. The values of h so obtained vary somewhat with the melt alloy/substrate metal combination. From predicted cooling curves, the effects of hammer speed, sample size, and initial melt temperature on the cooling rate and the efficiency of glass formation can be assessed. Addition of sample superheat shifts the cooling curve relative to the expected position of the time-temperature-transformation curve for formation of crystalline material from the melt, and thus is an effective means of increasing the probability of glass formation in this type of apparatus

  20. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  1. THE PROJECTED RATE OF COMPETENCE FORMATION AS A TOOL OF EDUCATIONAL MANAGEMENT OF ADVANCED LEVEL OF EDUCATION

    Directory of Open Access Journals (Sweden)

    L. V. Lvov

    2017-01-01

    Full Text Available Introduction. Specially organized complex of the scientific research directed to obtaining the reliable advancing information about development of pedagogical members is necessary for the development of educational policy, the strategy of development for educational systems, and methods of management of quality of pedagogical activity at different stages of education. The result of the educational management of professional and educational process is caused by the quality of pedagogical design. In turn, the quality of pedagogical forecasting is a factor determining the overall effectiveness of management through the pedagogical design.The aim of this article is to describe the model that allows applying the rate of competence formation as a tool of educational management and providing the advanced level of education. Methodology and research methods are based on pre-competence and context approach, which supposes the content selection as a set of competencies and designing the educational and professional process with the use of the rate of formation of ability and readiness (competency as a tool of teaching management.Results. The author states socio-pedagogical contradiction, which is in acute shortage of predictive tools in the management of the educational process. The article describes terminology and empirical mathematical models that underpin pedagogical management of the educational and professional training of students that provides the advanced level of formation of organizational and managerial competence.Scientific novelty. The author clarifies the concept of the advanced level of education; introduces the term of the rate of formation of competency; proposes a new model to solve the problem of predicting learning outcomes and timely management influence by managers of education at all stages of the design and functioning of the educational system in the conditions of implementation of competence-based approach in the higher school

  2. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  3. Infra-red data of extended sources as a measure of the star formation rate

    International Nuclear Information System (INIS)

    Puget, J.-L.

    1985-01-01

    Molecular cloud complexes are gravitationally bound systems which contain molecular clouds, HII regions and possibly OB associations after they evaporated their parent cloud. A large fraction of the energy (50%) radiated by the O and B stars is converted into infra-red. Less massive stars still embedded in molecular clouds or still in their vicinity will also see most of their radiation absorbed by dust and reemitted in the infra-red. The two quantities the author deduces directly from the data are: the ratio of the far-infra-red luminosity due to recently formed stars to the mass of gas, as a measure of the star formation rate; and the infra-red excess (IRE): the ratio of the far-infra-red luminosity to the luminosity of HII regions in the Lyman α line, which gives information on the initial mass function. Finally he discusses the possible links between star formation and some of the relevant physical conditions in the molecular clouds: amount and temperature distribution of dust. (Auth.)

  4. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Directory of Open Access Journals (Sweden)

    Tyo Keith EJ

    2012-03-01

    Full Text Available Abstract Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor or a larger protein (α-amylase. Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a degradation of protein/recycling amino acids, (b overall transcription/translation repression, and (c oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.

  5. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ≤ z ≤ 6.5 IN CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Brett; Papovich, Casey; Tilvi, Vithal [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy Texas A and M University, College Station, TX 77843 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Finlator, Kristian [DARK fellow, Dark Cosmology Centre, Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Behroozi, Peter; Lu, Yu; Wechsler, Risa H. [Physics Department, Stanford University, Particle Astrophysics, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology Stanford, CA 94305 (United States); Dahlen, Tomas; Ferguson, Henry C. [Space Telescope Science Institute, Baltimore, MD (United States); Davé, Romeel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Dickinson, Mark [National Optical Astronomy Observatories, Tucson, AZ (United States); Giavalisco, Mauro [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Long, James [Department of Statistics, Texas A and M University, College Station, TX 77843-3143 (United States); Mobasher, Bahram; Reddy, Naveen [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Somerville, Rachel S., E-mail: bsalmon@physics.tamu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2015-02-01

    Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 ≤ z ≤ 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR ∼ M{sub ⋆}{sup a} with a =0.54 ± 0.16 at z ∼ 6 and 0.70 ± 0.21 at z ∼ 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, σ(log SFR/M {sub ☉} yr{sup –1}) < 0.3-0.4 dex, for galaxies with log M {sub *}/M {sub ☉} > 9 dex. Assuming that the SFR is tied to the net gas inflow rate (SFR ∼ M-dot {sub gas}), then the scatter in the gas inflow rate is also smaller than 0.3–0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.

  6. Chemical evolution, stellar nucleosynthesis and a variable star formation rate

    International Nuclear Information System (INIS)

    Olive, K.A.; Thielemann, F.K.; Truran, J.W.

    1986-04-01

    The effects of a decreasing star formation rate (SFR) on the galactic abundances of elements produced in massive stars (M ≥ 10 Msub solar). On the basis of a straightforward model of galactic evolution, a relation between the upper mass limit of type II supernovae (M/sub SN/) contributing to chemical evolution and the decline of the SFR (tau) is derived, when the oxygen abundance is determined only by massive stars. The additional requirement that all intermediate mass elements (Ne-Ti), which are also predominantly due to nucleosynthesis in massive stars, are produced in solar proportions leads to a unique value of M/sub SN/ and tau. The application of this method with abundance yields from Arnett (1978) and Woosley and Weaver (1986) resuults, however, in contradicting solutions: M/sub SN/ ≅ 45 Msub solar, tau = ∞, and M/sub SN/ ≅ 15 Msub solar, tau = 3 x 10 9 y. Thus, in order that this approach provide an effective probe of the SFR over the history of our galaxy it is essential that converging and more accurate predictions of the consequences of stellar and supernova nucleosynthesis will be forthcoming. 54 refs., 2 figs., 2 tabs

  7. Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-06-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.

  8. Formation and growth rates of atmospheric nanoparticles: four years of observations at two West Siberian stations

    Science.gov (United States)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Davydov, Denis K.; Kozlov, Artem V.; Arshinova, Victoria

    2015-04-01

    In spite of fact that the first report on the new particle formation (NPF) itself was done by John Aitken more than one century ago (Aitken, 1898), a phenomenon of NPF bursts taken place in the atmosphere was discovered not very long ago. Nevertheless, to date it is known that they may occur quite often in a variety of environments (Kulmala et al., 2004; Hirsikko et al., 2011). Siberia occupies a vast area covered by forests, but the comprehensive data on burst frequency, as well as on formation and growth rates of freshly nucleated particles in this key region are still lacking. Continuous measurements of aerosol size distribution carried out in recent years at two West Siberian stations (TOR-station - 56o28'41"N, 85o03'15"E; Fonovaya Observatory - 56o25'07"N, 84o04'27"E) allowed this gap in data to be filled up. Analysis of the size spectra classified in accordance with criteria proposed by Dal Maso et al. (2005) and Hammed et al. (2007) enabled a conclusion to be drawn that NPF events in Wets Siberia are more often observed during spring (from March to May) and early autumn (secondary frequency peak in September). On average, particle formation bursts took place on 23-28 % of all days. Such a seasonal pattern of the NPF occurrence is very similar to one observed at SMEAR II Station (Hyytiälä, Finland; Dal Maso et al. 2005, 2007). Formation rates (FR) of particles with diameters below 25 nm varied in a wide range from 0.1 to 10 cm-3 s-1. Mean values of FR for the entire period of observations were 1.7 cm-3s-1 (median = 1.13 cm-3 s-1) at TOR-station and 0.88 cm-3 s-1 (median = 0.69 cm-3 s-1) at Fonovaya Observatory. Enhanced values of FR are usually observed from spring to autumn. Mean growth rates of observed at TOR-station and Fonovaya Observatory were 6.5 nm h-1 (median = 5.0 nm h-1) and 8.3 nm h-1 (median = 6.4 nm h-1), respectively. This work was supported by the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of

  9. The radio continuum-star formation rate relation in WSRT sings galaxies

    International Nuclear Information System (INIS)

    Heesen, Volker; Brinks, Elias; Leroy, Adam K.; Heald, George; Braun, Robert; Bigiel, Frank; Beck, Rainer

    2014-01-01

    We present a study of the spatially resolved radio continuum-star formation rate (RC-SFR) relation using state-of-the-art star formation tracers in a sample of 17 THINGS galaxies. We use SFR surface density (Σ SFR ) maps created by a linear combination of GALEX far-UV (FUV) and Spitzer 24 μm maps. We use RC maps at λλ22 and 18 cm from the WSRT SINGS survey and Hα emission maps to correct for thermal RC emission. We compare azimuthally averaged radial profiles of the RC and FUV/mid-IR (MIR) based Σ SFR maps and study pixel-by-pixel correlations at fixed linear scales of 1.2 and 0.7 kpc. The ratio of the integrated SFRs from the RC emission to that of the FUV/MIR-based SF tracers is R int =0.78±0.38, consistent with the relation by Condon. We find a tight correlation between the radial profiles of the radio and FUV/MIR-based Σ SFR for the entire extent of the disk. The ratio R of the azimuthally averaged radio to FUV/MIR-based Σ SFR agrees with the integrated ratio and has only quasi-random fluctuations with galactocentric radius that are relatively small (25%). Pixel-by-pixel plots show a tight correlation in log-log diagrams of radio to FUV/MIR-based Σ SFR , with a typical standard deviation of a factor of two. Averaged over our sample we find (Σ SFR ) RC ∝(Σ SFR ) hyb 0.63±0.25 , implying that data points with high Σ SFR are relatively radio dim, whereas the reverse is true for low Σ SFR . We interpret this as a result of spectral aging of cosmic-ray electrons (CREs), which are diffusing away from the star formation sites where they are injected into the interstellar medium. This is supported by our finding that the radio spectral index is a second parameter in pixel-by-pixel plots: those data points dominated by young CREs are relatively radio dim, while those dominated by old CREs are slightly more RC bright than what would be expected from a linear extrapolation. We studied the ratio R of radio to FUV/MIR-based integrated SFR as a function of

  10. Tritiated ammonia formation

    International Nuclear Information System (INIS)

    Heung, L.K.

    1995-01-01

    When nitrogen was selected as the glovebox atmosphere for the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS), a concern was raised as to the possibility of tritiated ammonia formation in the gloveboxes. Experimental data were produced to study the tritiated ammonia formation rate in a tritium and nitrogen mixture. A rate equation that closely simulates the experimental data was developed. This rate equation can be used to calculate the formation of tritiated ammonia from different concentrations of tritium and nitrogen. The reaction of T 2 and N 2 to form NT 3 is a slow process, particularly when the tritium concentration is low. The reaction requires weeks or months to reach radiochemical equilibrium dependent on the concentrations of the reactants. 4 refs., 6 figs., 1 tab

  11. Star-formation rates in the nuclei of violently interacting galaxies

    International Nuclear Information System (INIS)

    Bushouse, H.A.

    1986-01-01

    Spectrophotometry has been obtained of the nuclear regions of a large sample of violently interacting spiral galaxies. The sample galaxies were chosen to include only those systems having tails, plumes, or other morphological features consistent with strong tidal interactions involving disk galaxies. The interacting galaxies are found to exhibit a wide range of nuclear optical emission-line strengths, but show a significantly higher overall level in both Hα emission-line equivalent width and luminosity than samples of field spirals observed in a similar fashion. While galaxy-galaxy interactions can lead to large nuclear star-formation bursts, this is not a ubiquitous phenomenon. A large fraction (approx.30%) of the nuclei show only weak or no detectable optical emission lines and are characterized by stellar absorption spectra of old, elliptical galaxy-like stellar populations, thus indicating little recent or continuing star-formation activity. These circumstances can occur even in instances where the nucleus of the other component has a large population of young stars. While exhaustion of a galaxy's gas supply during the later phases of interaction can account for post-burst systems, it cannot explain systems that have experienced no significant star-formation activity throughout the entire interaction process. Seyfert and low-ionization nuclei also are rare in violently interacting systems which, coupled with the large number of nuclei found to have little star-formation activity, suggests either an initial lack of near-nuclear gas or that gas is present but in inappropriate forms to support star formation or fuel nuclear activity

  12. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.

  13. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    Science.gov (United States)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  14. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic

    International Nuclear Information System (INIS)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D.

    2011-01-01

    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  15. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    Science.gov (United States)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  16. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    Science.gov (United States)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  17. Impacts of glycolate and formate radiolysis and thermolysis on hydrogen generation rate calculations for the Savannah River Site tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-14

    Savannah River Remediation (SRR) personnel requested that the Savannah River National Laboratory (SRNL) evaluate available data and determine its applicability to defining the impact of planned glycolate anion additions to Savannah River Site (SRS) High Level Waste (HLW) on Tank Farm flammability (primarily with regard to H2 production). Flammability evaluations of formate anion, which is already present in SRS waste, were also needed. This report describes the impacts of glycolate and formate radiolysis and thermolysis on Hydrogen Generation Rate (HGR) calculations for the SRS Tank Farm.

  18. Comparison of star formation rates from Hα and infrared luminosity as seen by Herschel

    Science.gov (United States)

    Domínguez Sánchez, H.; Mignoli, M.; Pozzi, F.; Calura, F.; Cimatti, A.; Gruppioni, C.; Cepa, J.; Sánchez Portal, M.; Zamorani, G.; Berta, S.; Elbaz, D.; Le Floc'h, E.; Granato, G. L.; Lutz, D.; Maiolino, R.; Matteucci, F.; Nair, P.; Nordon, R.; Pozzetti, L.; Silva, L.; Silverman, J.; Wuyts, S.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Magnelli, B.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Riguccini, L.; Tanaka, M.; Tasca, L. A. M.; Tresse, L.; Vergani, D.; Zucca, E.

    2012-10-01

    We empirically MD test the relation between the SFR(LIR) derived from the infrared luminosity, LIR, and the SFR(Hα) derived from the Hα emission line luminosity using simple conversion relations. We use a sample of 474 galaxies at z = 0.06-0.46 with both Hα detection [from 20k redshift Cosmological Evolution (zCOSMOS) survey] and new far-IR Herschel data (100 and 160 μm). We derive SFR(Hα) from the Hα extinction corrected emission line luminosity. We find a very clear trend between E(B - V) and LIR that allows us to estimate extinction values for each galaxy even if the Hβ emission line measurement is not reliable. We calculate the LIR by integrating from 8 up to 1000 μm the spectral energy distribution (SED) that is best fitting our data. We compare the SFR(Hα) with the SFR(LIR). We find a very good agreement between the two star formation rate (SFR) estimates, with a slope of m = 1.01 ± 0.03 in the log SFR(LIR) versus log SFR(Hα) diagram, a normalization constant of a = -0.08 ± 0.03 and a dispersion of σ = 0.28 dex. We study the effect of some intrinsic properties of the galaxies in the SFR(LIR)-SFR(Hα) relation, such as the redshift, the mass, the specific star formation rate (SSFR) or the metallicity. The metallicity is the parameter that affects most the SFR comparison. The mean ratio of the two SFR estimators log[SFR(LIR)/SFR(Hα)] varies by ˜0.6 dex from metal-poor to metal-rich galaxies [8.1 statistics of this sub-sample. Herschel is a European Space Agency (ESA) space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  20. Sill intrusion driven fluid flow and vent formation in volcanic basins: Modeling rates of volatile release and paleoclimate effects

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel

    2016-04-01

    Evidence of mass extinction events in conjunction with climate change occur throughout the geological record and may be accompanied by pronounced negative carbon isotope excursions. The processes that trigger such globally destructive changes are still under considerable debate. These include mechanisms such as poisoning from trace metals released during large volcanic eruptions (Vogt, 1972), CO2 released from lava degassing during the formation of Large Igneous Provinces (LIPs) (Courtillot and Renne, 2003) and CH4 release during the destabilization of sub-seafloor methane (Dickens et al., 1995), to name a few. Thermogenic methane derived from contact metamorphism associated with magma emplacement and cooling in sedimentary basins has been recently gaining considerable attention as a potential mechanism that may have triggered global climate events in the past (e.g. Svensen and Jamtveit, 2010). The discovery of hydrothermal vent complexes that are spatially associated with such basins also supports the discharge of greenhouse gases into the atmosphere (e.g. Jamtveit et al., 2004; Planke et al., 2005; Svensen et al., 2006). A previous study that investigated this process using a fluid flow model (Iyer et al., 2013) suggested that although hydrothermal plume formation resulting from sill emplacement may indeed release large quantities of methane at the surface, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales observed in the fossil record. Here, we reinvestigate the rates of gas release during sill emplacement in a case study from the Harstad Basin off-shore Norway with a special emphasis on vent formation. The presented study is based on a seismic line that crosses multiple sill structures emplaced around 55 Ma within the Lower Cretaceous sediments. A single well-defined vent complex is interpreted above the termination of the

  1. A model for prediction of fume formation rate in gas metal arc welding (GMAW), globular and spray modes, DC electrode positive.

    Science.gov (United States)

    Dennis, J H; Hewitt, P J; Redding, C A; Workman, A D

    2001-03-01

    Prediction of fume formation rate during metal arc welding and the composition of the fume are of interest to occupational hygienists concerned with risk assessment and to manufacturers of welding consumables. A model for GMAW (DC electrode positive) is described based on the welder determined process parameters (current, wire feed rate and wire composition), on the surface area of molten metal in the arc and on the partial vapour pressures of the component metals of the alloy wire. The model is applicable to globular and spray welding transfer modes but not to dip mode. Metal evaporation from a droplet is evaluated for short time increments and total evaporation obtained by summation over the life of the droplet. The contribution of fume derived from the weld pool and spatter (particles of metal ejected from the arc) is discussed, as are limitations of the model. Calculated droplet temperatures are similar to values determined by other workers. A degree of relationship between predicted and measured fume formation rates is demonstrated but the model does not at this stage provide a reliable predictive tool.

  2. SCUSS u- BAND EMISSION AS A STAR-FORMATION-RATE INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhimin; Zhou, Xu; Wu, Hong; Fan, Zhou; Jiang, Zhao-Ji; Ma, Jun; Nie, Jun-Dan; Wang, Jia-Li; Wu, Zhen-Yu; Zhang, Tian-Meng; Zou, Hu [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Fan, Xiao-Hui; Lesser, Michael [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Jing, Yi-Peng [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Cheng; Shen, Shi-Yin [Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai 200030 (China); Jiang, Lin-Hua, E-mail: zmzhou@bao.ac.cn [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-01-20

    We present and analyze the possibility of using optical u- band luminosities to estimate star-formation rates (SFRs) of galaxies based on the data from the South Galactic Cap u band Sky Survey (SCUSS), which provides a deep u -band photometric survey covering about 5000 deg{sup 2} of the South Galactic Cap. Based on two samples of normal star-forming galaxies selected by the BPT diagram, we explore the correlations between u -band, H α , and IR luminosities by combing SCUSS data with the Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer ( WISE ). The attenuation-corrected u -band luminosities are tightly correlated with the Balmer decrement-corrected H α luminosities with an rms scatter of ∼0.17 dex. The IR-corrected u luminosities are derived based on the correlations between the attenuation of u- band luminosities and WISE 12 (or 22) μ m luminosities, and then calibrated with the Balmer-corrected H α luminosities. The systematic residuals of these calibrations are tested against the physical properties over the ranges covered by our sample objects. We find that the best-fitting nonlinear relations are better than the linear ones and recommended to be applied in the measurement of SFRs. The systematic deviations mainly come from the pollution of old stellar population and the effect of dust extinction; therefore, a more detailed analysis is needed in future work.

  3. 100 μm and 160 μm emission as resolved star-formation rate estimators in M 33 (HERM33ES)

    NARCIS (Netherlands)

    Boquien, M.; Calzetti, D.; Kramer, C.; Xilouris, E. M.; Bertoldi, F.; Braine, J.; Buchbender, C.; Combes, F.; Israel, F.; Koribalski, B.; Lord, S.; Quintana-Lacaci, G.; Relano, M.; Roellig, M.; Stacey, G.; Tabatabaei, F. S.; Tilanus, R.P.J.; van der Tak, F.; Verley, S.; van der Werf, Paul P.

    Context. Over the past few years several studies have provided estimates of the SFR (star-formation rate) or the total infrared luminosity from just one infrared band. However these relations are generally derived for entire galaxies, which are known to contain a large scale diffuse emission that is

  4. Thermal and electrodynamical formation mechanisms of overloaded AC states and charging rate influence on their stable dynamics

    International Nuclear Information System (INIS)

    Romanovskii, V.; Watanabe, K.; Awaji, S.

    2013-01-01

    Highlights: •Overloaded AC states are investigated to understand the mechanisms of there formation. •There exist characteristic time windows defining the existence of stable overloaded AC states. •Limiting values of the electric field, current and temperature are higher than the quench ones. -- Abstract: The macroscopic thermal and electrodynamical phenomena occurring in high-T c superconductors during overloaded AC states are theoretically investigated to understand the basic physical mechanisms, which are characteristic for the stable formation of the operating modes when the peak current exceeds the critical current of a superconductor during AC modes. It is shown that there exist characteristic time windows defining the existence of stable overloaded AC states. They identify the stability boundary of the overloaded AC states. Therefore, there is the maximum allowable value of a peak current of stable overloaded AC regimes at the given charging rate, cooling conditions and properties of a superconductor and a matrix. The results obtained prove that the limiting peak current is higher than the corresponding quench current defining the stability margin of DC states. It monotonically increases with the charging rate. Besides, in the stable overloaded AC states, the peak values of the electric field and temperature may be also noticeably higher than the corresponding quench values. They depend on the peak current and charging rate at the given cooling conditions. As a result, high-T c superconducting tapes can stably work under intensive AC modes without instability onset when the peak of applied currents may significantly exceed not only the critical current but also the corresponding values of DC-quench currents

  5. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.

  6. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    International Nuclear Information System (INIS)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.; Gallagher, S. C.; Johnson, K. E.; Reines, A. E.; Gronwall, C.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby ( -1 ) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000 A) photometry to estimate the dust-unobscured component, SFR UV , of the total star formation rate, SFR TOTAL . We use Spitzer MIPS 24 μm photometry to estimate SFR IR , the component of SFR TOTAL that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR TOTAL estimates for all HCG galaxies. We obtain total stellar mass, M * , estimates by means of Two Micron All Sky Survey K s -band luminosities, and use them to calculate specific star formation rates, SSFR ≡ SFR TOTAL /M * . SSFR values show a clear and significant bimodality, with a gap between low (∼ -11 yr -1 ) and high-SSFR (∼>1.2 x 10 -10 yr -1 ) systems. We compare this bimodality to the previously discovered bimodality in α IRAC , the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 μm data for these galaxies. We find that all galaxies with α IRAC ≤ 0 ( >0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and α IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total

  7. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  8. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    Science.gov (United States)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  9. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  10. Nonequivalence of maternal centrosomes/centrioles in starfish oocytes: selective casting-off of reproductive centrioles into polar bodies.

    Science.gov (United States)

    Uetake, Yumi; Kato, Koichi H; Washitani-Nemoto, Setsuko; Nemoto Si, Shin-ichi

    2002-07-01

    It is believed that in most animals only the paternal centrosome provides the division poles for mitosis in zygotes. This paternal inheritance of the centrosomes depends on the selective loss of the maternal centrosome. In order to understand the mechanism of centrosome inheritance, the behavior of all maternal centrosomes/centrioles was investigated throughout the meiotic and mitotic cycles by using starfish eggs that had polar body (PB) formation suppressed. In starfish oocytes, the centrioles do not duplicate during meiosis II. Hence, each centrosome of the meiosis II spindle has only one centriole, whereas in meiosis I, each has a pair of centrioles. When two pairs of meiosis I centrioles were retained in the cytoplasm of oocytes by complete suppression of PB extrusion, they separated into four single centrioles in meiosis II. However, after completion of the meiotic process, only two of the four single centrioles were found in addition to the pronucleus. When the two single centrioles of a meiosis II spindle were retained in the oocyte cytoplasm by suppressing the extrusion of the second PB, only one centriole was found with the pronucleus after the completion of the meiotic process. When these PB-suppressed eggs were artificially activated to drive the mitotic cycles, all the surviving single centrioles duplicated repeatedly to form pairs of centrioles, which could organize mitotic spindles. These results indicate that the maternal centrioles are not equivalent in their intrinsic stability and reproductive capacity. The centrosomes with the reproductive centrioles are selectively cast off into the PBs, resulting in the mature egg inheriting a nonreproductive centriole, which would degrade shortly after the completion of meiosis. (c) 2002 Elsevier Science (USA).

  11. Star formation in the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Leichenauer, Stefan

    2009-01-01

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  12. THE CALIBRATION OF MONOCHROMATIC FAR-INFRARED STAR FORMATION RATE INDICATORS

    International Nuclear Information System (INIS)

    Calzetti, D.; Wu, S.-Y.; Hong, S.; Kennicutt, R. C.; Hao, C.-N.; Begum, A.; Johnson, B.; Lee, J. C.; Dale, D. A.; Engelbracht, C. W.; Block, M.; Van Zee, L.; Draine, B. T.; Gordon, K. D.; Regan, M.; Moustakas, J.; Murphy, E. J.; Dalcanton, J.; Funes, J.; Gil de Paz, A.

    2010-01-01

    Spitzer data at 24, 70, and 160 μm and ground-based Hα images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 μm. We compare recently published recipes for SFR measures using combinations of the 24 μm and observed Hα luminosities with those using 24 μm luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 μm and 160 μm luminosity are found for L(70) ∼> 1.4 x 10 42 erg s -1 and L(160) ∼> 2 x 10 42 erg s -1 , corresponding to SFR ∼> 0.1-0.3 M sun yr -1 , and calibrations of SFRs based on L(70) and L(160) are proposed. Below those two luminosity limits, the relation between SFR and 70 μm (160 μm) luminosity is nonlinear and SFR calibrations become problematic. A more important limitation is the dispersion of the data around the mean trend, which increases for increasing wavelength. The scatter of the 70 μm (160 μm) data around the mean is about 25% (factor ∼2) larger than the scatter of the 24 μm data. We interpret this increasing dispersion as an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. Thus, the 70 (160) μm luminosity can be reliably used to trace SFRs in large galaxy samples, but will be of limited utility for individual objects, with the exception of infrared-dominated galaxies. The nonlinear relation between SFR and the 70 and 160 μm emission at faint galaxy luminosities suggests a variety of mechanisms affecting the infrared emission for decreasing luminosity, such as increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star-forming regions across the galaxy. In all cases, the calibrations hold

  13. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun; Khaled, Fathi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-01-01

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  14. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  15. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  16. Hα star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-01-01

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M * < 10.0 M ☉ ). We therefore conclude that environmental effects are still important at 1.0

  17. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  18. Cross section for calculating the helium formation rate in construction materials irradiated by nucleons at energies to 800 MeV

    International Nuclear Information System (INIS)

    Konobeev, A.Yu.; Korovin, Yu.A.

    1992-01-01

    Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections

  19. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  20. Evaluation of Electronic Formats of the NASA Task Load Index

    Science.gov (United States)

    Trujillo, Anna C.

    2011-01-01

    Paper questionnaires are being replaced by electronic questionnaires. The primary objective of this research was to determine whether electronic formats of paper questionnaires change subjects ratings and, if so, how the ratings changed. Results indicated that there were no statistically significant differences in self-assessment of workload when using the electronic replica or the paper format of the NASA-TLX scale. Variations of the electronic formats were tested to enforce structure to the TLX scale. Respondents had more consistent ratings with these alternative formats of the NASA-TLX. Non-pilots, in general, had lower workload ratings than pilots. The time to input the rating was the fastest for the electronic facsimile and random title formats. Also subjects preferred the electronic formats and thought these formats were easier to use. Therefore, moving questionnaires from paper to electronic media could change respondents' answers.

  1. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described.

  2. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    International Nuclear Information System (INIS)

    McHugh, K.M.; Lin, Y.; Zhou, Y.; Lavernia, E.J.

    2008-01-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described

  3. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE

    International Nuclear Information System (INIS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  4. On the formation of sulphuric acid – amine clusters in varying atmospheric conditions and its influence on atmospheric new particle formation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-10-01

    Full Text Available Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2 at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4], dimethylamine ([DMA] and trimethylamine ([TMA], temperature and relative humidity (RH. We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both had

  5. The Ultraviolet and Infrared Star Formation Rates of Compact Group Galaxies: An Expanded Sample

    Science.gov (United States)

    Lenkic, Laura; Tzanavaris, Panayiotis; Gallagher, Sarah C.; Desjardins, Tyler D.; Walker, Lisa May; Johnson, Kelsey E.; Fedotov, Konstantin; Charlton, Jane; Cardiff, Ann H.; Durell, Pat R.

    2016-01-01

    Compact groups of galaxies provide insight into the role of low-mass, dense environments in galaxy evolution because the low velocity dispersions and close proximity of galaxy members result in frequent interactions that take place over extended time-scales. We expand the census of star formation in compact group galaxies by Tzanavaris et al. (2010) and collaborators with Swift UVOT, Spitzer IRAC and MIPS 24 m photometry of a sample of 183 galaxies in 46 compact groups. After correcting luminosities for the contribution from old stellar populations, we estimate the dust-unobscured star formation rate (SFRUV) using the UVOT uvw2 photometry. Similarly, we use the MIPS 24 m photometry to estimate the component of the SFR that is obscured by dust (SFRIR). We find that galaxies which are MIR-active (MIR-red), also have bluer UV colours, higher specific SFRs, and tend to lie in Hi-rich groups, while galaxies that are MIR-inactive (MIR-blue) have redder UV colours, lower specific SFRs, and tend to lie in Hi-poor groups. We find the SFRs to be continuously distributed with a peak at about 1 M yr1, indicating this might be the most common value in compact groups. In contrast, the specific SFR distribution is bimodal, and there is a clear distinction between star-forming and quiescent galaxies. Overall, our results suggest that the specific SFR is the best tracer of gas depletion and galaxy evolution in compact groups.

  6. Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Azat Akbal

    2016-01-01

    Full Text Available Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum, quince (Cydonia oblonga, chestnut (Castanea sativa, fig (Ficus carica, walnut (Juglans cinerea, black mulberry (Morus nigra, and white mulberry (Morus alba leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422 nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively.

  7. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    Science.gov (United States)

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  8. Regularities in structure formation of magnesium-yttrium alloy of Mg-Y-Mn-Cd system in relation to temperature and hot working rate

    International Nuclear Information System (INIS)

    Ovechkin, B.I.; Miklina, N.V.; Blokhin, N.N.; Sorokin, A.F.

    1981-01-01

    Problems of the structure formation of magnesium-yttrium alloy of Mg-G-Mn-Cd system with 7.8 % G in a wide range of temperature-rate parameters of hot working are studied. On the basis of X-ray analysis results ascertained with metallographic and electron microscopic investigations, a diagram of structural states after hot working of Mg-G-Mn-Cd system alloy has been plotted. A change in grain size in relation to temperature-rate conditions of hot working

  9. Supernova Driving. IV. The Star-formation Rate of Molecular Clouds

    Science.gov (United States)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke; Frimann, Søren

    2017-05-01

    We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range of cloud physical parameters with realistic statistical distributions, which is an unprecedented sample of star-forming regions to test SFR models and to interpret observational surveys. We confirm the dependence of the SFR per free-fall time, SFRff, on the virial parameter, α vir, found in previous simulations, and compare a revised version of our turbulent fragmentation model with the numerical results. The dependences on Mach number, { M }, gas to magnetic pressure ratio, β, and compressive to solenoidal power ratio, χ at fixed α vir are not well constrained, because of random scatter due to time and cloud-to-cloud variations in SFRff. We find that SFRff in MCs can take any value in the range of 0 ≤ SFRff ≲ 0.2, and its probability distribution peaks at a value of SFRff ≈ 0.025, consistent with observations. The values of SFRff and the scatter in the SFRff-α vir relation are consistent with recent measurements in nearby MCs and in clouds near the Galactic center. Although not explicitly modeled by the theory, the scatter is consistent with the physical assumptions of our revised model and may also result in part from a lack of statistical equilibrium of the turbulence, due to the transient nature of MCs.

  10. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.

    Science.gov (United States)

    Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé

    2017-01-15

    Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P 3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P 3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes. © 2017. Published by The Company of Biologists Ltd.

  11. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  12. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  13. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  14. Nanoinjection: pronuclear DNA delivery using a charged lance.

    Science.gov (United States)

    Aten, Quentin T; Jensen, Brian D; Tamowski, Susan; Wilson, Aubrey M; Howell, Larry L; Burnett, Sandra H

    2012-12-01

    We present a non-fluidic pronuclear injection method using a silicon microchip "nanoinjector" composed of a microelectromechanical system with a solid, electrically conductive lance. Unlike microinjection which uses fluid delivery of DNA, nanoinjection electrically accumulates DNA on the lance, the DNA-coated lance is inserted into the pronucleus, and DNA is electrically released. We compared nanoinjection and microinjection side-by-side over the course of 4 days, injecting 1,013 eggs between the two groups. Nanoinjected zygotes had significantly higher rates of integration per injected embryo, with 6.2% integration for nanoinjected embryos compared to 1.6% integration for microinjected embryos. This advantage is explained by nanoinjected zygotes' significantly higher viability in two stages of development: zygote progress to two-cell stage, and progress from two-cell stage embryos to birth. We observed that 77.6% of nanoinjected zygotes proceeded to two-cell stage compared to 54.7% of microinjected zygotes. Of the healthy two-cell stage embryos, 52.4% from the nanoinjection group and 23.9% from the microinjected group developed into pups. Structural advantages of the nanoinjector are likely to contribute to the high viability observed. For instance, because charge is used to retain and release DNA, extracellular fluid is not injected into the pronucleus and the cross-sectional area of the nanoinjection lance (0.06 µm(2)) is smaller than that of a microinjection pipette tip (0.78 µm(2)). According to results from the comparative nanoinjection versus microinjection study, we conclude that nanoinjection is a viable method of pronuclear DNA transfer which presents viability advantages over microinjection.

  15. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  16. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    Science.gov (United States)

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  17. Preservation of the Myofascial Cuff During Posterior Fossa Surgery to Reduce the Rate of Pseudomeningocele Formation and Cerebrospinal Fluid Leak: A Technical Note.

    Science.gov (United States)

    Felbaum, Daniel R; Mueller, Kyle; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M

    2016-12-28

     Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk.  A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboccipital craniectomy or craniotomy. Patient data was reviewed for craniotomy or craniectomy, dural graft, and/or sealant use as well as CSF complications. A pseudomeningocele was defined as a subcutaneous collection of cerebrospinal fluid palpable clinically and confirmed on imaging. A CSF leak was defined as a CSF-cutaneous fistula manifested by CSF leaking through the wound. All patients underwent regular postoperative visits of two weeks, one month, and three months.  Our retrospective review identified 33 patients matching the inclusion criteria. Overall, our cohort had a 21% (7/33) rate of clinical and radiographic pseudomeningocele formation with 9% (3/33) requiring surgical revision or a separate procedure. The rate of clinical and radiographic pseudomeningocele formation in the myofascial cuff preservation technique was less than standard techniques (12% and 31%, respectively). Revision or further surgical procedures were also reduced in the myofascial cuff preservation technique vs. the standard technique (6% vs 13%).  Preservation of the myofascial cuff during posterior fossa surgery is a simple and adoptable technique that reduces the rate of pseudomeningocele formation and CSF leak as compared with standard techniques.

  18. PCF File Format.

    Energy Technology Data Exchange (ETDEWEB)

    Thoreson, Gregory G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    PCF files are binary files designed to contain gamma spectra and neutron count rates from radiation sensors. It is the native format for the GAmma Detector Response and Analysis Software (GADRAS) package [1]. It can contain multiple spectra and information about each spectrum such as energy calibration. This document outlines the format of the file that would allow one to write a computer program to parse and write such files.

  19. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1991-01-01

    A DNA construct containing the human alpha 1-antitrypsin gene including 1.5 and 4 kb of 5' and 3' flanking sequences, was microinjected into the pronucleus of rabbit embryos. The recombinant human protein was (a) expressed in the blood circulation of F0 and F1 transgenic rabbits at an average

  20. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  1. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  2. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-21

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  3. MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benjamin D. [Institute d' Astrophysique de Paris, CNRS, UPMC, 98bis Bd Arago, F-75014 Paris (France); Weisz, Daniel R.; Dalcanton, Julianne J.; Johnson, L. C.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Gil de Paz, Armando [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofisica y CC. de la Atmosfera, Facultad de CC. Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lee, Janice C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Boquien, Mederic [Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)

    2013-07-20

    We use empirical star formation histories (SFHs), measured from Hubble-Space-Telescope-based resolved star color-magnitude diagrams, as input into population synthesis codes to model the broadband spectral energy distributions (SEDs) of 50 nearby dwarf galaxies (6.5 < log M{sub *}/M{sub Sun} < 8.5, with metallicities {approx}10% solar). In the presence of realistic SFHs, we compare the modeled and observed SEDs from the ultraviolet (UV) through near-infrared and assess the reliability of widely used UV-based star formation rate (SFR) indicators. In the FUV through i bands, we find that the observed and modeled SEDs are in excellent agreement. In the Spitzer 3.6 {mu}m and 4.5 {mu}m bands, we find that modeled SEDs systematically overpredict observed luminosities by up to {approx}0.2 dex, depending on treatment of the TP-AGB stars in the synthesis models. We assess the reliability of UV luminosity as a SFR indicator, in light of independently constrained SFHs. We find that fluctuations in the SFHs alone can cause factor of {approx}2 variations in the UV luminosities relative to the assumption of a constant SFH over the past 100 Myr. These variations are not strongly correlated with UV-optical colors, implying that correcting UV-based SFRs for the effects of realistic SFHs is difficult using only the broadband SED. Additionally, for this diverse sample of galaxies, we find that stars older than 100 Myr can contribute from <5%-100% of the present day UV luminosity, highlighting the challenges in defining a characteristic star formation timescale associated with UV emission. We do find a relationship between UV emission timescale and broadband UV-optical color, though it is different than predictions based on exponentially declining SFH models. Our findings have significant implications for the comparison of UV-based SFRs across low-metallicity populations with diverse SFHs.

  4. DNA synthesis and pronucleus development in pig zygotes obtained in vivo: an autoradiographic and ultrastructural study

    International Nuclear Information System (INIS)

    Laurincik, J.; Hyttel, P.; Kopecny, V.

    1995-01-01

    Porcine zygotes flushed from oviducts 48, 52, 56, 60, or 64 hr after hCG were incubated 30 min in 3H-thymidine, transferred to nonradioactive medium for 2 hr, and incubated for 30 min with 14C-thymidine. After this procedure, ova were prepared (i.e., at 51, 55, 59, 63, or 67 hr after hCG) for autoradiography and ultrastructural observations, respectively. The first autoradiographic labelling, i.e., DNA synthesis, was observed at 56-56.5 hr after hCG, while the latest labelling was seen at 60-60.5 hr. At 51 hr after hCG, formation of the pronuclear envelope was observed, while no nucleolus precursor bodies or prestages to these structures were found. At 55 hr a few clusters of small electron-dense granules were observed, together with condensed chromatin in the pronuclei. At 59 hr the apposed regions of both pronuclei contained nucleolus precursor bodies and condensed chromatin, in close contact with both clusters of small granules and clusters of an additional category of large granules and the nuclear envelope. Additionally, large accumulations of the small granules were found in the vicinity of similarly sized accumulations of the large granules without chromatin association. At 63 hr the spherical accumulations of large granules on some occasions presented a central vacuole, and condensed chromatin and clusters of small granules were attached to its periphery. Within the vacuole, electron-dense material was found

  5. The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations

    Science.gov (United States)

    Lupi, Alessandro; Bovino, Stefano; Capelo, Pedro R.; Volonteri, Marta; Silk, Joseph

    2018-03-01

    In this study, we present a suite of high-resolution numerical simulations of an isolated galaxy to test a sub-grid framework to consistently follow the formation and dissociation of H2 with non-equilibrium chemistry. The latter is solved via the package KROME, coupled to the mesh-less hydrodynamic code GIZMO. We include the effect of star formation (SF), modelled with a physically motivated prescription independent of H2, supernova feedback and mass-losses from low-mass stars, extragalactic and local stellar radiation, and dust and H2 shielding, to investigate the emergence of the observed correlation between H2 and SF rate surface densities. We present two different sub-grid models and compare them with on-the-fly radiative transfer (RT) calculations, to assess the main differences and limits of the different approaches. We also discuss a sub-grid clumping factor model to enhance the H2 formation, consistent with our SF prescription, which is crucial, at the achieved resolution, to reproduce the correlation with H2. We find that both sub-grid models perform very well relative to the RT simulation, giving comparable results, with moderate differences, but at much lower computational cost. We also find that, while the Kennicutt-Schmidt relation for the total gas is not strongly affected by the different ingredients included in the simulations, the H2-based counterpart is much more sensitive, because of the crucial role played by the dissociating radiative flux and the gas shielding.

  6. Numerical models of salt diapir formation by down-building : the role of sedimentation rate, viscosity contrast, initial amplitude and wavelength

    OpenAIRE

    Fuchs, Lukas; Schmeling, H.; Koyi, Hemin

    2011-01-01

    Formation of salt diapirs has been described to be due to upbuilding (i. e. Rayleigh-Taylor like instability of salt diapirs piercing through a denser sedimentary overburden) or syndepositional down-building process (i. e. the top of the salt diapir remains at the surface all the time). Here we systematically analyse this second end-member mechanism by numerical modelling. Four parameters are varied: sedimentation rate nu(sed), salt viscosity eta(salt), amplitude delta of the initial perturba...

  7. Effect of Ag additions on the lengthening rate of Ω plates and formation of σ phase in Al-Cu-Mg alloys during thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yaru; Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn; Bai, Song; Ying, Puyou; Lin, Lianghua

    2017-01-15

    Effect of Ag additions on the mechanical properties and microstructures of the peak-aged Al-Cu-Mg alloys during prolonged thermal exposure at 150 °C, was investigated by tensile testing, conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The results showed that after exposure for 500 h, > 85% of the peak strength remained. Microstructure observations indicated that increasing the Ag content from 0.14 to 0.57% promoted the precipitation of a fine and uniform Ω phase and suppressed the formation of the θ′ phase, leading to a notable improvement of the strength properties and thermal stability of the studied alloys. Quantitative TEM analysis showed that the coarsening of Ω phase was predominated by plate lengthening rather than thickening, while its lengthening rate was independent of various Ag additions during exposure at 150 °C. In addition, an increase of Ag also facilitated the formation of a cubic σ phase, which was further supported by STEM results. - Highlights: •Increasing Ag improved strength properties and thermal stability of the alloys. •After exposure for 500 h, > 85% of the peak strength remained. •The lengthening rate of Ω plates remained constant as Ag increased at 150 °C. •Increasing Ag content facilitated the formation of σ phase.

  8. THE IMPACT OF MASS SEGREGATION AND STAR FORMATION ON THE RATES OF GRAVITATIONAL-WAVE SOURCES FROM EXTREME MASS RATIO INSPIRALS

    Energy Technology Data Exchange (ETDEWEB)

    Aharon, Danor; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa 3200003 (Israel)

    2016-10-10

    Compact stellar objects inspiraling into massive black holes (MBHs) in galactic nuclei are some of the most promising gravitational-wave (GWs) sources for next-generation GW detectors. The rates of such extreme mass ratio inspirals (EMRIs) depend on the dynamics and distribution of compact objects (COs) around the MBH. Here, we study the impact of mass-segregation processes on EMRI rates. In particular, we provide the expected mass function (MF) of EMRIs, given an initial MF of stellar black holes (SBHs), and relate it to the mass-dependent detection rate of EMRIs. We then consider the role of star formation (SF) on the distribution of COs and its implication on EMRI rates. We find that the existence of a wide spectrum of SBH masses leads to the overall increase of EMRI rates and to high rates of the EMRIs from the most massive SBHs. However, it also leads to a relative quenching of EMRI rates from lower-mass SBHs, and together produces a steep dependence of the EMRI MF on the highest-mass SBHs. SF history plays a relatively small role in determining the EMRI rates of SBHs, since most of them migrate close to the MBH through mass segregation rather than forming in situ. However, the EMRI rate of neutron stars (NSs) can be significantly increased when they form in situ close to the MBH, as they can inspiral before relaxation processes significantly segregate them outward. A reverse but weaker effect of decreasing the EMRI rates from NSs and white dwarfs occurs when SF proceeds far from the MBH.

  9. THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 ≤ z ≤ 1.2

    International Nuclear Information System (INIS)

    Rujopakarn, Wiphu; Eisenstein, Daniel J.; Rieke, George H.; Rieke, Marcia J.; Papovich, Casey; Cool, Richard J.; Moustakas, John; Jannuzi, Buell T.; Dey, Arjun; Kochanek, Christopher S.; Eisenhardt, Peter; Murray, Steve S.; Brown, Michael J. I.; Le Floc'h, Emeric

    2010-01-01

    We present the 24 μm rest-frame luminosity function (LF) of star-forming galaxies in the redshift range 0.0 ≤ z ≤ 0.6 constructed from 4047 spectroscopic redshifts from the AGN and Galaxy Evolution Survey of 24 μm selected sources in the Booetes field of the NOAO Deep Wide-Field Survey. This sample provides the best available combination of large area (9 deg 2 ), depth, and statistically complete spectroscopic observations, allowing us to probe the evolution of the 24 μm LF of galaxies at low and intermediate redshifts while minimizing the effects of cosmic variance. In order to use the observed 24 μm luminosity as a tracer for star formation, active galactic nuclei (AGNs) that could contribute significantly at 24 μm are identified and excluded from our star-forming galaxy sample based on their mid-IR spectral energy distributions or the detection of X-ray emission. Optical emission line diagnostics are considered for AGN identification, but we find that 24 μm emission from optically selected AGNs is usually from star-forming activity and therefore should not be excluded. The evolution of the 24 μm LF of star-forming galaxies for redshifts of z ≤ 0.65 is consistent with a pure luminosity evolution where the characteristic 24 μm luminosity evolves as (1 + z) 3.8±0.3 . We extend our evolutionary study to encompass 0.0 ≤ z ≤ 1.2 by combining our data with that of the Far-Infrared Deep Extragalactic Legacy Survey. Over this entire redshift range, the evolution of the characteristic 24 μm luminosity is described by a slightly shallower power law of (1 + z) 3.4±0.2 . We find a local star formation rate density of (1.09 ± 0.21) x 10 -2 M sun yr -1 Mpc -3 , and that it evolves as (1 + z) 3.5±0.2 over 0.0 ≤ z ≤ 1.2. These estimates are in good agreement with the rates using optical and UV fluxes corrected for the effects of intrinsic extinction in the observed sources. This agreement confirms that star formation at z ∼< 1.2 is robustly traced by

  10. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, A. J.; Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Johnson, B. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Elbaz, D., E-mail: abattist@astro.umass.edu [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu, CNRS, Université Paris Diderot, Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France)

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.

  11. Thermal dehydration of cobalt and zinc formate dihydrates by controlled-rate thermogravimetry (CRTG) and simultaneous X-ray diffractometry-differential scanning calorimetry (XRD-DSC)

    International Nuclear Information System (INIS)

    Arii, T.; Kishi, A.

    1999-01-01

    The thermal dehydration study of the similar hydrated salts, cobalt and zinc formate dihydrates, have been carried out successfully by means of X-ray diffractometry-differential scanning calorimetry (XRD-DSC) and controlled-rate thermogravimetry (CRTG). X-ray diffraction analysis recorded simultaneously indicates that the resulting anhydrous product, Zn(HCO 2 ) 2 , was crystalline, while Co(HCO 2 ) 2 was amorphous.The XRD-DSC data are proven to be invaluable in verifying the interpretation of overlapping processes in thermal events. In addition, these differences in the resulting anhydrous products can be explained from kinetic analysis results based on the CRTG data. The kinetic mechanism governing the dehydration of zinc formate dihydrate is a nucleation and growth process, while in the case of cobalt formate dihydrate a phase boundary controlled reaction is the governing mechanism. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Dental calculus formation in children and adolescents undergoing hemodialysis.

    Science.gov (United States)

    Martins, Carla; Siqueira, Walter Luiz; Oliveira, Elizabeth; Nicolau, José; Primo, Laura Guimarães

    2012-10-01

    This study aimed to determine whether dental calculus formation is really higher among patients with chronic kidney disease undergoing hemodialysis than among controls. Furthermore, the study evaluated correlations between dental calculus formation and dental plaque, variables that are related to renal disease and/or saliva composition. The Renal Group was composed of 30 patients undergoing hemodialysis, whereas the Healthy Group had 30 clinically healthy patients. Stimulated whole saliva and parotid saliva were collected. Salivary flow rate and calcium and phosphate concentrations were determined. In the Renal Group the saliva collection was carried out before and after a hemodialysis session. Patients from both groups received intraoral exams, oral hygiene instructions, and dental scaling. Three months later, the dental calculus was measured by the Volpe-Manhold method to determine the rate of dental calculus formation. The Renal Group presented a higher rate of dental calculus formation (p dental calculus formation and whole saliva flow rate in the Renal Group after a hemodialysis session (r = 0.44, p dental calculus was associated with phosphate concentration in whole saliva from the Renal Group (p dental calculus formation, probably due to salivary variables.

  13. [METHODOLOGY FOR THE ASSESSMENT OF THE IMPACT OF THE ATMOSPHERIC AIR POLLUTION ON THE FORMATION OF THE LEVELS OF OVERALL MORBIDITY RATE OF BRONCHIAL ASTHMA].

    Science.gov (United States)

    Veremchuk, L V; Cherpack, N A; Gvozdenko, T A; Volkova, M V

    2015-01-01

    In large cities with strong air pollution the formation of the levels of morbidity rate of bronchial asthma has a complex causation that requires the search for informative methods for identification of causes and consequences of this dependence. Method for the assessment of the dependence of overall levels of morbidity rate of bronchial asthma on the degree of air pollution allows you to select a "useful information" of the direct impact of air pollution on a background of random processes and latent relationship between human and environment. The use of the method of the information entropy analysis allowed us to estimate the total and the individual contribution of the separate components of air pollution on the formation of levels of total morbidity rate of bronchial asthma in the population of the city of Vladivostok. Levels of total incidence of this pathology were established to differ in various age groups. The adult population is more adapted to air pollution, but retains a high sensitivity to the impact of nitrogen dioxide. Levels of overall l morbidity rate of bronchial asthma in children and adolescents depend on the total air pollution with some dominance of the influence of suspended matter and carbon monoxide.

  14. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  15. EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z  = 4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Intae; Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Song, Mimi; Straughn, Amber N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Dickinson, Mark [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M.; Ryan, Russell E. Jr.; Salmon, Brett [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontana, Adriano [INAF—Osservatorio Astronomico di Roma, via di Frascati 33, I-00040, Monte Porzio Catone (Italy); Lu, Yu [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Papovich, Casey, E-mail: itjung@astro.as.utexas.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe ( z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z  = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K -band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z  ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  16. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  17. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  18. Gas formation in ILW and HLW repositories, evaluation and modelling of the production rates and consequences on the safety of the repository

    International Nuclear Information System (INIS)

    Besnus, F.

    1990-01-01

    This paper summarizes the main gas formation mechanisms in deep radioactive waste repositories. Production rates and overall gas volumes were estimated and showed predominance of hydrogen production by anoxic corrosion and radiolysis for French wastes. Gas evolution in the near field has been modeled. First results issued from a sensitivity analysis showed desaturation of the storage cavities for a wide range of parameter values

  19. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  20. Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage

    International Nuclear Information System (INIS)

    Huang Shan; Zhou Lixiang

    2012-01-01

    During the processes of secondary iron hydroxysulfate mineral formation, Fe 2+ ion was oxidized by the following three methods: (1) biooxidation treatment by Acidithiobacillus ferrooxidans (A. ferrooxidans); (2) rapid abiotic oxidation of Fe 2+ with H 2 O 2 (rapid oxidation treatment); (3) slow abiotic oxidation of Fe 2+ with H 2 O 2 (slow oxidation treatment). X-ray diffraction (XRD) patterns, element composition, precipitate weight and total Fe removal efficiency were analyzed. The XRD patterns and element composition of precipitates synthesized through the biooxidation and the slow oxidation treatments well coincide with those of potassium jarosite, while precipitates formed at the initial stage of incubation in the rapid oxidation treatment showed a similar XRD pattern to schwertmannite. With the ongoing incubation, XRD patterns and element composition of the precipitates that occurred in the rapid oxidation treatment were gradually close to those in the biooxidation and the slow oxidation treatments. Due to the inhibition of A. ferrooxidans itself and its extracellular polymeric substances (EPS) in aggregation of precipitates, the amount of precipitates and soluble Fe removal efficiency were lower in the biooxidation treatment than in the slow oxidation treatment. Therefore, it is concluded that Fe 2+ oxidation rate can greatly affect the mineral phase of precipitates, and slow oxidation of Fe 2+ is helpful in improving jarosite formation. - Highlights: ► Slow oxidation of Fe 2+ is helpful in jarosite formation. ► The already-formed schwertmannite can be gradually transformed to jarosite. ► Precipitates formation can be inhibited probably by EPS from A. ferrooxidans.

  1. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    International Nuclear Information System (INIS)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Blanc, G. A.

    2017-01-01

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff ) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  2. Separate Ways: The Mass-Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Sánchez, S. F.; Heckman, T.; Blanc, G. A.; The MaNGA Team

    2017-07-01

    We present the integrated stellar mass-metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R eff) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  3. Separate Ways: The Mass–Metallicity Relation Does Not Strongly Correlate with Star Formation Rate in SDSS-IV MaNGA Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Ballesteros, J. K.; Heckman, T. [Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218 (United States); Sánchez, S. F. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510 México, D.F., México (Mexico); Blanc, G. A., E-mail: jbarrer3@jhu.edu [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Collaboration: MaNGA Team

    2017-07-20

    We present the integrated stellar mass–metallicity relation (MZR) for more than 1700 galaxies included in the integral field area SDSS-IV MaNGA survey. The spatially resolved data allow us to determine the metallicity at the same physical scale (effective radius, R {sub eff}) using a heterogeneous set of 10 abundance calibrators. In addition to scale factors, the shape of the MZR is similar for all calibrators, consistent with those reported previously using single-fiber and integral field spectroscopy. We compare the residuals of this relation against the star formation rate (SFR) and specific SFR (sSFR). We do not find a strong secondary relation of the MZR with either SFR or sSFR for any of the calibrators, in contrast with previous single-fiber spectroscopic studies. Our results agree with a scenario in which metal enrichment happens at local scales, with global outflows playing a secondary role in shaping the chemistry of galaxies and cold-gas inflows regulating the stellar formation.

  4. Rocky Planet Formation: Quick and Neat

    Science.gov (United States)

    Kenyon, Scott J.; Najita, Joan R.; Bromley, Benjamin C.

    2016-11-01

    We reconsider the commonly held assumption that warm debris disks are tracers of terrestrial planet formation. The high occurrence rate inferred for Earth-mass planets around mature solar-type stars based on exoplanet surveys (˜20%) stands in stark contrast to the low incidence rate (≤2%-3%) of warm dusty debris around solar-type stars during the expected epoch of terrestrial planet assembly (˜10 Myr). If Earth-mass planets at au distances are a common outcome of the planet formation process, this discrepancy suggests that rocky planet formation occurs more quickly and/or is much neater than traditionally believed, leaving behind little in the way of a dust signature. Alternatively, the incidence rate of terrestrial planets has been overestimated, or some previously unrecognized physical mechanism removes warm dust efficiently from the terrestrial planet region. A promising removal mechanism is gas drag in a residual gaseous disk with a surface density ≳10-5 of the minimum-mass solar nebula.

  5. THE BURSTY STAR FORMATION HISTORIES OF LOW-MASS GALAXIES AT 0.4 < z < 1 REVEALED BY STAR FORMATION RATES MEASURED FROM H β AND FUV

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yicheng; Faber, S. M.; Koo, David C.; Krumholz, Mark R.; Barro, Guillermo; Yesuf, Hassen [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Rafelski, Marc; Gardner, Jonathan P.; Pacifici, Camilla [Goddard Space Flight Center, Code 665, Greenbelt, MD (United States); Trump, Jonathan R. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Amorín, Ricardo [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, Marseille (France); Koekemoer, Anton M.; Ravindranath, Swara [Space Telescope Science Institute, Baltimore, MD (United States); Pérez-González, Pablo G. [Departamento de Astrofísica, Facultad de CC. Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Reddy, Naveen [Department of Physics and Astronomy, University of California, Riverside, CA (United States); Teplitz, Harry I., E-mail: ycguo@ucolick.org [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States)

    2016-12-10

    We investigate the burstiness of star formation histories (SFHs) of galaxies at 0.4 <  z  < 1 by using the ratio of star formation rates (SFRs) measured from H β and FUV (1500 Å) (H β -to-FUV ratio). Our sample contains 164 galaxies down to stellar mass ( M {sub *}) of 10{sup 8.5} M {sub ⊙} in the CANDELS GOODS-N region, where Team Keck Redshift Survey Keck/DEIMOS spectroscopy and Hubble Space Telescope /WFC3 F275W images from CANDELS and Hubble Deep UV Legacy Survey are available. When the ratio of H β - and FUV-derived SFRs is measured, dust extinction correction is negligible (except for very dusty galaxies) with the Calzetti attenuation curve. The H β -to-FUV ratio of our sample increases with M {sub *} and SFR. The median ratio is ∼0.7 at M {sub *} ∼ 10{sup 8.5} M {sub ⊙} (or SFR ∼ 0.5 M {sub ⊙} yr{sup −1}) and increases to ∼1 at M {sub *} ∼ 10{sup 10} M {sub ⊙} (or SFR ∼ 10 M {sub ⊙} yr{sup −1}). At M {sub *} < 10{sup 9.5} M {sub ⊙}, our median H β -to-FUV ratio is lower than that of local galaxies at the same M {sub *}, implying a redshift evolution. Bursty SFH on a timescale of a few tens of megayears on galactic scales provides a plausible explanation for our results, and the importance of the burstiness increases as M {sub *} decreases. Due to sample selection effects, our H β -to-FUV ratio may be an upper limit of the true value of a complete sample, which strengthens our conclusions. Other models, e.g., non-universal initial mass function or stochastic star formation on star cluster scales, are unable to plausibly explain our results.

  6. Verification of Radicals Formation in Ethanol-Water Mixture Based Solution Plasma and Their Relation to the Rate of Reaction.

    Science.gov (United States)

    Sudare, Tomohito; Ueno, Tomonaga; Watthanaphanit, Anyarat; Saito, Nagahiro

    2015-12-03

    Our previous research demonstrated that using ethanol-water mixture as a liquid medium for the synthesis of gold nanoparticles by the solution plasma process (SPP) could lead to an increment of the reaction rate of ∼35.2 times faster than that in pure water. This drastic change was observed when a small amount of ethanol, that is, at an ethanol mole fraction (χethanol) of 0.089, was added in the system. After this composition, the reaction rate decreased continuously. To better understand what happens in the ethanol-water mixture-based SPP, in this study, effect of the ethanol content on the radical formation in the system was verified. We focused on detecting the magnetic resonance of electronic spins using electron spin resonance spectroscopy to determine the type and quantity of the generated radicals at each χethanol. Results indicated that ethanol radicals were generated in the ethanol-water mixtures and exhibited maximum quantity at the xethanol of 0.089. Relationship between the ethanol radical yield and the rate of reaction, along with possible mechanism responsible for the observed phenomenon, is discussed in this paper.

  7. Investigation concerning the relative formation rate and half-life time of short-lived nuclides with a fast conveyor tube system

    International Nuclear Information System (INIS)

    Kreiner, H.J.

    1976-01-01

    Since the installation of the 'Ultrafast Rabbit System' at the FRN in end of 1974, some research was started concerning the possibility of neutron activation analysis of short-lived nuclides (0.02 1/2 < 1 s) and measurements of short-lived fission products of U-235 and Pu-239. One of the results of the investigations is a more exact gamma-energy determination of the 0.8 s Cl-38m with 671.33 keV. In NAA it was possible to reach a sensitivity for lead and boron near 2 μg per sample respectively 10 ppm. In measurements of light fission products 0.1 - 8s after a pulse irradiation some differences of the relative formation rate and half-life in the region of A approximately 100 were found in comparison to literature. For example a strong build-up could be seen measuring the gamma-energy of 276.1 keV that belongs to Nb-101. Therefore we suppose the existence of an isomeric state of Nb-101. In comparison to our own results of yield ratio of the Pu- and U-fission products a good agreement with known data was found. Furthermore the measuring method gives the possibility of coordination of unknown gamma-lines to nuclides using the rate of formation, the half-life, the yield ratio between U and Pu and the build-up factor. That could be verified in some cases, e.g. Nb-103 and Sr-96. (author)

  8. THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others

    2012-02-01

    We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations

  9. Solid formation in piperazine rate-based simulation

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Thomsen, Kaj; von Solms, Nicolas

    2014-01-01

    of view but also from a modeling perspective. The present work develops a rate-based model for CO2 absorption and desorption modeling for gas-liquid-solid systems and it is demonstrated for the piperazine CO2 capture process. This model is an extension of the DTU CAPCO2 model to precipitating systems....... It uses the extended UNIQUAC thermodynamic model for phase equilibria and thermal properties estimation. The mass and heat transfer phenomena is implemented in a film model approach, based on second order reactions kinetics. The transfer fluxes are calculated using the concentration of the dissolved...

  10. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  11. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  12. Percolation transport theory and relevance to soil formation, vegetation growth, and productivity

    Science.gov (United States)

    Hunt, A. G.; Ghanbarian, B.

    2016-12-01

    Scaling laws of percolation theory have been applied to generate the time dependence of vegetation growth rates (both intensively managed and natural) and soil formation rates. The soil depth is thus equal to the solute vertical transport distance, the soil production function, chemical weathering rates, and C and N storage rates are all given by the time derivative of the soil depth. Approximate numerical coefficients based on the maximum flow rates in soils have been proposed, leading to a broad understanding of such processes. What is now required is an accurate understanding of the variability of the coefficients in the scaling relationships. The present abstract focuses on the scaling relationship for solute transport and soil formation. A soil formation rate relates length, x, and time, t, scales, meaning that the missing coefficient must include information about fundamental space and time scales, x0 and t0. x0 is proposed to be a fundamental mineral heterogeneity scale, i.e. a median particle diameter. to is then found from the ratio of x0 and a fundamental flow rate, v0, which is identified with the net infiltration rate. The net infiltration rate is equal to precipitation P less evapotranspiration, ET, plus run-on less run-off. Using this hypothesis, it is possible to predict soil depths and formation rates as functions of time and P - ET, and the formation rate as a function of depth, soil calcic and gypsic horizon depths as functions of P-ET. It is also possible to determine when soils are in equilibrium, and predict relationships of erosion rates and soil formation rates.

  13. The Epoch of Disk Formation: z is Approximately l to Today

    Science.gov (United States)

    Kassin, Susan; Gardner, Jonathan; Weiner, Ben; Faber, Sandra

    2012-01-01

    We present data on galaxy kinematics, morphologies, and star-formation rates over 0.1 less than z less than 1.2 for approximately 500 blue galaxies. These data show how systems like our own Milky-Way have come into being. At redshifts around 1, about half the age of the Universe ago, Milky-Way mass galaxies were different beasts than today. They had a significant amount of disturbed motions, disturbed morphologies, shallower potential wells, higher specific star-formation rates, and likely higher gas fractions. Since redshift approximately 1, galaxies have decreased in disturbed motions, increased in rotation velocity and potential well depth, become more well-ordered morphologically, and decreased in specific star-formation rate. We find interrelationships between these measurements. Galaxy kinematics are correlated with morphology and specific star-formation rate such that galaxies with the fastest rotation velocities and the least amounts of disturbed motions have the most well-ordered morphologies and the lowest specific star-formation rates. The converse is true. Moreover, we find that the rate at which galaxies become more well-ordered kinematically (i.e., increased rotation velocity, decreased disturbed motions) and morphologically is directly proportional to their stellar mass.

  14. FORMATE-BASED FLUIDS: FORMULATION AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2008-12-01

    Full Text Available Formate-based fluids has been successfully used in over hunders HPHT well operations since they introduced in field practice. They have many advantages when compared with conventional HPHT drilling and completion fluids such as: minimal formation damage, maintenance of additve properties at high temperatures, reduced hydraulic flow resistance, low potential for differential sticking, naturally lubricating, very low corrosion rates, biodegradable and pose little risk to the environment etc. Formate-based fluids can be applied during deep slim hole drilling, shale drilling, reservoir drilling, salt and gas hydrate formations drilling. The laboratory research was carried out to evaluate the rheological behavior of formate-based fluids as a function of temperature. Formate-based fluids were formulated using potassium formate brine, xanthan polymer, PAC, starch and calcium carbonate. Experimental results show that potassium formate improves the thermal stability of polymers.

  15. Correlation between the Inhibition of Positronium Formation by Scavenger Molecules, and Chemical Reaction Rate of Electrons with these Molecules in Nonpolar Liquids

    DEFF Research Database (Denmark)

    Levay, B.; Mogensen, O. E.

    1977-01-01

    a correlation between the inhibition coefficient and the chemical rate constant of electrons with scavenger molecules. We found that the dependence of the inhibition coefficient on the work function (VOo)f electrons in different liquids shows a very unusual behavior, similar to that recently found...... for the chemical rate constants of quasifree electrons with the same scavenger molecules. The inhibition coefficient as a function of Vo had a maximum for C2HsBr, while it increased monotonously with decreasing V, for CC14. The inhibition coefficient for C2H5Br in a 1:l molar tetramethylsilane......-n-tetradecane mixture was found to be greater than in both of the pure components. The clear correlation found between electron scavenging rate constants and positronium inhibition constitutes the severest test to date of the spur reaction model of positronium formation. The importance of the positron annihilation...

  16. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Influence of shielding gas on fume formation rate and particle size distribution for optimised GMAW

    International Nuclear Information System (INIS)

    Carpenter, K.R.; Monaghan, B.J.; Nicholson, A.; Cuiuri, D.; Norrish, J.

    2010-01-01

    The influence of shielding gas on fume formation rate (FFR) and particle size distribution has been investigated by using a technique developed for automatic control of the welding voltage in gas metal arc welding (GMAW). The results for automatic control are compared with the use of a fixed voltage. Significant reductions in FFR and a general decrease in average particle size were observed using the automatic control technique. This reduction in FFR was attributed to improved metal transfer stability, via a reduction in the occurrence of repelled globular transfer, by promoting the 'drop-spray' transfer condition, together with a reduction in the arc length. FFR and particle size were strongly related to the C O2 content of the shielding gas, where FFR increased as percent C 02 increased, due mainly to the dominant influence of C O2 on weld transfer and arc characteristics. The results indicate that FFR for GMAW in the spray regime should be determined by using optimised welding conditions for each shielding gas composition.

  18. Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes

    Directory of Open Access Journals (Sweden)

    Yuki Hatanaka

    2017-09-01

    Full Text Available At fertilization, the paternal genome undergoes extensive reprogramming through protamine-histone exchange and active DNA demethylation, but only a few maternal factors have been defined in these processes. We identified maternal Mettl23 as a protein arginine methyltransferase (PRMT, which most likely catalyzes the asymmetric dimethylation of histone H3R17 (H3R17me2a, as indicated by in vitro assays and treatment with TBBD, an H3R17 PRMT inhibitor. Maternal histone H3.3, which is essential for paternal nucleosomal assembly, is unable to be incorporated into the male pronucleus when it lacks R17me2a. Mettl23 interacts with Tet3, a 5mC-oxidizing enzyme responsible for active DNA demethylation, by binding to another maternal factor, GSE (gonad-specific expression. Depletion of Mettl23 from oocytes resulted in impaired accumulation of GSE, Tet3, and 5hmC in the male pronucleus, suggesting that Mettl23 may recruit GSE-Tet3 to chromatin. Our findings establish H3R17me2a and its catalyzing enzyme Mettl23 as key regulators of paternal genome reprogramming.

  19. Investigation of the formation process of two piracetam cocrystals during grinding

    DEFF Research Database (Denmark)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam......-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than...... for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form...

  20. 38 CFR 4.115b - Ratings of the genitourinary system-diagnoses.

    Science.gov (United States)

    2010-07-01

    ... higher evaluation. 7508Nephrolithiasis: Rate as hydronephrosis, except for recurrent stone formation... drainage 10 7510Ureterolithiasis: Rate as hydronephrosis, except for recurrent stone formation requiring... more than two times/year 30 7511Ureter, stricture of: Rate as hydronephrosis, except for recurrent...

  1. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    Science.gov (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  2. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    Science.gov (United States)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    soil formation rates was achieved for different depths of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a- 1 for A and Bw horizons (weathering class VI) to 0.04-0.36 mm a- 1 for the underlying saprolite (C and Cr layers; class V). By comparing these results with the corresponding erosion rates available in the literature for the study area, that range from < 0.01-0.05 to 0.10-0.21 mm a- 1, we suggest that the upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive processes.

  3. Method for simultaneous measurement of borehole and formation neutron decay-times

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1982-01-01

    A method is described of making in situ measurements of the thermal neutron decay time of earth formations in the vicinity of a wellbore. The borehole and earth formations are irradiated, with pulsed fast neutrons and, during the interval between neutron pulses, capture gamma radiation is measured in at least four, non-overlapping, contiguous time intervals. Count-rates representative of thermal neutron populations in the borehole and the formations are made during each of the time intervals. A background radiation measurement for correcting the count-rates is preferably also periodically made. The count-rates are combined to derive simultaneously the formation and borehole neutron lifetime components which are recorded as a function of borehole depth. (author)

  4. Organic acid formation in steam–water cycles: Influence of temperature, retention time, heating rate and O2

    International Nuclear Information System (INIS)

    Moed, D.H.; Verliefde, A.R.D.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Organic carbon breaks down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam–water cycle components. Prediction of the identity and quantity of these anions, based on feedwater organic carbon concentrations, has not been attempted, making it hard to establish a well-founded organic carbon guideline. By using a batch-reactor and flow reactor, the influence of temperature (276–352 °C), retention time (1–25 min), concentration (150–2400 ppb) and an oxygen scavenger (carbohydrazide) on organic acid anion formation from organic carbon was investigated. By comparing this to data gathered at a case-study site, the validity of setups was tested as well. The flow reactor provided results more representative for steam–water cycles than the batch reactor. It was found that lower heating rates give more organic acid anions as degradation products of organic carbon, both in quantity and species variety. The thermal stability of the organic acid anions is key. As boiler temperature increases, acetate becomes the dominant degradation product, due to its thermal stability. Shorter retention times lead to more variety and quantity of organic acid anions, due to a lack of time for the thermally less stable ones to degrade. Reducing conditions (or the absence of oxygen) increase the thermal stability of organic acid anions. As the feedwater organic carbon concentration decreases, there are relatively more organic acid anions formed. - Highlights: •Formation of organic acids from hydrothermolysis of organic carbon has been investigated. •The lower the temperature, the higher the variety of organic acid anions. •At the higher tested temperatures (331–352 °C) acetate is the dominant degradation product. •At longer retention times acetate is the dominant degradation product. •There is no linear relation between the organic carbon concentration and formed organic acids

  5. The SILCC project IV. Impact of dissociating and ionizing radiation on the interstellar medium and Ha emission as a tracer of the star formation rate

    Czech Academy of Sciences Publication Activity Database

    Peters, T.; Naab, T.; Walch, S.; Glover, S.C.O.; Girichidis, P.; Pellegrini, E.; Klessen, R.S.; Wünsch, Richard; Gatto, A.; Baczynski, C.

    2017-01-01

    Roč. 466, č. 3 (2017), s. 3293-3308 ISSN 0035-8711 R&D Projects: GA ČR GA15-06012S Institutional support: RVO:67985815 Keywords : formation rate indicators * supernova-driven ism * molecular clouds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  6. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Science.gov (United States)

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained. PMID:24309304

  7. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong

    2015-01-01

    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  8. Control of ribosome formation in rat heart

    International Nuclear Information System (INIS)

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 μU/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of [ 3 H]phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation

  9. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  10. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  11. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  12. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    Science.gov (United States)

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  13. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    Directory of Open Access Journals (Sweden)

    Keith Gordon

    2011-10-01

    Full Text Available Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e.,piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to progress via an amorphous intermediate stage, which was more evident for the piracetam-citric acid than for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to faster cocrystal formation than dry grinding, which may be explained by the higher transformation rate due to the presence of liquid. The cocrystal formation rate did not depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals were obtained.

  14. Is there a maximum star formation rate in high-redshift galaxies? , , ,

    International Nuclear Information System (INIS)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.; Owen, F. N.; Wang, W.-H.

    2014-01-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin 2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K – z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ☉ yr –1 to z ∼ 6. We find galaxies with SFRs up to ∼6000 M ☉ yr –1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ☉ yr –1 .

  15. Genetic factors affecting radiosensitivity and cancer predisposition: application of a continuous low dose-rate irradiation colony formation assay to select radiosensitive retinoblastoma family members for correction with a cDNA library

    International Nuclear Information System (INIS)

    Wilson, P.F.; Nagasawa, H.; Bedford, J.S.; Little, J.B.

    2003-01-01

    Full text: The aim of this study is to identify new or undescribed functions of radiosensitivity and genomic instability genes using a continuous low dose-rate colony formation assay. This assay expands on the standard colony formation assay, whereby colony formation ability (retention of proliferative capacity) is measured during continuous low dose-rate irradiation rather than 10-14 days following the completion of such exposures. This approach has previously employed by the Bedford laboratory to identify a Prkdc (DNA-PKcs) mutant of CHO cells, irs-20. In this study we examine the growth response of fibroblasts derived from recently identified radiosensitive retinoblastoma family members, both affected probands and their unaffected parents, and various apparently normal fibroblast lines obtained from the NIGMS Human Genetic Cell Repository (Coriell Medical Institute, Camden, NJ). Colony formation was assayed by plating single cells, exposing them at 37 deg C to continuous Cs-137 gamma irradiation at dose rates of 0.5-8.5 cGy/h, and scoring survivors as colonies with >100 viable cells. The retinoblastoma family members display severely limited growth (survival less than 10E-3) at dose rates greater than 2-2.5 cGy/h, while the apparently normal cell lines do not display such inhibited growth until 6-7 cGy/h. Two of the retinoblastoma family cell lines, MF-6F and MF-15F (both unaffected but radiosensitive parents), were selected as targets of transfection with a viral cDNA library (ViraPort human cDNA library, Stratagene Cloning Systems, La Jolla, CA) and subjected to a ∼3 cGy/h selection dose rate, where uncorrected survival relative to normal cells is lower by a factor of 50-150. Colonies recovered will provide valuable information regarding the genetic nature of their radiosensitivity (possibly involving chromosome stability, DNA repair, and/or cell cycle regulatory pathways), that may influence risks for cancer and heritable effects for a previously

  16. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  17. Testing the Relation between the Local and Cosmic Star Formation Histories

    International Nuclear Information System (INIS)

    Fields, B.D.

    1999-01-01

    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way close-quote s star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test. copyright copyright 1999. The American Astronomical Society

  18. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  19. Fast Molecular Cloud Destruction Requires Fast Cloud Formation

    Energy Technology Data Exchange (ETDEWEB)

    Mac Low, Mordecai-Mark [American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024 (United States); Burkert, Andreas [Universitäts Sternwarte München, Ludwigs-Maximilian-Universität, D-81679 München (Germany); Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching bei München (Germany)

    2017-09-20

    A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular clouds must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.

  20. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 =5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  1. Contribution to Kinetics of Formation of White Rust on Galvanized Steel

    International Nuclear Information System (INIS)

    Han, D. J.; Pyun, Su Il; Hahn, Y. D.

    1981-01-01

    Kinetics of formation of white rust on galvanized steel coated with various chromating solutions was studied. White rust occurs as a mixture of zinc oxide and zinc hydroxide. White rust formation rate was measured with a salt spray test as related to Cr 3+ ion amount, ratio of Cr 3+ to Cr 6+ ion(by weight) and surface roughness of the chromate film. Incubation time of white rust formation increased as the ratio of Cr 3+ to Cr 6+ ion in the chromate film increased. White rust propagation rate decreased as the amount of Cr 3+ ion increased. Surface roughness had no detectable relationship with incubation time and white rust propagation rate. Experimental results showed that kinetics of white rust formation was as follows: chromate film consists of insoluble Cr 3+ ion and soluble Cr 6+ ion, the latter act: as a corrosion inhibitor. Leaching rate of Cr 6+ ion from the film decreases with an increase of the ratio of Cr 3+ to Cr 6+ ion in the chromate film. When Cr 6+ ion is leached from the film, a bare zine layer is exposed to air and discontinuities occur in the film where white rust formation is initiated. Further white rust formation occurs due to destruction of the chromate film by chlorine ion. It is concluded that two stages of white rust formation are present and can be ascribed to Cr 6+ ion leaching and destruction of the chromate film by chlorine ion

  2. INFLUENCE OF MORTGAGE RATES PRICE FORMATION ON THE PRIMARY HOUSING MARKET

    Directory of Open Access Journals (Sweden)

    Nikolay I. Kornilov

    2015-01-01

    Full Text Available The article considers relationship of pricesin the primary market, depending on theregional origin and type of home, with thevalue of mortgage rates. Assesses thestrength of such a relationship and thepossible effects of changes in such rates.

  3. STAR FORMATION RATES IN RESOLVED GALAXIES: CALIBRATIONS WITH NEAR- AND FAR-INFRARED DATA FOR NGC 5055 AND NGC 6946

    Energy Technology Data Exchange (ETDEWEB)

    Li Yiming; Crocker, Alison F.; Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Wilson, Christine D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Kennicutt, Robert C.; Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Murphy, Eric J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Brandl, Bernhard R.; Groves, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Draine, B. T. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Johnson, B. D. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Gordon, K. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Croxall, K. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Engelbracht, C. W.; Hinz, J. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Helou, G. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Hunt, L. K., E-mail: yimingl@astro.umass.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); and others

    2013-05-10

    We use the near-infrared Br{gamma} hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the Herschel/PACS 70 {mu}m emission as a SFR tracer for sub-galactic regions in external galaxies. Br{gamma} offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival Canada-France-Hawaii Telescope Br{gamma} and Ks images of two nearby galaxies: NGC 5055 and NGC 6946, which are also part of the Herschel program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Br{gamma} emission to derive the SFR(70) calibration for H II regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70 {mu}m emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed H{alpha} with the 70 {mu}m emission, also for use in H II regions. We briefly analyze the PACS 100 and 160 {mu}m maps and find that longer wavelengths are not as good SFR indicators as 70 {mu}m, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.

  4. STAR FORMATION RATES IN RESOLVED GALAXIES: CALIBRATIONS WITH NEAR- AND FAR-INFRARED DATA FOR NGC 5055 AND NGC 6946

    International Nuclear Information System (INIS)

    Li Yiming; Crocker, Alison F.; Calzetti, Daniela; Wilson, Christine D.; Kennicutt, Robert C.; Galametz, M.; Murphy, Eric J.; Brandl, Bernhard R.; Groves, B.; Draine, B. T.; Johnson, B. D.; Armus, L.; Gordon, K. D.; Croxall, K.; Dale, D. A.; Engelbracht, C. W.; Hinz, J.; Hao, C.-N.; Helou, G.; Hunt, L. K.

    2013-01-01

    We use the near-infrared Brγ hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the Herschel/PACS 70 μm emission as a SFR tracer for sub-galactic regions in external galaxies. Brγ offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival Canada-France-Hawaii Telescope Brγ and Ks images of two nearby galaxies: NGC 5055 and NGC 6946, which are also part of the Herschel program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Brγ emission to derive the SFR(70) calibration for H II regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70 μm emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed Hα with the 70 μm emission, also for use in H II regions. We briefly analyze the PACS 100 and 160 μm maps and find that longer wavelengths are not as good SFR indicators as 70 μm, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.

  5. (Anti-)deuteron formation and neutron-proton correlation

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1995-01-01

    The neutron-proton correlation, deuteron and antideuteron formation in nuclear collisions are all due to the final state interactions. The neutron-proton correlation function and the (anti-)deuteron formation rate are calculated in parallel. These quantities are expressed through the space-time parameters of the particle source created in nucleus-nucleus collisions. In the case of baryon reach sources, the nucleons are emitted from the whole source volume while the antinucleons dominantly from the surface due to the antinucleon absorption in the baryon environment. Thus, the shape of the antinucleon source is different from the nucleon one, and consequently the antideuteron formation rate is substantially smaller than that one of deuterons. The correlation function satisfies the sum rule, which, in particular, connects the number of correlated neutron-proton pairs with the number of produced deuterons. (author). 18 refs., 4 figs

  6. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    International Nuclear Information System (INIS)

    Niino, Yuu

    2012-01-01

    We investigate the relation between stellar mass (M * ), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M * and SFR are sampled from different redshifts, and there is degeneracy between M * /SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  7. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  8. 3D-HST emission line galaxies at z ∼ 2: discrepancies in the optical/UV star formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Schneider, Donald P.; Hagen, Alex; Bridge, Joanna S.; Trump, Jonathan R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Feldmeier, John [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States)

    2014-08-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered when measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z ∼ 2 sample is consistent with that observed in the local universe.

  9. 3D-HST emission line galaxies at z ∼ 2: discrepancies in the optical/UV star formation rates

    International Nuclear Information System (INIS)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry; Gronwall, Caryl; Schneider, Donald P.; Hagen, Alex; Bridge, Joanna S.; Trump, Jonathan R.; Feldmeier, John

    2014-01-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered when measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z ∼ 2 sample is consistent with that observed in the local universe.

  10. On the evolution of the star formation rate function of massive galaxies: constraints at 0.4 MUSIC catalogue

    Science.gov (United States)

    Fontanot, Fabio; Cristiani, Stefano; Santini, Paola; Fontana, Adriano; Grazian, Andrea; Somerville, Rachel S.

    2012-03-01

    We study the evolution of the star formation rate function (SFRF) of massive (M★ > 1010 M⊙) galaxies over the 0.4 MUSIC) catalogue, which provides a suitable coverage of the spectral region from 0.3 to 24 ?m and either spectroscopic or photometric redshifts for each object. Individual SFRs have been obtained by combining ultraviolet and 24-?m observations, when the latter were available. For all other sources a 'spectral energy distribution (SED) fitting' SFR estimate has been considered. We then define a stellar mass limited sample, complete in the M★ > 1010 M⊙ range and determine the SFRF using the 1/Vmax algorithm. We thus define simulated galaxy catalogues based on the predictions of three different state-of-the-art semi-analytical models (SAMs) of galaxy formation and evolution, and compare them with the observed SFRF. We show that the theoretical SFRFs are well described by a double power law functional form and its redshift evolution is approximated with high accuracy by a pure evolution of the typical SFR (SFR★). We find good agreement between model predictions and the high-SFR end of the SFRF, when the observational errors on the SFR are taken into account. However, the observational SFRF is characterized by a double-peaked structure, which is absent in its theoretical counterparts. At z > 1.0 the observed SFRF shows a relevant density evolution, which is not reproduced by SAMs, due to the well-known overprediction of intermediate-mass galaxies at z˜ 2. SAMs are thus able to reproduce the most intense SFR events observed in the GOODS-MUSIC sample and their redshift distribution. At the same time, the agreement at the low-SFR end is poor: all models overpredict the space density of SFR ˜ 1 M⊙ yr-1 and no model reproduces the double-peaked shape of the observational SFRF. If confirmed by deeper infrared observations, this discrepancy will provide a key constraint on theoretical modelling of star formation and stellar feedback.

  11. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  12. Star Formation-Driven Winds in the Early Universe

    Science.gov (United States)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  13. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts

    International Nuclear Information System (INIS)

    Ahn, N.G.; Klinman, J.P.

    1989-01-01

    Using isolated chromaffin granule ghosts from bovine adrenal medullae, we have studied the kinetics of dopamine beta-monooxygenase (D beta M) activity as it is linked to dopamine transport. Measurements of the initial rates of transport and of transport-linked norepinephrine formation suggested that enzyme activity may be partially rate-limiting in the coupled carrier/enzyme system. This was confirmed by (i) measurements of initial rates of norepinephrine formation using deuterated substrate, which gave isotope effects greater than 2.0, and (ii) kinetic measurements using ghosts pulsed with varying concentrations of labeled dopamine, which indicated substantial substrate accumulation in the vesicle interior as a function of time. Initial rates of product formation, when combined with approximations of internal substrate concentrations, allowed estimates of Kcat and Km for intravesicular D beta M. Activation by external reductant was apparent in both initial rate parameters and the measurements of transients. Under conditions of optimal D beta M activity, the enzyme rate parameters (kcat = 0.31 nmol/s.mg and Km = 2 mM) indicated partial rate limitation compared to dopamine transport (kcat = 0.38 nmol/s.mg and Km = 32 microM). Compartmental analysis of the time curves, performed using numerical nonlinear least squares methods, gave least squares estimates of rate constants for a simple carrier mechanism and kcat values for D beta M which were consistent with estimates from initial rates

  14. The Determination of Rate-Limiting Steps during Soot Formation

    Science.gov (United States)

    1990-06-08

    and a CH3N precursor of acetonitrile such as 2H-aziridine although other intermediates of lower energy such as ketenimine have been identified on the...precursor of acetonitrile such as 2H-aziridine or ketenimine . Experimentally it was found that the overall rate of disappearance of pyrrole is first order

  15. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Science.gov (United States)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-09-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  16. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    International Nuclear Information System (INIS)

    Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.

    2017-01-01

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  17. Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorowicz, G. [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Drago, A.; Pagliara, G. [Dipartimento di Fisica e Scienze della Terra dell’Università di Ferrara and INFN Sezione di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Popov, S. B., E-mail: gwiktoro@astrouw.edu.pl [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow (Russian Federation)

    2017-09-10

    Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.

  18. Methane formation during deuteron bombardment of carbon in the energy range of 100 to 1500 eV

    International Nuclear Information System (INIS)

    Sone, K.

    1982-01-01

    Methane (CD 4 ) formation rates during deuteron bombardment of carbon (Papyex) have been measured in the energy range of 100 to 1500 eV. The temperature dependence of the methane formation rate is well explained by the model proposed by Erents et al. in the temperature range of 600 to 1150 K. The model, however, does not explain the dependence of the methane formation rate on the flux of incident deuterons at a certain temperature near Tsub(m) at which the formation rate has a maximum value. An alternative model is proposed in which the methane formation rate is assumed to be proportional to the product of the following three parameters: the surface concentration of deuterium atoms, the chemical reaction rate for the formation of methane, and the rate of production of vacancies on the surface by the deuteron bombardment. This model predicts an energy dependence of methane formation which has a maximum around 900 eV even at different deuteron fluxes, when the calculated result by Weissman and Sigmund is used for the surface deposited energy responsible for the production of vacancies. (author)

  19. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  20. Large-video-display-format conversion

    NARCIS (Netherlands)

    Haan, de G.

    2000-01-01

    High-quality video-format converters apply motion estimation and motion compensation to prevent jitter resulting from picture-rate conversion, and aliasing due to de-interlacing, in sequences with motion. Although initially considered as too expensive, high-quality conversion is now economically

  1. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  2. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    International Nuclear Information System (INIS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star ). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star , and find that A V, H II = 1.86 A V, star , with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M * ). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  3. DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. I. COMBINATIONS OF Hα AND INFRARED TRACERS

    International Nuclear Information System (INIS)

    Kennicutt, Robert C.; Hao, C.-N.; Johnson, Benjamin D.; Calzetti, Daniela; Moustakas, John; Dale, Daniel A.; Bendo, George; Engelbracht, Charles W.; Lee, Janice C.

    2009-01-01

    We combine Hα emission-line and infrared (IR) continuum measurements of two samples of nearby galaxies to derive dust attenuation-corrected star formation rates (SFRs). We use a simple energy balance based method that has been applied previously to H II regions in the Spitzer Infrared Nearby Galaxies Survey, and extend the methodology to integrated measurements of galaxies. We find that our composite Hα + IR based SFRs are in excellent agreement with attenuation-corrected SFRs derived from integrated spectrophotometry, over the full range of SFRs (0.01-80 M sun yr -1 ) and attenuations (0-2.5 mag) studied. We find that the combination of Hα and total IR luminosities provides the most robust SFR measurements, but combinations of Hα measurements with monochromatic luminosities at 24 μm and 8 μm perform nearly as well. The calibrations differ significantly from those obtained for H II regions, with the difference attributable to a more evolved population of stars heating the dust. Our results are consistent with a significant component of diffuse dust (the 'IR cirrus' component) that is heated by a non-star-forming population. The same methodology can be applied to [O II]λ3727 emission-line measurements, and the radio continuum fluxes of galaxies can be applied in place of IR fluxes when the latter are not available. We assess the precision and systematic reliability of all of these composite methods.

  4. A Multiwavelength Approach to the Star Formation Rate Estimation in Galaxies at Intermediate Redshifts

    Science.gov (United States)

    Cardiel, N.; Elbaz, D.; Schiavon, R. P.; Willmer, C. N. A.; Koo, D. C.; Phillips, A. C.; Gallego, J.

    2003-02-01

    We use a sample of seven starburst galaxies at intermediate redshifts (z~0.4 and 0.8) with observations ranging from the observed ultraviolet to 1.4 GHz, to compare the star formation rate (SFR) estimators that are used in the different wavelength regimes. We find that extinction-corrected Hα underestimates the SFR, and the degree of this underestimation increases with the infrared luminosity of the galaxies. Galaxies with very different levels of dust extinction as measured with SFRIR/SFR(Hα, uncorrected for extinction) present a similar attenuation A[Hα], as if the Balmer lines probed a different region of the galaxy than the one responsible for the bulk of the IR luminosity for large SFRs. In addition, SFR estimates derived from [O II] λ3727 match very well those inferred from Hα after applying the metallicity correction derived from local galaxies. SFRs estimated from the UV luminosities show a dichotomic behavior, similar to that previously reported by other authors in galaxies at zfinancial support of the W. M. Keck Foundation. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Based in part on observations with the Infrared Space Observatory (ISO), an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, Netherlands, and United Kingdom) with the participation of ISAS and NASA.

  5. Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation.

    Science.gov (United States)

    Wang, Hong; Wang, Xu; Wetzel, Wolfram; Scheich, Henning

    2006-04-01

    Bilateral rapid-rate transcranial magnetic stimulation (rTMS) of gerbil auditory cortex with a miniature coil device was used to study short-term and long-term effects on discrimination learning of frequency-modulated tones. We found previously that directional discrimination of frequency modulation (rising vs. falling) relies on auditory cortex processing and that formation of its memory depends on local protein synthesis. Here we show that, during training over 5 days, certain rTMS regimes contingent on training had differential effects on the time course of learning. When rTMS was applied several times per day, i.e. four blocks of 5 min rTMS each followed 5 min later by a 3-min training block and 15-min intervals between these blocks (experiment A), animals reached a high discrimination performance more slowly over 5 days than did controls. When rTMS preceded only the first two of four training blocks (experiment B), or when prolonged rTMS (20 min) preceded only the first block, or when blocks of experiment A had longer intervals (experiments C and D), no significant day-to-day effects were found. However, in experiment A, and to some extent in experiment B, rTMS reduced the within-session discrimination performance. Nevertheless the animals learned, as demonstrated by a higher performance the next day. Thus, our results indicate that rTMS treatments accumulate over a day but not strongly over successive days. We suggest that rTMS of sensory cortex, as used in our study, affects short-term memory but not long-term memory formation.

  6. Centrioles in the beginning of human development.

    OpenAIRE

    Sathananthan, A H; Kola, I; Osborne, J; Trounson, A; Ng, S C; Bongso, A; Ratnam, S S

    1991-01-01

    We demonstrate the presence of centrioles in fertilized human oocytes at syngamy. Single or double centrioles within centrosomes were detected by transmission electron microscopy at one pole of the first cleavage spindle in normal and dispermic embryos (25-26 hr after insemination). Sperm centrioles were also closely associated with the male pronucleus (16-20 hr after insemination) in pronuclear stage embryos. A tripolar spindle derived from a tripronuclear embryo is also demonstrated with tw...

  7. Increased formate overflow is a hallmark of oxidative cancer.

    Science.gov (United States)

    Meiser, Johannes; Schuster, Anne; Pietzke, Matthias; Vande Voorde, Johan; Athineos, Dimitris; Oizel, Kristell; Burgos-Barragan, Guillermo; Wit, Niek; Dhayade, Sandeep; Morton, Jennifer P; Dornier, Emmanuel; Sumpton, David; Mackay, Gillian M; Blyth, Karen; Patel, Ketan J; Niclou, Simone P; Vazquez, Alexei

    2018-04-10

    Formate overflow coupled to mitochondrial oxidative metabolism\\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.

  8. Exploring the value of usability feedback formats

    DEFF Research Database (Denmark)

    Nørgaard, Mie; Hornbæk, Kasper Anders Søren

    2009-01-01

    The format used to present feedback from usability evaluations to developers affects whether problems are understood, accepted, and fixed. Yet, little research has investigated which formats are the most effective. We describe an explorative study where three developers assess 40 usability findings...... presented using five feedback formats. Our usability findings comprise 35 problems and 5 positive comments. Data suggest that feedback serves multiple purposes. Initially, feedback must convince developers about the relevance of a problem and convey an understanding of this. Feedback must next be easy...... working with the feedback to address the usability problems, there were no significant differences among the developers' ratings of the value of the different formats. This suggests that all of the formats may serve equally well as reminders in later stages of working with usability problems...

  9. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  10. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  11. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.

    Science.gov (United States)

    Fassheber, Nancy; Dammeier, Johannes; Friedrichs, Gernot

    2014-06-21

    The overall rate constant of the reaction (2), NCN + H, which plays a key role in prompt-NO formation in flames, has been directly measured at temperatures 962 K rate constants are best represented by the combination of two Arrhenius expressions, k2/(cm(3) mol(-1) s(-1)) = 3.49 × 10(14) exp(-33.3 kJ mol(-1)/RT) + 1.07 × 10(13) exp(+10.0 kJ mol(-1)/RT), with a small uncertainty of ±20% at T = 1600 K and ±30% at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be attributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN + N as the products. A more refined analysis taking into account experimental and theoretical literature data provided a consistent rate constant set for k2a, its reverse reaction k1a (CH + N2 → NCN + H), k2b as well as a value for the controversial enthalpy of formation of NCN, ΔfH = 450 kJ mol(-1). The analysis verifies the expected strong temperature dependence of the branching fraction ϕ = k2b/k2 with reaction channel (2b) dominating at the experimental high-temperature limit. In contrast, reaction (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN forming recombination channel (2d) at T < 1150 K.

  12. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  13. THE ALFALFA H α SURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE

    International Nuclear Information System (INIS)

    Sistine, Angela Van; Salzer, John J.; Janowiecki, Steven; Sugden, Arthur; Giovanelli, Riccardo; Haynes, Martha P.; Jaskot, Anne E.; Wilcots, Eric M.

    2016-01-01

    The ALFALFA H α survey utilizes a large sample of H i-selected galaxies from the ALFALFA survey to study star formation (SF) in the local universe. ALFALFA H α contains 1555 galaxies with distances between ∼20 and ∼100 Mpc. We have obtained continuum-subtracted narrowband H α images and broadband R images for each galaxy, creating one of the largest homogeneous sets of H α images ever assembled. Our procedures were designed to minimize the uncertainties related to the calculation of the local SF rate density (SFRD). The galaxy sample we constructed is as close to volume-limited as possible, is a robust statistical sample, and spans a wide range of galaxy environments. In this paper, we discuss the properties of our Fall sample of 565 galaxies, our procedure for deriving individual galaxy SF rates, and our method for calculating the local SFRD. We present a preliminary value of log(SFRD[ M ⊙ yr −1 Mpc −3 ]) = −1.747 ± 0.018 (random) ±0.05 (systematic) based on the 565 galaxies in our Fall sub-sample. Compared to the weighted average of SFRD values around z ≈ 2, our local value indicates a drop in the global SFRD of a factor of 10.2 over that lookback time.

  14. The SAMI Galaxy Survey: a new method to estimate molecular gas surface densities from star formation rates

    Science.gov (United States)

    Federrath, Christoph; Salim, Diane M.; Medling, Anne M.; Davies, Rebecca L.; Yuan, Tiantian; Bian, Fuyan; Groves, Brent A.; Ho, I.-Ting; Sharp, Robert; Kewley, Lisa J.; Sweet, Sarah M.; Richards, Samuel N.; Bryant, Julia J.; Brough, Sarah; Croom, Scott; Scott, Nicholas; Lawrence, Jon; Konstantopoulos, Iraklis; Goodwin, Michael

    2017-07-01

    Stars form in cold molecular clouds. However, molecular gas is difficult to observe because the most abundant molecule (H2) lacks a permanent dipole moment. Rotational transitions of CO are often used as a tracer of H2, but CO is much less abundant and the conversion from CO intensity to H2 mass is often highly uncertain. Here we present a new method for estimating the column density of cold molecular gas (Σgas) using optical spectroscopy. We utilize the spatially resolved Hα maps of flux and velocity dispersion from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. We derive maps of Σgas by inverting the multi-freefall star formation relation, which connects the star formation rate surface density (ΣSFR) with Σgas and the turbulent Mach number (M). Based on the measured range of ΣSFR = 0.005-1.5 {M_{⊙} yr^{-1} kpc^{-2}} and M=18-130, we predict Σgas = 7-200 {M_{⊙} pc^{-2}} in the star-forming regions of our sample of 260 SAMI galaxies. These values are close to previously measured Σgas obtained directly with unresolved CO observations of similar galaxies at low redshift. We classify each galaxy in our sample as 'star-forming' (219) or 'composite/AGN/shock' (41), and find that in 'composite/AGN/shock' galaxies the average ΣSFR, M and Σgas are enhanced by factors of 2.0, 1.6 and 1.3, respectively, compared to star-forming galaxies. We compare our predictions of Σgas with those obtained by inverting the Kennicutt-Schmidt relation and find that our new method is a factor of 2 more accurate in predicting Σgas, with an average deviation of 32 per cent from the actual Σgas.

  15. Interactions, Starbursts, and Star Formation

    Directory of Open Access Journals (Sweden)

    Johan H. Knapen

    2015-12-01

    Full Text Available We study how interactions between galaxies affect star formation within them by considering a sample of almost 1500 of the nearest galaxies, all within a distance of ∼45 Mpc. We use the far-IR emission to define the massive star formation rate (SFR, and then normalise the SFR by the stellar mass of the galaxy to obtain the specific star formation rate (SSFR. We explore the distribution of (SSFR with morphological type and with stellar mass. We calculate the relative enhancement of SFR and SSFR for each galaxy by normalising them by the median SFR and SSFR values of individual control samples of similar non-interacting galaxies. We find that both the median SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers. While the SFR and SSFR are enhanced statistically by interactions, in many individual interacting galaxies they are not enhanced at all. Our study is based on a representative sample of nearby galaxies and should be used to place constraints on studies based on samples of galaxies at larger distances.

  16. S = −1 dibaryon formation in the Sigma−D atom

    NARCIS (Netherlands)

    Aerts, A.T.M.

    1986-01-01

    An estimate of the formation rate of the strangeness S = -1 dibaryons Ds and Dt via "¿--capture" in a ¿-d atom is presented. Reasonable branching ratios are expected for formation from the atomic P orbitals. The ¿-d atom experiment is found to be sensitive to the formation of Ds dibaryons in a mass

  17. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  18. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    OpenAIRE

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent me...

  19. A hybrid classroom-online curriculum format for RN-BSN students: cohort support and curriculum structure improve graduation rates.

    Science.gov (United States)

    Davidson, Susan C; Metzger, Richard; Lindgren, Katherine S

    2011-05-01

    As more registered nurses (RNs) return to school to obtain a bachelor of science in nursing (BSN), innovative ways must be found to support them in this endeavor. Barriers for RNs who return to school include scheduling of coursework and fear of failure. One school of nursing with a traditional BSN program reviewed its RN-BSN track, with its low retention and graduation rates. With input from nursing leaders and nurses in the community, the school applied for and was awarded a 3-year Health Resources and Services Administration grant to redesign the RN-BSN program. A hybrid classroom-online curriculum is offered in a structured, sequential format so that the RNs are admitted once a year and must complete the courses as a group, in a cohort. Data collected from evaluations showed that program support, technology support, and social support from peers encouraged the RNs to "stay the course," and 100% completed the requirements to graduate. Copyright 2011, SLACK Incorporated.

  20. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric; Juneau, Stéphanie; Elmegreen, Debra Meloy; Struck, Curtis; Brinks, Elias

    2016-01-01

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s −1 . We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  1. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Kaufman, Michele [110 Westchester Rd, Newton, MA 02458 (United States); Bournaud, Frédéric; Juneau, Stéphanie [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Elmegreen, Debra Meloy [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Struck, Curtis [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Brinks, Elias, E-mail: bge@us.ibm.com, E-mail: kaufmanrallis@icloud.com, E-mail: frederic.bournaud@gmail.com, E-mail: stephanie.juneau@cea.fr, E-mail: elmegreen@vassar.edu, E-mail: struck@iastate.edu, E-mail: e.brinks@herts.ac.uk [University of Hertfordshire, Centre for Astrophysics Research, College Lane, Hatfield AL10 9AB (United Kingdom)

    2016-05-20

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  2. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans' l, Robert [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Hu Wen [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Kozu, Miwa; Nakata, Yuka [University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Takahasi, Masamitu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  3. Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-LET radiations

    CERN Document Server

    Yamauchi, T; Oda, K; Ikeda, T; Honda, Y; Tagawa, S

    1999-01-01

    The effect of gamma-rays and pulsed electrons has been investigated on the bulk etch rate of CR-39 detector at doses up to 100 kGy under various dose-rate between 0.0044 and 35.0 Gy/s. The bulk etch rate increased exponentially with the dose at every examined dose-rates. It was reveled to be strongly depend on the dose-rate: the bulk etch rate was decreased with increasing dose-rate at the same total dose. A primitive model was proposed to explain the dose-rate effect in which oxygen dissolved was assumed to dominate the damage formation process.

  4. Formation of hydroxyl radical (sm-bulletOH) in illuminated surface waters contaminated with acidic mine drainage

    International Nuclear Information System (INIS)

    Allen, J.M.; Lucas, S.; Allen, S.K.

    1996-01-01

    Formation rates and steady-state concentrations of hydroxyl radical ( sm-bullet OH) in illuminated surface water samples collected in west-central Indiana that receive acidic mine drainage runoff are reported. Formation rates for sm-bullet OH in samples were measured by the addition of 1 x 10 -3 M benzene prior to illuminate in order to effectively scavenge all of the sm-bullet OH formed, thereby yielding phenol. The sm-bullet OH formation rates were calculated from the measured phenol formation rates. Steady-state concentrations of sm-bullet OH were measured by the addition of 5 x 10 -7 M nitrobenzene to the samples prior to illumination. Estimated sunlight sm-bullet OH formation rates range from 16 microM h -1 to 265 microM h -1 . Estimated sunlight steady-state sm-bullet OH concentrations range from 6.7 x 10 -15 to 4.0 x 10 -12 M. Both the formation rates and steady-state concentrations for sm-bullet OH are thus two to three orders of magnitude higher than values reported in the literature for other sunlit surface water samples. Due to the very high rates of formation and steady-state concentrations for sm-bullet OH in these samples, the authors conclude that aqueous-phase reactions involving sm-bullet OH represent a significant pathway by which organic pollutants in illuminated surface waters receiving acidic mine drainage runoff may be consumed

  5. Novel graphical approach as fouling pinch for increasing fouling formation period in heat exchanger network (HEN) state of the art

    International Nuclear Information System (INIS)

    Azad, Abazar Vahdat; Ghaebi, Hadi; Amidpour, Majid

    2011-01-01

    In this paper a new graphical tool is proposed for investigation of fouling formation period in heat exchanger networks (HEN). The objective of this paper is increasing the time that HEN can perform its desirable heat transfer operation without required cleaning process. In a typical heat exchanger network, fouling formation rate of some streams is more than other ones. The method obtained in this work is based on given more opportunity for fouling formation for streams with high fouling formation rate. In fact high fouling formation rate streams are replaced with low fouling formation rate streams between different heat exchangers so that more fouling formation opportunity may be given for HEN. Therefore the HEN cleaning time decreases in fixed time period and the high fouling formation streams should pass from the path that the low fouling formation rate stream previously has passed, and inversely. As a result, secondly stream with high fouling formation rate mixes with residues of primary stream (low fouling formation rate stream). Therefore we should consider to adoption and conformability of streams structures (for prevention of streams destruction) and thermal considerations (for desirable heat transfer). Outlet temperatures of hot and cold streams should state in predefined temperatures. For satisfying thermal consideration after streams replacement this approach can be used in plants that cleanliness and its operational costs are most important problem.

  6. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  7. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  8. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    Science.gov (United States)

    Botticella, M. T.; Cappellaro, E.; Greggio, L.; Pignata, G.; Della Valle, M.; Grado, A.; Limatola, L.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Haeussler, B.; Harutyunyan, V.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Tomasella, L.; Turatto, M.; Vaccari, M.

    2017-02-01

    Aims: This is the second paper of a series in which we present measurements of the supernova (SN) rates from the SUDARE survey. The aim of this survey is to constrain the core collapse (CC) and Type Ia SN progenitors by analysing the dependence of their explosion rate on the properties of the parent stellar population averaging over a population of galaxies with different ages in a cosmic volume and in a galaxy sample. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the masses of the parent galaxies. To constrain the SN progenitors we compare the observed rates with model predictions assuming four progenitor models for SNe Ia with different distribution functions of the time intervals between the formation of the progenitor and the explosion, and a mass range of 8-40 M⊙ for CC SN progenitors. Methods: We considered a galaxy sample of approximately 130 000 galaxies and a SN sample of approximately 50 events. The wealth of photometric information for our galaxy sample allows us to apply the spectral energy distribution (SED) fitting technique to estimate the intrinsic rest frame colours, the stellar mass and star formation rate (SFR) for each galaxy in the sample. The galaxies have been separated into star-forming and quiescent galaxies, exploiting both the rest frame U-V vs. V-J colour-colour diagram and the best fit values of the specific star formation rate (sSFR) from the SED fitting. Results: We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies, identified as such both on the U-V vs. V-J colour-colour diagram and for their sSFR. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy

  9. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  10. Is There a Maximum Star Formation Rate in High-redshift Galaxies?

    Science.gov (United States)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.

    2014-03-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific

  11. Predicting hydrocarbon potential of an earth formation underlying water

    International Nuclear Information System (INIS)

    Damaison, G.J.; Kaplan, I.R.

    1981-01-01

    A method for the on-site collection and examination of small concentrations of a carbonaceous gas, e.g. methane, dissolved in a body of water overlying an earth formation to predict hydrocarbon potential of the earth formation under the body of water, the formation being a source of carbonaceous gas, comprises at a known geographic location sampling the water at a selected flow rate and at a selected depth; continuously vacuum separating the water into liquid and gas phases; separating a selected carbonaceous gas from interfering gas species in the presence of an air carrier vented to atmosphere at a known flow rate; and quantitatively oxidizing the selected gas and then cryogenically trapping an oxidant thereof in the presence of said air carrier to provide for an accurate isotopic examination. (author)

  12. Effects of Cooling Rate on 6.5% Silicon Steel Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jun [Ames Lab. and Iowa State Univ., Ames, IA (United States); Macziewski, Chad [Iowa State Univ., Ames, IA (United States); Jensen, Brandt [Ames Lab., Ames, IA (United States); Ouyang, Gaoyuan [Iowa State Univ., Ames, IA (United States); Zhou, Lin [Ames Lab., Ames, IA (United States); Dennis, Kevin [Ames Lab., Ames, IA (United States); Zarkevich, Nikolai [Ames Lab., Ames, IA (United States); Jiang, Xiujuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tang, Wei [Ames Lab., Ames, IA (United States); Zhou, Shihuai [Ames Lab., Ames, IA (United States); Simsek, Emrah [Ames Lab., Ames, IA (United States); Napolitano, Ralph [Iowa State Univ., Ames, IA (United States); Kramer, Matt [Ames Lab., Ames, IA (United States)

    2017-03-02

    Increasing Si content improves magnetic and electrical properties of electrical steel, with 6.5% Si as the optimum. Unfortunately, when Si content approaches 5.7%, the Fe-Si alloy becomes brittle. At 6.5%, the steel conventional cold rolling process is no longer applicable. The heterogeneous formation of B2 and D03 ordered phases is responsible for the embrittlement. The formation of these ordered phases can be impeded by rapid cooling. However, only the cooling rates of water and brine water were investigated. A comprehensive study of the effect of rapid cooling rate on the formation of the ordered phases was carried out by varying wheel speed and melt-injection rate. Thermal imaging employed to measure cooling rates while microstructures of the obtained ribbons are characterized using X-ray diffraction and TEM. The electrical, magnetic and mechanical properties are characterized using 4-pt probe, VSM, and macro-indentation methods. The relations between physical properties and ordered phases are established.

  13. Methods for Characterization of the Diesel Combustion and Emission Formation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Mikael

    2011-07-01

    In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient

  14. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  15. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  16. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  17. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  18. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation.

    Science.gov (United States)

    Monforte, Ana Rita; Martins, Sara I F S; Silva Ferreira, Antonio C

    2018-03-14

    Strecker degradation (SD) leading to the formation of phenylacetaldehyde (PA) was studied in wine systems. New insights were gained by using two full factorial designs focusing on the effects of (1) pH and (2) temperature. In each design of experiments (DoE) three factors, glucose, gallic acid, and metals at two levels (present or absence), were varied while phenylalanine was kept constant. The obtained results gave a clear indication, with statistical significance, that in wine conditions, the SD occurs in the presence of metals preferentially via the phenolic oxidation independent of the temperature (40 or 80 °C). The reaction of the amino acid with the o-quinone formed by the oxidation of the gallic acid seems to be favored when compared with the SD promoted by the reaction with α-dicarbonyls formed by MR between glucose and phenylalanine. In fact, kinetics results showed that the presence of glucose had an inhibitory effect on PA rate of formation. PA formation was 4 times higher in the control wine when compared to the same wine with 10 g/L glucose added. By gallic acid quinone quantitation it is shown that glucose affects directly the concentration of the quinone. decreasing the rate of quinone formation. This highlights the role of sugar in o-quinone concentration and consequently in the impact on Strecker aldehyde formation, a promising new perspective regarding wine shelf-life understanding.

  19. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Science.gov (United States)

    D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A

    2013-01-01

    Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.

  20. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  1. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events

    Directory of Open Access Journals (Sweden)

    H. E. Manninen

    2010-08-01

    Full Text Available We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere. New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.

  2. Exciplex formation and electron transfer in polychromophoric systems

    International Nuclear Information System (INIS)

    Yang, N.C.C.; Minsek, D.W.; Johnson, D.G.; Wasielewski, M.R.

    1989-01-01

    This paper discusses the rates of excited anthracene decay and intramolecular exciplex formation from biochromophoric molecules containing an anthryl group and an amine donor which vary with the length of the chain link, the nature of the amine donor and the viscosity of the medium. According to the authors, the results indicate that the intramolecular exciplex formation may proceed via more than one pathway. Experimental results suggest that electron transfer from the amino donor to the excited anthryl group may play a role in the exciplex formation in viscous alkanes

  3. The feasibility of a multi-format Web-based assessment of physicians' communication skills.

    Science.gov (United States)

    Kim, Sara; Brock, Douglas M; Hess, Brian J; Holmboe, Eric S; Gallagher, Thomas H; Lipner, Rebecca S; Mazor, Kathleen M

    2011-09-01

    Little is known about the best approaches and format for measuring physicians' communication skills in an online environment. This study examines the reliability and validity of scores from two Web-based communication skill assessment formats. We created two online communication skill assessment formats: (a) MCQ (multiple-choice questions) consisting of video-based multiple-choice questions; (b) multi-format including video-based multiple-choice questions with rationales, Likert-type scales, and free text responses of what physicians would say to a patient. We randomized 100 general internists to each test format. Peer and patient ratings collected via the American Board of Internal Medicine (ABIM) served as validity sources. Seventy-seven internists completed the tests (MCQ: 38; multi-format: 39). The adjusted reliability was 0.74 for both formats. Excellent communicators, as based on their peer and patient ratings, performed slightly better on both tests than adequate communicators, though this difference was not statistically significant. Physicians in both groups rated test format innovative (4.2 out of 5.0). The acceptable reliability and participants' overall positive experiences point to the value of ongoing research into rigorous Web-based communication skills assessment. With efficient and reliable scoring, the Web offers an important way to measure and potentially enhance physicians' communication skills. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. THE ALFALFA H α SURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Sistine, Angela Van [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Salzer, John J.; Janowiecki, Steven [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Sugden, Arthur [Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 (United States); Giovanelli, Riccardo; Haynes, Martha P. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Wilcots, Eric M. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-06-10

    The ALFALFA H α survey utilizes a large sample of H i-selected galaxies from the ALFALFA survey to study star formation (SF) in the local universe. ALFALFA H α contains 1555 galaxies with distances between ∼20 and ∼100 Mpc. We have obtained continuum-subtracted narrowband H α images and broadband R images for each galaxy, creating one of the largest homogeneous sets of H α images ever assembled. Our procedures were designed to minimize the uncertainties related to the calculation of the local SF rate density (SFRD). The galaxy sample we constructed is as close to volume-limited as possible, is a robust statistical sample, and spans a wide range of galaxy environments. In this paper, we discuss the properties of our Fall sample of 565 galaxies, our procedure for deriving individual galaxy SF rates, and our method for calculating the local SFRD. We present a preliminary value of log(SFRD[ M {sub ⊙} yr{sup −1} Mpc{sup −3}]) = −1.747 ± 0.018 (random) ±0.05 (systematic) based on the 565 galaxies in our Fall sub-sample. Compared to the weighted average of SFRD values around z ≈ 2, our local value indicates a drop in the global SFRD of a factor of 10.2 over that lookback time.

  5. Standard Glbbs Energy of Formation of the Hydroxyl Radical in Aqueous Solution. Rate Constants for the Reaction C102- -t O3 S 03- -t CIO,

    DEFF Research Database (Denmark)

    Klaning, U. K.; Sehested, Knud; Holcman, J.

    1985-01-01

    The rate constants of the following reactions were determined by pulse radiolysis and stopped-flow experiments: C102- + O3 + C102 + 03-(k f= (4 f 1) X lo6 dm3 mol-' s-', k, = (1.8 f 0.2) X lo5 dm3 mol-' s-]); C102 + OH - C103- + H+ (k = (4.0 * 0.4) X lo9 dm3 mol-' s-l); C102 + 0- - C103- (k = (2.......7 * 0.4) X lo9 dm3 mol-' s-l); and O3 + C102 - C103 + O2 (k = (1.05 f 0.10) X lo3 dm3 mol-l s-'), where kf is the forward rate of reaction and k, is the reverse rate of reaction. The standard Gibbs energy of formation of OH in aqueous solution A&O,,(OH) and the corresponding standard oxidation potential...

  6. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  7. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system

    International Nuclear Information System (INIS)

    Nakatani, Nobutake; Hashimoto, Norichika; Shindo, Hirotaka; Yamamoto, Masatoshi; Kikkawa, Megumi; Sakugawa, Hiroshi

    2007-01-01

    Photoformation rates and scavenging rate constants of hydroxyl radicals (·OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between ·OH and the benzene added to the water sample was determined to quantify the ·OH formation rate. The rate constants of ·OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected ·OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of ·OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the ·OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10 -13 M s -1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of ·OH in commercial drinking water and the major source and sink of ·OH were identified as nitrate and bicarbonate ions, respectively

  8. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  9. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....

  10. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    International Nuclear Information System (INIS)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-01-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M K ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  11. Aqueous alteration of Japanese simulated waste glass P0798: Effects of alteration-phase formation on alteration rate and cesium retention

    International Nuclear Information System (INIS)

    Inagaki, Y.; Shinkai, A.; Idemistu, K.; Arima, T.; Yoshikawa, H.; Yui, M.

    2006-01-01

    Aqueous alteration tests were performed with a Japanese simulated waste glass P0798 in alkaline solutions as a function of pH or species/concentration of alkaline metals in the solution in order to evaluate the alteration conditions determining whether smectite (2:1 clay mineral) or analcime (zeolite) forms as the major alteration-phase. XRD analysis of the alteration-phases showed that smectite forms at any pH between 9.5 and 12, and analcime forms at pH above 11, though the formation also depends on species and concentrations of alkaline metals in the solution. These results cannot agree with the thermodynamically predicted phase stability, e.g., smectite is more stable than the thermodynamic prediction shows. On the basis of the results of alteration conditions, the alteration tests were performed under smectite forming conditions, where only smectite forms or no crystalline phases form, in order to evaluate the alteration rate and the mechanism of cesium release/retention. The results showed that the glass alteration proceeds slowly in proportion to square root of time under smectite forming conditions, which indicates that the alteration rate can be controlled by a diffusion process. It was suggested that the alteration rate under smectite forming conditions is independent of the pH, alkaline metal species/concentration in the solution and whether smectite actually forms or not. The results also indicated that most of cesium dissolved from the glass can be retained in the alteration-phases by reversible sorption onto smectite or irreversible incorporation into analcime, pollucite or solid solutions of them

  12. Research of Self-Formation Nanostructures

    Directory of Open Access Journals (Sweden)

    Romas Petrauskas

    2011-08-01

    Full Text Available Lateral etching processes for the modeling of the geometry of self-formation nanostructures with Silvaco TCAD Athena program are analyzed. Self-formation nanostructures is modeled with different mask selectivity values equal to 2, 10, 40 and 100 with respect to the etching layer, with the etching duration of 0–180 s. The etching rates are constant – 1.33 nm/s. The analysis of the dependence of the etching systematic error on its thickness has been carried out. The computer modeled results are close to the ones produced by means of the application of the analytical calculation models by other authors.Article in Lithuanian

  13. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  14. Improved picture rate conversion using classification based LMS-filters.

    NARCIS (Netherlands)

    An, L.; Heinrich, A.; Cordes, C.N.; Haan, de G.; Rabbani, Majid

    2009-01-01

    Due to the recent explosion of multimedia formats and the need to convert between them, more attention is drawn to picture rate conversion. Moreover, growing demands on video motion portrayal without judder or blur requires improved format conversion. The simplest conversion repeats the latest

  15. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  16. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  17. THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7

    International Nuclear Information System (INIS)

    Gonzalez, Valentino; Bouwens, Rychard J.; Illingworth, Garth; Labbe, Ivo; Franx, Marijn; Kriek, Mariska; Brammer, Gabriel B.

    2010-01-01

    We use a robust sample of 11 z ∼ 7 galaxies (z 850 dropouts) to estimate the stellar mass density (SMD) of the universe when it was only ∼750 Myr old. We combine the very deep optical to near-infrared photometry from the Hubble Space Telescope Advanced Camera for Surveys and NICMOS cameras with mid-infrared Spitzer Infrared Array Camera (IRAC) imaging available through the GOODS program. After carefully removing the flux from contaminating foreground sources, we have obtained reliable photometry in the 3.6 μm and 4.5 μm IRAC channels. The spectral shapes of these sources, including their rest-frame optical colors, strongly support their being at z ∼ 7 with a mean photometric redshift of (z) = 7.2 ± 0.5. We use Bruzual and Charlot synthetic stellar population models to constrain their stellar masses and star formation histories. We find stellar masses that range over (0.1-12) x 10 9 M sun and average ages from 20 Myr to 425 Myr with a mean of ∼300 Myr, suggesting that in some of these galaxies most of the stars were formed at z > 8 (and probably at z ∼> 10). The best fits to the observed SEDs are consistent with little or no dust extinction, in agreement with recent results at z ∼ 4-8. The star formation rates (SFRs) are in the range from 5 to 20 M sun yr -1 . From this sample, we measure an SMD of 6.6 +5.4 -3.3 x 10 5 M sun Mpc -3 to a limit of M UV,AB z=3 ). Combined with a fiducial lower limit for their ages (80 Myr), this implies a maximum SFR density of 0.008 M sun yr -1 Mpc -3 . This is well below the critical level needed to reionize the universe at z ∼ 8 using standard assumptions. However, this result is based on luminous sources (>L*) and does not include the dominant contribution of the fainter galaxies. Strikingly, we find that the specific SFR is constant from z ∼ 7 to z ∼ 2 but drops substantially at more recent times.

  18. Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural organic matter

    Science.gov (United States)

    Slowey, Aaron J.

    2010-01-01

    Mercury is a global contaminant of concern due to its transformation by microorganisms to form methylmercury, a toxic species that accumulates in biological tissues. The effect of dissolved organic matter (DOM) isolated from natural waters on reactions between mercury(II) (Hg) and sulfide (S(-II)) to form HgS(s) nanoparticles across a range of Hg and S(-II) concentrations was investigated. Hg was equilibrated with DOM, after which S(-II) was added. Dissolved Hg (Hgaq) was periodically quantified using ultracentrifugation and chemical analysis following the addition of S(-II). Particle size and identity were determined using dynamic light scattering and X-ray absorption spectroscopy. S(-II) reacts with Hg to form 20 to 200nm aggregates consisting of 1-2 nm HgS(s) subunits that are more structurally disordered than metacinnabar in the presence of 2 x 10-9 to 8 x 10-6M Hg and 10 (mg C)L-1 DOM. Some of the HgS(s) nanoparticle aggregates are subsequently dissolved by DOM and (re)precipitated by S(-II) over periods of hours to days. At least three fractions of Hg-DOM species were observed with respect to reactivity toward S(-II): 0.3 μmol reactive Hg per mmol C (60 percent), 0.1 μmol per mmol C (20 percent) that are kinetically hindered, and another 0.1 μmol Hg per mmol C (20 percent) that are inert to reaction with S(-II). Following an initial S(-II)-driven precipitation of HgS(s), HgS(s) was dissolved by DOM or organic sulfur compounds. HgS(s) formation during this second phase was counterintuitively favored by lower S(-II) concentrations, suggesting surface association of DOM moieties that are less capable of dissolving HgS(s). DOM partially inhibits HgS(s) formation and mediates reactions between Hg and S(-II) such that HgS(s) is susceptible to dissolution. These findings indicate that Hg accessibility to microorganisms could be controlled by kinetic (intermediate) species in the presence of S(-II) and DOM, undermining the premise that equilibrium Hg species

  19. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  20. THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THE CHANDRA DEEP FIELD SOUTH FROM z = 0.2 TO 1.2 WITH SWIFT/UVOT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Lea M. Z.; Gronwall, Caryl; Wolf, Christopher; Siegel, Michael H.; Hagen, Alex [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Hoversten, Erik A. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, 120 E. Cameron Avenue, Chapel Hill, NC 27599 (United States); Page, Mathew, E-mail: lmz5057@psu.edu [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2015-08-01

    We use deep Swift UV/Optical Telescope (UVOT) near-ultraviolet (1600–4000 Å) imaging of the Chandra Deep Field South to measure the rest-frame far-UV (FUV; 1500 Å) luminosity function (LF) in four redshift bins between z = 0.2 and 1.2. Our sample includes 730 galaxies with u < 24.1 mag. We use two methods to construct and fit the LFs: the traditional V{sub max} method with bootstrap errors, and a maximum likelihood estimator. We observe luminosity evolution such that M* fades by ∼2 mag from z ∼ 1 to z ∼ 0.3, implying that star formation activity was substantially higher at z ∼ 1 than today. We integrate our LFs to determine the FUV luminosity densities and star formation rate densities (SFRDs) from z = 0.2 to 1.2. We find evolution consistent with an increase proportional to (1 + z){sup 1.9} out to z ∼ 1. Our luminosity densities and star formation rates are consistent with those found in the literature but are, on average, a factor of ∼2 higher than previous FUV measurements. In addition, we combine our UVOT data with the MUSYC survey to model the galaxies’ ultraviolet-to-infrared spectral energy distributions and estimate the rest-frame FUV attenuation. We find that accounting for the attenuation increases the SFRDs by ∼1 dex across all four redshift bins.

  1. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    Science.gov (United States)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  2. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody.

    Science.gov (United States)

    Kalonia, Cavan K; Heinrich, Frank; Curtis, Joseph E; Raman, Sid; Miller, Maria A; Hudson, Steven D

    2018-03-05

    Passage of specific protein solutions through certain pumps, tubing, and/or filling nozzles can result in the production of unwanted subvisible protein particles (SVPs). In this work, surface-mediated SVP formation was investigated. Specifically, the effects of different solid interface materials, interfacial shear rates, and protein concentrations on SVP formation were measured for the National Institute of Standards and Technology monoclonal antibody (NISTmAb), a reference IgG1 monoclonal antibody (mAb). A stainless steel rotary piston pump was used to identify formulation and process parameters that affect aggregation, and a flow cell (alumina or stainless steel interface) was used to further investigate the effect of different interface materials and/or interfacial shear rates. SVP particles produced were monitored using flow microscopy or flow cytometry. Neutron reflectometry and a quartz crystal microbalance with dissipation monitoring were used to characterize adsorption and properties of NISTmAb at the stainless steel interface. Pump/shear cell experiments showed that the NISTmAb concentration and interface material had a significant effect on SVP formation, while the effects of interfacial shear rate and passage number were less important. At the higher NISTmAb concentrations, the adsorbed protein became structurally altered at the stainless steel interface. The primary adsorbed layer remained largely undisturbed during flow, suggesting that SVP formation at high NISTmAb concentration was caused by the disruption of patches and/or secondary interactions.

  3. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.

    1985-01-01

    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  4. On the contribution of atmospheric moisture to dew formation

    Science.gov (United States)

    Garratt, J. R.; Segal, M.

    1988-09-01

    The relative contributions of dewfall (a flux of water vapour from air to surface) and distillation (a flux of water vapour from soil to canopy) to dew formation on closed canopy and bare soil surfaces are assessed, and the dependence of dew amount upon wind speed, absolute temperature, atmospheric stability, relative humidity, soil characteristics and cloudiness, all of which are significant factors, is evaluated. Some of these evaluations provide refinements to similar ones given in Monteith (1961). High dewfall rates are usually ≲0.06 mm hr-1 over canopy or bare soil, though upon a canopy under soil-saturated and air-saturated conditions, rates of dew formation may reach 0.07 0.09 mm hr-1 with contributions from distillation. Various sets of observations are reanalyzed to illustrate the importance of the horizontal advection of moisture in the nocturnal boundary layer (NBL) to observed high rates of dew formation arising from the atmospheric contribution of water vapour (dewfall). These locally observed high dewfall rates must be the result of small-scale or mesoscale horizontal advection of moisture in the NBL, since the humidity changes within the typically shallow NBL required to balance the loss of water at the surface are not observed. Over extensive areas of uniform surface (horizontal scales ≫10 km), such continuously high dewfall rates could only be balanced by a local supply of atmospheric moisture since advection of moisture would necessarily be small.

  5. Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer

    Science.gov (United States)

    Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.

    2015-12-01

    Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.

  6. Modélisation et caractérisation des joints collés à hautes vitesses de déformation Modeling and characterization of bonded joints at high strain rates

    Directory of Open Access Journals (Sweden)

    Bourel B.

    2013-11-01

    Full Text Available Ce papier traite de la modélisation de joints collés pour les structures soumises à des sollicitations de type crash. Cette nouvelle modélisation basée sur un élément cohésif tient compte du comportement viscoplastique, de l'endommagement ainsi que de la rupture de l'adhésive. Sensible à la vitesse de déformation l'identification du critère de rupture nécessite une base expérimentale allant jusqu'à de très hautes vitesses de déformations. Un nouveau dispositif d'essais a donc été mis en place sur les barres de Hopkinson afin de solliciter des assemblages à haute vitesse et sous différents angles de chargement. This paper deals with the modeling of bonded joints for structures subjected to dynamic crash loading. This new model based on a cohesive element takes into account the viscoelastic behavior, the damage and the failure of the adhesive. Due to the strain rate sensitivity, the identification of failure criterion requires experimental tests, up to very high strain rates. A new testing device has then been set up on the Hopkinson bar in order to load the assemblies with high strain rates and with different angles.

  7. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  8. Suppression of new particle formation from monoterpene oxidation by NOx

    Science.gov (United States)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.

  9. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-01-01

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  10. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  11. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  12. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  13. Formation of quartz veins by local dissolution and transport of silica

    Energy Technology Data Exchange (ETDEWEB)

    Wangen, Magnus; Munz, Ingrid Anne

    2004-08-01

    A simple model is proposed for the (often) thick quartz veins observed in the Modum Complex in Southern Norway. The formation of these veins cannot easily be explained by silica imported by hot ascending fluids. The proposed model has dissolution in the host rock adjacent to the veins as the source for silica. The suggested process for vein formation is represented by a reaction-diffusion equation, and the process is studied in terms of a Damkoehler number. Estimates for the growth rate of quartz cement are derived. The estimates for the growth rate can be used to constrain poorly known parameters of the vein formation process, like for instance, the degree of supersaturation in the host rock. (Author)

  14. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  15. Marine snow derived from abandoned larvacean houses: Sinking rates, particle content and mechanisms of aggregate formation

    DEFF Research Database (Denmark)

    Hansen, J.L.S.; Kiørboe, Thomas; Alldredge, A.L.

    1996-01-01

    The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps and dire......The dynamics and formation mechanisms of marine snow aggregates from abandoned larvacean houses were examined by laboratory experiments and field sampling during a spring diatom bloom in a shallow fjord on the west coast of the USA. Intact aggregates were sampled both from sediment traps...

  16. THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M sun yr -1 , with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  17. Peroxide formation and kinetics of sodium dissolution in alcohols

    International Nuclear Information System (INIS)

    Muralidaran, P.; Chandran, K.; Ganesan, V.; Periaswami, G.

    1997-01-01

    Suitable techniques for sodium removal and decontamination of sodium wetted components of Liquid Metal Fast Reactors (LMFRs) are necessary both for repair, reuse and decommissioning of such components. Among the methods followed for sodium removal, alcohol dissolution is usually employed for small components like bellow sealed valves, gripping tools to handle core components and sodium sampling devices (primary and secondary). One of the concerns in the alcohol dissolution method is the possible role of peroxide formation in the ethoxy group during storage and handling leading to explosion. This paper describes the study of peroxide formation in ethyl carbitol and butyl cellosolve as well as some of the results of dissolution kinetic studies carried out in our laboratory using different alcohols. The peroxide formation of ethyl carbitol and butyl cellosolve were studied by iodometric technique. It has been found that the peroxide formation is less in sodium containing alcohol than in pure one. Ethyl carbitol, butyl cellosolve and Jaysol-SS (mixture of ethyl alcohol, methyl alcohol, isopropyl alcohol and methyl isobutyl ketone) were used in dissolution kinetics studies. The effects due to area and orientation of the fresh sodium surface have also been investigated. The reaction rates were studied in the temperature range of 303-343 K. The rate of dissolution was estimated by measuring the sodium content of alcohol at periodic intervals. It is found that the reaction rate varies in the order of ethyl alcohol-water mixture > Jaysol-SS > butyl cellosolve > ethyl carbitol. While cleaning sodium using alcohol, the concentration of alcohol is held essentially constant throughout the process. The rate of reaction depends only on the amount of sodium and follows pseudo-first order kinetics. Increase in surface area has a marked impact on the dissolution rate at lower temperatures while at higher temperatures, the temperature factor overrides the effect due to surface area

  18. Method for simultaneous measurement of borehole and formation neutron decay-times employing iterative fitting

    International Nuclear Information System (INIS)

    Schultz, W.E.

    1982-01-01

    A method is described of making in situ measurements of the thermal neutron decay time of earth formations in the vicinity of a wellbore. The borehole and earth formations in its vicinity are repetitively irradiated with pulsed fast neutrons and, during the intervals between pulses, capture gamma radiation is measured in at least four, non-overlapping, contiguous time intervals. A background radiation measurement is made between successive pulses and used to correct count-rates representative of thermal neutron populations in the borehole and the formations, the count-rates being generated during each of the time intervals. The background-corrected count-rate measurements are iteratively fitted to exponential curves using a least squares technique to simultaneously derive signals representing borehole component and formation component of the thermal neutron decay time. The signals are recorded as a function of borehole depth. (author)

  19. Panel Data Models of New Firm Formation in New England

    Directory of Open Access Journals (Sweden)

    Jitendra Parajuli

    2017-10-01

    Full Text Available This study examines the impact of the determinants of new firm formation in New England at the county level from 1999 to 2009. Based on the Spatial Durbin panel model that accounts for spillover effects, it is found that population density and human capital positively affect single-unit firm births within a county and its neighbors. Population growth rate also exerts a significant positive impact on new firm formation, but most of the effect is from spatial spillovers. On the contrary, the ratio of large to small firm in terms of employment size and unemployment rate negatively influence single-unit firm births both within counties and among neighbors. However, there is no significant impact of local financial capital and personal income growth on new firm formation.

  20. Formative Evaluation of a Neuroanatomy Course

    Science.gov (United States)

    Sterret, Patrick R.; Littlefield, John H.

    1976-01-01

    Student cognitive performance data and affective reactions provided the basis for a formative evaluation of this neuroanatomy curriculum for freshmen medical students. The cerebral hempispheres topic area was marked by poor cognitive performance and low ratings in lecture quality. Videotapes designed to augment neurophysiology also received low…

  1. Pet formation and mass balance in subarctic ombrotrophic peatlands around Abisko, northern Scandinavia

    International Nuclear Information System (INIS)

    Malmer, N.; Wallen, B.

    1996-01-01

    The apparent, short term litter formation rate in the dominating Sphagnum communities which characterise the extensive ombrotrophic parts of mires around Abisko, most of them with permafrost, has been estimated over a 14 yr period using a technique based on 14 C-labelling of the vegetation. The losses due to decay in the acrotelm have been estimated from the change in concentration of nitrogen above the upper limit of the catogelm. The litter formation rate in moss hummocks can be as high as 200 g m -2 yr -1 while the decay losses in the acrotelm are in the range of 40-50 g m -2 yr -1 . In hollows the decay rate is higher than in hummocks and the residence time of the organic matter is shorter (100 and 170 yr, respectively). The ombrotrophic peat is rather thin ( 14 C-datings indicate that the formation of ombrotrophic peat started over 800 yr ago. Until recent time the ombrotrophic peat accumulation rate has been 36-45 g m -2 yr -1 . However, on the mires larger than c. 10 ha the Sphagnum-dominated communities cover only a small part of the total mire surface, often less than one third, and the litter formation rate on the remaining parts of the surface is very low. Therefore, the present over all litter formation rate is only c.35 g m -2 yr -1 and does not even compensate for the decay losses in the acrotelm. Although the peat stratigraphy suggests and ongoing peat (and carbon) accumulation the carbon balance in the systems as a whole has changed from sink to source rather recently. (au)

  2. Star formation rate and extinction in faint z ∼ 4 Lyman break galaxies

    Energy Technology Data Exchange (ETDEWEB)

    To, Chun-Hao; Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Owen, Frazer N. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States)

    2014-09-10

    We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z ∼ 4 Lyman break galaxies (LBGs). To constrain their extinction and intrinsic star formation rate (SFR), we combine the latest ultradeep Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advanced Camera for Surveys (ACS) optical images in the GOODS-N. We select a large sample of 1771 z ∼ 4 LBGs from the ACS catalog using B {sub F435W}-dropout color criteria. Our LBG samples have I {sub F775W} ∼ 25-28 (AB), ∼0-3 mag fainter than M{sub UV}{sup ⋆} at z ∼ 4. In our stacked radio images, we find the LBGs to be point-like under our 2'' angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of S {sub 1.5} {sub GHz} = 0.210 ± 0.075 μJy at ∼3σ for the first time on such a faint LBG population at z ∼ 4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an obscured SFR of 16.0 ± 5.7 M {sub ☉} yr{sup –1}, and implies a rest-frame UV extinction correction factor of 3.8. This extinction correction is in excellent agreement with that derived from the observed UV continuum spectral slope, using the local calibration of Meurer et al. This result supports the use of the local calibration on high-redshift LBGs to derive the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.

  3. Ultrasonic experiment on hydrate formation of a synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shicai; Fan, Shuanshi; Liang, Deqing; Zhang, Junshe; Feng, Ziping

    2005-07-01

    The effect of ultrasonic on the induction time and formation rate of natural gas hydrates was investigated in a stainless steel cell in this study. The results show that the induction time with ultrasonic was about 1/6 of that without ultrasonic and only about 1/10 if rehydration after decomposition in water-gas system. In sodium dodecyl sulfate (SDS) solution-gas system, the critical micellar concentration (CMC) was not identified with ultrasonic. The formation rate and storage capacity of hydrate increased with increasing SDS concentration at a range of 0 to 800ppm. However, the increase was insignificant as the SDS concentration increased from 600 to 800ppm, (Author)

  4. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  5. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    Science.gov (United States)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  6. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    International Nuclear Information System (INIS)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn; Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael; Schreiber, Natascha M. Förster; Kriek, Mariska; Quadri, Ryan; Wake, David; Lundgren, Britt; Whitaker, Katherine E.; Marchesini, Danilo; Pacifici, Camilla; Skelton, Rosalind E.

    2014-01-01

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10 –12 yr –1 ). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10 –11.9 × (1 + z) 4 yr –1 . These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  7. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael [Max Planck Institute for Astronomy (MPIA), Konigstuhl 17, D-69117 Heidelberg (Germany); Schreiber, Natascha M. Förster [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Quadri, Ryan [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Wake, David; Lundgren, Britt [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Whitaker, Katherine E. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa)

    2014-11-20

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  8. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  9. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  10. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  11. Probing the mechanism of insulin fibril formation with insulin mutants.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  12. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  13. Adolescent Violent Victimization and Precocious Union Formation.

    Science.gov (United States)

    C Kuhl, Danielle; Warner, David F; Wilczak, Andrew

    2012-11-01

    This article bridges scholarship in criminology and family sociology by extending arguments about "precocious exits" from adolescence to consider early union formation as a salient outcome of violent victimization for youths. Research indicates that early union formation is associated with several negative outcomes; yet the absence of attention to union formation as a consequence of violent victimization is noteworthy. We address this gap by drawing on life course theory and data from the National Longitudinal Study of Adolescent Health (Add Health) to examine the effect of violent victimization ("street" violence) on the timing of first co-residential union formation-differentiating between marriage and cohabitation-in young adulthood. Estimates from Cox proportional hazard models show that adolescent victims of street violence experience higher rates of first union formation, especially marriage, early in the transition to adulthood; however, this effect declines with age, as such unions become more normative. Importantly, the effect of violent victimization on first union timing is robust to controls for nonviolent delinquency, substance abuse, and violent perpetration. We conclude by discussing directions for future research on the association between violent victimization and coresidential unions with an eye toward the implications of such early union formation for desistance.

  14. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    Science.gov (United States)

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire

  15. Bonded exciplex formation: electronic and stereoelectronic effects.

    Science.gov (United States)

    Wang, Yingsheng; Haze, Olesya; Dinnocenzo, Joseph P; Farid, Samir; Farid, Ramy S; Gould, Ian R

    2008-12-18

    As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.

  16. MAGNETIC BRAKING AND PROTOSTELLAR DISK FORMATION: AMBIPOLAR DIFFUSION

    International Nuclear Information System (INIS)

    Mellon, Richard R.; Li Zhiyun

    2009-01-01

    It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Nonideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip relative to the bulk neutral matter. We find that the slippage does not sufficiently weaken the braking to allow rotationally supported disks to form for realistic levels of cloud magnetization and cosmic ray ionization rate; in some cases, the magnetic braking is even enhanced. Only in dense cores with both exceptionally weak fields and unreasonably low ionization rate do such disks start to form in our simulations. We conclude that additional processes, such as Ohmic dissipation or Hall effect, are needed to enable disk formation. Alternatively, the disk may form at late times when the massive envelope that anchors the magnetic brake is dissipated, perhaps by a protostellar wind.

  17. Hard rock star : Weatherford's multiphase performance drilling system increases penetration rates in hard, abrasive formations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2010-12-15

    This article described Weatherford's Multiphase Performance Drilling (MPPD) system that enhances drilling rate penetration. The technology was awarded the 2010 winner for best drilling technology for a company with 100 employees or more. Weatherford Canada and Suncor Energy developed the patent-pending MPPD system in the Panther field, and have expanded its use to Suncor's Kelly Lake and Gwillim plays in British Columbia. The new technology is ready to be launched worldwide. This article discussed the MPPD system, with particular reference to its benefits; process; cost savings; and technology utilization. The technique is ideal for drilling in harsh, abrasive formations such as the Nikanassin or Cadomin. It has allowed Suncor to save as much as $1.5 million per well. The article also noted that the key to the process is the controlled use of nitrogen to lighten mud weight. Weatherford used its model 7000 rotating control device to provide precise control of the wellbore pressure profile. It was concluded that Weatherford had significant praise for its partner in developing the MPPD system since its inception with Suncor in 2004, particularly since few client companies have the patience and the willingness to make expensive long-term investment necessary to perfect such systems. 2 figs.

  18. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    Science.gov (United States)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; hide

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  19. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding

    OpenAIRE

    Rehder, Sönke; Klukkert, Marten; Löbmann, Korbinian A. M.; Strachan, Clare J.; Sakmann, Albrecht; Gordon, Keith; Rades, Thomas; Leopold, Claudia S.

    2011-01-01

    Cocrystal formation rates during dry grinding and liquid-assisted grinding were investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic forms of piracetam were used to prepare known piracetam cocrystals as model substances, i.e., piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in combination with principal component analysis was used to visualize the cocrystal formation pathways. During dry grinding, cocrystal formation appeared to ...

  20. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  1. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    Directory of Open Access Journals (Sweden)

    Yoshinori Kadoma

    2012-05-01

    Full Text Available The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs between the base-catalyzed hydrolysis rate constants (k1 or the rate constant with glutathione (GSH (log kGSH for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ or heat of formation (Hf calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93, but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89. By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99, but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity.

  2. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089 (Mexico)

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  3. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  4. a metabolic wastage model for the rate-yield trade off

    Indian Academy of Sciences (India)

    A METABOLIC WASTAGE MODEL FOR THE RATE-YIELD TRADE OFF. There is a growth limiting step in which an intermediate metabolite (m) has to hit a target molecule (t). ... D= rate of diffusing out. S= the rate of formation of the metabolite. The equilibrium loss decides the yield. The no. of activated targets decide the rate ...

  5. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  6. Particle formation events measured at a semirural background site in Denmark

    DEFF Research Database (Denmark)

    Wang, Fenjuan; Zhang, Zhenyi; Massling, Andreas

    2013-01-01

    according to 3D daily plots in combination with an automatic routine. A clear seasonal variation was found in the way that events occurred more frequently during the warm season from May to September and especially in June. The mean values of the apparent 6 nm particle formation rates, the growth rate......The particle formation and growth events observed at a semirural background site in Denmark were analyzed based on particle number size distribution data collected during the period from February 2005 to December 2010. The new particle formation (NPF) events have been classified visually in detail...... and the condensation sink were about 0.36 cm−3 s−1, 2.6 nm h−1, 4.3 × 10−3 s−1, respectively. A positive relationship of oxidation capacity (OX = O3 + NO2) of the atmosphere and the appearance of NPF events was found indicating that the oxidation of the atmosphere was linked to the formation of new particles...

  7. A compliance assessment of midpoint formative assessments completed by APPE preceptors.

    Science.gov (United States)

    Lea Bonner, C; Staton, April G; Naro, Patricia B; McCullough, Elizabeth; Lynn Stevenson, T; Williamson, Margaret; Sheffield, Melody C; Miller, Mindi; Fetterman, James W; Fan, Shirley; Momary, Kathryn M

    Experiential pharmacy preceptors should provide formative and summative feedback during a learning experience. Preceptors are required to provide colleges and schools of pharmacy with assessments or evaluations of students' performance. Students and experiential programs value on-time completion of midpoint evaluations by preceptors. The objective of this study was to determine the number of on-time electronically documented formative midpoint evaluations completed by preceptors during advanced pharmacy practice experiences (APPEs). Compliance rates of on-time electronically documented formative midpoint evaluations were reviewed by the Office of Experiential Education of a five-member consortium during the two-year study period prior to the adoption of Standards 2016. Pearson chi-square test and generalized linear models were used to determine if statistically significant differences were present. Average midpoint compliance rates for the two-year research period were 40.7% and 41% respectively. No statistical significance was noted comparing compliance rates for year one versus year two. However, statistical significance was present when comparing compliance rates between schools during year two. Feedback from students and preceptors pointed to the need for brief formal midpoint evaluations that require minimal time to complete, user friendly experiential management software, and methods for documenting verbal feedback through student self-reflection. Additional education and training to both affiliate and faculty preceptors on the importance of written formative feedback at midpoint is critical to remaining in compliance with Standards 2016. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    International Nuclear Information System (INIS)

    Sargsyan, Lusine A.; Weedman, Daniel W.

    2009-01-01

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 μm polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z ν (7.7 μm)] - 42.57 ± 0.2, for SFR in M sun yr -1 and νL ν (7.7 μm) the luminosity at the peak of the 7.7 μm PAH feature in erg s -1 , is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 ± 0.05)log [νL ν (7.7 μm)] - 21.5 ± 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between νL ν (7.7 μm) and L ir , this becomes log [SFR(PAH)/SFR(UV)]= (0.53 ± 0.05)log L ir - 4.11 ± 0.18, for L ir in L sun . Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of ∼10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z ∼ 2.5. Application of this factor explains why the most luminous starbursts discovered by Spitzer at z ∼ 2.5 are optically faint; with this amount of extinction, the optical magnitude of a starburst

  9. Current denudation rates in dolostone karst from central Spain: Implications for the formation of unroofed caves

    Science.gov (United States)

    Krklec, Kristina; Domínguez-Villar, David; Carrasco, Rosa M.; Pedraza, Javier

    2016-07-01

    depth, we consider that this is a more reliable denudation rate for the studied location during the studied period. The calculated weathering rate suggests that denudation has a limited contribution to the thinning of bedrock over caves at this site. Therefore, we consider that the formation of unroofed caves in this region most likely results from the thinning of bedrock cover over caves due to collapse of blocks from their ceilings.

  10. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  11. Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 Extinction and Star Formation Rate Indicators

    Science.gov (United States)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, Jane; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-01-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 extinction, the Ha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2µm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed.

  12. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means of the GC......Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...

  13. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  14. Estimation of the reaction rate for the formation of CH3O from H + H2CO - Implications for chemistry in the solar system

    Science.gov (United States)

    Yung, Yuk L.; Drew, William A.; Pinto, Joseph P.; Friedl, Randall R.

    1988-01-01

    Troe's (1977) approximate theory is presently used in conjunction with transition state theory to estimate the rate coefficient of the reaction by which CO is reduced to CH4; attention is given to the role that may be played in the reduction process by the formation of the CH3O radical from H + H2CO. Attention is given to the implications of such a reaction (1) for the CO chemistry on Jupiter and within the solar nebula, (2) for the interpretation of such experimental results as those of Bar-Nun and Shaviv (1975) and Bar-Nun and Chang (1983), and (3) for organic synthesis in the prebiotic terrestrial atmosphere.

  15. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: tateuchi@ioa.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  16. Ring current energy injection rate and solar wind-magnetosphere energy coupling

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Akasofu, S.-I.

    1982-01-01

    The purpose of this paper is to (i) formulate the ring current injection rate Usub(R) in terms of phisub(CT) (cross-tail potential drop) by assuming that the ring current formation is a direct consequence of an enhanced convection, (ii) examine the relationship between the injection rate Usub(R) and the power transferred from the solar wind to the magnetosphere and (iii) demonstrate that an enhanced convection indeed leads to the formation of the ring current. (author)

  17. New particle formation infrequently observed in Himalayan foothills – why?

    Directory of Open Access Journals (Sweden)

    K. Neitola

    2011-08-01

    Full Text Available A fraction of the Himalayan aerosols originate from secondary sources, which are currently poorly quantified. To clarify the climatic importance of regional secondary particle formation in the Himalayas, data from 2005 to 2010 of continuous aerosol measurements at a high-altitude (2180 m Indian Himalayan site, Mukteshwar, were analyzed. For this period, the days were classified, and the particle formation and growth rates were calculated for clear new particle formation (NPF event days. The NPF events showed a pronounced seasonal cycle. The frequency of the events peaked in spring, when the ratio between event and non-event days was 53 %, whereas the events were truly sporadic on any other seasons. The annual mean particle formation and growth rates were 0.40 cm−3 s−1 and 2.43 nm h−1, respectively. The clear annual cycle was found to be mainly controlled by the seasonal evolution of the Planetary Boundary Layer (PBL height together with local meteorological conditions. Spring NPF events were connected with increased PBL height, and therefore characterised as boundary layer events, while the rare events in other seasons represented lower free tropospheric particle formation. This provides insight on the vertical extent of NPF in the atmosphere.

  18. Understanding the star formation modes in the distant universe

    International Nuclear Information System (INIS)

    Salmi, Fadia

    2012-01-01

    The goal of my PhD study consists at attempt to understand what are the main processes at the origin of the star formation in the galaxies over the last 10 billion years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates, in the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. We were especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. We studied this main sequence, SFR-M"*, in function of the morphology and other physical parameters like the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence. (author) [fr

  19. Instantaneous global nitrous oxide photochemical rates

    International Nuclear Information System (INIS)

    Johnston, H.S.; Serang, O.; Podolske, J.

    1979-01-01

    In recent years, vertical profiles of nitrous oxide have been measured by balloon up to midstratosphere at several latitudes between 63 0 N and 73 0 S, including one profile in the tropical zone at 9 0 N. Two rocket flights measured nitrous oxide mixing ratios at 44 and 49 km. From these experimental data plus a large amount of interpolation and extrapolation, we have estimated a global distribution of nitrous oxide up to the altitude of 50 km. With standard global distributions of oxygen and ozone we carried out instantaneous, three-dimensional, global photochemical calculations, using recently measured temperature-dependent cross sections for nitrous oxide. The altitude of maximum photolysis rate of N 2 O is about 30 km at all latitudes, and the rate of photolysis is a maximum in tropical latitudes. The altitude of maximum rate of formation of nitric oxide is latitude dependent, about 26 km at the equator, about 23 km over temperate zones, and 20 km at the summer pole. The global rate of N 2 O destruction is 6.2 x 10 27 molecules s -1 , and the global rate of formation of NO from N 2 O is 1.4 x 10 27 molecules s -1 . The global N 2 O inventory divided by the stratospheric loss rate gives a residence time of about 175 years with respect to this loss process. From the global average N 2 O profile a vertical eddy diffusion profile was derived, and this profile agrees very closely with that of Stewart and Hoffert

  20. Coagulation efficiency and aggregate formation in marine phytoplankton

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Andersen, K.P.; Dam, H.G.

    1990-01-01

    , and even nutrient replete cells are significantly sticky. Stickiness is highest (> 10-1) for S. costatum cells in the transition between the exponential and the stationary growth phase. The implications for phytoplankton aggregate formation and subsequent sedimentation in the sea of these two different......Flocculation of phytoplankters into large, rapidly sinking aggregates has been implicated as a mechanism of vertical transport of phytoplankton to the sea floor which could have global significance. The formation rate of phytoplankton aggregates depends on the rate at which single cells collide...... and demonstrate that three species of diatoms grown in the laboratory (Phaeodactylum tricornutum, Thalassiosira pseudonana, Skeletonema costatum) are indeed significantly sticky and form aggregates upon collison. The dependency of stickiness on nutrient limitation and growth was studied in the two latter species...

  1. Double neutron stars: merger rates revisited

    Science.gov (United States)

    Chruslinska, Martyna; Belczynski, Krzysztof; Klencki, Jakub; Benacquista, Matthew

    2018-03-01

    We revisit double neutron star (DNS) formation in the classical binary evolution scenario in light of the recent Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo DNS detection (GW170817). The observationally estimated Galactic DNS merger rate of R_MW = 21^{+28}_{-14} Myr-1, based on three Galactic DNS systems, fully supports our standard input physics model with RMW = 24 Myr-1. This estimate for the Galaxy translates in a non-trivial way (due to cosmological evolution of progenitor stars in chemically evolving Universe) into a local (z ≈ 0) DNS merger rate density of Rlocal = 48 Gpc-3 yr-1, which is not consistent with the current LIGO/Virgo DNS merger rate estimate (1540^{+3200}_{-1220} Gpc-3 yr-1). Within our study of the parameter space, we find solutions that allow for DNS merger rates as high as R_local ≈ 600^{+600}_{-300} Gpc-3 yr-1 which are thus consistent with the LIGO/Virgo estimate. However, our corresponding BH-BH merger rates for the models with high DNS merger rates exceed the current LIGO/Virgo estimate of local BH-BH merger rate (12-213 Gpc-3 yr-1). Apart from being particularly sensitive to the common envelope treatment, DNS merger rates are rather robust against variations of several of the key factors probed in our study (e.g. mass transfer, angular momentum loss, and natal kicks). This might suggest that either common envelope development/survival works differently for DNS (˜10-20 M⊙ stars) than for BH-BH (˜40-100 M⊙ stars) progenitors, or high black hole (BH) natal kicks are needed to meet observational constraints for both types of binaries. Our conclusion is based on a limited number of (21) evolutionary models and is valid within this particular DNS and BH-BH isolated binary formation scenario.

  2. Formative assessment: a student perspective.

    Science.gov (United States)

    Hill, D A; Guinea, A I; McCarthy, W H

    1994-09-01

    An educator's view would be that formative assessment has an important role in the learning process. This study was carried out to obtain a student perspective of the place of formative assessment in the curriculum. Final-year medical students at Royal Prince Alfred Hospital took part in four teaching sessions, each structured to integrate teaching with assessment. Three assessment methods were used; the group objective structured clinical examination (G-OSCE), structured short answer (SSA) questions and a pre/post-test multiple choice questionnaire (MCQ). Teaching sessions were conducted on the subject areas of traumatology, the 'acute abdomen', arterial disorders and cancer. Fifty-five students, representing 83% of those who took part in the programme, responded to a questionnaire where they were asked to rate (on a 5-point Likert scale) their response to general questions about formative assessment and 13 specific questions concerning the comparative value of the three assessment modalities. Eighty-nine per cent of respondents felt that formative assessment should be incorporated into the teaching process. The SSA assessment was regarded as the preferred modality to reinforce previous teaching and test problem-solving skills. The MCQ was the least favoured assessment method. The effect size variable between the total scores for the SSA and MCQ was 0.64. The variable between G-OSCE and SSA/MCQ was 0.26 and 0.33 respectively. Formative assessment is a potentially powerful method to direct learning behaviour. Students should have input into the methods used.

  3. Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential.

    Science.gov (United States)

    Song, Yang; Breider, Florian; Ma, Jun; von Gunten, Urs

    2017-10-01

    In this study, nitrate formation from ammonium and/or dissolved organic nitrogen (DON) was investigated as a novel surrogate parameter to evaluate the abatement of micropollutants during ozonation of synthetic waters containing natural organic matter (NOM) isolates, a natural water and secondary wastewater effluents. Nitrate formation during ozonation was compared to the changes in UV absorbance at 254 nm (UVA 254 ) including the effect of pH. For low specific ozone doses UVA 254 was abated more efficiently than nitrate was formed. This is due to a relatively slow rate-limiting step for nitrate formation from the reaction between ozone and a proposed nitrogen-containing intermediate. This reaction cannot compete with the fast reactions between ozone and UV-absorbing moieties (e.g., activated aromatic compounds). To further test the kinetics of nitrate formation, two possible intermediates formed during ozonation of DON were tested. At pH 7, nitrate was formed during ozonation of acetone oxime and methyl nitroacetate with second-order rate constants of 256.7 ± 4.7 M -1  s -1 and 149.5 ± 5.8 M -1  s -1 , respectively. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) was investigated for specific ozone doses ≤1.53 mgO 3 /mgDOC and its efficiency depended strongly on the reactivity of the selected compounds with ozone. The relative abatement of micropollutants (i.e., EE2 and CBZ) with high ozone reactivity showed linear relationships with nitrate formation. The abatement of micropollutants with intermediate-low ozone reactivity (BZF, IBU, and pCBA) followed one- and two-phase behaviors relative to nitrate formation during ozonation of water samples containing high and low concentrations of nitrate-forming DON, respectively. During ozonation of a wastewater sample, the N-nitrosodimethylamine formation potential (NDMA-FP) during

  4. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    International Nuclear Information System (INIS)

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-01-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ∼ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  5. Kinetics of anomalous multi-step formation of lath martensite in steel

    International Nuclear Information System (INIS)

    Villa, Matteo; Pantleon, Karen; Reich, Michael; Kessler, Olaf; Somers, Marcel A.J.

    2014-01-01

    A steel containing 16 wt.% Cr, 5 wt.% Ni and 3 wt.% Cu was transformed into martensite by applying isochronal, i.e. constant rate, cooling followed by isothermal holding. The formation of martensite was monitored with dilatometry. A series of retardations and accelerations of the transformation was observed during isochronal cooling for cooling rates ranging from 1.5 to 50 K min −1 . The cooling rate in the isochronal stage was observed to influence the transformation rate in the isothermal stage. Electron backscatter diffraction was applied to determine the morphology of the martensite, which was of lath type, and to investigate the microstructure of the material. No influence of the cooling rate on the scale of the microstructure was observed. The series of retardations and accelerations of the transformation is interpreted in terms of the combined effect of the strain and interfacial energy introduced in the system during martensite formation, which stabilizes austenite, and autocatalytic nucleation of martensite

  6. Formation probabilities and relaxation rates of muon states in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Haller, E.E.; Crowe, K.M.; Rosenblum, S.S.; Brewer, J.H.; British Columbia Univ., Vancouver

    1981-01-01

    We report the first results of a study of the muonium states in ultra-pure germanium crystals grown under a variety of conditions at Lawrence Berkeley Laboratory. Among the variations studied are: 1) Hydrogen, deuterium, or nitrogen atmosphere during growth; 2) Dislocation-free vs. dislocated crystals; 3) Grown from quartz, graphite, and pyrolytic graphite coated quartz crucibles; 4) n-type vs. p-type. We report a significant difference in the muonium relaxation rate between the dislocated and non-dislocated crystals. (orig.)

  7. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  8. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    Science.gov (United States)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  9. Observations of new particle formation events in the south-eastern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kristina Plauškaitė

    2010-03-01

    Full Text Available New particle formation and growth were observed at a coastal site (Preila station, Lithuania during 1997 and 2000-2002. The total amountof data analysed covers 291 one-day periods, 45 (15% of which were long-term, new particle formation days. Short-term nucleationevents (from a few minutes to one hour and long-term events (from one to eight hours were identified. The mean particlegrowth rate, condensation sink and condensable vapour source rate during nucleation events were 3.9 nm h-1, 1.45 × 10-3 cm-3 s-1 and 7.5 × 104 cm-3 s-1 respectively.The average formation rate J10 was 0.4 cm-3 s-1. The nucleation events were accompaniedmainly by air masses transported from the north (43% and north-west (19%. Meteorological parameters and trace gas (O3, SO2,NO2 concentrations were also analysed. It was found that nucleation events are related to high levels of solar radiation.

  10. Quasiresonant formation of dtμ mesic molecules in triple collisions

    International Nuclear Information System (INIS)

    Men'shikov, L.I.; Ponomarev, L.I.

    1985-01-01

    A quasiresonant mechanism of mesic molecules formation, in triple collisions of the type tμ+D 2 +D 2 → [(dtμ)d2e] * +D ν is considered. It is shown that at small resonance defects and big D 2 +T 2 mixture densities φ the rate of this process λ qr ∼ φ 2 and it is comparable with the rate λ r ∼ φ of the mesic molecules resonant formation in the reactions of the type tμ+D 2 → [(dtμ)d2e] ν *. The observable manifestations of the process considered and its role in the muon catalyzed fusion in deuterium-tritium mixture are discussed

  11. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    Science.gov (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron

  12. Formation of the oil composition of the Yu0 Bazhenov formation, Salym oil field

    Directory of Open Access Journals (Sweden)

    E.V. Soboleva

    2017-05-01

    Full Text Available The Bazhenov horizon of Western Siberia has been studied in considerable detail from different perspectives and different methods, a large number of studies have been devoted to a wide range of issues related to the lithological composition of rocks, their reservoir properties, the study of organic matter, properties and composition of oil at various analytical levels, and many others. This work is devoted to restoring conditions for the formation of oil properties and composition of the Yu0 Salym oil field, based mainly on the geochemical aspects of the study of oil changes both in area and in the section within the productive layer of Salym structure, using some geological data, such as structural plan for the reflecting horizon B (the roof of the Bazhenov formation, having a complex configuration, reservoir temperatures and pressure, well flow rates, and others. There is no single reservoir at the Salym field in the Yu0 formation. For the conclusions of the geological-geochemical interpretation, a sampling of 61 samples of oil from exploration, appraisal and production wells of the initial stages of production was used, since in the future when oil is extracted, the ecology in the deposits changes, and 21 samples of oil from other fields in the West Siberian oil and gas basin. Conventionally, three types of oils are distinguished, differing in their physicochemical parameters, group hydrocarbon and molecular composition. It was suggested that in addition to the own organic matter of the Bazhenov formation, hydrocarbon fluids of the Vasyugan, Tyumen formations and possibly Paleozoic rocks were involved in the formation of the oil composition. The flow of light liquid hydrocarbons and gases occurred along the zones of faults of different genesis and duration of existence.

  13. Study Tranport Barrier Formation using Bi- Stable Sandpile Model

    International Nuclear Information System (INIS)

    Kitpitak, B.; Kanjanaput, W.; Poolyarat, N.; Picha, R; Onjun, T.

    2014-01-01

    The formation of plasma transport barrier in Tokamak is an important issue for achieving high energy confinement and sufficient fusion performance. The simulation using in this experiment simulates cycles of dropping grains in a sandpile with two stable and two unstable slope regimes which share the same characteristic as the formation of pedestal and there are several parameters used, including stable boundaries, grains in a toppling, relax process iterations per cycle, grains in a drop and number of drops per cycle. By using this simulation, the effects of the relaxation times and number of trooping grain (the number of collapsing grain in the relaxation process) can be investigated. It is found in the simulations that the pedestal region can be observed only when the number of deposited grain exceeds a critical value which is related to number of relaxation times and number of allowed trooping grain. In another words, the pedestal formation occurs when the particle deposition rate is higher than the average diffusion rate. In addition, altering amount of trooping grain can lead to remarkable effects on slope and height of the profiles. In order to achieve better energy confinement, further study of formation of plasma transport barrier is needed.

  14. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    , are observed. Because of relatively high H2 destruction rates in these regions, the presently accepted formation routes on dust grains cannot exclusively account for the observed abundances [1]. Therefore, new formation routes are needed and lately attention has been drawn towards molecules called polycyclic...

  15. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.

    Science.gov (United States)

    Chen, Zhuo; Valentine, Richard L

    2006-12-01

    This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.

  16. A New Method for Obtaining the Star Formation Law in Galaxies

    NARCIS (Netherlands)

    Heiner, Jonathan S.; Allen, Ronald J.; van der Kruit, Pieter C.

    2010-01-01

    We present a new observational method to evaluate the exponent of the star formation law as initially formulated by Schmidt, i.e., the power-law expression assumed to relate the rate of star formation in a volume of space to the local total gas volume density present there. Total volume densities in

  17. Formation and Transformation Behavior of Sodium Dehydroacetate Hydrates

    Directory of Open Access Journals (Sweden)

    Xia Zhang

    2016-04-01

    Full Text Available The effect of various controlling factors on the polymorphic outcome of sodium dehydroacetate crystallization was investigated in this study. Cooling crystallization experiments of sodium dehydroacetate in water were conducted at different concentrations. The results revealed that the rate of supersaturation generation played a key role in the formation of the hydrates. At a high supersaturation generation rate, a new sodium dehydroacetate dihydrate needle form was obtained; on the contrary, a sodium dehydroacetate plate monohydrate was formed at a low supersaturation generation rate. Furthermore, the characterization and transformation behavior of these two hydrated forms were investigated with the combined use of microscopy, powder X-ray diffraction (PXRD, Raman spectroscopy, Fourier transform infrared (FTIR, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and dynamic vapor sorption (DVS. It was found that the new needle crystals were dihydrated and hollow, and they eventually transformed into sodium dehydroacetate monohydrate. In addition, the mechanism of formation of sodium dehydroacetate hydrates was discussed, and a process growth model of hollow crystals in cooling crystallization was proposed.

  18. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    OpenAIRE

    Kivekäs, N.; Carpman, J.; Roldin, P.; Leppä, J.; O'Connor, E. J.; Kristensson, A.; Asmi, E.

    2016-01-01

    Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a...

  19. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  20. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  1. Implantation rate effects on microstructure

    International Nuclear Information System (INIS)

    Choyke, W.J.; Spitznagel, J.A.; Wood, S.; Doyle, N.J.

    1981-01-01

    We report a detailed TEM study of rate effects in a metal (304 SS) where we dope with an insoluble atom (He) and create the displacement damage with high energy Si. The rates of doping and the rates of producing lattice damage are independently varied during dual implantation. In addition to varying the doping rates of the He the magnitude of the displacement damage prior to He implantation is also varied (beam history). We find that the beam history has virtually no effect on maximum bubble size but it has a major effect on the average cavity diameter. A weak dependence of cavity number density on helium implantation rate is found. The total dislocation density is relatively independent of the doping rate and beam history at 550 and 700 0 C, whereas the loop fraction is sensitive to beam history at these temperatures. Acicular precipitate formation is weakly dependent on doping, doping rate and more strongly dependent on doping concentration and temperature. This form of solute segregation is very sensitive to beam history. (orig.)

  2. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gonçalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude, Rio de Janeiro-RJ 20080-090 (Brazil); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2017-06-10

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  3. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    Science.gov (United States)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  4. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark; Gonçalves, Thiago S.; Schiminovich, David

    2017-01-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  5. Communicating patient-reported outcome scores using graphic formats: results from a mixed-methods evaluation.

    Science.gov (United States)

    Brundage, Michael D; Smith, Katherine C; Little, Emily A; Bantug, Elissa T; Snyder, Claire F

    2015-10-01

    Patient-reported outcomes (PROs) promote patient-centered care by using PRO research results ("group-level data") to inform decision making and by monitoring individual patient's PROs ("individual-level data") to inform care. We investigated the interpretability of current PRO data presentation formats. This cross-sectional mixed-methods study randomized purposively sampled cancer patients and clinicians to evaluate six group-data or four individual-data formats. A self-directed exercise assessed participants' interpretation accuracy and ratings of ease-of-understanding and usefulness (0 = least to 10 = most) of each format. Semi-structured qualitative interviews explored helpful and confusing format attributes. We reached thematic saturation with 50 patients (44 % < college graduate) and 20 clinicians. For group-level data, patients rated simple line graphs highest for ease-of-understanding and usefulness (median 8.0; 33 % selected for easiest to understand/most useful) and clinicians rated simple line graphs highest for ease-of-understanding and usefulness (median 9.0, 8.5) but most often selected line graphs with confidence limits or norms (30 % for each format for easiest to understand/most useful). Qualitative results support that clinicians value confidence intervals, norms, and p values, but patients find them confusing. For individual-level data, both patients and clinicians rated line graphs highest for ease-of-understanding (median 8.0 patients, 8.5 clinicians) and usefulness (median 8.0, 9.0) and selected them as easiest to understand (50, 70 %) and most useful (62, 80 %). The qualitative interviews supported highlighting scores requiring clinical attention and providing reference values. This study has identified preferences and opportunities for improving on current formats for PRO presentation and will inform development of best practices for PRO presentation. Both patients and clinicians prefer line graphs across group-level data and individual

  6. Statistical problems of a galaxies formation theory

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Shandarin, S.F.

    1978-01-01

    Some problems of galaxies and galaxy clusters formation from random adiabatic disturbances are discussed. Disturbances grow according to the nonlinear theory of gravitational instability. In this theory maxima of the largest characteristic values of a strain tensor have a particular significance as they are just the points of the formation of dense flattened structures - ''pancakes'' which then transform into galaxies and galaxy clusters. It is shown that parameters of a ''pancake'' such as time of the origin, mass, temperature etc. are determined by the lambda 11 largest characteristic value of the strain tensor in the centre of the ''pancake''. The lambda 11 distribution function the rate of mass condensation into ''pancakes'', the rate of production and the spatial density of ''pancakes'' are given. Some statistic properties of a single ''pancake'' such as a mean displacement and dispersion of a displacement in the vicinity of centre of a ''pancake'' were found. The possibility of connection between young galaxies and quasars is discussed in the framework of this theory

  7. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development.

    Directory of Open Access Journals (Sweden)

    Violeta Morin

    Full Text Available Proteolysis of sperm histones in the sea urchin male pronucleus is the consequence of the activation at fertilization of a maternal cysteine protease. We previously showed that this protein is required for male chromatin remodelling and for cell-cycle progression in the newly formed embryos. This enzyme is present in the nucleus of unfertilized eggs and is rapidly recruited to the male pronucleus after insemination. Interestingly, this cysteine-protease remains co-localized with chromatin during S phase of the first cell cycle, migrates to the mitotic spindle in M-phase and is re-located to the nuclei of daughter cells after cytokinesis. Here we identified the protease encoding cDNA and found a high sequence identity to cathepsin proteases of various organisms. A phylogenetical analysis clearly demonstrates that this sperm histone protease (SpHp belongs to the cathepsin L sub-type. After an initial phase of ubiquitous expression throughout cleavage stages, SpHp gene transcripts become restricted to endomesodermic territories during the blastula stage. The transcripts are localized in the invaginating endoderm during gastrulation and a gut specific pattern continues through the prism and early pluteus stages. In addition, a concomitant expression of SpHp transcripts is detected in cells of the skeletogenic lineage and in accordance a pharmacological disruption of SpHp activity prevents growth of skeletal rods. These results further document the role of this nuclear cathepsin L during development.

  8. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  9. Submerged Conidiation and Product Formation by Aspergillus niger at Low Specific Growth Rates Are Affected in Aerial Developmental Mutants

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R.; Nielsen, Kristian Fog; Arentshorst, Mark

    2011-01-01

    as associated with conidium formation, while fumonisins B2, B4, and B6 were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation...

  10. Course Format Effects on Learning Outcomes in an Introductory Statistics Course

    Science.gov (United States)

    Sami, Fary

    2011-01-01

    The purpose of this study was to determine if course format significantly impacted student learning and course completion rates in an introductory statistics course taught at Harford Community College. In addition to the traditional lecture format, the College offers an online, and a hybrid (blend of traditional and online) version of this class.…

  11. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  12. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  13. Measurement of the temperature dependence of the ddμ-molecule formation rate in gaseous deuterium at the pressures 1.5 and 0.4 kbar

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Dzhelepov, V.P.; Zinov, V.G.

    1990-01-01

    In the experiment with a gaseous deuterium target of high pressure on the muon beam of the JINR phasotron the temperature dependence of the ddμ-molecule formation rate (λ ddμ ) has been measured. Measurements have been performed with liquid deuterium at the temperature T=20.3 K and with gaseous deuterium at pressure 1500 and 400 bar in the temperature region T=49-300 K. It is found that the value λ ddμ does not depend on the deuterium density for each temperature. The obtained results are in fairly good agreement with theory and with the data of other experiments made with deuterium of sufficiently (one-two order) lower density. 22 refs.; 3 figs.; 1 tab

  14. Radiation pressure in super star cluster formation

    Science.gov (United States)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  15. Stage-specific appearance of cytoplasmic microtubules around the surviving nuclei during the third prezygotic division of Paramecium.

    Science.gov (United States)

    Wang, Yi-Wen; Yuan, Jin-Qiang; Gao, Xin; Yang, Xian-Yu

    2012-12-01

    There are six micronuclear divisions during conjugation of Paramecium caudatum: three prezygotic and three postzygotic divisions. Four haploid nuclei are formed during the first two meiotic prezygotic divisions. Usually only one meiotic product is located in the paroral cone (PC) region at the completion of meiosis, which survives and divides mitotically to complete the third prezygotic division to yield a stationary and a migratory pronucleus. The remaining three located outside of the PC degenerate. The migratory pronuclei are then exchanged between two conjugants and fuse with the stationary pronuclei to form synkarya, which undergo three successive divisions (postzygotic divisions). However, little is known about the surviving mechanism of the PC nuclei. In the current study, stage-specific appearance of cytoplasmic microtubules (cMTs) was indicated during the third prezygotic division by immunofluorescence labeling with anti-alpha tubulin antibodies surrounding the surviving nuclei, including the PC nuclei and the two types of prospective pronuclei. This suggested that cMTs were involved in the formation of a physical barrier, whose function may relate to sequestering and protecting the surviving nuclei from the major cytoplasm, where degeneration of extra-meiotic products occurs, another important nuclear event during the third prezygotic division.

  16. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.; Arias, P.G.; Wang, Y.; Gao, Y.; Park, S.; Im, Hong G.; Sarathy, Mani; Chung, Suk-Ho; Lu, T.

    2015-01-01

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  17. Effect of gamma-radiation on direct intercellular interaction (rosette formation) between thymus macrophages and thymocytes

    International Nuclear Information System (INIS)

    Belyakov, I.M.; Yarilin, A.A.

    1992-01-01

    In experiments with mice, the effect of radiation on resette formation between thymus macrophages (Th-MPh) and thymocytes (Thc) was studied on days 1, 4, 12, 30, and 60 following gamma-irradiation with doses of 0.5, 2, 4, and 8 Gy. gamma-Irradiation with doses of above 2 Gy was shown to cause a dose-dependent inhibition of rosette formation of Th-MPh with Thc in vitro. Two types of rosette-forming Th-MPh were identified: RFMPhII with low rate of binding to Thc and RFMPhII with high rate of binding to Thc. Radiation affects mainly the RFMPhII content. The total population of rosette-forming Th-MPh was restored on day 60 mainly due to cells with low rate of rosette formation. The EC supernatant promoted rosette formation of exposed Th-MPh with Thc. The effect was maximum at early times following irradiation of Th-MPh with a dose of 4 Gy

  18. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  19. Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.

    Science.gov (United States)

    Chen, Qianjin; Luo, Long

    2018-04-17

    We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.

  20. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  1. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  2. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  3. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    International Nuclear Information System (INIS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass and surface densities of total gas (Σ gas ), molecular gas (Σ H 2 ), neutral gas (Σ H I ), and star formation rate (Σ SFR ) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M 3rd ∝Σ H I 0.4±0.2 , whereM 3rd is the median of the five most massive clusters. There is no correlation withΣ gas ,Σ H2 , orΣ SFR . For clusters younger than 10 Myr, M 3rd ∝Σ H I 0.6±0.1 and M 3rd ∝Σ gas 0.5±0.2 ; there is no correlation with either Σ H 2 orΣ SFR . The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M 3rd ∝Σ gas 3.8±0.3 , M 3rd ∝Σ H 2 1.2±0.1 , and M 3rd ∝Σ SFR 0.9±0.1 . For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  4. The Mass Outflow Rate of the Milky Way

    Science.gov (United States)

    Fox, Andrew

    2017-08-01

    The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.

  5. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  6. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    Science.gov (United States)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  7. Research on formation of microsatellite communication with genetic algorithm.

    Science.gov (United States)

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.

  8. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E. [Max-Planck-Institut für Astronomie/Königstuhl 17 D-69117 Heidelberg (Germany)

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  9. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    International Nuclear Information System (INIS)

    Fugate, G.; Feil-Jenkins, J.F.; Sullivan, J.C.; Nash, K.L.

    1996-12-01

    Rates of complex formation and dissociation in NpO 2 + - Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La 3+ , Eu 3+ , Dy 3+ , and Fe 3+ with CLIII. Rate determining step in each system is an intramolecular process, the NpO 2 + -CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are ΔH=46.2±0.3 kJ/m and ΔS=7± J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are ΔH=38.8±0.6 kJ/m, ΔS=-96±18 J/mK, ΔH=70.0± kJ/m, and ΔS=17±1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO 2 + , UO 2 2+ , Th 4+ , and Zr 4+ . Rates of CLIII complex formation reactions for Fe 3+ , Zr 4+ , NpO 2 + , UO 2 2+ , Th 4+ , La 3+ , Eu 3+ , and Dy 3+ correlate with cation radius rather than charge/radius ratio

  10. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    International Nuclear Information System (INIS)

    Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A.S.H.; Weingartner, E.; Baltensperger, U.; Verheggen, B.; Riipinen, I.; Kulmala, M.; Spracklen, D.V.; Carslaw, K.S.

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

  11. Choosing a Doctor: Does Presentation Format Affect the Way Consumers Use Health Care Performance Information?

    Science.gov (United States)

    Kenny, Patricia; Goodall, Stephen; Street, Deborah J; Greene, Jessica

    2017-12-01

    Choosing a new health service provider can be difficult and is dependent on the type and clarity of the information available. This study examines if the presentation of service quality information affects the decisions of consumers choosing a general medical practice. The aim was to examine the impact of presentation format on attribute level interpretation and relative importance. A discrete choice experiment eliciting preferences for a general medical practice was conducted using four different presentation formats for service quality attributes: (1) frequency and percentage with an icon array, (2) star ratings, (3) star ratings with a text benchmark, and (4) percentage alone. A total of 1208 respondents from an online panel were randomised to see two formats, answering nine choices for each, where one was a dominated choice. Logistic regression was used to assess the impact of presentation format on the probability of choosing a dominated alternative. A generalised multinomial logit model was used to estimate the relative importance of the attribute levels. The probability of incorrectly choosing a dominated alternative was significantly higher when the quality information was presented as a percentage relative to a frequency with icon array, star rating or bench-marked star rating. Preferences for a practice did not differ significantly by presentation format, nor did the probability of finding the information difficult to understand. Quantitative health service quality information will be more useful to consumers if presented by combining the numerical information with a graphic, or using a star rating if appropriate for the context.

  12. Chemical signal activation of an organocatalyst enables control over soft material formation.

    Science.gov (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  13. Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

    Science.gov (United States)

    Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.

    2010-11-01

    The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.

  14. A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.

    Science.gov (United States)

    Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir

    2018-06-12

    The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.

  15. Logging technique for assaying for uranium in earth formations

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1979-01-01

    A borehole logging tool includes a source of fast neutrons, an epithermal neutron flux detector, and a thermal neutron flux detector. A count rate meter is connected to each detector. A ratio detector provides a signal indicative of the ratio of the count rates of the two detectors obtained during the time that prompt neutrons are emitted from neutron fission of uranium in the formation

  16. Comparison of the ultrashort gonadotropin-releasing hormone agonist-antagonist protocol with microdose flare -up protocol in poor responders: a preliminary study.

    Science.gov (United States)

    Berker, Bülent; Duvan, Candan İltemir; Kaya, Cemil; Aytaç, Ruşen; Satıroğlu, Hakan

    2010-01-01

    To determine the potential effect of the ultrashort gonadotropin-releasing hormone (GnRH) agonist/GnRH antagonist protocol versus the microdose GnRH agonist protocol in poor responders undergoing intracytoplasmic sperm injection (ICSI). The patients in the Agonist-Antagonist Group (n=41) were administered the ultrashort GnRH-agonist/ antagonist protocol, while the patients in the Microdose Group (n=41) were stimulated according to the microdose flare-up protocol. The mean number of mature oocytes retrieved was the primary outcome measure. Fertilization rate, implantation rate per embryo and clinical pregnancy rates were secondary outcome measures. There was no differenc between the mean number of mature oocytes retrieved in the two groups. There were also no statistical differences between the two groups in terms of peak serum E2 level, canceled cycles, endometrial thickness on hCG day, number of 2 pronucleus and number of embryos transferred. However, the total gonadotropin consumption and duration of stimulation were significantly higher with the Agonist-Antagonist Group compared with the Microdose Group. The implantation and clinical pregnancy rates were similar between the two groups. Despite the high dose of gonadotropin consumption and longer duration of stimulation with the ultrashort GnRH agonist/ antagonist protocol, it seems that the Agonist-Antagonist Protocol is not inferior to the microdose protocol in poor responders undergoing ICSI.

  17. Adolescent Violent Victimization and Precocious Union Formation*

    Science.gov (United States)

    C. Kuhl, Danielle; Warner, David F.; Wilczak, Andrew

    2013-01-01

    This article bridges scholarship in criminology and family sociology by extending arguments about “precocious exits” from adolescence to consider early union formation as a salient outcome of violent victimization for youths. Research indicates that early union formation is associated with several negative outcomes; yet the absence of attention to union formation as a consequence of violent victimization is noteworthy. We address this gap by drawing on life course theory and data from the National Longitudinal Study of Adolescent Health (Add Health) to examine the effect of violent victimization (“street” violence) on the timing of first co-residential union formation—differentiating between marriage and cohabitation—in young adulthood. Estimates from Cox proportional hazard models show that adolescent victims of street violence experience higher rates of first union formation, especially marriage, early in the transition to adulthood; however, this effect declines with age, as such unions become more normative. Importantly, the effect of violent victimization on first union timing is robust to controls for nonviolent delinquency, substance abuse, and violent perpetration. We conclude by discussing directions for future research on the association between violent victimization and coresidential unions with an eye toward the implications of such early union formation for desistance. PMID:24431471

  18. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  19. The rating reliability calculator

    Directory of Open Access Journals (Sweden)

    Solomon David J

    2004-04-01

    Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.

  20. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    Science.gov (United States)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  1. Frost formation under different gaseous atmospheres

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Tsuru, Hisanori; Nishikawa, Masabumi

    1995-01-01

    Rates of water frost growth in a vessel with a cooled horizontal plate were experimentally determined under reduced pressure atmospheres of hydrogen, helium, methane and nitrogen. The mass deposited on the cooled surface under each of the atmospheres was almost in proportion to time. The Sherwood number under the condition of no mist formation, Sh 0 , in the atmospheres of methane and nitrogen was in good agreement with Catton's equation for natural convection between horizontal parallel plates. Sh 0 in a hydrogen atmosphere was unity, which corresponds to control by molecular diffusion in the stagnant gas. The tendency of the decrease in Sh due to mist formation could be evaluated well by multiplying Sh 0 by a factor ζ CSM . The ζ CSM value was calculated based on the critical supersaturation model as a function of the two interface temperatures and the total pressure. Frost growth rates under each atmosphere were in proportion to [(T S1 -T W1 )t/(1+1/A S1 )] 0.5 . The proportional constant for hydrogen was greater than that for any other tested gas. Agreement and disagreement of the frost effective thermal conductivity with previous models were discussed. (author)

  2. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  3. Formation of a Territorial Brand Using Example of the Kharkiv Oblast

    Directory of Open Access Journals (Sweden)

    Prytychenko Tamara I.

    2014-03-01

    Full Text Available The article considers the notion, stages of formation of the territorial brand and approaches to the territorial brand positioning. It justifies expediency of the territorial brand formation. It analyses existing approaches to the territorial brand formation using example of the Kharkiv oblast, studies Kharkiv city and oblast ratings, reveals perception of the Kharkiv region brand by the target population through a sociological poll, gives recommendations on development of the strategy of the Kharkiv brand positioning and develops measures directed at promotion of the Kharkiv brand.

  4. A Variation of the Present Star Formation Activity of Spiral Galaxies

    OpenAIRE

    Tomita, Akihiko; Tomita, Yoshio; Saito, Mamoru

    1996-01-01

    The star formation rate in spiral galaxies is considered to be decreasing continuously with time in a time scale of $10^{9}$ yr. The present star formation activity, on the other hand, shows various degrees among galaxies. We make a new data set of 1681 nearby spiral galaxies from available databases and study the statistics of the present star formation activity. We analyze far-infrared and optical B-band surface brightnesses of the H II regions and the non-H II regions in M~31 and show that...

  5. Formation of oil-SPM aggregates under various mixing intensities

    International Nuclear Information System (INIS)

    Sun, J.; Zheng, X.

    2009-01-01

    A considerable amount of petroleum products spill into aquatic ecosystems as a result of increased marine transportation of crude oil products. The oil spill response community is therefore seeking an economical and environmentally sound technology to remove oil from shorelines. The formation of oil-suspended particulate matter (SPM) aggregates (OSAs) occurs when oil and SPM are present in a turbulent system. This process is known to enhance natural cleaning of oiled shorelines by increasing oil dispersion into the water column and accelerating the biodegradation of the oil. This paper reported on a laboratory study that was conducted to investigate OSA formation under different mixing energy levels. It presented the results of experiments conducted with Arabian heavy crude oil, standard reference material 1941b, artificial seawater, and 3 shaking rates of the reciprocating shaker. The results are intended to offer insight into the rate and extent of oil sediment interaction following an oil spill in the marine environment under different mixing conditions. Mixing energy is expected to have a considerable control on OSA formation because it controls the splitting of an oil slick into small droplets, the aggregation between the droplets and SPM, and the breakage rate of natural flocs. The concentration of the OSA was measured using the gas chromatography-flame ionization detection (GC-FID) method. Ultraviolet epi-fluorescence image analysis was used to measure the structure of OSAs and the concentration of oil droplets forming OSAs. The results showed that the formation of OSAs increased as the mixing energy increased. A consistent increase in droplet concentration in OSAs was also noted as the mixing energy increased. Both oil droplet size and OSA size decreased as the mixing intensity increased. 38 refs., 4 tabs., 3 figs.

  6. Dust formation and ionization in novae

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Sato, Shuji; Nariai, Kyoji.

    1979-01-01

    In order to explain the fact that some novae show the increase of infrared radiation indicating the formation of circumstellar dust grains while some others do not, the theory that the formation of dust in the circumstellar envelope of a nova depends on the intensity of ultraviolet radiation from a central star has been presented. It is known that the central star of a nova emits radiation at nearly constant rate, and its effective temperature rises. It was concluded that the novae with higher emission than a certain value are the poor candidates for dust formation because the whole envelope is ionized before dust is formed. But this conclusion is misleading. The evolution of the ultraviolet radiation emanating from a central star is summarized. The condensation of grains is possible when the partial pressure of the vapor, from which the grains are formed, becomes higher than the saturation vapor pressure. The temperature of grains can be estimated by equating the radiations absorbed and emitted. The grains evaporate if the grain temperature is higher than the condensation temperature. The formation of a Stroemgren sphere in the exploding envelope of a nova is discussed. For the formation of grains, it is necessary that temperature drops below the condensation temperature before the whole envelope is ionized. Hence dust grains do not grow if the grain temperature at a phase is higher than the condensation temperature. (Kako, I.)

  7. The formation of stellar black holes

    Science.gov (United States)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  8. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  9. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  10. SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    Science.gov (United States)

    Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne

    2018-05-01

    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.

  11. Geochemical mass-balance to study the relative weathering rates of various formations in a complex watershed of lower Himalayas

    Science.gov (United States)

    Chattopadhyay, Pallavi; Kar, Swagat; Chouhan, Ramesh

    2017-04-01

    Weathering of rocks is a major process and believed to have the potential to alter Earth's surface. Aglar, a watershed in Garhwal Lesser Himalayas is identified and various formations of this complex geology are studied to understand the weathering process. A stream passes through the fault that divides the watershed into two slopes which have different lithotectonic units. Paligar and Belgar are the two main tributaries of Aglar stream flowing along the slopes respectively and joining at the valley near Thatyur village, India. Rocks like quartzite and limestone are generally hard, massive and resistant to weathering. However, sedimentary rocks are vulnerable to weathering and erosion. On the other hand, phyllites and schists are characterized by flaky minerals which weather quickly and promote instability . Aglar has all of them. The weathering processes are studied first using the hydrochemistry of Aglar river through major cations (Ca2+, Mg2+, Na+, K+) and major anions (SO42-, HCO-3, Cl-, NO3-). The discharges at various sampling points are calculated using area - velocity method. The basic idea in describing the discharge of material in a river is to estimate the mass of the substances transported through a cross section of the river per second. Dominance of Ca2+, Mg2+ and HCO-3 indicates that carbonate weathering is the major chemical weathering process near Belgar river. Paligar river has lower conductivity values compared to Belgar river which illustrates lower ionic concentrations. Mass-balance calculations are found often skewed and suggest the role of subsurface groundwater flow to explain the uncharacterized load. Southern side of the watershed with higher percentage of forest cover is found to have higher chemical weathering rates compared to the other slope having relatively lesser vegetation. These higher rates demonstrate the higher stream discharge load in that slope.

  12. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  13. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  14. Oxygen tension and oocyte density during in vitro maturation affect the in vitro fertilization of bovine oocytes

    Directory of Open Access Journals (Sweden)

    Angelo Bertani Giotto

    2015-12-01

    Full Text Available Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20% with different oocyte densities (1:10?l or 1:20?l in the in vitro maturation (IVM of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P>0.05. In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P<0.05. Additionally, ROS levels in IVM medium