WorldWideScience

Sample records for promoting radiation protection

  1. Health promotion and computer science in radiation protection

    International Nuclear Information System (INIS)

    Pennarola, R.; Porzio, G.; Pennarola, E.; Cavaliere, L.

    2008-01-01

    An automatic system of clinical-diagnostic information aimed at radiological protection and sanitary prevention has been applied to workers exposed to ionising radiation at the University of Naples Federico II over the last 5 years. The medical surveillance has been carried out in 247 workers on duty at 29 scientific Departments and 30 laboratories of Naples University Federico II exposed to radiation sources which were constituted by a particle accelerator, Rx Diffractometer, electronic microscope and radionuclides of low energy ( 32 P, 35 S, 7 Be, 3 H, 125 I, 14 P, 14 C, 33 Y, 241 Am, 55 Fe, 109 Cd, 57 Co, 88 Y, 226 Rn, 133 Ba, 137 Cs, 60 Co, 210 Pb, 109 Cd, 22 Na). For every person exposed a computerized case sheet was elaborated recording clinical, biological, dosimetric and other preventive data (anlage, smoking, alcohol, drugs, toxics). In case of localized radiation risk, computerized capillaroscopic monitoring of the regions of the skin exposed to radiation was carried out. The results of the research show that the absorbed doses in the workers have generally been under effective dose limit for public exposure (1 mSv/y). The clinical and biological data have shown the healthiness of the workers exposed to ionising radiation. Also the capillaroscopic examinations in the localized expositions of the skin have generally given good perfusion of the exposed tissues, integrating the health concept. The statistical and computer method with computer developed graphics has proved useful in particular risk conditions (i.e. hematic alterations, functions of the emunctory organs, etc.).This research has highlighted the role of medical surveillance in developing health promotion criteria and intervention planning through a complete real-time control of data. (author)

  2. Image Gently: A campaign to promote radiation protection for ...

    African Journals Online (AJOL)

    2015-12-14

    Dec 14, 2015 ... developing education materials that support the protection of children worldwide from unnecessary radiation ... Emory University School of. Medicine .... materials for the Image Gently campaign are provided free of charge (cf.

  3. Promoting fluoroscopic personal radiation protection equipment: unfamiliarity, facts and fears

    International Nuclear Information System (INIS)

    Balter, Stephen

    2017-01-01

    An incomplete understanding of risk can cause inappropriate fear. Personal protective equipment (PPE) offered for the prevention of brain cancer in interventional fluoroscopists (IR-PPE). Similar items are offered for cell-phone use (RF-PPE). Publications on fluoroscopy staff brain cancer and similar papers on cell-phone induced brain cancer were reviewed. An internet safety product search was performed, which resulted in many tens of thousands of hits. Vendor claims for either ionizing radiation or radio frequency products seldom addressed the magnitude of the risk. Individuals and institutions can buy a wide variety of safety goods. Any purchase of radioprotective equipment reduces the funds available to mitigate other safety risks. The estimated cost of averting an actuarial fatal brain cancer appears to be in the order of magnitude $10 000 000-$100 000 000. Unwarranted radiation fears should not drive the radiation protection system to the point of decreasing overall safety. (authors)

  4. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  5. Approaches to promotion and implementation of action on radiation protection for children

    International Nuclear Information System (INIS)

    Goske, M. J.; Applegate, K. E.; Bulas, D.; Butler, P. F.; Callahan, M. J.; Coley, B. D.; Don, S.; Farley, S.; Frush, D. P.; Hernanz-Schulman, M.; Kaste, S. C.; Morrison, G.; Sidhu, M.; Strauss, K. J.; Treves, S. T.

    2011-01-01

    The Radiation Protection in Medicine conference, reviewed in this journal supplement, outlined nine strategies to promote radiation protection for patients. The Alliance for Radiation Safety in Pediatric Imaging has focused its work on three of those areas: creating awareness of the need and opportunities for radiation protection for children; developing open-source educational materials for medical professionals and parents on this critical topic for improved patient safety and communication; and lastly, advocating on behalf of children with industry, government and regulatory bodies to improve equipment design and safety features, standardisation of nomenclature and displays of dose reports across vendor platforms that reflect the special considerations of children. (authors)

  6. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  7. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  8. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  9. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  10. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1976-01-01

    The lecture is divided into five sections. The introduction deals with the physical and radiological terms, quantities and units. Then the basic principles of radiological protection are discussed. In the third section attention is paid to the biological effects of ionizing radiation. The fourth section deals with the objectives of practical radiological protection. Finally the emergency measures are discussed to be taken in radiation accidents. (HP) [de

  11. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  12. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  13. Radiation protection

    International Nuclear Information System (INIS)

    Kamalaksh Shenoy, K.

    2013-01-01

    Three main pillars underpin the IAEA's mission: Safety and Security - The IAEA helps countries to upgrade their infrastructure for nuclear and radiation safety and security, and to prepare for and respond to emergencies. Work is keyed to international conventions, the development of international standards and the application of these standards. The aim is to protect people and the environment from the harmful effects of exposure to ionizing radiation. Science and Technology - The IAEA is the world's focal point for mobilizing peaceful applications of nuclear science and technology for critical needs in developing countries. The work contributes to alleviating poverty, combating disease and pollution of the environment and to other goals of sustainable development. Safeguards and Verification - The IAEA is the nuclear inspectorate, with more than four decades of verification experience. Inspectors work to verify that nuclear material and activities are not diverted towards military purposes. Quantities and Units: Dose equivalent is the product of absorbed dose of radiation and quality factor (Q). For absorbed dose in rads, dose equivalent is in rems. If absorbed dose is in gray, the dose equivalent is in sievert. Quality factor is defined without reference to any particular biological end point. Quality factors are recommended by committees such as the International Commission on Radiological Protection (ICRP) or the National Council on Radiation Protection and Measurements (NCRP), based on experimental RBE values but with some judgment exercised. Effective Dose Equivalent: It is the sum of the weighted dose equivalents for all irradiated tissues, in which the weighting factors represent the different risks of each tissue to mortality from cancer and hereditary effects. Committed dose equivalent: It is the integral over 50 years of dose equivalent following the intake of a radionuclide. Collective effective dose equivalent: It is a quantity for a population and is

  14. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  15. Education in Radiation Protection

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2001-01-01

    Full text: This paper discussed the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialised courses for the experts. In the last few years the lack of interest for education in radiation protection was recognised by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts do not exist. The situation in the field of education in radiation protection in Croatia will be presented, according to the new regulations in this field. (author)

  16. Promoting radiation protection in France and Europe. The key role of IRSN, French Technical Safety Organisation

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, Jacques [IRSN - Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France). Direction des Affaires Internationales - Delegation aux Relations Internationales

    2012-07-01

    IRSN, the Institute for Radiological Protection and Nuclear Safety was set up in France under Article 5 of French Act No. 2001-398 of May 9, 2001 as the French 'Technical Safety Organization' (TSO) expert in nuclear and radiological risks. It contributes to the implementation of public policies concerning nuclear safety and security and protection of human health and environment against ionizing radiation. IRSN interacts with all the parties concerned by these policies (public authorities, operators and stakeholders) while keeping its independence of judgment. (orig.)

  17. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  18. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  19. Radiation. Protection. Health. Proceedings

    International Nuclear Information System (INIS)

    Hajek, Michael; Maringer, Franz Josef; Steurer, Andreas; Schwaiger, Martina; Timal, Guenter

    2015-01-01

    The topics of the meeting are the diagnostic and therapeutic application of ionizing radiations, the application of radiation in research, industry and engineering and radiation protection. The volume includes the following chapters: Radiation protection and society, radiation protection infrastructure, population and environment, metrology and measuring techniques, 1. Workshop on population and environment, NORM and radon, 2. Update: dose - extent of damage - limiting value definition, radiation protection for personnel (except medicine), radiation protection in medicine.

  20. Radiation protection and quality for medical exposures. Recommendations for its promotion and coordination

    International Nuclear Information System (INIS)

    Vano, E.; Bezares, M.; Lopez, P.

    2003-01-01

    Relevant aspects on radiological protection for medical exposures are described taking into account the Spanish and European legal frameworks. Some specific topics will still require clarification or additional actions. The called special practices: exposures of children, health screening and high doses exposures to the patients need particular attention in the quality programmes. The need for coordination at local (Autonomous Communities), national and european level is highlighted. Safety and radiological protection aspects entail additional requirements to the quality programmes at the medical installations using ionizing radiations. Appropriate staffing and infrastructure are especially critical. Priorities from several international and european programmes and working groups are quoted. A proposal for actions to foster quality aspects in the medical exposures, with emphasis in resources, training and research is made. The impact of the introduction of digital radiology in the health system during the next years will require specific quality programmes to profit the advantages of this new technology. (Author) 19 refs

  1. Operational radiation protection and radiation protection training

    International Nuclear Information System (INIS)

    Kraus, W.

    1989-01-01

    The radiation protection system in the German Democratic Republic (GDR) is reviewed. The competent authority (the SAAS) and its systems of licensing and supervision are described. Discussion covers the role of the Radiation Protection Officer, the types of radiation monitoring, medical surveillance programs and the classification of workers and work areas. Unusual occurrences in the GDR, 1963-1976, are presented and the occupational radiation protection problems at some specific types of workplaces are discussed. The GDR's system of training in radiation protection and nuclear safety is described. 5 figs., 18 tabs

  2. Radiation protection in nuclear reactors

    International Nuclear Information System (INIS)

    El-Ashkar, Mohamed

    2008-01-01

    Full text: People are exposed to ionizing radiation in many different forms: cosmic rays that penetrate earth atmosphere or radiation from soil and mineral resources are natural forms of ionizing radiation. Other forms are produced artificially using radioactive materials for various beneficial applications in medicine, industry and other fields. The greatest concerns about ionizing radiation are tied to its potential health effects and a system of radiation protection has been developed to protect people from harmful radiation. The promotion of radiation protection is one of the International Atomic Energy Agency main activities. Radiation protection concerns the protection of workers, members of public, and patients undergoing diagnosis and therapy against the harmful effects of ionizing radiation. The report covers the responsibility of radiation protection officer in Egypt Second Research Reactor (ETRR-2) in Inshas - Egypt, also presents the protection against ionizing radiation from external sources, including types of radiation, sources of radiation (natural - artificial), and measuring units of dose equivalent rate. Also covers the biological effects of ionizing radiation, personal monitoring and radiation survey instruments and safe transport of radioactive materials. The report describes the Egypt Second Research Reactor (ETRR-2), the survey instruments used, also presents the results obtained and gave a relations between different categories of data. (author)

  3. Focus radiation protection

    International Nuclear Information System (INIS)

    Ebermann, Lutz

    2016-01-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  4. Radiation and radiation protection

    International Nuclear Information System (INIS)

    Landfermann, H.H.; Solbach, C.

    1992-11-01

    The brochure explains the major types of radiation, the radiation sources, effects, uses, and risks, as well as the regulatory system adopted by the government in order to keep the risks as low as possible. (orig./DG) [de

  5. Radiation promotive concept

    International Nuclear Information System (INIS)

    Shebaita, M.K.

    1975-01-01

    The concept of radiation promotion was proposed in this study. The proposal of this concept was dependent upon stimulation in growth weight of survived chicks when fertile eggs were exposed to 60 Co gamma radiation. It was found that female chick (Promotive Sex) responded to this proposal concept rather than the male. Moreover, the dose level of 640 rads was found to be the Promotive Dose. It is important before applying ionizing radiation as a growth promotive to take into consideration whether you want increasing egg or meat production, as meat promotion in layers breed is bound to decrease egg production. (orig.) [de

  6. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  7. Radiation protection standards

    International Nuclear Information System (INIS)

    Koelzer, W.

    1980-01-01

    The present paper deals with: Objectives and basic concepts of radiation protection, basic radiobiological considerations, the ICRP system of dose limitation and with operational radiation protection (limits, reference levels, occupational exposure). (RW)

  8. Radiation protection seminar

    International Nuclear Information System (INIS)

    2012-01-01

    The Radiation Protection Seminar, was organized by the Argentina Association of Biology and Nuclear Medicine, and Bacon Laboratory, the 20 june 2012, in the Buenos Aires city of Argentina. In this event were presented some papers on the following topics: methods of decontamination, radiation protection of patients; concepts of radiation protection and dosimetry.

  9. Radiation protection; Proteccion Radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ures Pantazi, M [Universidad de la Republica, Facultad de Quimica (Uruguay)

    1994-12-31

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection.

  10. Radiation protection in hospitals

    International Nuclear Information System (INIS)

    MOuld, R.F.

    1985-01-01

    A book on radiation protection in hospitals has been written to cater for readers with different backgrounds, training and needs by providing an elementary radiation physics text in Part I and an advanced, comprehensive Part II relating to specific medical applications of X-rays and of radioactivity. Part I includes information on basic radiation physics, radiation risk, radiation absorption and attenuation, radiation measurement, radiation shielding and classification of radiation workers. Part II includes information on radiation protection in external beam radiotherapy, interstitial source radiotherapy, intracavitary radiotherapy, radioactive iodine-131 radiotherapy, nuclear medicine diagnostics and diagnostic radiology. (U.K.)

  11. Radiation protection in Bolivia

    International Nuclear Information System (INIS)

    Miranda Cuadros, A.A.

    2001-01-01

    Radiation protection in Bolivia has gone through a number of stages. Initially, in the 1970s, the focus was mainly on the analysis of environmental sources resulting from the nuclear tests carried out by France in the Pacific Ocean. Subsequently, the focus switched somewhat to radiation protection in connection with the mining of uranium and in the area of public health. During the third stage, radiation protection in other areas became important as the use of radiation sources was introduced. Finally, during the present -- fourth -- stage, radiation protection regulations are being introduced and mechanisms for the control of radiation sources are being established. (author)

  12. Radiation protection in Sudan

    International Nuclear Information System (INIS)

    Elamin, O.I.; Hajmusa, E.A.; Shaddad, I.A.

    2001-01-01

    The regulatory framework as established by the Sudan Atomic Energy Commission (SAEC) Act, promulgated in 1996, is described in the report. Three levels of responsibility in meeting radiation protection requirements are established: the Board, the Radiation Protection Technical Committee as the competent authority in the field of radiation protection, and the SAEC Department of Radiation Protection and Environmental Monitoring as the implementing technical body. The report also refers to environmental activities, patient doses in diagnostic radiology, the management of disused sources, emergency preparedness and orphan sources, and the national training activities in the radiation protection field. (author)

  13. Good Medicine, Good Health: The IAEA Promotes Radiation Protection of Patients and Health Professionals

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Medical radiation exposure in the form of computed tomography scans, X-rays, fluoroscopy and positron emission tomography scans are the greatest source of exposure to man-made sources of ionizing radiation. According to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), more than 10 million diagnostic radiology procedures and 100 000 diagnostic nuclear medicine procedures are performed every day. In addition, around five million radiotherapy treatments are given annually. The use of radiation in medicine is one of the greatest medical discoveries of the past 120 years. Its use has vastly improved our understanding of the body’s processes and functions, as well as our ability to diagnose and cure diseases

  14. Radiation protection forum

    International Nuclear Information System (INIS)

    Cabral, W.

    2010-01-01

    The National Director of the Nuclear Regulatory Authority and Radiation Protection of Uruguay in the first forum for radiation protection set out the following themes: activity of regulatory body, radiation safety, physical security, safeguards, legal framework, committed substantive program, use of radiation, risks and benefits, major sources of radiation, the national regulatory framework, national inventory of sources, inspections, licensing, import and export of sources control , radioactive transport, materials safety, agreements, information and teaching, radiological emergencies and prompt response.

  15. Radiation protection instrument 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The Radiation Protection Instrument, 1993 (Legislative Instrument 1559) prescribes the powers and functions of the Radiation Protection Board established under the Ghana Atomic Energy Commission by the Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C. Law 308). Also included in the Legislative Instrument are schedules on control and use of ionising radiation and radiation sources as well as procedures for notification, licensing and inspection of ionising radiation facilities. (EAA)

  16. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  17. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  18. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  19. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  20. Training in radiation protection

    International Nuclear Information System (INIS)

    Schreiber, F.

    1998-01-01

    Persons who are exposed to ionizing radiation at their workplace have to be trained in radiation protection. According to the Radiation Protection Ordinance the person with responsibility in radiation protection has to guarantee that the training is performed twice a year. Our training material was created especially for the persons defined in the Radiation Protection Ordinance and the X-ray Ordinance. It enables persons who teach (generally the radiation protection officer) to perform the training without tedious study and preparation of the documents. Our material is not just another textbook for radiation protection but rather a folder with colour transparencies and explanatory texts which make a difference in volume and price in comparison to other existing materials. (orig.) [de

  1. Optimization and radiation protection culture

    International Nuclear Information System (INIS)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi

    2013-01-01

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  2. Optimization and radiation protection culture

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Young; Shin, Hyeong Ki; Lee, Chan Mi [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-04-15

    Safety culture or radiation protection culture is based in common on the term, 'culture'. Culture is defined as the learned, shared set of symbols and patterns of basic assumptions, which is invented, discovered, or developed by a given group as it learns to cope with its problem of external adaptation and internal integration. Safety culture generally refers to the attitude and behaviors affecting safety performance. The concept of 'Safety Culture' was introduced after the Chernobyl accident in 1986. For the accident, nuclear society reached the conclusion that the cause was the wrong management attitude of the NPP, that is, deficient 'Safety Culture'. Recently, 'Radiation Protection Culture' was introduced as the core concept of nuclear safety culture. There have been many efforts to establish definition and develop assessment tool for radiation protection culture in international level such as ICRP and IRPA as well as NRC. In the same context with the safety culture, radiation protection culture is defined as 'the core values and behaviors resulting from a collective commitment by leaders and individual's to emphasize safety over competing goals to ensure protection of people and the environment.' It is worthwhile to recognize that regulatory enforcement in establishing healthy radiation protection culture of operators should be minimized because culture is not in the domain of regulatory enforcement. However, as 'ALARA', the most important concept in radiation protection, may be successfully achieved only in well established radiation protection culture, the least regulatory intervention would be needed in promoting and nurturing radiation protection culture in licensee. In addition, the concept of radiation protection culture should be addressed in plant operational policy to achieve the goals of ALARA. The pre-condition of the successful radiation protection culture is a healthy organizational

  3. The Radiation Protection Act

    International Nuclear Information System (INIS)

    Persson, L.

    1989-01-01

    The new Radiation Protection Act (1988:220) entered into force in Sweden on July 1st, 1988. This book presents the Act as well as certain regulations connected to it. As previously, the main responsibility for public radiation protection will rest with one central radiation protection authority. According to the 1988 Act, the general obligations with regard to radiation protection will place a greater responsibility than in the past on persons carrying out activities involving radiation. Under the act, it is possible to adjust the licensing and supervisory procedures to the level of danger of the radiation source and the need for adequate competence, etc. The Act recognises standardised approval procedures combined with technical regulations for areas where the risks are well known. The Act contains several rules providing for more effective supervision. The supervising authority may in particular decide on the necessary regulations and prohibitions for each individual case. The possibilities of using penal provisions have been extended and a rule on the mandatory execution of orders has been introduced. The Ordinance on Radiation Protection (1988:293) designates the National Institute of Radiation Protection (SSI) as the central authority referred to in the Radiation Protection Act. The book also gives a historic review of radiation protection laws in Sweden, lists regulations issued by SSI and presents explanations of radiation effects and international norms in the area. (author)

  4. Radiation protection to firemen

    International Nuclear Information System (INIS)

    Almeida, E.S. de.

    1985-01-01

    The basic Knowledge about ionizing radiation oriented for firemen, are presented. The mainly damage and effects caused by radiation exposure as well as the method of radiation protection are described in simple words. The action to be taken in case of fire involving radiation such as vehicles transporting radioactive materials are emphasized. (author)

  5. Radiation protection standards

    International Nuclear Information System (INIS)

    Fitch, J.

    1983-11-01

    Topics covered include biological radiation effects, radiation protection principles, recommendations of the ICRP and the National Health and Medical Research Council, and dose limits for individuals, particularly the limit applied to the inhalation of radon daughters

  6. Manual of Radiation Protection

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.; Boisserie, G.

    1992-01-01

    This manual explains the principles and practice of radiation protection for those whose work in research, in the field of medicine or in the industry requires the use of radiation sources. It provides the information radiation users need to protect themselves and others and to understand and comply with international recommendations, regulations and legislation regarding the use of radionuclides and radiation machines. It is designed to teach a wide audience of doctors, biologists, research scientists, technicians, engineers, students and others

  7. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  8. Regulations in radiation protection

    International Nuclear Information System (INIS)

    1986-01-01

    On the occasion of the twenty fifth anniversary of the Dutch Society for Radiation Protection, a symposium was held about Regulations in Radiation Protection. The program consisted of six contributions of which four are included in this publication. The posters presented are published in NVS-nieuws, 1985, vol. 11(5). (G.J.P.)

  9. Practical radiation protection

    International Nuclear Information System (INIS)

    Brouwer, G.; Van den Eijnde, J.H.G.M.

    1997-01-01

    This textbook aims at providing sufficient knowledge and insight to carry out correctly radiation protection activities and operations. The subjects are appropriate for the training of radiation protection experts for the levels 5A (encapsulated sources, X rays) and 5B (open sources, laboratory activities)

  10. Radiation protection and environmental protection

    International Nuclear Information System (INIS)

    Xie Zi; Dong Liucan; Zhang Yongxing

    1994-01-01

    A collection of short papers is presented which review aspects of research in radiation and environmental protection carried out by the Chinese Institute of Atomic Energy in 1991. The topics covered are: the analysis of Po 210 in the gaseous effluent of coal-fired boilers; the determination of natural radionuclide levels in various industrial waste slags and management countermeasures; assessment of the collective radiation dose from natural sources for the Chinese population travelling by water; the preliminary environmental impact report for the multipurpose heavy water research reactor constructed by China for the Islamic Republic of Algeria. (UK)

  11. Radiation protection law

    International Nuclear Information System (INIS)

    Hebert, J.

    1981-01-01

    This article first reviews the general radiation protection law at international and national level, with particular reference to the recommendations of the International Commission on Radiological Protection (ICRP) which, although not mandatory, are nevertheless taken into consideration by international organisations establishing basic radiation protection standards such as the UN, IAEA, NEA and Euratom, at Community level, and by national legislation. These standards are therefore remarkably harmonized. Radiation protection rule applied in France for the different activities and uses of radioactive substances are then described, and finally, a description is given of the regulations governing artificial radioisotopes and radioactive effluents. (NEA) [fr

  12. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  13. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  14. Radiation protection housing

    Energy Technology Data Exchange (ETDEWEB)

    Maier, A

    1975-04-10

    The radiation protection housing consists of a foot rim with castor swivel wheels, a tubular frame tapering off at the top, and a crown. In the upper part of the tubular frame a lead glass window is permanently installed. The sides are covered with radiation attenuating curtains of leaded rubber. The housing has the shape of a truncated pyramid which can be dismantled into its constituent parts. It is used for protection from radiation encountered in X-ray facilities in dental radiology.

  15. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  16. Optimisation of radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Optimisation of radiation protection is one of the key elements in the current radiation protection philosophy. The present system of dose limitation was issued in 1977 by the International Commission on Radiological Protection (ICRP) and includes, in addition to the requirements of justification of practices and limitation of individual doses, the requirement that all exposures be kept as low as is reasonably achievable, taking social and economic factors into account. This last principle is usually referred to as optimisation of radiation protection, or the ALARA principle. The NEA Committee on Radiation Protection and Public Health (CRPPH) organised an ad hoc meeting, in liaison with the NEA committees on the safety of nuclear installations and radioactive waste management. Separate abstracts were prepared for individual papers presented at the meeting

  17. Ethics and radiation protection

    International Nuclear Information System (INIS)

    Hansson, Sven Ove

    2007-01-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle

  18. Ethics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Sven Ove [Department of Philosophy and the History of Technology, Royal Institute of Technology (KTH), Teknikringen 78 B, 2tr, SE-100 44 Stockholm (Sweden)

    2007-06-01

    Some of the major problems in radiation protection are closely connected to issues that have a long, independent tradition in moral philosophy. This contribution focuses on two of these issues. One is the relationship between the protection of individuals and optimisation on the collective level, and the other is the relative valuation of future versus immediate damage. Some of the intellectual tools that have been developed by philosophers can be useful in radiation protection. On the other hand, philosophers have much to learn from radiation protectors, not least when it comes to finding pragmatic solutions to problems that may be intractable in principle.

  19. Radiation Protection Proclamation

    International Nuclear Information System (INIS)

    1993-01-01

    A proclamation of the Government of Ethiopia, cited as the radiation protection proclamation number 79/1993 was prepared with the objective to establish a national radiation protection authority that formulates policies, controls and supervises activities involving all sources of radiation and lay down laws governing such activities in order to ensure public safety against associated hazards while allowing radiation related activities to be carried out for the benefit of the public . The Authority is guided by an inter-ministerial board and is accountable to the Ethiopian Science and Technology Commission

  20. Radiation protection textbook

    International Nuclear Information System (INIS)

    Gambini, D.J.; Granier, R.

    2007-01-01

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  1. Physics for radiation protection

    CERN Document Server

    Martin, James E

    2013-01-01

    A much-needed working resource for health physicists and other radiation protection professionals, this volume presents clear, thorough, up-to-date explanations of the basic physics necessary to address real-world problems in radiation protection. Designed for readers with limited as well as basic science backgrounds, Physics for Radiation Protection emphasizes applied concepts and carefully illustrates all topics through examples as well as practice problems. Physics for Radiation Protection draws substantially on current resource data available for health physics use, providing decay schemes and emission energies for approximately 100 of the most common radionuclides encountered by practitioners. Excerpts of the Chart of the Nuclides, activation cross sections, fission yields, fission-product chains, photon attenuation coefficients, and nuclear masses are also provided.

  2. Radiation protection in brachytherapy

    International Nuclear Information System (INIS)

    Benitez, Manuel

    1996-02-01

    It covers technical procedures in medical applications for cancer treatment. Radiation protection principles in brachytherapy. Medical uses in therapy for Sr-90, Cs-137, Co-60, Ra-226, Ir-192, Au-198, Bi-214, Pb-214. (The author)

  3. Radiation Protection: introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2005-01-01

    The abstract gives an overview and introduction to the activities of SCK-CEN's Radiation Protection department. Main strategic developments and achievements in the field of life sciences, policy supports and medical applications are summarised

  4. Radiation protection in medicine

    International Nuclear Information System (INIS)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-01-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  5. Radiation protection in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Holmberg, O.; Perez, M. R.; Ortiz, P.

    2016-08-01

    Diagnostic, interventional and therapeutic used of ionizing radiation are beneficial for hundreds of millions of people each year by improving health care and saving lives. In March 2001, the first International Conference on the Radiological Protection of Patients was held in Malaga, Spain, which led to an international action plan for the radiation protection of patients. Ten years after establishing the international action plan, the International Conference on Radiation Protection in Medicine: Setting the Scene for the Next Decade was held in Bonn, Germany, in December 2012. the main outcome of this conference was the so called Bonn Call for Action that identifies then priority actions to enhance radiation protection in medicine for the next decade. The IAEA and WHO are currently working in close cooperation to foster and support the implementation of these ten priority actions in Member States, but their implementation requires collaboration of national governments, international agencies, researchers, educators, institutions and professional associations. (Author)

  6. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thomas, P.

    1982-01-01

    The present paper deals with the following topics: - Radiological quantities and units - Principles of radiological protection - Limits of doses and activity uptake - Activity discharges and monitoring - Radiation exposure and its calculation - Environmental monitoring - Personnel dosimetry. (orig./RW)

  7. Radiation Protection Group

    CERN Document Server

    2006-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to inform you that the Radioactive Waste Treatment Centre will be closed on the afternoon of Tuesday 19 December 2006. Thank-you for your understanding.

  8. Software for radiation protection

    International Nuclear Information System (INIS)

    Graffunder, H.

    2002-01-01

    The software products presented are universally usable programs for radiation protection. The systems were designed in order to establish a comprehensive database specific to radiation protection and, on this basis, model in programs subjects of radiation protection. Development initially focused on the creation of the database. Each software product was to access the same nuclide-specific data; input errors and differences in spelling were to be excluded from the outset. This makes the products more compatible with each other and able to exchange data among each other. The software products are modular in design. Functions recurring in radiation protection are always treated the same way in different programs, and also represented the same way on the program surface. The recognition effect makes it easy for users to familiarize with the products quickly. All software products are written in German and are tailored to the administrative needs and codes and regulations in Germany and in Switzerland. (orig.) [de

  9. Radiation protecting clothing materials

    International Nuclear Information System (INIS)

    Mio, Kotaro; Ijiri, Yasuo.

    1986-01-01

    Purpose: To provide radiation protecting clothing materials excellent in mechanical strength, corrosion resistance, flexibility and flexing strength. Constitution: The radiation protecting clothing materials according to this invention has pure lead sheets comprising a thin pure lead foil of 50 to 150 μm and radiation resistant organic materials, for example, polyethylene with high neutron shielding effect disposed to one or both surfaces thereof. The material are excellent in the repeating bending fatigue and mechanical strength, corrosion resistance and flexibility and, accordingly, radiation protecting clothings prepared by using them along or laminating them also possess these excellent characteristics. Further, they are excellent in the handlability, particularly, durability to the repeated holding and extension, as well as are preferable in the physical movability and feeling upon putting. The clothing materials may be cut into an appropriate size, or stitched into clothings made by radiation-resistant materials. In this case, pure lead sheets are used in lamination. (Horiuchi, T.)

  10. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  11. Radiation Protection. Chapter 24

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, D. [Ninewells Hospital, Dundee (United Kingdom); Collins, L. T. [Westmead Hospital, Sydney (Australia); Le Heron, J. [International Atomic Energy Agency, Vienna (Austria)

    2014-09-15

    Chapter 21, in describing basic radiation biology and radiation effects, demonstrates the need to have a system of radiation protection that allows the many beneficial uses of radiation to be realized while ensuring detrimental radiation effects are either prevented or minimized. This can be achieved with the twin objectives of preventing the occurrence of deterministic effects and of limiting the probability of stochastic effects to a level that is considered acceptable. In a radiology facility, consideration needs to be given to the patient, the staff involved in performing the radiological procedures, members of the public and other staff that may be in the radiology facility, carers and comforters of patients undergoing procedures, and persons who may be undergoing a radiological procedure as part of a biomedical research project. This chapter discusses how the objectives given above are fulfilled through a system of radiation protection and how such a system should be applied practically in a radiology facility.

  12. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  13. Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Carazo, N.

    1979-01-01

    The tasks connected with radiation protection are allocated to the National Institute for Nuclear Energy in Guatemala. Regulatory measures are further needed to identify the responsibilities of various authorities to ensure that all radiation workers are provided with personal dosemeters. (author)

  14. Military radiation protection

    International Nuclear Information System (INIS)

    Harrison, J.

    1993-01-01

    The Ministry of Defence and the military in particular have a very strong commitment to radiation protection of personnel in war and peace. MOD endeavours to do better all the time because it is essential that the armed forces have the confidence to fulfil their role and this is best achieved by providing them with the best possible protection irrespective of the hazard. (author)

  15. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  16. Radiation protection in education

    International Nuclear Information System (INIS)

    Viragh, Elemer

    1985-01-01

    The education of secondary school students in the fields of nuclear sciences was strictly limited according to the 9th recommendations of the ICRP issued in 1966 saying that people under age 18 are not allowed to deal with ionizing radiations. Due to the changes concerning the concept of radiation protection, new opportunities for teaching nuclear technology even in the secondary schools were opened. The 36th recommendations of the ICRP published in 1983 dealing with the maximum permissible doses and the measures taken for radiation protection should be kept in mind while organizing the education of the pupils between age 16 and 18. (V.N.)

  17. Radiation protection glossary

    International Nuclear Information System (INIS)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation

  18. Instructed officers Radiation Protection

    International Nuclear Information System (INIS)

    2007-01-01

    This law contains instructions on the prevention of radiological and contains 4 articles Article I: describe the responsibilities of the institutions that operate within the scope of radiological protection in terms of the number of radiation protection officers and personal Supervisors who available in the practices radiation field. Article II: talking about the conditions of radiation protection officers that must be available in the main officers and working field in larg institutions and thecondition of specific requirements for large enterprises of work permits in the field of radiological work that issued by the Council. Article III: the functions and duties of officers in the prevention of radiological oversee the development of radiation protection programmes in the planning stages, construction and preparing the rules of local labour and what it lead of such tasks.Article IV: radiation protection officers powers: to modify and approve the programme of prevention and radiation safety at the company, stop any unsafe steps, amend the steps of the usage, operation of materials, devices and so on

  19. ISO radiation protection standards

    International Nuclear Information System (INIS)

    Becker, K.; West, N.

    1981-01-01

    After a brief description of the International Organization for Standardization (ISO) and its Technical Committee (TC) 85 ''Nuclear Energy'', the work of its Sub-Committee (SC) 2 ''Radiation Protection'' is described in some detail. Several international standards on subjects closely related to radiation protection have already been published, for example ISO-361 (Basic radiation protection symbol), ISO-1757 (Photographic dosimeters), ISO-1758 and 1759 (Direct and indirect-reading pocket exposure meters), ISO-2889 (Sampling of airborne radioactive materials), ISO-4037 (X and gamma reference radiations for calibration) and ISO-4071 (Testing of exposure meters and dosimeters). TC 85/SC 2 has currently eight active Working Groups (WG) dealing with 14 standards projects, mostly in advanced stages, in such fields as neutron and beta reference radiations, and X and gamma radiations of high and low dose-rates and high energies for calibration purposes, reference radiations for surface contamination apparatus, ejection systems for gamma radiography apparatus, industrial and laboratory irradiators, lead shielding units, protective clothing, thermoluminescence dosemeters, radioelement gauges, and surface contamination and decontamination. (author)

  20. Radiation protection - Revision of French radiation protection regulations (1988)

    International Nuclear Information System (INIS)

    Mayoux, J.C.

    1989-01-01

    This article analyses the recent amendments to the 1966 and 1975 Decrees on general radiation protection principles and radiation protection of workers in large nuclear installations respectively and also describes national radiation protection law. In particular, the amendments incorporate the revised EURATOM basic radiation protection standards and the new international units (sievert and becquerel replace rem and curie) in the Decrees. (NEA) [fr

  1. Concepts in radiation protection

    International Nuclear Information System (INIS)

    Oncescu, M.

    1996-01-01

    This monograph provides basic notions and principles in dosimetry and radiation protection in compliance with two fundamental works: IAEA Safety Series No.115 - International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - and Publication no. 60 of International Commission on Radiological Protection. After the review of quantities and units necessary in radiation protection, the book presents the new values of dose limits as well as the values of 'radiation weighting factor', 'tissue weighting factor' and 'conversion factor intake-dose' (committed effective dose per unit intake) by ingestion and inhalation for 30 most important radionuclides. The new values of dose limits, lower than the old values, are a challenge for the radiation protection, especially of the 'public' where the dose limit diminished by a factor of five relative to the earlier edition. The new value of dose limit for public, 1 mSv per year (obviously over the natural exposure of 2.4 mSv per year), imposes new action ways and levels in radiation protection, especially in some cases of exacerbated natural radioactivity. The book provides the calculus of external exposure with the Gamma constant expressed in adequate units, to make the calculation easier. In the calculus of protection shield for gamma sources one uses a method, which while approximate helps save time. The calculus of internal exposure is made using the conversion factor intake-dose. Finally, the 'dosimetric watch' of the natural and artificial radioactivity of the atmosphere, hydrosphere and biosphere is intended to comply with the International Basic Safety Standards. Each chapter ends with a set of illustrative problems which enhances the reader's understanding of underlying concepts and current methods used in the field

  2. Epidemiology and Radiation Protection

    International Nuclear Information System (INIS)

    1987-01-01

    Epidemiology aims at providing direct evidence of the long term health effects in humans due to potentially dangerous exposures to various nuisance agents, including ionising radiation. Inappropriate interpretation and use of the results of epidemiological studies may result in inaccurate assessments of the risks associated with radiation exposure. This report presents the proceedings of a Workshop organised by the NEA to create an opportunity for epidemiologists and radiation protection specialists to exchange their experiences and views on the problems of methodology in epidemiological research and on the application of its results to the assessment of radiation risks

  3. Principles of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Karamourtzounis, J. N. [World Health Organization, Geneva (Switzerland)

    1969-05-15

    In the rapidly developing areas of occupational and public health devoted to the protection of people from both immediate and delayed harmful (and sometimes Irreversible) effects of radiation exposure, industrial hygienists, radiological physicists and radiologists must now assume the additional responsibility of protection against radiation. Everyone during his life will have had one or more X-rays taken for diagnostic purposes. The doses received, depending upon the site, are not harmful to the individual, from the genetic aspect, however, the increasing use of X-ray examinations does present a danger,since almost the whole population is involved. Rapid progress in the development of nuclear energy and the practical extension of its use in medicine, agriculture and industry are steadily increasing the potential danger of large groups of the population being exposed to radiation, and radiation hazards are becoming an important aspect of industrial and public hygiene. WHO is concerned with the overall evaluation of population exposure from peaceful uses of atomic energy and through medical practice, the evaluation of radiation risks,and the control of medical radiation exposure. WHO stimulates and provides technical assistance for the development of appropriate programs of radiation protection with respect to the agricultural, industrial and medical applications of radioisotopes. X-rays and radium. (author)

  4. Principles of Radiation Protection Concepts

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli

    2004-01-01

    The contents of this chapter are follows - Radiation Protection Concepts: justification, dose limitation, optimisation, potential exposures, situation requiring intervention; Special Considerations. Protection from Radiation Hazards, Remove the Hazard, Prevent the Hazard, Guard the Worker, Implementation of Radiation Protection and Safety Measures, Distance, Shielding, Time, Monitoring Programme, Safety System. Radiation Protection in Radiological Service: Specific Requirement in Diagnostic Radiological Service

  5. National congress of radiation protection

    International Nuclear Information System (INIS)

    2001-01-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  6. New radiation protection law

    International Nuclear Information System (INIS)

    1985-01-01

    The structure of the existing legislation and its contents and aims are reconsidered. New rules which correspond to the present situation are to be established. Also the fundamental principles of the task and methods of radiation protection are to be changed. The main effort will be to create conditions so that all human beings will be protected against the harmful effects of radiation. The effects on plants, animals and on the environment should be considered as well. The legislation should include both ionizing and non-ionizing radiation. The main responsibility of protection should stay with the central authority. Licensing of apparatus, liability for medical applications and radioactive waste is discussed. Granting of permissions and control should be accomplished by the authority. Cooperation with other national and international authorities is dealt with. (G.B.)

  7. Radiation protection for nurses

    Energy Technology Data Exchange (ETDEWEB)

    Mould, R F

    1978-01-01

    Various aspects of radiation protection relevant to nurses are presented. The different radioisotopes used in internal radiotherapy and scintiscanning techniques and any necessary precautions which should be observed when nursing these patients are described. General information is also given on nuclear and atomic terminology, the physical half-life of radioisotopes, radiation dose as a function of distance, shielding, film badges and the maximum permissible dose.

  8. Radiation protection in radionuclide investigations

    International Nuclear Information System (INIS)

    Taylor, D.M.

    1985-01-01

    The subject is covered in sections: introduction; radiation and radioactivity; alpha particles; beta particles; neutrons; electromagnetic radiation; units of radioactivity and radiation; biological effects of radiation; the philosophy of radiation protection (ALARA principle); practical aspects of radiation protection; work with unsealed radiation sources; radionuclide studies in experimental animals; radiation safety during clinical investigations; legislative control of radiation work; radioactive waste disposal; emergency procedures; conclusion. (U.K.)

  9. Radiation protection in Switzerland

    International Nuclear Information System (INIS)

    Brunner, H.

    1990-01-01

    Switzerland's present radiation protection regulations are based on only two paragraphs of the atomic law but have been very successful in practice. A new radiation protection law, separated from nuclear legislation and valid for all application of ionizing radiation and radioctive materials, was proposed and drafted by the Federal Commission on Radiation Protection and has now been accepted by parliament with only minor modifications. The draft of the revised regulations which also will cover all applications, should be ready for consultations next year. Both the law (which contains principles but no figures such as limits) and the regulations incorporate the latest state of ICRP recommendations and are formulated in such a way as to allow application of or quick adaptation to the new basic ICRP recommendation expected for 1991. The legislation is flexible, with a relatively low regulation density and leaves sufficient room for professional judgement on a case by case basis both for authorities and for the specialists responsible for radiation protection in practice. (orig./HSCH)

  10. Foundations for radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    Full text; In 1996, the IAEA published the latest edition of the International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources (Basic Safety Standards or BSS) comprising basic requirements to be filled in all activities involving radiation exposure. The standards define internationally harmonized requirements and provide practical guidance for public authorities and services, employers and workers, specialized radiation protection bodies, enterprises and health and safety communities. In the same year, the IAEA, through the technical cooperation programme, launched the Model Project on Upgrading Radiation Protection Infrastructure, a global initiative designed to help Member States establish the infrastructure needed to adhere to the BSS. To address the complexity of this task, the radiation protection team identified key elements, known as Thematic Safety Areas. These are: 1. Legislative Framework and Regulatory Infrastructure, Draft and put into effect radiation protection laws and regulations and establish and empower a national regulatory authority. 2. Occupational Exposure Control Protect the health and safety of each individual who faces the risk of radiation exposure in the workplace through individual and workplace monitoring programmes, including dose assessment, record keeping of doses and quality management. 3. Medical Exposure Control: Develop procedures and activities to control the exposure of patients undergoing diagnosis and/or treatment via diagnostic and interventional radiology, nuclear medicine or radiotherapy through staff training, provision of basic quality control equipment, and the establishment of quality assurance programmes. 4. Public and Environmental Exposure Control: Develop means to protect both the public and the environment including: a) programmes to register, inventory and provide safe storage of unused radioactive sources and material; b) procedures to control and safely

  11. Radiation protection - thirty years after

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1989-01-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  12. Radiation protection - thirty years after

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In this paper is discussed some questions in the field of Radiation Protection as like: historical prologue of radiations discovery and it's systematics; radiation and radiation protection; ALARA principle and 'de minimis' approach; radiation risks and dose limits and radiation and chemicals a risk comparison (author)

  13. The principles of radiation protection

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of radiation protection is to avoid or to reduce the risks linked to ionizing radiation. In order to reduce these risks, the radiation protection uses three great principles: justification, optimization and limitation of radiation doses. to apply these principles, the radiation protection has regulatory and technical means adapted to three different categories of people: public, patients and workers. The nuclear safety authority elaborates the regulation, and carries out monitoring of the reliable application of radiation protection system. (N.C.)

  14. Radiation protection optimization of workers

    International Nuclear Information System (INIS)

    Lochard, J.

    1994-11-01

    This report presents the contribution of CEPN (study center on protection evaluation in nuclear area) to the Days of the French Radiation Protection Society (SFRP) on optimization of workers radiation protection in electronuclear, industrial and medical areas

  15. Laser radiation protection

    International Nuclear Information System (INIS)

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  16. Radiation protection in Qatar

    International Nuclear Information System (INIS)

    Al Maadheed, Khalid; Al Khatibeh, Ahmad

    2008-01-01

    Full text: The State of Qatar has become a member State of IAEA since 1974. Later the Department of Industrial Development (DID) beam the focal point and the competent authority regarding all aspects of the peaceful application of Nuclear Technology. In July, 2000 the Supreme Council was established and charged with all matters related to environmental protection. The Supreme Council joined the IAEA Projects on upgrading protection infrastructure in West Asia region. A preliminary research was initiated to discover where radiation sources are being used, and the legal framework, if any, to regulate their use. The research indicated that radiation sources were being used in the industrial practices (well logging, industrial radiography and nuclear gauges) and in medical practices (mainly diagnostic radiology). The research also indicated that there was virtually no legal framework to regulate them. In less than five years, the State of Qatar was able to issue the radiation protection law, three sets of regulations, namely: Radiation Protection Regulations, Radioactive Waste Management Regulations and the Safe Transport of Radioactive Materials Regulations. In addition, several specific regulation work, dose limits and radiation protection officers were issued. A radiation Protection Department, comprising three sections was established. We are providing individual exposure monitoring for most of the radiation workers in the public sector and some in the private sector. We have set up a proper licensing and inspections procedures, where our inspectors are enforcing the law. More recently, we established an early warning network for nuclear of radiological emergencies, consisting of 6 transplantable stations, five mobile stations and two navigating stations. This year, the network was augmented with five fixed station and an advanced early warning centre, which provides early warning via multiple means (MMS, Fax, E-mail and audio alarms). Last year we signed a nuclear

  17. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  18. Radiation protective clothing

    International Nuclear Information System (INIS)

    Fujinuma, Tadashi; Tamura, Shoji; Ijiri, Yasuo.

    1988-01-01

    Purpose: To obtain radiation protective clothings of excellent workability and durability. Constitution: Protective clothings of the present invention comprise shielding materials for the upper-half of the body having lead foils laminated on one surface and shielding materials for the lower-half of the body a resin sheet containing inorganic powders of high specific gravity. Such protective clothings have a frexibility capable of followings after the movement of the upper-half body and easily follow after the movement such as acute bending of the body near the waste in the lower-half body. (Kamimura, M.)

  19. The physics of radiation protection

    International Nuclear Information System (INIS)

    Doerschel, B.; Schuricht, V.; Steuer, J.

    1996-01-01

    The book is aimed at both practising specialists and scientists wishing to learn about the fundamental science of radiation protection. The first part of the book, 'Physical Fundamentals of Radiation Protection', presents a concise description of radiation sources and radiation fields, interaction of radiation with matter, radiation effects and radiation damage, basic concept of radiation protection, radiation exposure of man, radiation protection measuring techniques and physical fundamentals for limiting radiation exposure. The second part, 'Calculational Exercises for Radiation Protection' is intended to supplement the first part by carrying out relevant calculations, amending and adding special aspects and to give guidance in solving practical problems. The book is written for scientists as well as for students and staff working in nuclear facilities, hospitals and institutions responsible for radiation and environmental protection. (UK)

  20. Focus radiation protection; Schwerpunkt Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Ebermann, Lutz (comp.)

    2016-07-01

    The publication of the Bundesamt fuer Strahlenschutz on radiation protection covers the following issues: (i) exposure from natural sources: health hazard due to radon, radiation protection in residential homes, radon in Germany, natural raw materials in industrial processes; (ii) clearance of radioactive wastes: clearance in the frame of nuclear power plant dismantling, the situation in Germany and Europe; (iii) emergency management: principles of radiation protection, fictive sequence of accident events; (iiii) other actual radiation protection topics: more limits - more protection? radiation protection in medicine, occupational radiation protection.

  1. Radiation protection glossary

    International Nuclear Information System (INIS)

    Othman, Ibrahim; Abdul-Rahim, Maha

    1989-12-01

    This glossary contains the arabic equivalent of all the terms included in the IAEA Safety Series No.76 (which is a selected basic terms used in IAEA publications), thus this glossary contains English, French, Spanish, Russian, and Arabic. It is intended to facilitate the work of arabic speaking scientists involved in the field of radiation protection

  2. Environmental radiation protection standards

    International Nuclear Information System (INIS)

    Richings, L.D.G.; Morley, F.; Kelley, G.N.

    1978-04-01

    The principles involved in the setting of radiological protection standards are reviewed, and the differences in procedures used by various countries in implementing them are outlined. Standards are taken here to mean the specific numerical limits relating to radiation doses to people or to amounts of radioactive material released into the environment. (author)

  3. Precautionary radiation protection

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The German federal government annually reports about the development of radioactivity in the environment, providing the most important data and changes in environmental radioactivity and radiation exposure. These reports are based on the Act on Precautionary Protection of the Public against Radiation Exposure (Radiation Protection Provisions Act) of December 19, 1986 as a consequence of the Chernobyl reactor accident. The purpose of the Act is protection of the public from health hazards arising from a nuclear accident or any other event with comparable radiological consequences, and to create the foundations for correct evaluation of the risks resulting from specific radiation exposures. After 1986, the Act was soon given concrete shape by legal ordinances, which made it a workable tool. The following points, among others, can be summarized form the report for 2004: - The calculated natural and manmade overall exposure is 4.0 mSv/a, as in the previous year, and happens to be exactly the same figure as in the report for 1994. - The contribution to radiation exposure by nuclear power plants and other nuclear facilities is less than 0.01 mSv/a. Over a period of nearly twenty years, the Act and the annual reporting regime have proved to work. Standardized criteria prevent data abuse and misinterpretation, respectively. Definitions of limits have contributed to more transparency and more objectivity. (orig.)

  4. Lectures on radiation protection

    International Nuclear Information System (INIS)

    Wachsmann, F.; Consentius, K.

    1981-01-01

    All important subjects of radiation protection are presented in concise form; the explanations may serve as lecture manuscripts. The lectures are divided into 16 to 19 teaching units. Each teaching unit is supplemented by a slide to be projected on a screen while the text is read. This method of visual teaching has already been tried with good results in medicine and medical engineering. Pictures of the slides are given in the text so that the book may also be used for self-studies. The main facts are summarized at the end of each lesson. The finished book will consist of 8 lessons; the first three of these discuss 1. Radiation effects and hazards 2. Dose definitions and units and their role in radiology and radiation protection 3. Dose limits and legal specifications. (orig.) [de

  5. Preventive Radiation Protection Act

    International Nuclear Information System (INIS)

    Roewer, H.

    1988-01-01

    The commentary is intended to contribute to protection of the population by a practice-oriented discussion and explanation of questions arising in connection with the Preventive Radiation Protection Act. Leaving aside discussions about abandonment of nuclear power, or criticism from any legal point of view, the commentary adopts the practical approach that accepts, and tries to help implementing, the act as it is. It is a guide for readers who are not experts in the law and gives a line of orientation by means of explanations and sometimes by citations from other acts (in footnotes). The commentary also presents the EURATOM Directive No. 3954/87 dated 22 December 1987, the EC Directive No. 3955/87 dated 22 December 1987, and the EC Directive No. 1983/88 dated 5 July 1988. A tabular survey shows the system of duties and competences defined by the Preventive Radiation Protection Act. (RST) [de

  6. Education about protection against solar radiation for teachers teaching young children: a contribution to promote school health

    Directory of Open Access Journals (Sweden)

    Gislaine Ricci Leonardi

    2014-11-01

    Full Text Available Skin cancer Primary prevention should focus young populations, using the school and teachers as strategic players. This paper describes results from a project aimed to educate kindergarten teachers in the Diadema municipality (metropolitan S Paulo about photoeducation and sun exposure risks. The intervention was based on an investigation about teachers level of knowledge. Analysis revealed several gaps in knowledge topics - effects of skin tanning; sun exposure damage different than skin cancer; forms of sun protection, other than sunscreens; importance of sunscreen in childhood; types of solar radiation and their effects on human health; facts to be observed in the use of sunscreens. Based on the results of the first step, educational intervention was performed. The last step involved the evaluation of acquired knowledge. The collecting data technique was the Focal Group. Through content analysis, advances in knowledge and the acquisition of concepts were identified. The educational intervention was determinant for teachers knowledge especially regarding UVt radiation types and sun protection factors, but also revealed some pitfalls. In conclusion, short-term actions may be sufficient to transform some concepts but not enough to achieve all goals, especially the transformation of concepts related to cultural aspects, demanding greater daily educational investments.

  7. Radiation Protection: Introduction

    International Nuclear Information System (INIS)

    Loos, M.

    2007-01-01

    As a federal research Centre, SCK-CEN has the statutory assignment to give priority to research related to safety, radioactive waste management, protection of man and environment, management of fissile and other strategic materials and social implications as part of the pursuit of sustainable development and to develop and gather the necessary knowledge and spread this knowledge through formation and communication. At the Division of Radiation Protection at SCK-CEN we are therefore active to maintain and enhance knowledge and expertise in each aspect of radiation protection: we study the risk of exposure - the way that radioactive materials spread in the environment and the potential for human contact - and the risk from exposure - how radiation affects human health; we perform health physics measurements; we are involved in emergency planning and preparedness and support to risk governance and decision taking. These activities are supported by radiation specific analysis and measurement techniques. These activities are not performed in isolation but in context of national and international collaborations or demands

  8. Radiation biology and radiation protection

    International Nuclear Information System (INIS)

    Hendry, J.H.

    2012-01-01

    For protection purposes, the biological effects of radiation are separated into stochastic effects (cancer, hereditary effects) presumed to be unicellular in origin, and tissue reactions due to injury in populations of cells. The latter are deterministic effects, renamed ‘tissue reactions’ in the 2007 Recommendations of the International Commission on Radiological Protection because of the increasing evidence of the ability to modify responses after irradiation. Tissue reactions become manifest either early or late after doses above a threshold dose, which is the basis for recommended dose limits for avoiding such effects. Latency time before manifestation is related to cell turnover rates, and tissue proliferative and structural organisation. Threshold doses have been defined for practical purposes at 1% incidence of an effect. In general, threshold doses are lower for longer follow-up times because of the slow progression of injury before manifestation. Radiosensitive individuals in the population may contribute to low threshold doses, and in the future, threshold doses may be increased by the use of various biological response modifiers post irradiation for reducing injury. Threshold doses would be expected to be higher for fractionated or protracted doses, unless doses below the threshold dose only cause single-hit-type events that are not modified by repair/recovery phenomena, or if different mechanisms of injury are involved at low and high doses.

  9. Enhancing radiation protection

    International Nuclear Information System (INIS)

    2006-01-01

    When a new radiotherapy center in Gezira, Sudan, delivers its first therapeutic dose to a cancer patient, two things happen: A young man begins to regain his health and looks forward to being better able to support his family and contribute to his community; and a developing nation realizes an important step toward deriving the social and economic benefits of nuclear science. The strategic application of nuclear technology in particular fields- human health, industry, food and agriculture, energy, water resources and environmental protection - has enormous potential to help shape the future of developing countries. But past radiological incidents, several of which involved high levels of exposure or death (Bolivia, Brazil, Cost Rica, Georgia, Ghana, Morocco, Panama and Thailand), underscore the inherent and very serious risks. For this reason, the IAEA's Departments of Technical Cooperation and Nuclear Safety and Security partner closely, particularly in the area of radiation protection. They strive to consider every minute detail in the equation that brings together radiation sources, modern technologies, people and the environment. Launched in 1996, the Model Project on Upgrading Radiation Protection Infrastructure (the Model Project) aimed to help Member States: achieve capacities that underpin the safe and secure application of nuclear technologies; establish a legislative framework and regulatory infrastructure; develop exposure control mechanisms to protect workers, medical patients, the public and the environment; and achieve preparedness and planned response to radiological emergencies. In fact, the hospital scenario above typically marks several years of intense collaboration amongst scientists, legislators, regulators, politicians and administrators from both Member States and the IAEA, orchestrated and aided by regional managers and technical experts from the IAEA. As radiation protection team members can attest, every application of nuclear technology

  10. Radiation protection - the employer

    International Nuclear Information System (INIS)

    Goldfinch, E.

    1983-01-01

    A brief report is given of a paper presented at the symposium on 'Radiation and the Worker - where do we go from here' in London 1983. The paper concerned the employers' viewpoint on the draft of the proposed Ionising Radiations Regulations in the Health and Safety Commission Consultative Document. It was concluded that there was already a very good standard of radiological protection in the UK and that any improvements could therefore only be fringe improvements, although the cost to the employer of introducing and implementing the new proposed Regulations was bound to be high. (U.K.)

  11. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  12. Radiation protection manual

    International Nuclear Information System (INIS)

    Spang, A.

    1983-01-01

    According to the Radiation Protection Ordinance, radiation protection experts directing or supervising the handling of radioactive materials must have expert knowledge. The concept of expert knowledge has been clearly defined by the Fachverband e.V. in a catalogue of instruction goals. The manual follows the principles of this catalogue; it presents the expert knowledge required in a total of 15 subject groups. There is an index which helps the reader to find his specific subject group and the knowledge required of him in this subject group. However, the manual gives only an outline of the subject matter in many instances and should therefore not be regarded as a textbook in the proper sense. (orig./HP) [de

  13. Emerging radiation protection

    International Nuclear Information System (INIS)

    Allard, D.J.

    1993-01-01

    In recent years, a number of radiation protection issues have emerged into the public forum. The perceived high risks associated with radiation exposure, and disproportionate media attention to such issues, have contributed to heightened concerns by the public and the individual occupationally exposed worker. This paper examines the new and controversial radiation risk estimates of the National Research Council's BEIR V committee, which are based on the most current atomic-bomb survivor data and a revised dosimetry model. These risk estimates are somewhat higher than past values, and may eventually impact the legal framework in the United States through the regulations of the EPA, NRC, DOE, OSHA, and other agencies that set radiation exposure standards. Additionally, present regulations and standards are often based upon differing levels of acceptable risk, which have led to conflicting exposure and effluent release criteria. Further, due to inherent boundaries in legal authority, many potentially significant sources of radiation exposure to the public remain unregulated Radiation exposure scenarios such as medical x-ray, radon, and other technology enhanced sources have no legal limits. These issues and others are examined and analyzed with respect to regulatory policy

  14. Radiation protection: A correction

    International Nuclear Information System (INIS)

    1972-01-01

    An error in translation inadvertently distorted the sense of a paragraph in the article entitled 'Ecological Aspects of Radiation Protection', by Dr. P. Recht, which appeared in the Bulletin, Volume 14, No. 2 earlier this year. In the English text the error appears on Page 28, second paragraph, which reads, as published: 'An instance familiar to radiation protection specialists, which has since come to be regarded as a classic illustration of this approach, is the accidental release at the Windscale nuclear centre in the north of England.' In the French original of this text no reference was made, or intended, to the accidental release which took place in 1957; the reference was to the study of the critical population group exposed to routine releases from the centre, as the footnote made clear. A more correct translation of the relevant sentence reads: 'A classic example of this approach, well-known to radiation protection specialists, is that of releases from the Windscale nuclear centre, in the north of England.' A second error appeared in the footnote already referred to. In all languages, the critical population group studied in respect of the Windscale releases is named as that of Cornwall; the reference should be, of course, to that part of the population of Wales who eat laver bread. (author)

  15. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  16. Activities of Moroccan Radiation Protection Association

    International Nuclear Information System (INIS)

    Choukri, A.

    2010-01-01

    Encourage activities and information exchange in the field of radiation protection and related areas; Assist in informing both the public and the professionals on the problems and requirements related to radiation protection for the protection of man and the environment; Promote professional training in radiation protection. The use of nuclear technology in medicine, agriculture and industry is very advanced in Morocco. This technological progress has been accompanied by fairly detailed legislation and significant involvement on the part of Morocco in international conventions and agreements

  17. Training courses on radiation protection

    International Nuclear Information System (INIS)

    1988-01-01

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection, and this report has been prepared to provide the guidance that may be required in this development. The original version of the report on this subject was published in 1964 as Technical Reports Series No. 31 entitled ''Training in Radiological Protection: Curricula and Programming''. In 1975 a second version was published entitled ''Training in Radiological Protection for Nuclear Programmes'' as Technical Reports Series No. 166. This publication is intended mainly for use by persons who are responsible for organizing training programmes in radiation protection. It also reflects the policy of the Agency to have continuing standardized training in radiation protection. In addition to a small change in the title of the report, some concepts and ideas which are no longer applicable have been omitted and new information included. An important part of this report is the list of courses now offered in many Member States

  18. Radiation protection medical care of radiation workers

    International Nuclear Information System (INIS)

    Walt, H.

    1988-01-01

    Radiation protection medical care for radiation workers is part of the extensive programme protecting people against dangers emanating from the peaceful application of ionizing radiation. Thus it is a special field of occupational health care and emergency medicine in case of radiation accidents. It has proved helpful in preventing radiation damage as well as in early detection, treatment, after-care, and expert assessment. The medical checks include pre-employment and follow-up examinations, continued long-range medical care as well as specific monitoring of individuals and defined groups of workers. Three levels of action are involved: works medical officers specialized in radiation protection, the Institute of Medicine at the National Board for Atomic Safety and Radiation Protection, and a network of clinical departments specialized in handling cases of acute radiation damage. An account is given of categories, types, and methods of examinations for radiation workers and operators. (author)

  19. Radiation protection, optimization and justification

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.; Brisse, H.; Foucart, J.M.; Clement, J.P.; Ribeiro, A.; Gomes, H.; Marcus, C.; Rehel, J.L.; Talbot, A.; Aubert, B.; Scanff, P.; Roudier, C.; Donadieu, J.; Pirard, P.; Bar, O.; Maccia, C.; Benedittini, M.; Bouziane, T.; Brat, H.; Bricoult, M; Heuga, O.; Hauger, O.; Bonnefoy, O.; Diard, F.; Chateil, J.F.; Schramm, R.; Reisman, J.; Aubert, B.

    2005-01-01

    Nine articles in the field of radiation protection relative to the medical examinations concern the new legislation in radiation protection, the optimization of this one in order to reduce the radiation doses delivered to the patients, the side effects induced by irradiation and to give an evaluation of the medical exposure of french population to ionizing radiations. (N.C.)

  20. Some perspectives on radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1979-01-01

    A brief review of the history and organizational structure of the NCRP is given. Summaries are given of a number of NCRP radiation protection guides dealing with hazards from 85 Kr, radiation exposures from consumer products, basic radiation protection criteria, and doses from natural background radiation

  1. The national radiation protection infrastructure

    International Nuclear Information System (INIS)

    Mastauskas, A.

    1999-01-01

    The state system of radiation protection is still being created after Lithuania regained its independancy and in connection with recommendations laid in the ICRP-60 publication and requirements of legislation of European Community. A new regulation institutions was established and a number of laws and regulations related to radiation protection was prepared. The Radiation Protection Centre of Ministry of Health is the regulatory authority responsible for radiation protection of public and of workers using sources of ionizing radiation in Lithuania. A new Radiation Protection Law, Nuclear Energy Law, Radioactive Waste Management Law and different regulations was approved. Preparation of legislation, creation of state system of radiation protection and its upgrading allow to presume that the necessary level of radiation protection is to be achieved. (au)

  2. Radiation protection and monitoring

    International Nuclear Information System (INIS)

    Bruecher, L.; Langmueller, G.; Tuerschmann, G.

    1997-01-01

    The safety, the quality and efficiency of the radiological monitoring systems for block one and two of the NPP Mochovce, designed and delivered by the general designer, should be increased by EUCOM Siemens. Modern, accident resistant and/or more powerful monitoring systems have been designed by Siemens will be added to the existing systems. To achieve this radiation measuring units will be installed inside the hermetic zone, in the reactor hall, at the stack, at the release water system and in the environment in the vicinity of the NPP. The presentation, the storage distribution and the processing of all measuring results also will be optimised by installing a modern high-performance computer system, the so-called Central Radiological Computer System 'CRCS', featuring a high availability. The components will be installed in the relevant control rooms all over the plant. With this computer system it is easy to control the radiation level inside and outside the NPP during normal operation and during and after an accident. Special programs, developed by Siemens support the staff by interpreting the consequences of radioactive releases into the environment and by initiating protection procedures during and after an accident. All functions of the system are available for emergency protection drills and training the staff interruption of the normal control procedure. For the personal protection a digital personal dosimetry system completely considering with the requirements of ICRP 60 and several contamination monitors will be installed. (authors)

  3. Radiation protection training in Switzerland

    International Nuclear Information System (INIS)

    Pfeiffer, H.J.

    1999-01-01

    An increasing number of radiation protection experts and of professionally exposed workers is temporarily or permanently working in a country other than the one where they received their radiation protection education or training. They all face the problem and the difficulties of recognition of radiation protection training programs by other countries. For this reason the German-Swiss Radiation Protection Association (Fachverband fuer Strahlenschutz; FS) made a proposal to IRPA for an action on the mutual recognition of radiation protection education in Europe. In a first step contacts were made with two other European Associations of France and UK in order to establish a joint working group. (orig.) [de

  4. Radiation protection research

    Energy Technology Data Exchange (ETDEWEB)

    Vanmarcke, H

    2002-04-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised.

  5. Radiation protection research

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    2002-01-01

    The objectives of the research in the field of radiation protection research performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to elaborate and to improve methods and guidelines for the evaluation of restoration options for radioactively contaminated sites; (2) to develop, test and improve biosphere models for the performance assessment of radioactive waste disposal in near-surface or geological repositories; (3) to asses the impact of releases from nuclear or industrial installations; (4) to increase capabilities in mapping and surveying sites possibly or likely contaminated with enhanced levels of natural radiation; (5) to identify non nuclear industries producing NORM waste, to make an inventory of occurring problems and to propose feasible solutions or actions when required; (6) to maintain the know-how of retrospective radon measurements in real conditions and to assess radon decay product exposure by combining these techniques. Main achievements in these areas for 2001 are summarised

  6. Radiation protection considerations

    CERN Document Server

    Adorisio, C; Urscheler, C; Vincke, H

    2015-01-01

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  7. Radiation Protection Considerations

    Science.gov (United States)

    Adorisio, C.; Roesler, S.; Urscheler, C.; Vincke, H.

    This chapter summarizes the legal Radiation Protection (RP) framework to be considered in the design of HiLumi LHC. It details design limits and constraints, dose objectives and explains how the As Low As Reasonably Achievable (ALARA) approach is formalized at CERN. Furthermore, features of the FLUKA Monte Carlo code are summarized that are of relevance for RP studies. Results of FLUKA simulations for residual dose rates during Long Shutdown 1 (LS1) are compared to measurements demonstrating good agreement and providing proof for the accuracy of FLUKA predictions for future shutdowns. Finally, an outlook for the residual dose rate evolution until LS3 is given.

  8. Australia's radiation protection standards

    International Nuclear Information System (INIS)

    1989-01-01

    In Australia, public exposure to ionizing radiation above background is considered to be negligible. Average occupational exposures are about 0.5 millisievert per year, although there are some specialized industries and professions where they are much higher. The National Health and Medical Research Council has therefore adopted a position similar to that of the International Commission on Radiological Protection. For the moment, no revision of exposure limits is recommended, but users are remined of their responsibility to ensure that exposures are kept low, particularly in those workplaces where significant exposures take place

  9. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    This textbook is addressed to all those concerned with the protection of radiation workers. It provides full coverage of the implications of radiation in exposed workers, and, after a chapter outlining, in simple terms, the basic facts about radiation, deals with measurement of ionising radiation; radiation dosimetry; effectiveness of absorbed dose; general biological effects of ionising radiation; somatic effects of radiation; the acute radiation syndrome; other somatic effects; hereditary effects; radiation protection standards and regulations; radiation protection; medical supervision of radiation workers; general methods of diagnosis and treatment; metabolism and health problems of some radioisotopes; plutonium and other transuranium elements; radiation accidents; emergency plans and medical care; atomic power plants; medico-legal problems

  10. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  11. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  12. Radiation protection programme for nuclear gauges

    International Nuclear Information System (INIS)

    Muzongomerwa, A.

    2014-04-01

    Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)

  13. What is good radiation protection?

    International Nuclear Information System (INIS)

    Lorenz, B.

    2016-01-01

    Radiation protection is based on the ICRP-System with its pillars justification, limitation and optimization. From this radiation protection should be the same irrespective of the application of radiation. But radiation protection in the nuclear industry is much different from the use of radiation sources or X-ray units. This is by far not due to the different technologies. It originates from the different interpretation of the system. For one person good radiation protection would mean to have no radiation exposures, to avoid radiation at all as best option and to use it only if there are no alternatives. For another person the best radiation protection would be the one which does not produce much efforts and costs. So what is reasonable? In reality the first interpretation prevails, at least in Germany. A change is needed. If we continue to exercise radiation protection as we do it today the beneficial application of radiation will be restricted unduly and might become impossible at all. A stronger orientation towards the naturally occurring radiation would help instead to regulate natural radiation in the same way as it is done for artificial radiation. The system of ICRP has to be changed fundamentally.

  14. Pregnancy and Radiation Protection

    International Nuclear Information System (INIS)

    Gerogiannis, J.; Stefanoyiannis, A. P.

    2010-01-01

    Several modalities are currently utilized for diagnosis and therapy, by appropriate application of x-rays. In diagnostic radiology, interventional radiology, radiotherapy, interventional cardiology, nuclear medicine and other specialties radiation protection of a pregnant woman as a patient, as well as a member of the operating personnel, is of outmost importance. Based on radiation risk, the termination of pregnancy is not justified if foetal doses are below 100 mGy. For foetal doses between 100 and 500 mGy, a decision is reached on a case by case basis. In Diagnostic Radiology, when a pregnant patient takes an abdomen CT, then an estimation of the foetus' dose is necessary. However, it is extremely rare for the dose to be high enough to justify an abortion. Radiographs of the chest and extremities can be done at any period of pregnancy, provided that the equipment is functioning properly. Usually, the radiation risk is lower than the risk of not undergoing a radiological examination. Radiation exposure in uterus from diagnostic radiological examinations is unlikely to result in any deleterious effect on the child, but the possibility of a radiation-induced effect can not be entirely ruled out. The effects of exposure to radiation on the foetus depend on the time of exposure, the date of conception and the absorbed dose. Finally, a pregnant worker can continue working in an x-ray department, as long as there is reasonable assurance that the foetal dose can be kept below 1 mGy during the pregnancy. Nuclear Medicine diagnostic examinations using short-lived radionuclides can be used for pregnant patient. Irradiation of the foetus results from placental transfer and distribution of radiopharmaceuticals in the foetal tissues, as well as from external irradiation from radioactivity in the mother's organ and tissues. As a rule, a pregnant patient should not undergo therapy with radionuclide, unless it is crucial for her life. In Radiotherapy, the patient, treating

  15. From regulations towards radiation protection culture

    International Nuclear Information System (INIS)

    Boehler, M.C.

    1996-01-01

    Compliance with the technical standards and specifications is a necessary but not sufficient condition for quality in radiation protection. Reaching this quality objective is not a matter of forcing improvements by a regulatory policy of reducing dose limits, but of promoting a real radiation protection culture. The spread of such a radiological protection culture encourages the deliberate adoption in everyday practice of behaviour likely to reduce exposure to ionizing radiation as loser as reasonably achievable. The aim of this paper is to demonstrate that the need to diffuse a radiological protection culture is inspired by the philosophy behind the system recommended by ICPR Publication 60 on the management of residual radiological risk and, in particular by the behavioural and incentive approach implied by the optimization principle. Special attention will be given to the fundamentals likely to contribute in a definition of radiation protection culture. (author)

  16. Radiation protection and society

    International Nuclear Information System (INIS)

    Skryabin, A.M.

    1997-01-01

    The radiological protection of population, living on the contaminated territories, is actual 10 years after the Chernobyl accident. Eventually, the whole system of countermeasures application is aimed to protect society as a complex community of individuals . The variety of levels of society, i.e. family, settlement on the whole, can be considered as certain harmonic systems differing in their public consciousness levels and lifestyles, this explain the difference in their 'behaviour' in terms of radiation protection and attitude to the information obtained. Each level of society possesses a certain degree of liberty of choice, that finally influence the magnitude and the character of dose distribution within certain population groups. In general, the dose distribution in the settlement can be explained only on the bases of 'family' analysis. This concerns the rural settlement as a society too. All rural settlement can be divided into two or three classes: with low, high and intermediate social features. Small settlements (< 100 persons), where the advanced in age persons with low material income and high degree of natural economy are applied to the first class. This results in higher doses (2-3 fold), than in the settlements with higher social level. The analysis shows that in socially 'waning' settlements the countermeasures are less efficient and the term of their action is shorter. (this class is the largest, About 50% among all the rural settlements). Due to the deterioration of the economic situation in the Republic of Belarus after 1991-1992 resulted in the increase of doses mainly in the habitants first of all of this class of settlements. It seems problematic to increase countermeasures efficiency in this class of settlements without the refuse of the accustomed lifestyle and radical improvement of social-demographic and economic conditions. The present material shows the necessity of the differential approach based on 'society-analysis' in the

  17. Health protection of radiation workers

    International Nuclear Information System (INIS)

    Norwood, W.D.

    1975-01-01

    Essential information on the health protection of radiation workers which has accumulated since the advent of nuclear fission thirty years ago is presented in simple terms. Basic facts on ionizing radiation, its measurement, and dosimetry are presented. Acute and chronic somatic and genetic effects are discussed with emphasis on prevention. Radiation protection standards and regulations are outlined, and methods for maintaining these standards are described. Diagnosis and treatment of radiation injury from external radiation and/or internally deposited radionuclides is considered generally as well as specifically for each radioisotope. The medical supervision of radiation workers, radiation accidents, atomic power plants, and medicolegal problems is also covered. (853 references) (U.S.)

  18. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.-J.

    1990-01-01

    This book grew out of a series of courses in radiobiology and radiation protection which were given to students in schools for radiology technicians, radiation safety officers and to medical students. Topics covered include the sources of ionizing radiation and their interactions with matter; the detection and measurement of ionizing radiation; dosimetry; the biological effects of ionizing radiation; the effects of ionizing radiation on the human body; natural radioexposure; medical radio-exposure; industrial radioexposure of electronuclear origin; radioexposure due to experimental nuclear explosions; radiation protection; and accidents with external and/or internal radio-exposure. (UK)

  19. Practical radiation protection for radiography

    International Nuclear Information System (INIS)

    Hubbard, S.K.; Proudfoot, E.A.

    1978-01-01

    Nondestructive Testing Applications and Radiological Engineering at the Hanford Engineering Development Laboratory have developed radiation protection procedures, radiation work procedures, and safe practice procedures to assure safe operation for all radiographic work. The following topics are discussed: training in radiation safety; radiation exposure due to operations at Hanford; safeguards employed in laboratory radiography; field radiographic operations; and problems

  20. National Sessions of Radiation Protection

    International Nuclear Information System (INIS)

    Sociedad Argentina de Radioproteccion

    2012-01-01

    The Radioprotection Argentine Society (SAR) was organized the National Sessions on Radiation Protection 2012 in order to continue the exchange in the radiation protection community in the country, on work areas that present a challenge to the profession. The new recommendations of the ICRP and the IAEA Safety Standards (2011), among others, includes several topics that are necessary to develop. The SAR wants to encourage different organizations from Argentina, to submit projects that are developing in order to strengthen radiation protection.

  1. Plowshare radiation protection guidance

    International Nuclear Information System (INIS)

    Parker, H.M.

    1969-01-01

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  2. Plowshare radiation protection guidance

    Energy Technology Data Exchange (ETDEWEB)

    Parker, H M [Environmental and Life Sciences Division, Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, WA (United States)

    1969-07-01

    The recommendations of the ICRP and the NCRP were developed primarily for occupational radiation exposures. They were later modified and applied to non-occupational exposures of populations. These, with appropriate interpretations, can be used to provide Plowshare radiation protection guidance. Exposures from Plowshare operations will tend to be acute, arising from radionuclides of relatively short half-life, but will have some chronic aspects due to small amounts of long-lived radionuclides generated. In addition, the neutron activation process of Plowshare technology will produce radionuclides not commonly encountered in routine nuclear energy programs. How these radionuclides contribute to personnel exposure is known for only a few situations that may not be representative of Plowshare exposure. Further complications arise from differences in radionuclide deposition and physiological sensitivity among individuals of different ages and states of health in the exposed population. All parameters necessary to evaluate such exposures are not available, even for good quantitative approximations, resulting in the need for interpretive experience. (author)

  3. Radiation protection primer

    International Nuclear Information System (INIS)

    Aigner, R.; Melzer, E.; Seissler, H.

    1986-01-01

    This 'radiation protection primer' does not pretend to give absolute, final answers to the many questions that have been arising after the Chernobyl accident. What it is intended to supply, as a schematic overview of problems resulting from nuclear accidents, and a likewise systematic outline of possible solutions and sensible reactions to such an event. The book takes up questions such as: What has happened to the soil. Will future harvests be 'clean' again. What does radioactivity to our drinking water and other waters. What are the effects of a radioactive fallout on food. What may we eat or drink. What happens to the human body after intake of radioactive air, or - even only slightly - contaminated food or water. What can we do to protect our health, and the health of our children. Is there anything else we can do in order to avoid such a disaster in future, except from shutting-off all reactors. The book itself presents some answers and advice, along with a list of terms and explanations, and addresses to apply to for further advice and information. (orig./HP) [de

  4. Radiation protective clothing

    International Nuclear Information System (INIS)

    Ijiri, Yasuo; Fujinuma, Tadashi; Aso, Tsutomu.

    1991-01-01

    The present invention concerns radiation protective clothings suitable for medical protective clothings, aprons, etc. A primary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a contamination-resistant layer on the other side. A secondary sheet comprises a lead-incorporated organic polymer layer having a less frictional layer on one side and a comfortable skin-feeling layer on the other side. The less frictional layers of the primary and the secondary layer are laminated so as to be in contact with each other. Then, they are formed so that the comfortable skin-feeling layer of the secondary sheet is on the inner side, in other words, on the side of a wearer, and the contamination-resistant layer of the primary sheet is on the outer side. With such a constitution, although it involves the lead-incorporated organic polymer sheets of a large weight, it is comfortable to wear because of excellent flexibility and causes less feeling of fatigue even during wearing for a long period of time. (I.N.)

  5. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  6. Radiation protection and radiation fear

    International Nuclear Information System (INIS)

    Czeizel, E.

    1982-01-01

    Some data are cited from Japanese statistics analyzing the genetic injuries stemming from the nuclear explosion in Hiroshima. It is shown that neither the number of the unsuccesful pregnancies nor the mortality of the born offsprings increased in those cases there the mother or the father had been exposed to 1-100 rad radiation. There was no significant difference in the chromosomal aberrations amoung the children of irradiated and control parents. (L.E.)

  7. Radiation Protection Infrastructure In Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Zafimanjato, J.L.R.; Randriantseheno, H.F.; Ramanandraibe, M.J.; Randriantsizafy, D.R.

    2008-01-01

    Radiation sources are widely used in medicine, industry, research and education in Madagascar. Safety and security of these sources are the main statutory functions of the Regulatory Authority as defined by the regulations in Radiation Protection in Madagascar. These functions are carried out through the system of notification, authorization and inspection, inventory of radiation source and emergency preparedness. The law no 97-041 on radiation protection and radioactive waste management in Madagascar was promulgated on 2nd January 1998. It governs all activities related to the peaceful use of nuclear energy in Madagascar in order to protect the public, the environment and for the safety of radiation sources. This law complies with the International Basic Safety Standards for protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series no 115). Following the promulgation of the law, four decrees have been enacted by the Malagasy Government. With an effective implementation of these decrees, the ANPSR will be the Highest Administrative Authority in the Field of Radiation Protection and Waste Management in Madagascar. This Regulatory Authority is supported by an Executive Secretariat, assisted by the OTR for Radiation Protection and the OCGDR for Managing Radioactive Waste.The paper includes an overview of the regulatory infrastructure and the organizations of radiation protection in Madagascar

  8. Radiation Protection Training in Lithuania

    International Nuclear Information System (INIS)

    Jankauskiene, D.

    2003-01-01

    Radiation Protection Training is an important component of Radiation Protection and serves for human radiation safety. According to the Lithuanian Law on Radiation Protection the legal persons and enterprises without the status of legal persons to conduct practices with sources or which workers work under exposure must organize at their own expenses a compulsory training and assessment of knowledge of the workers engaging in activities with the sources and radiation protection officers. Such training has been started in 1999. In Lithuania there are few institutions executing Radiation Protection training. Under requirements of legal act On Frequency and Procedure of Compulsory Training and Assessment Knowledge of the Workers Engage in Activities with the Sources of Ionising Radiation and Radiation Protection Officers these institutions have to prepare and coordinate training programs with the Radiation Protection Center. There are adopted different educating programs for Radiation Protection Training to the Workers and Radiation Protection Officers depending on character of work and danger of sources. The duration of Training is from 30 to 270 hours. The Training shall be renewed every five years passing 30 hors course. To ensure the adequate quality of training a great deal of attention is paid to qualifying the lectures. For this purpose, it was established an Evaluation commission to estimate the adequacy of lecturer's knowledge to requirements of Training programs. After passing exams the lectures get the qualification confirming certificates. The main task of our days is to establish and arrange the National Training Centre on Radiation Protection Training that would satisfy requirements and recommendations of legal documents of IAEA and EU for such kind of institutions of institutions. (Author)

  9. Radiation protection guidelines for radiation emergencies

    International Nuclear Information System (INIS)

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material

  10. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, Lars

    2000-03-01

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report

  11. Ethical issues in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Lars (ed.)

    2000-03-15

    Ethical theories are relevant to the current recommendations and standards for radiation protection. Radiation protection is not only a matter for science. It is also a problem of philosophy. In order for protection regulations to be respected, it must correspond to widely accepted ethical values among those who are affected by the regulations. The workshop covered the following issues: Problems in Present Protection Policy, ICRP Protection Policy - A Historical Perspective, Radiation Risk - What we know and what we believe, Present ICRP Recommendations, Ethical Values in the Context of ICRP Recommendations, Collective Responsibility for Invisible Harm, Environmental Protection - Ethical Issues, The Global Change of Values, and Procedural justice and Radiation Protection. Six workshop contributions and a workshop summary are presented in this report.

  12. Radiation protection in the field of environmental protection

    International Nuclear Information System (INIS)

    Zhao Yamin

    2003-01-01

    The relationship of radiation protection with environmental protection, the sources that may give rise to the environmental radiation contamination, and the system of radiation protection and the fundamental principles and requirements for radiation environmental management are introduced. Some special radiation protection problems faced with in the radiation environmental management are discussed. (author)

  13. Bioassay programs for radiation protection

    International Nuclear Information System (INIS)

    1979-01-01

    This report discusses the rationale for the establishment of bioassay programs as a means of protection for radiation workers in the nuclear industry. The bioassay program of the Radiation Protection Bureau is described for the years 1966-1978 and plans for future changes are outlined. (auth)

  14. Radiation protection - quality and metrology

    International Nuclear Information System (INIS)

    Broutin, J.P.

    2002-01-01

    The radiation protection gathers three occupations: radiation protection agents; environment agents ( control and monitoring); metrology agents ( activities measurement and calibration). The quality and the metrology constitute a contribution in the technique competence and the guarantee of the service quality. This article, after a historical aspect of quality and metrology in France explains the advantages of such a policy. (N.C.)

  15. Ethical problems in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards.

  16. Ethical problems in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, Lars

    2001-05-01

    In this report the authors survey existing international radiation-protection recommendations and standards of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the authors review ethical thinking on seven key issues related to radiation protection and ethics. They formulate each of these seven issues in terms of alternative ethical stances: (1) equity versus efficiency, (2) health versus economics, (3) individual rights versus societal benefits, (4) due process versus necessary sacrifice, (5) uniform versus double standards, (6) stake holder consent versus management decisions, and (7) environmental stewardship versus anthropocentric standards

  17. Ethics in radiation protection

    International Nuclear Information System (INIS)

    Corbett, R.H.

    2002-01-01

    Ethics is a branch of philosophy. Its object is the study of both moral and immoral behaviour in order to make well founded judgements and to arrive at adequate recommendations. The Collins English Dictionary provides the following definitions of the word ethic: Ethic: a moral principle or set of moral values held by an individual or group; Ethics(singular): the philosophical study of the moral value of human conduct and of the rules and principles that ought to govern it; Ethics(pleural): a social, religious or civil code of behaviour considered correct, especially that of a particular group, profession or individual; Ethics(pleural): the moral fitness of a decision, course of action, etc. Ethics has a two-fold objective: Firstly it evaluates human practices by calling upon moral standards; it may give prescriptive advice on how to act morally in a specific kind of situation. This implies analysis and evaluation. Sometimes this is known as Normative ethics. The second is to provide therapeutic advice, suggesting solutions and policies. It must be based on well-informed opinions and requires a clear understanding of the vital issues. In the medical world, we are governed by the Hippocratic Oath. Essentially this requires medical practitioners (doctors) to do good, not harm. There is great interest and even furore regarding ethics in radiation protection

  18. Radiation protective clothing

    International Nuclear Information System (INIS)

    Watanabe, Choshin; Takaura, Katsutoshi

    1998-01-01

    An external clothing as a main portion of the radiation protective clothing of the present invention is adapted to cover substantially the entire body of a wearer, comprises a moisture permeable material partially or entirely, and has an air supply device equipped with a filter for feeding air to a head portion of the wearer in the external clothing. Cleaned air filtered by the filter is supplied to the head portion of a wearer in the external clothing. The air passes through remarkably perspiratory head, face, shoulder, chest and back portions to remove heat and sweat at sensitively important upper portions of a body, so that humidity is released to remove fatigues and improve workability. In addition, since some extent of internal pressure is exerted to the inside of the external clothing by the air supply, contaminated air does not intrude from the outside to the external clothing. Since the air supply device is attached and carried to the external clothing, there is no air line hose which disturbs operation. (I.S.)

  19. Obligatory Radiation Protection Course

    CERN Multimedia

    SC Unit

    2008-01-01

    Since February 2008, participation in the radiation protection course has been a prerequisite for obtaining a CERN personal dosimeter for all Staff Members and Users. All Staff and Users holding a personal dosimeter were informed by the Bulletin and by a personal e-mail sent in February 2008 that they were required to participate in the course before the annual exchange of their dosimeter. Many people had not done so by that time and the Dosimetry Service exceptionally classified them for 2 months as short-term visitors (VCT), a category of monitored personnel to whom the training requirement does not presently apply. As all personnel concerned have since had time to participate in an RP course, this "grace period" will no longer be granted as of 1 October 2008 and the RP course must be completed before the personal dosimeter is exchanged. For newcomers to CERN, and for those returning to CERN after an absence of more than 1 year, one registration as a VCT for two months ...

  20. Occupational safety meets radiation protection

    International Nuclear Information System (INIS)

    Severitt, S.; Oehm, J.; Sobetzko, T.; Kloth, M.

    2012-01-01

    The cooperation circle ''Synergies in operational Security'' is a joint working group of the Association of German Safety Engineers (VDSI) and the German-Swiss Professional Association for Radiation Protection (FS). The tasks of the KKSyS are arising from the written agreement of the two associations. This includes work on technical issues. In this regard, the KKSyS currently is dealing with the description of the interface Occupational Safety / Radiation Protection. ''Ignorance is no defense'' - the KKSyS creates a brochure with the working title ''Occupational Safety meets radiation protection - practical guides for assessing the hazards of ionizing radiation.'' The target groups are entrepreneurs and by them instructed persons to carry out the hazard assessment. Our aim is to create practical guides, simple to understand. The practical guides should assist those, who have to decide, whether an existing hazard potential through ionizing radiation requires special radiation protection measures or whether the usual measures of occupational safety are sufficient. (orig.)

  1. Radiation protection in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Volodin, V; Hanson, G P

    1993-12-31

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  2. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Volodin, V.; Hanson, G.P.

    1992-01-01

    The goal of this Chapter is to give a general outline of the essential principles and procedures for radiation protection in a nuclear medicine department where radionuclides are used for diagnosis and therapy. More detailed recommendations regarding radiation protection in nuclear medicine are given in the publications of the International Commission on Radiation Protection (ICRP, publications 25, 57, 60) and in ILO/IAEA/WHO Manual on Radiation Protection in Hospitals and General Practice (Volume 2: Unsealed Sources, WHO, Geneva, 1975), on which this Chapter is based. This chapter is not intended to replace the above-mentioned international recommendations on radiation protection, as well as existing national regulations on this subject, but intended only to provide guidance for implementing these recommendations in clinical practice

  3. The Radiation Protection in Guatemala

    International Nuclear Information System (INIS)

    Guillen, J.A.

    1992-04-01

    A brief account of the activities on radiation safety carried out by the General Directorate of Nuclear Energy of Guatemala in the period 1991-1992 is presented. The activities are reported under organization, activities on occupational radiation protection in medicine, industry and research, personnel monitoring, radiation metrology, regulations and international cooperation are described

  4. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  5. Safety Culture on radiation protection

    International Nuclear Information System (INIS)

    Sollet, E.

    1996-01-01

    It can be defined radiation protection culture as the set of technical and social standards applied to the management of the operation of a nuclear facility concerning the reduction of the exposure to radiation of workers and members of the public, together with the behaviour and attitudes of the individuals from the organization towards that objective. Because the basic principles of radiation protection are self-evident and are totally justified, and the thesis drawn from the article is that no effective radiation protection culture yet exists within the organization, it must be concluded that what is wrong from the system are the attitudes and behavior of the individuals. In this article some factors and elements needed to motivate all persons within the organization towards the creation of a radiation protection culture are delineated and presented. (Author)

  6. Ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.; Persson, L.

    1997-01-01

    In this note the authors survey existing international radiation-protection recommendations of the ICRP, the IAEA, and the ILO. After outlining previous work on the ethics of radiation protection and risk assessment/management, the authors review ethical thinking on five key issues related to radiation protection and ethics. They formulate each of these five issues in terms of alternative ethical stances: (1) Equity vs. Efficiency, (2) Health vs. Economics, (3) Individual Rights vs. Societal Benefits, (4) Due Process vs. Necessary Sacrifice, and (5) Stakeholder Consent vs. Management Decisions (authors)

  7. The development of radiation protection

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1981-01-01

    The harm that might be caused by radiation exposure was recognised within months of Rontgen's discovery of X-rays, and recommendations for protection of patients and workers with radiation were formulated first in 1928. In the light of increasing radiobiological, genetic and human epidemiological evidence, it became clear that there might be no threshold, below which harmful effects did not occur. Recommendation and practice in radiation protection reflected this opinion from the early 1950's, and emphasised the consequent need for minimising exposures, quantifying risks and revising the dose limits appropriate for internal radiation of body organs. (author)

  8. The philosophy, past and present of radiation protection in radiotherapy

    International Nuclear Information System (INIS)

    Kaercher, K.H.

    1985-01-01

    Radiation protection in radiotherapy can be effected not only by legal provisions, regulations and a sophisticated supervisory apparatus but also by a high level of radiation protection awareness among medical doctors and staff who are responsible for patient radiation protection, too. This awareness will have to be promoted by imparting knowledge and experience to and by those involved with therapeutical measures. However, any exaggeration when doing so will result in causing doctors to become irritated with legal supervision and will cause radiation protection practice to deteriorate. Positive implementation of radiation protection does not only involve the handling of lead and baryte but also the joy in doing something meaningful. (orig./HSCH) [de

  9. Third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations

  10. Radiation protection in civil defence

    International Nuclear Information System (INIS)

    Ahlborn, K.

    The brochure contains the information given to the participants of an advanced training course in civil defence, on the subject of radiation protection. The course was held by teachers of Bundesverband fuer den Selbstschutz (BVS). (orig.) [de

  11. Radiation protection. Terms and definitions

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    An alphabetical list in German is given of all terms and definitions important to radiation protection under consideration of all Austrian laws concerning this subject scope as also pertinent standards of ISO, DIN and OENORM.

  12. Regulations for ionizing radiation protection

    International Nuclear Information System (INIS)

    1999-01-01

    General regulations and principles of radiation protection and safety are presented. In addition, the regulations for licensing and occupational and medical exposure as well as for safe transport of radioactive materials and wastes are given

  13. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    Malcolm, C.

    2010-01-01

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  14. Healing Arts Radiation Protection Act

    International Nuclear Information System (INIS)

    1984-07-01

    The Healing Arts Radiation Protection Act is concerned with regulating the registration, installation, operation, inspection and safety of X-ray machines. The Act provides for the establishment of the Healing Arts Radiation Protection Commission which is responsible for reporting on all the above matters to the Ontario Minister of Health. In addition the board is responsible for the continuing development of an X-ray safety code and for the submission of an annual report of their activities to the minister

  15. Quality management in radiation protection

    International Nuclear Information System (INIS)

    Baehrle, H.G.

    1997-01-01

    Quality Management in Radiation Protection Quality management (QM) in the field of Radiation Protection was discussed in a previous issue (2/97) using the example of QMS at the Paul Scherrer Institut (PSI). The present article describes the major features involved in the establishment of a functional QMS. Establishment of the QMS lead to a deeper understanding of administrative and operational aspects of the working methods involved. (orig.) [de

  16. Radiation protection for veterinary practices

    International Nuclear Information System (INIS)

    Wheelton, R.; McCaffery, A.

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.)

  17. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Seeburrun, V.

    2013-04-01

    Radiation protection in nuclear medicine in this project is concerned with the reduction of doses to workers, patients and members of the public. Protection of workers is achieved by adopting good personal habits, good housekeeping, proper use of personal protective devices and equipment, attend training and have continuous education. Exposure to radiation of workers and the members of the public are minimised by proper management of radioactive waste and safe transport of radioactive material. The design and shielding of a nuclear medicine department shall further provide for the protection of the worker, the patient and the general public. Protection of patient is achieved by justifying the procedure, delivering the minimum radiation dose possible to the patient while obtaining the best image quality and applying guidance levels. Special considerations shall be given to pregnant and breast-feeding patients. Quality assurance programme through image quality, radiopharmaceutical quality and patient records on nuclear medicine procedures shall provide assurance to the patient. (au)

  18. Radiation protection information

    International Nuclear Information System (INIS)

    From the measurements and discussion presented in this report, the following conclusions may be drawn: The population doses from naturally occuring radiation is on average lower in Denmark and much lower in Iceland than in the other Nordic countries. In Sweden, Finland and Norway the largest contributors to the population doses from naturally occuring radiation are radon daughters in indoor air. For Denmark and Iceland, radon daughters contribute about the same to the total effective dose equivalent as the external gamma radiation. Some groups of people in the Nordic countries are highly exposed to radon daughters. In some cases, the received doses are very high (higher than the dose limit for radiation workers). From the conclusions above, the radon daughter problem should be given priority, at least in Sweden, Finland and Norway, especially regarding the search for population groups receiving the highest doses

  19. Perspectives for environmental radiation protection in EU radiation protection legislation

    International Nuclear Information System (INIS)

    Janssens, A.

    2000-01-01

    The basis of EU radiation protection legislation is the EURATOM Trealy. It is discussed whether the Treaty offers a legal basis for the protection of the natural environment. The incorporation of provisions pertaining to the nuclear fuel cycle or to radioactive substances in general environmental legislation is explained, as well as the possible implications of international conventions subscribed by the European Union. The European Commission is in the process of developing an overall approach to risk analysis for the protection of health, consumer interests, and the environment. It is examined to what extent the consideration of the impact of radiation on the natural environment fits in the overall framework and whether the principles underlying classical radiation protection are applicable to biota. Specific attention is given to situations where high levels of environmental radioactivity would require intervention. (Author)

  20. Radiation protection, 1975. Annual EPA review of radiation protection activities

    International Nuclear Information System (INIS)

    1976-06-01

    The EPA, under its Federal Guidance authorities, is responsible for advising the President on all matters pertaining to radiation and, through this mechanism, to provide guidance to other Federal agencies on radiation protection matters. Highlights are presented of significant radiation protection activities of all Federal agencies which were completed in 1975, or in which noteworthy progress was made during that period, and those events affecting members of the public. State or local activities are also presented where the effects of those events may be more far-reaching. At the Federal level significant strides have been made in reducing unnecessary radiation exposure through the efforts of the responsible agencies. These efforts have resulted in the promulgation of certain standards, criteria and guides. Improved control technologies in many areas make it feasible to reduce emissions at a reasonable cost to levels below current standards and guides. This report provides information on the significant activities leading to the establishment of the necessary controls for protection of public health and the environment. Radiation protection activities have been undertaken in other areas such as medical, occupational and consumer product radiation. In the context of radiation protection, ancillary activities are included in this report in order to present a comprehensive overview of the events that took place in 1975 that could have an effect on public health, either directly or indirectly. Reports of routine or continuing radiation protection operations may be found in publications of the sponsoring Federal agencies, as can more detailed information about activities reported in this document. A list of some of these reports is included

  1. Protective prostheses during radiation therapy

    International Nuclear Information System (INIS)

    Poole, T.S.; Flaxman, N.A.

    1986-01-01

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens

  2. Policy support on radiation protection

    International Nuclear Information System (INIS)

    Hardeman, F.

    1998-01-01

    The objectives of activities related to policy support on radiation protection is: (1) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionizing radiation in normal and accidental situations,;(2) to improve and support nuclear emergency-response decisions in industrial areas from an economical point of view. The main achievements for 1997 are described

  3. Radiation protection in thorium industry

    International Nuclear Information System (INIS)

    Moraes, A.

    1977-01-01

    The evaluation of radiation doses in a monazite processing plant (thorium production cycle) aiming to getting information on the exposure levels to beta and gamma radiation, is discussed. It is observed that, excluding places where monazite is stored,or during transportation, or in silos, or waste deposits, or in places where high activity materials are stored or treated, the externa exposure stay below the maximum pemissible limit. Some recommendations are made based on the results found and according to radiation protection standards

  4. Promoting safety culture in radiation industry through radiation audit

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2007-01-01

    This paper illustrates the Malaysian experience in implementing and promoting effective radiation safety program. Current management practice demands that an organization inculcate culture of safety in preventing radiation hazard. The aforementioned objectives of radiation protection can only be met when it is implemented and evaluated continuously. Commitment from the workforce to treat safety as a priority and the ability to turn a requirement into a practical language is also important to implement radiation safety policy efficiently. Maintaining and improving safety culture is a continuous process. There is a need to establish a program to measure, review and audit health and safety performance against predetermined standards. This program is known as radiation safety audit and is able to reveal where and when action is needed to make improvements to the systems of controls. A structured and proper radiation self-auditing system is seen as the sole requirement to meet the current and future needs in sustainability of radiation safety. As a result safety culture, which has been a vital element on safety in many industries can be improved and promote changes, leading to good safety performance and excellence. (author)

  5. Proceedings of Asia congress on radiation protection

    International Nuclear Information System (INIS)

    1993-01-01

    203 articles were collected in the proceedings. The contents of the proceedings included the principle and practices of radiation protection, biological effects of radiation, radiation monitoring, protection in medical and other fields, radiation dosimetry, nuclear energy and the environment, natural radiation, radioactive waste management, and other radiation protection issues

  6. Radiation Protection. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, S. T. [Department of Diagnostic Radiology, Uddevalla Hospital, Uddevalla (Sweden); Le Heron, J. C. [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, Vienna (Austria)

    2014-12-15

    Medical exposure is the largest human-made source of radiation exposure, accounting for more than 95% of radiation exposure. Furthermore, the use of radiation in medicine continues to increase worldwide — more machines are accessible to more people, the continual development of new technologies and new techniques adds to the range of procedures available in the practice of medicine, and the role of imaging is becoming increasingly important in day to day clinical practice. The introduction of hybrid imaging technologies, such as positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography (SPECT)/CT, means that the boundaries between traditional nuclear medicine procedures and X ray technologies are becoming blurred. Worldwide, the total number of nuclear medicine examinations is estimated to be about 35 million per year.

  7. Radiation Protection Research: Radiobiology

    International Nuclear Information System (INIS)

    Desaintes, C.

    2000-01-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported

  8. Radiation Protection Research: Radiobiology

    Energy Technology Data Exchange (ETDEWEB)

    Desaintes, C

    2000-07-01

    The main objectives of research in the field of radiobiology and epidemiology performed at the Belgian Nuclear Research Centre SCK-CEN are (1) to study cancer mortality in nuclear workers in Belgium; to document the feasibility of retrospective cohort studies in Belgium; (2) to participate in the IARC study; (3) to elucidate the molecular basis of the effects of ionising radiation in the mammalian embryo during the early phases of its development; (4) to assess the genetic risk of maternal exposure to ionizing radiation; (5) to elucidate the cellular mechanisms leading to brain damage after prenatal irradiation; (6) to advise authorities and to provide the general population with adequate information concerning the health risk arising from radiation exposure. Progress and major achievements in these topical areas in 1999 are reported.

  9. Radiation protection and occupational health

    International Nuclear Information System (INIS)

    Cassels, B.M.; Carter, M.W.

    1992-01-01

    This paper examines trends in occupational and public health standard setting including those which apply to radiation protection practices. It is the authors' contention that while regulators, unions and employees demand higher standards of radiation protection and industry attempts to comply with tight controls of radiation exposure in the workplace, these standards are out of step with standards applied to health away from the workplace, recreational activity and other areas of industrial hygiene. The ultimate goal of an improvement in the health of the nation's workforce may no longer be visible because it has been submerged beneath the predominating concern for one aspect of health in the workplace. 35 refs., 5 tabs

  10. Radiation protection and ecology

    International Nuclear Information System (INIS)

    Mendonca, A.H.

    1987-01-01

    The activities developed at Instituto de Radioprotecao e Dosimetria from the Comissao Nacional de Energia Nuclear in the field of developing and using radiation monitoring techniques and/or radioactive materials in health, industry, research and teaching, are presented. (E.G.) [pt

  11. Foundations of radiation physics and radiation protection. 5. ed.

    International Nuclear Information System (INIS)

    Krieger, Hanno

    2017-01-01

    The following topics are dealt with: Types of radiation and radiation fields, the atomic structure, radioactive decays, decay law, natural and artificial radioactivity, interactions of ionizing photon radiation, attenuation of neutral-particle beams, interactions of neutron radiation, interactions of charged particles, ionization and energy transfer, radiation doses, radiation protection phantoms, foundations of the radiation biology of cells, effects and risks of ionizing radiation, radiation expositions of men with ionizing radiation, radiation protection law, practical radiation protection against ionizing radiations, radiation eposures in medical radiology. (HSI)

  12. New trends in radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1977-10-01

    The introduction of new concepts such as the effective dose equivalent, the collective dose and the dose commitment, and the application of the basic principles of justification, optimization and individual dose limitation has had a major impact on the planning and implementation of radiation protection during the last few years. The basic principles are summarized in ICRP Publication 26. It is a chalenge to research in radiobiology, genetics and health physics to explore the scientific foundation of the current principles of radiation protection. The most interesting trend to-day, however, is the observation that the principles applied in radiation protection have now been generally recognized and accepted to the extent that they become utilized in the protection of man against non-radioactive carcinogenic substances and environmental pollutants. (author)

  13. IAEA occupational radiation protection programme: current status

    International Nuclear Information System (INIS)

    Deboodt, P.; Mrabit, K.

    2006-01-01

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  14. Biological Research for Radiation Protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Jung, Il Lae; Choi, Yong Ho; Kim, Jin Sik; Moon, Myung Sook; Byun, Hee Sun; Phyo, Ki Heon; Kim, Sung Keun

    2005-04-01

    The work scope of 'Biological Research for the Radiation Protection' had contained the research about ornithine decarboxylase and its controlling proteins, thioredoxin, peroxiredoxin, S-adenosymethionine decarboxylase, and glutamate decarboxylase 67KD effect on the cell death triggered ionizing radiation and H 2 O 2 (toxic agents). In this study, to elucidate the role of these proteins in the ionizing radiation (or H 2 O 2 )-induced apoptotic cell death, we utilized sensesed (or antisensed) cells, which overexpress (or down-regulate) RNAs associated with these proteins biosynthesis, and investigated the effects of these genes on the cytotoxicity caused by ionizing radiation and H 2 O 2 (or paraquat). We also investigated whether genisteine(or thiamine) may enhance the cytotoxic efficacy of tumor cells caused by ionizing radiation (may enhance the preventing effect radiation or paraquat-induced damage) because such compounds are able to potentiate the cell-killing or cell protecting effects. Based on the above result, we suggest that the express regulation of theses genes have potentially importance for sensitizing the efficiency of radiation therapy of cancer or for protecting the radiation-induced damage of normal cells

  15. Radiation protection Ordinance

    International Nuclear Information System (INIS)

    1976-06-01

    This Ordinance lays down the licensing system for activities in Switzerland involving possible exposure to radiation, with the exception of nuclear installations, fuels and radioactive waste which, under the 1959 Atomic Energy Act, are subject to licensing. The Ordinance applies to the production, handling, use, storage, transport, disposal, import and export of radioactive substances and devices and articles containing them; and generally to any activity involving hazards caused by ionizing radiation. The Federal Public Health Office is the competent authority for granting licences. Provision is also made for the administrative conditions to be complied with for obtaining such licences as well as for technical measures required when engaged in work covered by the Ordinance. This consolidated version of the Ordinance contains all the successive amendments up to 26 September 1988. (NEA) [fr

  16. Problems of radiation protection

    International Nuclear Information System (INIS)

    Minkova, M.

    1991-01-01

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B 2 , B 6 , P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs

  17. [Radiation protection in interventional radiology].

    Science.gov (United States)

    Adamus, R; Loose, R; Wucherer, M; Uder, M; Galster, M

    2016-03-01

    The application of ionizing radiation in medicine seems to be a safe procedure for patients as well as for occupational exposition to personnel. The developments in interventional radiology with fluoroscopy and dose-intensive interventions require intensified radiation protection. It is recommended that all available tools should be used for this purpose. Besides the options for instruments, x‑ray protection at the intervention table must be intensively practiced with lead aprons and mounted lead glass. A special focus on eye protection to prevent cataracts is also recommended. The development of cataracts might no longer be deterministic, as confirmed by new data; therefore, the International Commission on Radiological Protection (ICRP) has lowered the threshold dose value for eyes from 150 mSv/year to 20 mSv/year. Measurements show that the new values can be achieved by applying all X‑ray protection measures plus lead-containing eyeglasses.

  18. Encouraging the radiation protection practice

    International Nuclear Information System (INIS)

    Silva, Natanael O.; Cunha, Paulo C.N.; Junior, Jose N.S.; Silva, Jessyca B.

    2013-01-01

    The radiological protection of workers occupationally exposed to ionizing radiation (X-ray diagnoses, Nuclear Medicine, Radiotherapy and Dental) is essential to minimize the appearance of radiation effects. The ways to reduce the potential for exposure of workers are: Time, Distance , and Shielding. The most important purpose of radiation protection is to provide safe conditions for activities involving ionizing radiation, basic safety conditions that must be observed in professional practice. The professional must have full knowledge of the subject and deepen in the revision of norms and guidelines related to radiation protection establish by the Vigilancia Sanitaria - ANVISA, and Comissao Nacional de Energia Nuclear - CNEN, Brazil. The study was conducted in a technical school for the Technical Training Course in Radiology, where the students are invited to think deeply about the radiation protection of themselves, the patients and the environment. Developed since July 2012, with the participation of 30 students, with a leading class -three teachers assisting in the development of the project . With this project there was an awareness of both students, as instructors stage accompanying the daily lives of students and their own colleagues. Following the same objective in 2013 the project continues with more adept at radioprotection

  19. Indium 111. Radiation protection

    International Nuclear Information System (INIS)

    Grafstroem, G.; Joensson, B.A.; Strand, S.E.

    1989-01-01

    The radiopharmaceutucal 111 In-oxine is used in labelling of different blood cells and proteins. Due to its liquid state, there is always a risk for contamination during handling procedures. The aim of the project was to evaluate the contamination risks, when using this radiopharmaceutical. The investigation includes calculations of the absorved dose to the skin after a contamination of 111 In-oxine, including the radionuclide impurity 114 In m / 114 In. Investigations of 288 protection gloves shows that there is always a risk for contamination, when working with 111 In-oxine. On the protection gloves, we found activities normally ranging from a 100 Bq up to a few kBq. Noticeable is the contamination on the vials, already before their use. Besides 111 In we found most of the radionuclides used in nuclear medicine, with activities up to tens of kBq. The radionuclide impurity was cleary detectable but below the recommended value. The penetration of 111 In-oxine protection gloves of latex was negligible. Measurements of penetration in skin was evaluated with two independent methods; in vivo using a surface barrier detector, and by autoradiography. The measured penetration was less than a few micrometers. Calculation from the experimental contamination values show that the absorbed dose to the basal cell layer could be in order of several Gy. (authors)

  20. Radiation protection in pediatric radiology

    International Nuclear Information System (INIS)

    Fendel, H.; Stieve, F.E.

    1983-01-01

    Because of the high growth rate of cell systems in phases of radiation exposure radiological investigations on children should not be considered unless there is a strong indication. The National Council on Radiation Protection and Measurements has worked out recommendations on radiation protection which have been published as an NCRP report. This report is most important even outside the USA. The present translation is aimed to contribute to better understanding of the bases and aims of radiation protection during radiological investigations on children. It addresses not only those physicians who carry out radiological investigations on children themselves but also all physicians requiring such investigations. For these physicians, but also for parents who are worried about the radiation risk to their children the report should be a useful source of information and decision aid ensuring, on the one hand, that necessary radiological investigations are not shunned for unjustified fear of radiation and that, on the other hand, all unnecessary exposure of children to radiation is avoided. Thus, it is to be hoped, the quality of pediatric radiological diagnostics will be improved. (orig./MG) [de

  1. Problems of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1991-01-01

    A brief review is presented on the dose-dependent radiation injuries and possibilities of the classical chemical radioprotectors. Data are given on different substances of biological origin, including some natural for the body admixtures with a confirmed radioprotective action: biogenic amines (serotonin, mexamine), adenylic nucleotides, amino acids, polyamines, immunomodulators (bacterial endotoxines), prostaglandins, leucotrienes, antioxidants, vitamines (A, E, B{sub 2}, B{sub 6}, P, biotin, flavenoids), natural fats, plant oils and unsaturated fat acids, extracts from green seaweeds and adaptogens. 81 refs.

  2. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  3. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system

  4. Deficiencies in radiation protection record systems

    International Nuclear Information System (INIS)

    Martin, J.B.; Lyon, M.

    1991-01-01

    Radiation protection records are a fundamental part of any program for protecting radiation workers. Records are essential to epidemiological studies of radiation workers and are becoming increasingly important as the number of radiation exposure litigation cases increases. Ready retrievability of comprehensive records is also essential to the adequate defense of a radiation protection program. Appraisals of numerous radiation protection programs have revealed that few record-keeping systems comply with American National Standards Institute, Standard Practice N13.6-1972. Record-keeping requirements and types of deficiencies in radiation protection records systems are presented in this paper, followed by general recommendations for implementing a comprehensive radiation protection records system. 8 refs

  5. Designing radiation protection signs

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; Richey, C.L.

    1995-01-01

    Entry into hazardous areas without the proper protective equipment is extremely dangerous and must be prevented whenever possible. Current postings of radiological hazards at the Rocky Flats Environmental Technology Site (RFETS) do not incorporate recent findings concerning effective warning presentation. Warning information should be highly visible, quickly, and easily understood. While continuing to comply with industry standards (e.g., Department of Energy (DOE) guidelines), these findings can be incorporated into existing radiological sign design, making them more effective in terms of usability and compliance. Suggestions are provided for designing more effective postings within stated guidelines

  6. Radiation protection for human population

    International Nuclear Information System (INIS)

    Kenigsberg, Ya.Eh.; Bogdevich, I.M.; Rolevich, I.V.; Sharovarov, G.A.; Skurat, V.V.

    1997-01-01

    Are given the results of researches carried out in Belarus in 1996 on the following directions: study of features of formation of the population irradiation doze; definition of collective irradiation dozes of the population of Belarus for 10 years after the Chernobyl accident and forecast of risk of radiation induced diseases; study of influence of the radioactive contamination on agricultural ecosystems; development of technologies of manufacture on the contaminated soils of plant and cattle-breeding production and food products with the permissible contents of radionuclides in according to the requirements of radiation protection; development and perfection of complex technologies, ways and means of decontamination, processing and burial of radioactive wastes; development and substantiation of actions for increase of radiation security of the population of Belarus; development of combined system of an estimation on problems of radiation protection of the population living on contaminated territories

  7. Radiation protection training programmes Spanish approach

    International Nuclear Information System (INIS)

    Arboli, M. Marco; Suarez, M. Rodriguez; Cabrera, S. Falcon

    2002-01-01

    Radiation Protection Programmes are being considered the best way to promote safety culture and to spread and propagate European basic safety standards. It is widely accepted that training is an important tool to upgrade competence for radiation exposed workers. The Spanish Radiation Protection Education and Training Programmes provide a solid and integrated educational model, which takes into account the variety of applied fields, the different levels of responsibilities, the technological and methodological advances, as well as the international tendencies. The needs for a specialised training on Radiation Protection (RP) for exposed workers appears into the Spanish regulation in 1964. National initial training programmes are well established since 1972. Individual certifications, based on personal licences are required for exposed workers. The Spanish regulation also includes continuous and on the job RP training. The educational programmes are being continuously updating and improving. CIEMAT plays an important role in RP Spanish training, improving and modifying the previous RP courses and developing new programmes in order to complete the RP training levels. To achieve Radiation Protection objectives, new technological media for educational methods and material are taking into account. Nevertheless, Spanish RP education and training model has to be improved in some aspects. The purpose of this paper is to analyse the situation and the future needs to be considered in order to complete the RP training processes

  8. Radiation protection, public policies and education

    International Nuclear Information System (INIS)

    Alves, Simone F.; Jacomino, Vanusa M.F.; Barreto, Alberto A.

    2011-01-01

    The objective of this paper is to inform about the aspects of radiation protection public policies concerning the public spheres and the ordinary population. It is known that information has been considered a very important good in several knowledge areas. However, the efficiency of their transmission mechanisms should be periodically evaluated, checking existing critical and stagnation points. Nuclear area can be mentioned as a historically typical case, where the public policies assume relevant importance as tool for promotion, control and education of the population in general. Considering the polemic nature of such subject, it is clear that there is a need for conducting the construction of educational contents taking in account the educator training necessities. The addressing of radiation protection aspects applied to nuclear techniques conducts, for example, to the awareness on the benefits of radiation and its industrial and medical applications, which are established considering the worldwide adopted basic principles of radiation protection. Such questions, concerned with (or related to) public policies, establish a link between radiation protection and education, themes explored in this article to provide a better view of the current Brazilian scenario. (author)

  9. Nordic society for radiation protection

    International Nuclear Information System (INIS)

    Soegaard-Hansen, J.; Damkjaer, A.

    1999-11-01

    The key themes of teh 12th ordinary general meeting of the Nordic Society for Radiation Protection were: RADIATION - ENVIRONMENT - INFORMATION. A number of outstanding international experts accepted to contribute on the meetings first day with invited presentations, which focussed on these themes. In all 38 oral presentations and 28 posters are included in the present Proceedings, which furthermore contains a resume of discussions from the special session on 'Controllable Dose'. (EHS)

  10. Regulatory requirements for radiation protection

    International Nuclear Information System (INIS)

    Mason, E.A.; Cunningham, R.E.; Hard, J.E.; Mattson, R.J.; Smith, R.D.; Peterson, H.T. Jr.

    1977-01-01

    Regulatory requirements for radiation protection have evolved and matured over several decades. Due to the wide adoption of recommendations of the International Commission on Radiation Protection (ICRP), there exists international agreement on the principles to be followed for radiation protection. This foundation will be increasingly important due to the growing need for international agreements and standards for radiation protection and radioactive materials management. During the infancy of the commercial nuclear industry, primary reliance was placed on the protection of the individual, both in the work force and as a member of the public. With the growth of nuclear power in the 1960's and 1970's, environmental impact assessments and expert reviews of bio-effects data have focused attention on statistical risks to large population groups and the use of the collective dose commitment concept to estimate potential effects. The potential release of long-lived radionuclides from the nuclear fuel cycle requires further consideration of radionuclide accumulation in the biosphere and calls for controls conceived and implemented at the international level. The initial development efforts for addressing these concerns already have been instituted by the ICRP and the IAEA. However, formal international agreements and a unified set of international standards may be required to implement the recommendations of these groups. Further international efforts in the field of radiation protection are also called for in developing waste management practices and radioactive effluent control technology, in site selection for fuel reprocessing plants and waste dispersal facilities, and for ensuring safe transport of high-level wastes in various forms. Since the regulation of very low dose rates and doses will be involved, it will be useful to reexamine dose-effect relationships and societal goals for health protection. Improved criteria and methodologies for ''as low as readily

  11. Developing a Radiation Protection Hub

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Nolan E [ORNL

    2017-01-01

    The WARP report issued by the NCRP study committee estimates that in ten years there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to form a consortium that would bring together the radiation protection research, academic and training communities. The goal of such a consortium would be to engage in research, education and training of the next generation of radiation protection professionals. Furthermore the consortium could bring together the strengths of different universities, national laboratory programs and other entities in a strategic manner to accomplish a multifaceted research, educational and training agenda. This vision would forge a working and funded relationship between major research universities, national labs, four-year degree institutes, technical colleges and other partners.

  12. Preventive radiation protection in Hamburg

    International Nuclear Information System (INIS)

    Boikat, U.; Lauer, R.; Plath, S.; Sachde, Z.G.

    2001-01-01

    Monitoring of environmental radioactivity as well as complex investigations for precautionary radiation protection are carried out in Hamburg by two radiation monitoring labs. The spectrum of their tasks is specified by the media to be investigated. The tasks are originating from the Federal Precautionary Radiation Protection Act and from local needs. Mostly since a lot of years all interesting materials are analysed for their radioactivity content, as a safe and precautionary radiation protection demands. Until today samples show the influence of global nuclear weapon fallout of the period until 1964. Partly they show the radioactivity of Caesium originating from the Chernobyl accident. Since ten years the radioactivity contents in the material investigated are decreasing. Mostly the activity reached levels as at the end of 1985. The basic food stuff investigated in Hamburg can be considered as to be uncontaminated by radioactivity. With the introduction of the Federal Precautionary Radiation Protection Act, a series of new investigation programs and investigation methods were developed. This allows a better preparedness for extraordinary situations of increased radioactivity in the environment as 12 years ago. Thus a precise assessment of situations of increased radioactivity levels can be given together with coordinated and solid information to the public concerning provisions and actions. (orig.) [de

  13. 1993 Radiation Protection Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database.

  14. 1993 Radiation Protection Workshop: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993 DOE Radiation Protection Workshop was conducted from April 13 through 15, 1993 in Las Vegas, Nevada. Over 400 Department of Energy Headquarters and Field personnel and contractors from the DOE radiological protection community attended the Workshop. Forty-nine papers were presented in eleven separate sessions: Radiological Control Manual Implementation, New Approaches to Instrumentation and Calibration, Radiological Training Programs and Initiatives, External Dosimetry, Internal Dosimetry, Radiation Exposure Reporting and Recordkeeping, Air Sampling and Monitoring Issues, Decontamination and Decommissioning of Sites, Contamination Monitoring and Control, ALARA/Radiological Engineering, and Current and Future Health Physics Research. Individual papers are indexed separately on the database

  15. Traceability of radiation protection instruments

    Science.gov (United States)

    Hino, Y.; Kurosawa, T.

    2007-08-01

    Radiation protection instruments are used in daily measurement of dose and activities in workplaces and environments for safety management. The requirements for calibration certificates with traceability are increasing for these instruments to ensure the consistency and reliabilities of the measurement results. The present traceability scheme of radiation protection instruments for dose and activity measurements is described with related IEC/ISO requirements. Some examples of desirable future calibration systems with recent new technologies are also discussed to establish the traceability with reasonable costs and reliabilities.

  16. PET scan and radiation protection

    International Nuclear Information System (INIS)

    Montoya, F.; Lahmi, A.; Rousseau, A.

    2006-01-01

    The purpose was the optimization of the radiation protection during examinations with 18 F-FDG, The immediate validation by the D.G.S.N.R., the results of dosimetry (h.p.10 = 12 μ sievert (average value/ technician / day for 6 patients) demonstrate the efficiency of the implemented means. From the very beginning, the installation of a PET-scanner requires a multidisciplinary conception. This essential thought contributes to an optimal radiation protection of the entire personnel of the service. (N.C.)

  17. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Disney, R.K.

    1977-01-01

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.) [de

  18. Flexibility in radiation protection legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.; Gill, J.R.

    1980-01-01

    The UK approach to radiation protection legislation is described in detail. The advantages are outlined of a flexible approach whereby the objectives of the legislation are clearly identified but the means of achieving these are left open or qualified by terms such as 'where reasonably practicable'. The roles and viewpoints of management and unions in such an approach are discussed especially with respect to legislation such as the Health and Safety at Work Act. Specific topics include requirements for notification of use, criteria for controlled areas and the tasks of the radiation protection adviser. (UK)

  19. Philosophy of radiological protection and radiation hazard protection law

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kawano, Takao

    2013-01-01

    The radiation protection and the human safety in radiation facilities are strictly controlled by law. There are rules on the radiation measurement, too. In the present review, philosophy of the radiological protection and the radiation hazard protection law is outlined with reference to ICRP recommendations. (J.P.N.)

  20. Advances in radiation protection monitoring

    International Nuclear Information System (INIS)

    1978-01-01

    The requirement to keep radiation exposure as low as reasonably achievable, linked with the growing number of workers whose exposure to radiation must be strictly controlled, requires intensified efforts directed towards the provision of adequate radiation monitoring programmes. This symposium was intended to review the advances that have been made in methods, techniques and instrumentation for radiation protection monitoring. Thus the symposium complemented the detailed consideration that had already been given to two closely related topics, that of environmental monitoring and of monitoring radioactive airborne and liquid discharges from nuclear facilities. The first topic had been dealt with in detail in an Agency symposium held in November 1973 in Warsaw and the second was treated in an Agency symposium held in September 1977 in Portoroz. The present symposium covered a broad range of topics under the following main headings: Monitoring of external exposure (three sessions),Contamination monitoring (three sessions), Radiation monitoring programmes (one session), Calibration, and use of computers (two sessions). An introductory paper described the purpose of radiation protection monitoring and its historical development. It drew attention to the gradual change from the threshold dose hypothesis to the hypothesis of direct proportionality between dose and effect and discussed practical implications of the recommendations recently issued by the International Commission on Radiological Protection (ICRP). It became apparent that guidance on the application of these recommendations is urgently needed. This guidance is presently being prepared by ICRP

  1. Procedure and methodology of Radiation Protection optimization

    International Nuclear Information System (INIS)

    Wang Hengde

    1995-01-01

    Optimization of Radiation Protection is one of the most important principles in the system of radiation protection. The paper introduces the basic principles of radiation protection optimization in general, and the procedure of implementing radiation protection optimization and methods of selecting the optimized radiation protection option in details, in accordance with ICRP 55. Finally, some economic concepts relating to estimation of costs are discussed briefly

  2. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  3. Radiation protection requirements to dental clinics

    International Nuclear Information System (INIS)

    Zenobio, Madelon A.F.; Silva, Teogenes Augusto da

    2002-01-01

    Diagnostic radiology consists of an ionizing radiation source to which the man are more exposed. The importance of radiographic exam in Dentistry made it a diagnostic supplemental resource and a treatment guide used by the dentistry area professionals. After studying all the risks related to X-ray on medical and odontological diagnostics, this study intends to realize a literature review in relation to the radiological protection requirements, among then, the article 453, that aim to promote the reduction of radiation doses to beings involved with diagnostic radiology without damaging or even improving the exam quality and the data on it included. (author)

  4. Radium organisation and radiation protection

    International Nuclear Information System (INIS)

    Goyal, D.R.; Negi, P.S.; Dutta, T.K.; Gupta, B.D.

    1977-01-01

    In India, the brachytherapy sources used are mostly 226 Ra, 137 Cs and 60 CO. Radiotherapy of patients with these sources may also result in some degree of radiation exposure of radiologists, technologists, radiation source porters and even other workers in rooms around radiotherapy unit. Proper organization of radiotherapy unit leads to accuracy in treatment and protection to patients as well as medical and paramedical personnel. With this objective in view, a set of instructions to be followed while working with radiation sources, particularly radium; guidelines for the physical layout of the unit and staffing and a list of essential monitoring instruments are given. (M.G.B.)

  5. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives.

  6. XXX. Days of Radiation Protection. Conference Proceedings of the 30-th Days of Radiation Protection

    International Nuclear Information System (INIS)

    2008-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 107 papers are published. The Conference consists of following sections: Effects of ionizing radiation; Regulation of radiation protection; Dosimetry and Metrology of ionizing radiation; Radiation protection in nuclear Power plants; Medical exposure and radiation protection in diagnostic radiology, nuclear medicine and radiation oncology; Natural radioactivity issues in radiation protection; Education, societal aspects and public involvement in radiation protection, trends and perspectives

  7. Radiation leaking protection device

    International Nuclear Information System (INIS)

    Sunami, Yoshio; Mitsumori, Kojiro

    1980-01-01

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  8. Radiation protection in technical radiography

    International Nuclear Information System (INIS)

    Thiele, H.

    1980-01-01

    In on-site inspections, e.g. double-plate radiography of circumferential pipe welds Ir-192 is most frequently used. Methods, controlled area, possible personnel doses, and radiation protection measures for the inspection and construction personnel are briefly discussed. (HP) [de

  9. Radiation protection in veterinary radiology

    International Nuclear Information System (INIS)

    Hone, C.P.

    1989-06-01

    This Code of Practice is designed to give guidance to veterinary surgeons in ensuring that workers and members of the public are adequately protected from the hazards of ionising radiation arising from the use of x-ray equipment in veterinary practice. (author)

  10. Chemical protection against ionizing radiation

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1987-01-01

    Over 40 years have passed since the research of the Manhattan Project suggested the possibility of chemical protection against ionizing radiation. During that time, much has been learned about the nature of radiation-induced injury and the factors governing the expression of that injury. Thousands of compounds have been tested for radioprotective efficacy, and numerous theories have been proposed to account for these actions. The literature on chemical radioprotection is large. In this article, the authors consider several of the mechanisms by which chemicals may protect against radiation injury. They have chosen to accent this view of radioprotector research as opposed to that research geared toward developing specific molecules as protective agents because they feel that such an approach is more beneficial in stimulating research of general applicability. This paper describes the matrix of biological factors upon which an exogenous radioprotector is superimposed, and examines evidence for and against various mechanisms by which these agents may protect biological systems against ionizing radiation. It concludes with a brief outlook for research in chemical radioprotection

  11. The German radiation protection standards

    International Nuclear Information System (INIS)

    Becker, Klaus; Neider, Rudolf

    1977-01-01

    The German Standards Institute (DIN Deutsches Institut fuer Normung, Berlin) is engaged in health physics standards development in the following committees. The Nuclear Standards Committee (NKe), which deals mainly with nuclear science and technology, the fuel cycle, and radiation protection techniques. The Radiology Standards Committee (FNR), whose responsibilities are traditionally the principles of radiation protection and dosimetry, applied medical dosimetry, and medical health physics. The German Electrotechnical Commission (DKE), which is concerned mostly with instrumentation standards. The Material Testing Committee (FNM), which is responsible for radiation protection in nonmedical radiography. The current body of over one hundred standards and draft standards was established to supplement the Federal German radiation protection legislation, because voluntary standards can deal in more detail with the specific practical problems. The number of standards is steadily expanding due to the vigorous efforts of about thirty working groups, consisting of essentially all leading German experts of this field. Work is supported by the industry and the Federal Government. A review of the present status and future plans, and of the international aspects with regard to European and world (ISO, etc.) standards will be presented

  12. Radiation protection for human population

    International Nuclear Information System (INIS)

    Bogdevich, I.M.; Kenigsberg, Ya.Eh.; Minenko, V.F.; Mrochek, A.G.; Rolevich, I.V.; Skurat, V.V.; Sharovarov, G.A.

    1998-01-01

    The purpose of researches is development of methods and means of reduction of radiation risk caused by the Chernobyl accident consequences by means of decrease of both individual and collective dozes by realization of special protective measures. The reconstruction of average collective accumulated irradiation dozes of the inhabitants of the contaminated populated localities of Belarus is carried out; the forecast of development of radiation induced oncologic diseases is given. The laws of formation of annual irradiation dozes are investigated; the prevailing role of internal irradiation dozes in formation of total dose loadings is detected. On this basis a number of practical projects directed on creation of effective land tenure and decrease of radioactive contamination of agricultural production, as well as decontamination technologies and radioactive waste management are executed. Are given the results of researches carried out in Belarus in 1997 on the following directions: dose monitoring of the population, estimation and forecast of both collective irradiation dozes and risks of radiation induced diseases; development and optimization of a complex of measures for effective land use and decrease of radioactive contamination of agricultural production in order to reduce irradiation dozes of the population; development of complex technologies and means of decontamination, treatment and burial of radioactive wastes; development and ground of the measures for increase of radiation protection of the population of Belarus during of the reducing period after the Chernobyl accident; development of complex system of an estimation and decision-making on problems of radiation protection of the population living on contaminated territories

  13. Radiation protection in nuclear facilities

    International Nuclear Information System (INIS)

    Piechowski, J.; Lochard, J.; Lefaure, Ch.; Schieber, C.; Schneider, Th; Lecomte, J.F.; Delmont, D.; Boitel, S.; Le Fauconnier, J.P.; Sugier, A; Zerbib, J.C.; Barbey, P.

    1998-01-01

    Close ties exist between nuclear safety and radiation protection. Nuclear safety is made up of all the arrangements taken to prevent accidents occurring in nuclear facilities, these accidents would certainly involved a radiological aspect. Radiation protection is made up of all the arrangements taken to evaluate and reduce the impact of radiation on workers or population in normal situations or in case of accident. In the fifties the management of radiological hazards was based on the quest for minimal or even zero risk. This formulation could lead to call some activities in question whereas the benefits for the whole society were evident. Now a new attitude more aware of the real risks and of no wasting resources prevails. This attitude is based on the ALARA principle whose purpose is to maintain the exposure to radiation as low as reasonably achievable taking into account social and economic concerns. This document regroups articles illustrating different aspects of the radiation protection in nuclear facilities such as a research center, a waste vitrification workshop and a nuclear power plant. The surveillance of radiological impacts of nuclear sites on environment is examined, a point is made about the pending epidemiologic studies concerning La Hague complex. (A.C.)

  14. Radiation protection in veterinary medicine

    International Nuclear Information System (INIS)

    1991-01-01

    Diagnostic radiology is an essential part of present-day veterinary practice. The need for radiation protection exists because occupational exposure to ionizing radiation can result in deleterious effects that may manifest themselves not only in exposed individuals but in their descendants as well. These are respectively called somatic and genetic effects. Somatic effects are characterized by observable changes occurring in the body organs of the exposed individual. These changes may appear from within a few hours to many years later, depending on the amount and duration of exposure of the individual. In veterinary medicine, the possibility that anyone may be exposed to enough radiation to create somatic effect is extremely remote. Genetic effects are more a cause for concern at the lower doses used in veterinary radiology. Although the radiation doses may be small and appear to cause no observable damage, the probability of chromosomal damage in the germ cells, with the consequence of mutations, does exist. These mutations may give rise to genetic defects and therefore make these doses significant when applied to a large number of individuals. There are two main aspects of the problem to be considered. First, personnel working with X-ray equipment must be protected from excessive exposure to radiation during their work. Secondly, personnel in the vicinity of veterinary X-ray facilities and the general public require adequate protection

  15. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Corstens, F.

    1989-01-01

    Aspects of radiation protection in nuclear medicine and the role of the Dutch Society for Nuclear Medicine in these are discussed. With an effective dose-equivalence of averaged 3 mSv per year per nuclear medical examination and about 200.000 examinations per year in the Netherlands, nuclear medicine contributes only to a small degree to the total averaged radiation dose by medical treating. Nevertheless from the beginning, besides to protection of environment and personnel, much attention has been spent by nuclear physicians to dose reduction with patients. Replacing of relatively long living radionuclides like 131 I by short living radionuclides like 99m Tc is an example. In her education and acknowledgement policy the Dutch Society for Nuclear Medicine spends much attention to aspects of radiation reduction. (author). 3 tabs

  16. On ethical issues in radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    1996-01-01

    From an ethical viewpoint the author surveys existing international radiation protection recommendations and standards. After outlining previous work on the ethics of radiation protection, professional ethics, and the ethics of human radiation experiments, the author discusses ethical thinking on seven key issues related to radiation protection and ethics. (author)

  17. 78 FR 59982 - Revisions to Radiation Protection

    Science.gov (United States)

    2013-09-30

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Revisions to Radiation Protection AGENCY: Nuclear..., ``Radiation Sources,'' Section 12.3 -12.4, ``Radiation Protection Design Features,'' and Section 12.5, ``Operational Radiation Protection Program.'' DATES: The effective date of this Standard Review Plan update is...

  18. Regulations for radiation protection in industrial radiography

    International Nuclear Information System (INIS)

    1974-01-01

    These Regulations specify that responsibility for applying radiation protection regulations in industrial radiography rests with the owner of the establishment who will designate a radiation protection officer to this effect. They provide for the organisation of radiation protection, including the measures to be observed, exposure limits, etc. The competent authority for these questions is the State Institute of Radiation Hygiene [fr

  19. Applied radiation biology and protection

    International Nuclear Information System (INIS)

    Granier, R.; Gambini, D.J.

    1990-01-01

    Written by two eminent expects in the field with many years of teaching experience between them, this book presents a concise coverage of the physical and biological basics of radiation biology and protection. The book begins with a description of the methods of particle detection and dosimetric evaluation. The effects of ionizing radiation on man are treated from the initial physico-chemical phase of interaction to their conceivable pathological consequences. Regulations, limits and safeguards on nuclear power plants, radioisotope installations and medical centers which make use of ionizing radiation are given and the risks of exposure to natural, industrial and scientific radiation sources evaluated. The final chapter takes a look at some of the more important nuclear accidents, including Windscale, Three Mile Island, and Chernobyl, and describes basic procedures to be carried out in the eventuality of a nuclear emergency. Twelve chapters have been processed separately for inclusion in the appropriate data bases

  20. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  1. Training in Radiation Protection for Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E.; Guibelalde, E.

    2002-07-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  2. Training in Radiation Protection for Interventional Radiology

    International Nuclear Information System (INIS)

    Vano, E.; Guibelalde, E.

    2002-01-01

    Several potential problems have been detected in the safety aspects for the practice of interventional radiology procedures: a) An important increase in the number cases and their complexity and the corresponding increase of installations and specialists involved; b) New X ray systems more sophisticated, with advanced operational possibilities, requiring special skills in the operators to obtain the expected benefits;c) New medical specialists arriving to the interventional arena to profit the benefits of the interventional techniques without previous experience in radiation protection. For that reason, education and training is one of the basic areas in any optimisation programme in radiation protection (RP). the medical field and especially interventional radiology requires actions to promote and to profit the benefit of the new emerging technologies for training (Internet, electronic books, etc). The EC has recently sponsored the MARTIR programme (Multimedia and Audio-visual Radiation Protection Training in Interventional Radiology) with the production of two videos on basic aspects of RP and quality control and one interactive CD-ROM to allow tailored individual training programmes. those educational tools are being distributed cost free in the main European languages. To go ahead with these actions, the EC has decided to promote during 2002, a forum with the main Medical European Societies involved in these interventional procedures. (Author)

  3. Radiation protection at new reactors

    International Nuclear Information System (INIS)

    Brissaud, A.

    2000-01-01

    The theoretical knowledge and the feedback of operating experience concerning radiations in reactors is now considerable. It is available to the designer in the form of predictive softwares and data bases. Thus, it is possible to include the radiation protection component throughout all the design process. In France, the existing reactors have not been designed with quantified radiation protection targets, although considerable efforts have been made to reduce sources of radiation illustrated by the decrease of the average dose rates (typically a factor 5 between the first 900 MWe and the last 1300 MWe units). The EDF ALARA PROJECT has demonstrated that good practises, radiation protection awareness, careful work organization had a strong impact on operation and maintenance work volume. A decrease of the average collective dose by a factor 2 has been achieved without noticeable modifications of the units. In the case of new nuclear facilities projects (reactor, intermediate storage facility,...), or special operations (such as steam generator replacement), quantified radiation protection targets are included in terms of collective and average individual doses within the frame of a general optimization scheme. The target values by themselves are less important than the application of an optimization process throughout the design. This is because the optimization process requires to address all the components of the dose, particularly the work volume for operation and maintenance. A careful study of this parameter contributes to the economy of the project (suppression of unecessary tasks, time-saving ergonomy of work sites). This optimization process is currently applied to the design of the EPR. General radiation protection provisions have been addressed during the basic design phase by applying general rules aiming at the reduction of sources and dose rates. The basic design optimization phase has mainly dealt with the possibility to access the containment at full

  4. Epistemological basis of radiation protection

    International Nuclear Information System (INIS)

    Nouailhetas, Yannick; Acar, Maria E.

    2008-01-01

    Full text: Regarding natural phenomena understood or not, the absolute truth must be somewhere. In fact, there is no evidence that neither nature nor the phenomena that it includes were 'created' to be understood. Except for the fact that Man appeared through the same process, with his curiosity, capacity to perceive and manipulate, his greed for power and fears. In general, the attitude towards questions for which the absolute truth has not been reached varies from ignorance/indifference to the search of knowledge through scientific methodology, and may even be based on beliefs. The fact that the interaction between ionizing radiations and living beings results in biological effect is true. That the biological effect of high doses of radiation, absorbed outside the context of medicine, is hazardous for the irradiated individuals also seems to be true. That any dose is dangerous, or not, is debatable: the available information and knowledge are not consistent enough to end the question; and so, the absolute truth remains hidden. Radiological Protection is founded on the principle that any increase of dose results in an increase in the risk of cancer, and that this risk must be kept as low as possible. It is therefore based on this 'belief' that the international organisms of radiological protection emit recommendations aiming the protection of people and the environment. What is interesting about this question is that because of restrictions imposed by regulating agencies, populations, members of the public and the environment are properly protected against harmful effects of ionizing radiations, which makes the truth no longer interesting. Radiological Protection is a requirement associated to all activities involving nuclear energy. It satisfies several interests and opposes others. The greater the opposed interests and the perception that the absolute truth can represent dialectic advantage to one of the parts, the greater the perception of the importance of its

  5. The standards of Radiation Protection of IAEA

    International Nuclear Information System (INIS)

    Butragueno, J. L.

    2000-01-01

    Nuclear Safety and Radiation Protection are technological disciplines whose international character have been recognised since the very beginning. Safety culture and the defense in depth criterium address in the same way this international collaboration. The International Atomic Energy Agency, with headquater in Vienna, is specially sensitive to this aspect and a significant amount of resources has been dedicated to the promotion of a closer international collaboration through the promotion of two complementary programs: the Convention on Nuclear Safety and the Convention on Rad waste Management, and the reconstruction of a great piramide of standards, that staring with Fundamental Principles, is followed with a set of Basic Safety Standards and completed with Safety Requirements and additional technical information, that provide practical ways to implement the Fundamental Principles. This article describe briefly the RASS Program of the IAEA (Radiation Safety Standards) and the work of the Technical Committees established to assess the Director General of the IAEA in this task. (Author)

  6. Radiation protection in hospital radiopharmacy

    International Nuclear Information System (INIS)

    Kini, K.S.; Gaur, P.K.

    1997-01-01

    Short-lived radiopharmaceuticals, such as 99m Tc labelled compounds, are prepared in the in-house pharmacy of the hospital. In addition, preparation of smaller doses for administration from the bulk material of the finished product received from the manufacturers, also involves considerable work for the radiopharmacist in the hospital. Hence they should be well informed about the radiation hazards and should be aware of the protective measures to be taken while handling radioactive materials for keeping the radiation levels in the laboratory and their personnel doses well within the specified limits. 3 refs., 5 tabs

  7. Radiation Protection in Paediatric Radiology

    International Nuclear Information System (INIS)

    2012-01-01

    Over the past decade and a half, special issues have arisen regarding the protection of children undergoing radiological examinations. These issues have come to the consciousness of a gradually widening group of concerned professionals and the public, largely because of the natural instinct to protect children from unnecessary harm. Some tissues in children are more sensitive to radiation and children have a long life expectancy, during which significant pathology can emerge. The instinct to protect children has received further impetus from the level of professional and public concern articulated in the wake of media responses to certain publications in the professional literature. Many institutions have highlighted the need to pay particular attention to the special problems of protecting paediatric patients. The International Commission on Radiological Protection has noted it and the IAEA's General Safety Requirements publication, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (BSS), requires it. This need has been endorsed implicitly in the advisory material on paediatric computed tomography scanning issued by bodies such as the US Food and Drug Administration and the National Cancer Institute in the United States of America, as well as by many initiatives taken by other national and regional radiological societies and professional bodies. A major part of patient exposure, in general, and paediatric exposure, in particular, now arises from practices that barely existed two decades ago. For practitioners and regulators, it is evident that this innovation has been driven both by the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind industrial and clinical innovations. This Safety Report is designed to consolidate and provide timely advice on

  8. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  9. International standards for radiation protection

    International Nuclear Information System (INIS)

    Ambrosi, P.

    2011-01-01

    International standards for radiation protection are issued by many bodies. These bodies differ to a large extent in their organisation, in the way the members are designated and in the way the international standards are authorised by the issuing body. Large differences also exist in the relevance of the international standards. One extreme is that the international standards are mandatory in the sense that no conflicting national standard may exist, the other extreme is that national and international standards conflict and there is no need to resolve that conflict. Between these extremes there are some standards or documents of relevance, which are not binding by any formal law or contract but are de facto binding due to the scientific reputation of the issuing body. This paper gives, for radiation protection, an overview of the main standards issuing bodies, the international standards or documents of relevance issued by them and the relevance of these documents. (authors)

  10. Workstations studies and radiation protection

    International Nuclear Information System (INIS)

    Lahaye, T.; Donadille, L.; Rehel, J.L.; Paquet, F.; Beneli, C.; Cordoliani, Y.S.; Vrigneaud, J.M.; Gauron, C.; Petrequin, A.; Frison, D.; Jeannin, B.; Charles, D.; Carballeda, G.; Crouail, P.; Valot, C.

    2006-01-01

    This day on the workstations studies for the workers follow-up, was organised by the research and health section. Devoted to the company doctors, for the competent persons in radiation protection, for the engineers of safety, it presented examples of methodologies and applications in the medical, industrial domain and the research, so contributing to a better understanding and an application of regulatory measures. The analysis of the workstation has to allow a reduction of the exposures and the risks and lead to the optimization of the medical follow-up. The agenda of this day included the different subjects as follow: evolution of the regulation in matter of demarcation of the regulated zones where the measures of workers protection are strengthened; presentation of the I.R.S.N. guide of help to the realization of a workstation study; implementation of a workstation study: case of radiology; the workstation studies in the research area; Is it necessary to impose the operational dosimetry in the services of radiodiagnostic? The experience feedback of a competent person in radiation protection (P.C.R.) in a hospital environment; radiation protection: elaboration of a good practices guide in medical field; the activities file in nuclear power plant: an evaluation tool of risks for the prevention. Methodological presentation and examples; insulated workstation study; the experience feedback of a provider; Contribution of the ergonomics to the determiners characterization in the ionizing radiation exposure situations;The workstations studies for the internal contamination in the fuel cycle facilities and the consideration of the results in the medical follow-up; R.E.L.I.R. necessity of workstation studies; the consideration of the human factor. (N.C.)

  11. Excellence through radiation protection practices

    International Nuclear Information System (INIS)

    Lee, D.A.; Armitage, G.; Popple, R.T.; Carrigan, J.T.

    1987-01-01

    The nuclear generation program at Ontario Hydro was initiated in the early 1960s. Over the last two decades the program has expanded to a planned capacity of ∼ 14,000 MW(electric) by 1992. Each of the nuclear stations consists of four identical reactor units and they range in size from 520 to 880 MW(electric). The overall objectives of Ontario Hydro's radiation protection program are stated as follows: (1) to prevent detrimental nonstochastic health effects to employees and the public; (2) to limit detrimental stochastic health effects occurring in employees or the public to levels as low as reasonably achievable (ALARA), social and economic factors being taken into account; and (3) to provide a level of health and safety that is as good as, or better than, comparable safe industries. Although many elements of the radiation protection program are similar to those adopted by other electrical utilities around the world, there are some unique features that have played an important part in the improvements achieved. These include: management commitment, design responsibility, radiation protection training, operations control, and work planning. The issues that need to be addressed in striving for overall excellence in radiological safety over the next decade are summarized

  12. Units for radiation protection work

    International Nuclear Information System (INIS)

    Lindborg, L.

    1997-06-01

    ICRU has defined special measurable (operational) quantities for radiation protection. A consequence of using the operational quantities is that hand-held and personal dosemeters can give different measuring results in the same radiation situation. The differences vary and are caused by the geometry of the radiation field. The units have well documented relations to e.g. the ICRP effective dose and equivalent dose to an organ or tissue. Therefore, it is possible to estimate these doses from a measured value of e.g. the ambient dose equivalent. ICRU and ICRP have recently reviewed these relations in two important commonly issued reports (Report 57 and Publication 74). This report tries to show the value of understanding these units and their relations and is primarily meant to be used for educational purposes. 11 refs

  13. Radiation protection for human spaceflight

    International Nuclear Information System (INIS)

    Hajek, M.

    2009-01-01

    Cosmic radiation exposure is one of the most significant risks associated with human space exploration. Except for the principles of justification and optimization (ALARA), the concepts of terrestrial radiation protection are of limited applicability to human spaceflight, as until now only few experimentally verified data on the biological effectiveness of heavy ions and the dose distribution within the human body exist. Instead of applying the annual dose limits for workers on ground also to astronauts, whose careers are of comparatively short duration, the overall lifetime risk is used as a measure. For long-term missions outside Earth's magnetic field, the acceptable level of risk has not yet been defined, since there is not enough information available to estimate the risk of effects to the central nervous system and of potential non-cancer radiation health hazards. (orig.)

  14. Radiation Protection Legislation in the Nordic Countries

    International Nuclear Information System (INIS)

    Person, Lars.

    1990-01-01

    Recent alterations in the radiation protection laws of the Nordic countries are presented. The report amends the previous SS-report 87-37 with the title Radiation Protection and Atomic Energy Legislation in the Nordic Countries. (au)

  15. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  16. New Radiation Protection training room

    CERN Multimedia

    HSE Unit

    2013-01-01

    From now on, the theory and practical components of the Radiation Protection training, developed by the RP Group and offered by the HSE Unit’s Safety Training team to people working in a Controlled Radiation Area, will take place in a dedicated teaching room, designed specifically for this kind of training.   The new room is in the Safety Training Centre on the Prévessin site and has been open since 16 October. It has an adjoining workshop that, like the room itself, can accommodate up to 12 people. It is also equipped with an interactive board as well as instruments and detectors to test for ionising radiation. This room is located near the recently inaugurated LHC tunnel mock-up where practical training exercises can be carried out in conditions almost identical to those in the real tunnel. To consult the safety training catalogue and/or sign up for Radiation Protection training, please go to: https://cta.cern.ch For further information, please contact the Safety Trainin...

  17. Recent advances in radiation protection instrumentation

    International Nuclear Information System (INIS)

    Babu, D.A.R.

    2012-01-01

    Radiation protection instrumentation plays very important role in radiation protection and surveillance programme. Radiation detector, which appears at the frontal end of the instrument, is an essential component of these instruments. The instrumental requirement of protection level radiation monitoring is different from conventional radiation measuring instruments. Present paper discusses the new type of nuclear radiation detectors, new protection level instruments and associated electronic modules for various applications. Occupational exposure to ionizing radiation can occur in a range of industries, such as nuclear power plants; mining and milling; medical institutions; educational and research establishments; and nuclear fuel cycle facilities. Adequate radiation protection to workers is essential for the safe and acceptable use of radioactive materials for different applications. The radiation exposures to the individual radiation workers and records of their cumulative radiation doses need to be routinely monitored and recorded

  18. Coastal sea radiation environment and biodiversity protection

    International Nuclear Information System (INIS)

    Tang Senming; Shang Zhaorong

    2009-01-01

    This paper characterizes the types, trend and the potential of radiation contamination in the sea against the development of nuclear power stations. Combined with the present status of radioactive contamination and marine biodiversity in China seas, it is pointed out that non-human radiation protection should be considered on the bases of marine biodiversity protection. Besides, the reference species for marine radiation protection and some viewpoints on the work of marine radiation protection in China are pro- posed. (authors)

  19. Basic standards for radiation protection

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1982-01-01

    The basic standards for radiation protection have been based, for many years, on the recommendations of the International Commission of Radiological Protection. The three basic standards recommended by the Commission may be summarized as ''justification, optimization of protection and adherence to dose limitations. The applications of these basic principles to different aspects of protection are briefly summarized and the particular ways in which they have been applied to waste described in more detail. The application of dose limits, both in the control of occupational exposure and in regulating routine discharges of radioactive effluents is straight forward in principle although the measurement and calculational requirements may be substantial. Secondary standards such as derived limits may be extremely useful and the principles underlying their derivation will be described. Optimization of protection is inherently a more difficult concept to apply in protection and the various techniques used will be outlined by with particular emphasis on the use of cost benefit analysis are recommended by the ICRP. A review will be given of the problems involved in extending these basic concepts of the ICRP to probabilistic analyses such as those required for assessing the consequences of accidents or disruptive events in long term repositories. The particular difficulties posed by the very long timescales involved in the assessment of waste management practices will be discussed in some detail. (orig./RW)

  20. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Maldonado M, H.

    2008-12-01

    The justification of the practices is the fundamental principle on which rests the peaceful use of ionizing radiations. They actually contain as aspirations to improve the quality of people's lives, contributing to sustainable development through environmental protection, so that the sources security and the individuals protection will be conditions which are not and should can not be operated. For medical applications is a highly illustrative example of this, since both for the diagnosis and therapy, the goal is to achieve what is sought for the white tissue, secured the least possible damage to the neighboring tissues so that in turn reduce the negative effects for the patient. As a basis for achieving the above, it is essential to have qualified personnel in all areas incidents, for example users, workers, officials and staff members. There are a variety of specialists in the field of medical applications as, nuclear chemistry, nuclear engineering, radiation protection, medical physics, radiation physics and others. Among the human resource in the country must make up the majority are medical radiologists, highlighting gaps in the number of radiotherapy and nuclear medicine but specially in the medical physics, who is in some way from a special viewpoint of the formal school, new to the country. This is true for the number of facilities which are in the country. The radiation protection responsibilities in medical applications focus primarily on two figures: the radiology safety manager, who is primarily dedicated to the protection of occupationally exposed personnel and the public, and the medical physicist whose functions are geared towards the radiological protection of the patient. The principal legislation in the medical applications area has been enacted and is monitored by the Health Secretary and National Commission on Nuclear Safety and Safeguards, entities that have reached agreements to avoid overlap and over-regulation. Medical applications in the

  1. Radiation protection legislation in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, L.

    1992-01-01

    A close collaboration exists in the Nordic countries in the field of radiation protection. The radiation protection authorities attach major importance to a uniform interpretation of the international recommendations. The legal situation of the Nordic countries in the radiation protection field will be reviewed with the main emphasis on the new Swedish and Finnish laws. (author)

  2. State Radiation Protection Supervision and Control

    International Nuclear Information System (INIS)

    2003-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented

  3. Radiation protection. The past and the future

    International Nuclear Information System (INIS)

    Michel, Rolf

    2016-01-01

    After a short summary of the history of radiation protection and its scientific basis a survey is given on the actual state of radiation protection, thereby entering into open questions like risk perception and communication with the general public. Finally, the future tasks of radiation protection are described.

  4. State Radiation Protection Supervision and Control

    CERN Document Server

    2002-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 2002 is presented.

  5. State Supervision and Control of Radiation Protection

    CERN Document Server

    2001-01-01

    Radiation Protection Centre is carrying state supervision and control of radiation protection. The main objective of state supervision and control of radiation protection is assessing how licensees comply with requirements of the appropriate legislation and enforcement. Summary of inspections conducted in 1999-2001 is presented.

  6. Judgement in achieving protection against radiation

    International Nuclear Information System (INIS)

    Taylor, L.S.

    1980-01-01

    This article includes the following topics: Ionizing radiation as a toxic agent; value judgement in establishing protection standards; origin of radiation protection standards; numerical radiation protection standards; exposure of populations; the proportional dose-effect relationship; assumptions involved in the proportional dose-effect relationship and a continued need for value judgement

  7. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    Skinner, R.W.; Kalos, F.; Bond, J.A.

    1985-05-01

    The purpose of the document is to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to aquaint employees with CRNL's radiation and industrial safety organization

  8. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. International Society of Radiology and Radiation Protection

    International Nuclear Information System (INIS)

    Standertskjoeld-Nordenstam, C.G.

    2001-01-01

    The purpose of the International Society of Radiology (ISR), as being the global organization of radiologists, is to promote and help co-ordinate the progress of radiology throughout the world. In this capacity and as a co-operating organization of the IAEA, the ISR has a specific responsibility in the global radiological protection of patients. Globally, there are many users of medical radiation, and radiology may be practised in the most awkward circumstances. The individuals performing X ray studies as well as those interpreting them may be well trained, as in industrialized parts of the world, but also less knowledgeable, as in developing areas. The problems of radiological protection, both of patients and of radiation workers, still exist, and radiation equipment is largely diffused throughout the world. That is why a conference like this is today as important as ever. Radiation protection is achieved through education, on the one hand, and legislation, on the other. Legislation and regulation are the instruments of national authorities. The means of the ISR are education and information. Good radiological practice is something that can be taught. The ISR is doing this mainly through the biannual International Congress of Radiology (ICR), now arranged in an area of radiological need; the three previous ICRs were in China, in India and in South America; the next one is going to be in Mexico in 2002. The goal of the ICR is mainly to be an instructive and educational event, especially designed for the needs of its surrounding region. The ISR is aiming at producing educational material. The International Commission on Radiological Education (ICRE), as part of the ISR, is launching the production of a series of educational booklets, which also include radiation protection. The ICRE is actively involved in shaping and organizing the educational and scientific programme of the ICRs

  10. Radiation protection - radiographer's role and responsibilities

    International Nuclear Information System (INIS)

    Popli, P.K.

    2002-01-01

    Ever since discovery of x-rays, radiographers has been the prime user of radiation. With the passage of time, the harmful effects of radiation were detected. Some of radiographers, radiologists and public were affected by radiation, but today with enough knowledge of radiation, the prime responsibility of radiation protection lies with the radiographers only. The radiologist and physicist are also associated with radiation protection to some extent

  11. Operational radiation protection: A guide to optimization

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs

  12. Patient Radiation Protection in Radiotherapy

    International Nuclear Information System (INIS)

    Hegazy, M.

    2010-01-01

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  13. Medical Ethics and Protection from Excessive Radiation

    International Nuclear Information System (INIS)

    Ruzicka, I.

    1998-01-01

    Among artificial sources of ionic radiation people are most often exposed to those emanating from X-ray diagnostic equipment. However, responsible usage of X-ray diagnostic methods may considerably reduce the general exposure to radiation. A research on rational access to X-ray diagnostic methods conducted at the X-ray Cabinet of the Tresnjevka Health Center was followed by a control survey eight years later of the rational methods applied, which showed that the number of unnecessary diagnostic examining was reduced for 34 % and the diagnostic indications were 10-40 $ more precise. The results therefore proved that radiation problems were reduced accordingly. The measures applied consisted of additional training organized for health care workers and a better education of the population. The basic element was then the awareness of both health care workers and the patients that excessive radiation should be avoided. The condition for achieving this lies in the moral responsibility of protecting the patients' health. A radiologist, being the person that promotes and carries out this moral responsibility, should organize and hold continual additional training of medical doctors, as well as education for the patients, and apply modern equipment. The basis of such an approach should be established by implementing medical ethics at all medical schools and faculties, together with the promotion of a wider intellectual and moral integrity of each medical doctor. (author)

  14. Distributed radiation protection console system

    International Nuclear Information System (INIS)

    Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket

    2004-01-01

    Radiation exposure control is one of the most important aspects in any nuclear facility . It encompasses continuous monitoring of the various areas of the facility to detect any increase in the radiation level and/or the air activity level beyond preset limits and alarm the O and M personnel working in these areas. Detection and measurement of radiation level and the air activity level is carried out by a number of monitors installed in the areas. These monitors include Area Gamma Monitors, Continuous Air Monitors, Pu-In-Air Monitors, Criticality Monitors etc. Traditionally, these measurements are displayed and recorded on a Central Radiation Protection Console(CRPC), which is located in the central control room of the facility. This methodology suffers from the shortcoming that any worker required to enter a work area will have to inquire about the radiation status of the area either from the CRPC or will get to know the same directly from the installed only after entering the area. This shortcoming can lead to avoidable delays in attending to the work or to unwanted exposure. The authors have designed and developed a system called Distributed Radiation Protection Console (DRPC) to overcome this shortcoming. A DRPC is a console which is located outside the entrance of a given area and displays the radiation status of the area. It presents to health physicist and the plant operators a graphic over-view of the radiation and air activity levels in the particular area of the plant. It also provides audio visual annunciation of the alarm status. Each radioactive area in a nuclear facility will have its own DRPC, which will receive as its inputs the analog and digital signals from radiation monitoring instruments installed in the area and would not only show those readings on its video graphic screen but will also provide warning messages and instructions to the personnel entering the active areas. The various DRPCs can be integrated into a Local Area Network, where the

  15. The development of radiation protection in Hungary

    International Nuclear Information System (INIS)

    Bisztray-Balku, S.; Bozoky, L.; Koblinger, L.

    1982-01-01

    This book contains the short history, development and present status of radiation protection and health physics in Hungary. The first chapter discusses the radiation protection standards and practices used in scientific, technical and medical radiology in this country, with their development history. The next chapter is devoted to the radiation protection techniques applied for medical uses of radioisotopes and accelerators including the organizational and management problems. The last chapter presents a review on radiation protection and health physics aspects of the Hungarian industry and agriculture, on radiation protection research and management, on instruments and dosimeters. A national bibliography on the subject up to 1979 is included. (Sz.J.)

  16. Radiation protection technologist training and certification program

    International Nuclear Information System (INIS)

    1982-10-01

    The purpose of this program is to establish training requirements and methods for certifying the technical competence of Radiation Protection Technologists. This manual delineates general requirements as well as academic training, on-the-job training, area of facility training, and examination or evaluation requirements for Radiation Protection Trainees (Trainees), Junior Radiation Protection Technologists (JRPT), Radiation Protection Technologists (RPT), and Senior Radiation Protection Technologists (SRPT). This document also includes recertification requirements for SRPTs. The appendices include training course outlines, on-the-job training outlines, and training certification record forms

  17. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    Jozani, F.; Parnianpour, H.

    1976-08-01

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  18. SI units in radiation protection

    International Nuclear Information System (INIS)

    Herrmann, D.

    1976-10-01

    In the field of radiation protection all hitherto used units for activity, activity concentrations, exposure, absorbed dose, and dose rates have to be replaced by SI units during the next years. For this purpose graphs and conversion tables are given as well as recommendations on unit combinations preferentially to be used. As to the dose equivalent, it is suggested to introduce a new special unit being 100 times greater than the rem, instead of maintaining the rem or using the gray for both absorbed dose and dose equivalent. Measures and time schedule relating to the gradual transition to SI units in measuring techniques, training, and publishing et cetera are explained. (author)

  19. New instruments for radiation protection

    International Nuclear Information System (INIS)

    Bartos, D.; Ciobanu, M.; Constantin, F.; Petcu, M.; Plostinaru, V.D.; Rusu, Al.; Lupu, A.C.; Lupu, F.

    2003-01-01

    Though a century old, the radiation protection is actual by its purpose: a dose as low as reasonable achievable is to be received either by involved professionals or population. This threshold is dependent on the technical progress. Some major developments like surface mounted device technology, consumer almost ideal operational amplifiers, microcontrollers and the news signal digital processing techniques, offer the opportunity to design improved instruments for radioprotection. To put in a light portable instrument both the whole measuring system and the 'intelligence' - a microcontroller and the associated software - are the main ideas applied by the authors. The result is presented: a family of eight members, at least, based on two parents. (authors)

  20. Nuclear analysis methods. Rudiments of radiation protection

    International Nuclear Information System (INIS)

    Roth, E.

    1998-01-01

    The nuclear analysis methods are generally used to analyse radioactive elements but they can be used also for chemical analysis, with fields such analysis and characterization of traces. The principles of radiation protection are explained (ALARA), the biological effects of ionizing radiations are given, elements and units used in radiation protection are reminded in tables. A part of this article is devoted to how to use radiation protection in a nuclear analysis laboratory. (N.C.)

  1. Radiation protection planning and management during revision

    International Nuclear Information System (INIS)

    Gewehr, K.

    1984-01-01

    During the operation of nuclear power plants it is normally possible for the in-house personnel to take care of arising radiation protection problems. However, in the comparatively short revision phases, the duties of radiation protection become much more varied. Additional trained radiation protection crews are needed at short notice. This is also the time in which the largest contributions are made to the annual cumulated doses of the personnel. Recent guidelines and rules trying to reduce the radiation exposure of personnel concentrate on this very point. The article outlines the radiation protection activities performed by the service personnel in the course of a steam generator check. (orig.) [de

  2. Agencies revise standards for radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article deals with a guideline, compiled by the IAEA, for radiation protection. The guidelines aim at the control of individual risk through specified limits, optimisation of protection and the justification of all practices involving exposure to radiation. The guideline is a revision of the 1967 publication of the IAEA, Basic safety standards for radiation protection. According to the document the main resposibility for radiation protection lies with the employer. The workers should be responsible for observing protection procedures and regulations for their own as well as others' safety

  3. XXVII. Days of Radiation Protection. Conference Proceedings

    International Nuclear Information System (INIS)

    2005-11-01

    The publication has been set up as a proceedings of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on current problems in radiation protection and radioecology. In this proceedings totally 83 papers are published

  4. Radiation protection programme progress report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The progress report of the radiation protection programme outlines the research work carried out in 1988 under contracts between the Commission of the European Communities and research groups in the Member States. Results of more than 350 projects are reported. They are grouped into six sectors: Radiation dosimetry and its interpretation; Behaviour and control of radionuclides in the environment; Nonstochastic effects of ionizing radiation; Radiation carcinogenesis; Genetic effects of ionizing radiation; Evaluation of radiation risks and optimization of protection. Within the framework programme, the aim of this scientific research is to improve the conditions of life with respect to work and protection of man and his environment and to assure a safe production of energy, i.e.: (i) to improve methods necessary to protect workers and the population by updating the scientific basis for appropriate standards; (ii) to prevent and counteract harmful effects of radiation; (iii) to assess radiation risks and provide methods to cope with the consequences of radiation accidents

  5. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1990-08-01

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  6. Radiation protection of non-human species

    International Nuclear Information System (INIS)

    Leith, I.S.

    1993-01-01

    The effects of radiation on non-human species, both animals and plants, have long been investigated. In the disposal of radioactive wastes, the protection of non-human species has been investigated. Yet no radiation protection standard for exposure of animals and plants per se has been agreed. The International Commission on Radiological Protection has long taken the view that, if human beings are properly protected from radiation, other species will thereby be protected to the extent necessary for their preservation. However, the International Atomic Energy Agency has found it necessary to investigate the protection of non-human species where radioactivity is released to an environment unpopulated by human beings. It is proposed that the basis of such protection, and the knowledge of radiation effects on non-human species on which it is based, suggest a practical radiation protection standard for non-human species. (1 tab.)

  7. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  8. Radiation protection in medical applications

    International Nuclear Information System (INIS)

    Sacc, R.A.; Rubiolo, J.; Herrero, F.

    1998-01-01

    Full text: The goal of this paper is to identify the areas in which radiation protection is actually needed and the relative importance of protection measures. A correlation between the different medical applications of the ionizing radiations and the associated risks, mainly due to ignorance, has been a constant throughout the history of mankind. At the beginning, the accidents were originated in research nuclear laboratories working on the atomic bomb, while the incidents occurred in medical areas because of virtual ignorance of the harmful effects on humans. The 60's were characterized by the oil fever, which produced innumerable accidents due to the practice of industrial radiography; in the 70's the use of radiations on medical applications was intensified, to such and extent that a new type of victim appeared: the patient. Unfortunately, during 80's and 90's the number of accidents in different medical practices has increased, projecting the occurred in Zaragoza (Spain) on 1990 with a linear accelerator for radiotherapy treatments. In some developed countries, foreseeing the probability of producing biological effects as a result of different radiology practices, more strict security rules are adopted to guarantee the application of the three principles of the radioprotection: justification, optimization and limitation of individual dose. In this way, in the U.S.A., the Joint Commission on Accreditation of Health Care Organization (JCAHO), favors a vigilance politics in the different departments of Radiodiagnostic and Nuclear Medicine to secure an effective management in security, communications and quality control, in which the medical physicists play an important role. One of the requirements for example is to attach the value of entrance exposition dose in the radiological diagnostic report. So, the doses in the different organs are compared with the tabulated doses. Basically, a quality control programme is designed to minimize the risks for patients

  9. The Australian radiation protection and Nuclear Safety Agency

    International Nuclear Information System (INIS)

    Macnab, D.; Burn, P.; Rubendra, R.

    1998-01-01

    The author talks about the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), the new regulatory authority which will combine the existing resources of the Australian Radiation Laboratory and the Nuclear Safety Bureau. Most uses of radiation in Australia are regulated by State or Territory authorities, but there is presently no regulatory authority for Commonwealth uses of radiation. To provide for regulation of the radiation practices of the Commonwealth, the Australian Government has decided to establish the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and a Bill has passed through the House of Representatives and will go to the Spring sitting of the Senate. The new agency will subsume the resources and functions of the Nuclear Safety Bureau and the Australian Radiation Laboratory, with additional functions including the regulation of radiation protection and nuclear safety of Commonwealth practices. Another function of ARPANSA will be the promotion of uniform regulatory requirements for radiation protection across Australia. This will be done by developing, in consultation with the States and Territories, radiation health policies and practices for adoption by the Commonwealth, States and Territories. ARPANSA will also provide research and services for radiation health, and in support of the regulatory and uniformity functions. The establishment of ARPANSA will ensure that the proposed replacement research reactor, the future low level radioactive waste repository and other Commonwealth nuclear facilities and radiation practices are subject to a regulatory regime which reflects the accumulated experience of the States and Territories and best international practice, and meets public expectations

  10. New radiation protection legislation in Sweden

    International Nuclear Information System (INIS)

    Jender, M.; Persson, Lars

    1984-01-01

    The objective of the new Act is to protect humans, animals and the environment from the harmful effects of ionizing as well as non-ionizing radiation. As previously, the main responsibility for public radiation protection will rest with a single central radiation protection authority. According to the Act, the general obligations with regard to radiation protection will assign greater responsibility than in the past to persons carrying out activities involving radiation. Persons engaged in such activities will be responsible for the safe processing and storage of radioactive waste. The Act also contains rules governing decommissioning of technical equipment capable of generating radiation. The Act contains several rules providing for more effective supervision. The supervisory authority may, in particular, decide on the necessary regulations and prohibitions for each individual case. The scope for using penal provisions has been extended and a rule on the mandatory execution of orders regarding radiation protection measures has been introduced. (authors)

  11. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    Various governmental agencies, including the Ministry of Health, the Ministry of Labor and the Israel AEC are responsible for the control of the use of radioactive materials and medical X-ray machines in Israel. Present legislation deals mainly with the legal aspects of the purchase, transport and possession of radioactive materials and the purchase and operation of medical X-ray machines. No legislation refers explicitly to the protection of the worker from ionizing (and non-ionizing) radiation. A special group of experts appointed by the Minister of Labor recently worked out a comprehensive draft law concerning all legal aspects of occupational radiation protection in Israel. Among the main chapters of the draft are: general radiation protection principles, national radiation protection standards, medical supervision of radiation workers, personal monitoring requirements. The present situation with regard to radiation hazard control in Israel and details of the proposed radiation protection law is discussed. (Author)

  12. 33. Days of Radiation Protection. Presentations

    International Nuclear Information System (INIS)

    2011-11-01

    The publication has been set up as presentations of the conference dealing with health protection during work with ionizing radiation for different activities which involve the handling of ionizing radiation sources. The main conference topics are focused on the current problems in radiation protection and radioecology. On the web-page totally 103 presentations or posters are published. The Conference consists of the following sections: (I) Effects of ionizing radiation (radiology, health effects, risk factors); (II) General aspects of radiation protection (recommendations and legislative in radiation protection); (III): Dosimetry and metrology of ionizing radiation (metrology, instrumentation, use of computational methods); (IV) Radiation protection in nuclear power industry (working environment in the nuclear industry, the impact on the environment, nuclear power shutdown management); (V) Emergency management (emergencies, accidents, waste); (VI) Radiation load and protection in diagnostics, nuclear medicine and radiation oncology (burden on patients, staff, size of population exposure from medical sources of ionizing radiation, security, and quality control, optimization); (VII) Natural sources of radiation in workplaces and the environment (radon and other radionuclides, the risk estimation, optimization); (VIII) Education (new trends in education of radiation experts, medical physicists and stake-holders).

  13. Thematic course: patient radiation protection

    International Nuclear Information System (INIS)

    Cordoliani, Y.S.

    2009-01-01

    The ratio benefit/risk of radiological examinations, especially with the multislice scanner cannot be ensured only if the principles of justification and optimization are rigorously respected. The justification relies on the reference to the guide of the appropriate use of imaging examinations and compliance with the Public Health Code which requires a written information exchange between the applicant and who will realizes the examination. The optimization relies on the dosimetry evaluation of our practice and the comparison with the diagnosis reference levels, to realize the examinations at the radiation lowest cost. the stakes are the insurance does not harm our patients, the rehabilitation of the radiologist in his role of consultant rather than performer and the protection against eventual legal consequences. (N.C.)

  14. Computer applications in radiation protection

    International Nuclear Information System (INIS)

    Cole, P.R.; Moores, B.M.

    1995-01-01

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  15. New general radiation protection training course

    CERN Document Server

    2008-01-01

    Some members of CERN personnel, users included, may have to work in supervised or controlled radiation areas, or may be concerned with activities involving the use of radioactive sources. According to CERN Safety rules all persons whose work may encounter ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, about the basic principles of radiation protection and of the relevant radiation protection regulations as well as about safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses addressed to its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This...

  16. New general radiation protection training course

    CERN Multimedia

    2008-01-01

    Some members of CERN personnel, including users, may have to work in supervised or controlled radiation areas, or may be involved in activities involving the use of radioactive sources. According to CERN Safety Rules all persons whose work may be associated with ionising radiation risk must be adequately trained. This training must ensure that workers are informed about the potential health risks which could result from radiation exposure, the basic principles of radiation protection and the relevant radiation protection regulations as well as safe working methods and techniques in radiation zones. Therefore the Organization organises mandatory general and work-specific radiation protection (RP) courses for its personnel. These courses are also open to contractors’ personnel, in addition to the RP training they must receive from their employers. Based on the results of a pilot project, an improved general radiation protection course has been prepared. This new ½ day cours...

  17. CERN Radiation Protection (RP) calibration facilities

    CERN Document Server

    AUTHOR|(CDS)2082069; Macián-Juan, Rafael

    Radiation protection calibration facilities are essential to ensure the correct operation of radiation protection instrumentation. Calibrations are performed in specific radiation fields according to the type of instrument to be calibrated: neutrons, photons, X-rays, beta and alpha particles. Some of the instruments are also tested in mixed radiation fields as often encountered close to high-energy particle accelerators. Moreover, calibration facilities are of great importance to evaluate the performance of prototype detectors; testing and measuring the response of a prototype detector to well-known and -characterized radiation fields contributes to improving and optimizing its design and capabilities. The CERN Radiation Protection group is in charge of performing the regular calibrations of all CERN radiation protection devices; these include operational and passive dosimeters, neutron and photon survey-meters, and fixed radiation detectors to monitor the ambient dose equivalent, H*(10), inside CERN accelera...

  18. Radiation protection in radio-oncology

    International Nuclear Information System (INIS)

    Hartz, Juliane Marie; Joost, Sophie; Hildebrandt, Guido

    2017-01-01

    Based on the high technical status of radiation protection the occupational exposure of radiological personnel is no more of predominant importance. No defined dose limits exist for patients in the frame of therapeutic applications in contrary to the radiological personnel. As a consequence walk-downs radiotherapeutic institutions twice the year have been initiated in order to guarantee a maximum of radiation protection for patient's treatment. An actualization of radiation protection knowledge of the radiological personnel is required.

  19. Radiation protection in a university TRIGA reactor

    International Nuclear Information System (INIS)

    Tschurlovits, M. . Author

    2004-01-01

    Radiation protection in a university institute operating a research reactor and other installations has different constraints as a larger facility. This is because the legal requirements apply in full, but the potential of exposure is low, and accesses has to be made available for students, but also for temporary workers. Some of the problems in practical radiation protection are addressed and solutions are discussed. In addition, experience with national radiation protection legislation recently to be issued is addressed and discussed. (author)

  20. Radiation protection in nuclear energy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. A special session entitled ''The dose-response relationship: implications for nuclear energy'', and a panel on ''Radiation protection education and training'' were included in the conference programme. Refs, figs and tabs

  1. Biological research for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by {gamma}-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by {gamma}-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate {gamma}-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by {gamma}-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  2. Biological research for radiation protection

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Oh, Tae Jeong; Park, Seon Young; Lee, Kang Suk

    2000-04-01

    The work scope of Biological research for the radiation protection had contained the search of biological microanalytic methods for assessing the health effect by γ-radiation and toxic agents, the standardization of human T-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in the hypoxanthine (guanine) phosphoribosyl transferase (HPRT) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods using reverse transcriptase has been developed to analyze the mutant gene induced by γ-radiation and chemical (pentachlorophenol) agent exposure, and to investigate the point mutations in the HPRT gene locus of T-lymphocytes. The HPRT T-cell clonal assay revealed that it could not differentiate γ-irradiation from pentachlorophenol, because the frequency of somatic mutations induced by both damaging agents increased in a dose-dependent manner. The analysis of DNA sequence alterations of HPRT mutant clones clearly showed that both damaging agents induced different mutational spectra in the HPRT locus of T-cells. The large deletions, which account for 75 percent of the analyzed mutants, are characteristic mutations induced by γ-irradiation. By contrast, point mutations such as base substitutions and insertion, come up to 97 percent in the case of pentachlorophenol-treated cells. The point mutation frequencies at 190 base pair and 444 base pair positions are 3-6 folds as high as in those at other mutation positions. It may be that these mutation sites are hot spots induced by pentachlorophenol. These results suggest that the HPRT mutation spectrum can be used as a potential bio marker for assessing a specific environmental risk. (author)

  3. Radiation protection at urological fluoroscopy working stations

    International Nuclear Information System (INIS)

    Forster, D.; Mohr, H.

    1979-01-01

    Two newly developed radiation protection devices for urological working stations are presented. The local dose to which doctor and assisting personnel are exposed during fluoroscopy and radiography was measured and the radiation burden with and without radiation protection determined. The studies show that without these devices organs such as the eyes are exposed, at a normal working distance from the table, to such an amount of scattered radiation as to reduce the permitted number of examinations per week. (Auth.)

  4. 100 years of ionizing radiation protection

    International Nuclear Information System (INIS)

    Baltrukiewicz, Z.; Musialowicz, T.

    1999-01-01

    The development of radiation protection from the end of 19. century and evolution of opinion about injurious effect of ionizing radiation were presented. Observations of undesirable effects of ionizing radiation exposition, progress of radiobiology and dosimetry directed efforts toward radiation protection. These activities covered, at the beginning, limited number of persons and were subsequently extended to whole population. The current means, goals and regulations of radiological control have been discussed

  5. Health and radiation protection management

    International Nuclear Information System (INIS)

    Huhn, A.; Vargas, M.; Lorenzetti, J.; Lança, L.

    2017-01-01

    Quality management and continuous improvement systems are becoming part of daily health services, including radiodiagnostic services, which are designed to meet the needs of users, operating in an environment where the differential is due to the competence and quality of the services provided. The objective of this study is to show the scope of the management of health services, especially radiodiagnosis and radiological protection. Method: Exploratory and descriptive study, based on a review of the literature on the subject. Results: Radiodiagnosis has demonstrated the need for efficient management, especially because ionizing radiation is present in this environment and it is imperative that the professionals working in this area are aware of the need to perform adequate radiological protection for themselves and for users. Conclusion: Universal access to information has changed the attitude of the user and the user has become more demanding in his choices, wanting to understand, express, interact and choose the best quality service in view of the various options available in the market

  6. The new operational quantities for radiation protection

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1985-01-01

    Philosophies and quantities for radiation protection have often been subjected to changes, and some of the developments are traced which ultimately led to recent proposals by ICRU. Development in the past has largely been towards clarification and generalisation of definitions. The present changes, however, reflect a more fundamental issue, the transition from the limitation system to the assessment system in radiation protection. The index quantities were suitable tools to ascertain compliance with the limitation system of radiation protection. The new quantities proposed by ICRU are suitable estimators for effective dose equivalent, which is an essential quantity in the assessment system of radiation protection. A synopsis of the definitions is given. (author)

  7. New infrastructures for training in radiation protection

    International Nuclear Information System (INIS)

    Marco, M.; Rodriguez, M.; Van der Steen, J.

    2007-01-01

    In this work, an analysis of the new infrastructure used in the radiation protection training and professional education, which is developed nowadays, is carried out. CIEMAT has been making many efforts in the education and training of professionals at all levels, for years. At present CIEMAT is developing educational activities in radiation protection general courses and professionals updating courses. The newest strategies for the radiation protection learning are developing in collaboration with professional societies. These try to encourage the technology transference, the collaboration between the actors involved with the radiation protection and the new information technology implementation. (Author) 11 refs

  8. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  9. Radiation protection activities and status in Asia

    International Nuclear Information System (INIS)

    Strohal, P.

    1993-01-01

    The status of radiation protection practices in Asian countries is monitored by different means, e.g. the IAEA technical cooperation activities, by an overall assessment of conditions in a country by RAPAT missions, and on the basis of data collected through various regional activities. The radiation protection situation in Asia is very heterogeneous. There is a group of countries with very well developed radiation protection practices and advanced in the application of the Basic Safety Standards, but the majority of Asian member states still need improvement, several lacking the necessary fundamental infrastructure for radiation protection

  10. Radiation protection in the Brazilian universities

    International Nuclear Information System (INIS)

    Caballero, K.C.S.; Borges, J.C.

    1994-01-01

    A research covering 91 institutions was undertaken in order to elucidate how radiation protection were indeed fulfilled. A questionary including technical administrative and legal subjects was sent by mail and 36% of which were answered propitiating substantial data for analysis. Only in few cases universities have knowledge of basic procedures in radiation protection, claiming for the elaboration of a plan that could guide supervisors and workers in radiation protection in these institution. Based on the tree analysis technique proposed by IAEA, a Reference Radiation protection Program has been elaborated and proposed for Brazilian universities. (author). 14 refs, 1 figs

  11. The Radiation Protection Service in Asuncion

    International Nuclear Information System (INIS)

    Zaldivar de Basualdo, I.

    1979-01-01

    This report details the activities of radiation protection services concerning radioisotopes, personal monitoring and film dosimetry service. Historical, organizational and regulatory aspects are also covered. (author)

  12. Basic principles of radiation protection in Canada

    International Nuclear Information System (INIS)

    1990-03-01

    The major goal of radiation protection in Canada is to ensure that individuals are adequately protected against the harm that might arise from unwarranted exposure to ionizing radiation. This report deals with the basic principles and organizations involved in protection against ionizing radiation. Three basic principles of radiation protection are: 1) that no practice shall be adopted unless its introduction produces a positive net benefit for society, 2) that all exposures shall be kept as low as reasonably achievable, relevant economic and social factors being taken into account, and 3) that doses to individuals should not exceed specified annual limits. The limit for radiation workers is currently 50 mSv per year, and exposures of the general public should not exceed a small fraction of that of radiation workers. Other specific areas in radiation protection which have received considerable attention in Canada include limitations on collective dose (the sum of the individual doses for all exposed individuals), exemption rules for extremely small radiation doses or amounts of radioactive materials, occupational hazards in uranium mining, and special rules for protection of the foetus in pregnant female radiation workers. Implementation of radiation protection principles in Canada devolves upon the Atomic Energy Control Board, the Department of National Health and Welfare, provincial authorities, licensees and radiation workers. A brief description is given of the roles of each of these groups

  13. Radiation Protection Group annual report (1997)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1998-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  14. Radiation Protection Group annual report (1996)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1997-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  15. Radiation Protection Group annual report (1998)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1999-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  16. Radiation Protection Group annual report (1996)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1997-03-25

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1996. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  17. Radiation Protection Group annual report (1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1999-04-15

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1998. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  18. Radiation Protection Group annual report (1997)

    Energy Technology Data Exchange (ETDEWEB)

    Hoefert, M [ed.

    1998-04-10

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1997. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group.

  19. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  20. Radiation Protection Group annual report (1995)

    International Nuclear Information System (INIS)

    Hoefert, M.

    1996-01-01

    The Annual Report of the Radiation Protection Group is intended to inform the Host State Authorities, as well as the CERN Management and staff, about the radiological situation at CERN during the year 1995. The structure of the present report follows that of previous years and has five sections. It presents the results of environmental radiation monitoring, gives information about the radiation control on the sites of the Organization, describes the radiation protection activities around the CERN accelerators, reports on personnel dosimetry, calibration and instrumentation, and briefly comments on the non-routine activities of the Radiation Protection Group

  1. Radiation protection and safety infrastructures in Albania

    International Nuclear Information System (INIS)

    Paci, Rustem; Ylli, Fatos

    2008-01-01

    The paper intends to present the evolution and actual situation of radiation protection and safety infrastructure in Albania, focusing in its establishing and functioning in accordance with BBS and other important documents of specialized international organizations. There are described the legal framework of radiation safety, the regulatory authority, the services as well the practice of their functioning. The issue of the establishing and functioning of the radiation safety infrastructure in Albania was considered as a prerequisite for a good practices development in the peaceful uses of radiation sources . The existence of the adequate legislation and the regulatory authority, functioning based in the Basic Safety Standards (BSS), are the necessary condition providing the fulfilment of the most important issues in the mentioned field. The first document on radiation protection in Albania stated that 'for the safe use of radiation sources it is mandatory that the legal person should have a valid permission issued by Radiation Protection Commission'. A special organ was established in the Ministry of Health to supervise providing of the radiation protection measures. This organization of radiation protection showed many lacks as result of the low efficiency . The personnel monitoring, import, transport, waste management and training of workers were in charge of Institute of Nuclear Physics (INP). In 1992 an IAEA RAPAT mission visited Albania and proposed some recommendations for radiation protection improvements. The mission concluded that 'the legislation of the radiation protection should be developed'. In 1995 Albania was involved in the IAEA Model Project 'Upgrading of Radiation Protection Infrastructure'. This project, which is still in course, intended to establish the modern radiation safety infrastructures in the countries with low efficiency ones and to update and upgrade all aspects related with radiation safety: legislation and regulations, regulatory

  2. Course of radiation protection: technical level

    International Nuclear Information System (INIS)

    2002-01-01

    The course handbook on radiation protection and nuclear safety, technical level prepared by scientists of the Nuclear Regulatory Authority (ARN) of the Argentina Republic, describes the subjects in 19 chapters and 2 annexes. These topics detailed in the text have the following aspects: radioactivity elements, interaction of the radiation and the matter, radio dosimetry, internal contamination dosimetry, principles of radiation detection, biological radiation effects, fundamentals of radiation protection, dose limits, optimization, occupational exposure, radiation shielding, radioactive waste management, criticality accidents, safe transport of radioactive materials, regulatory aspects

  3. First Asian regional congress on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S K [Bhabha Atomic Research Centre, Bombay (India). Library and Technical Information Section

    1975-12-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection.

  4. First Asian regional congress on radiation protection

    International Nuclear Information System (INIS)

    Kumar, S.K.

    1975-01-01

    Due to the rapid progress in the development of nuclear energy and its applications in medicine, agriculture and industry, the potential danger to targe groups of population due to radiation hazards has increased. Thus, radiation protection has become an important aspects of industrial and public hygiene. The article reviews the deliberations of the First Asian Regional Congress on Radiation Protection which was held during 15-20 December 1974 at the Bhabha Atomic Research Centre. 190 papers were presented on the following broad subjects: (1) organization of radiation protection services on a countrywide scale and significant problems and experiences; (2) research and cooperation, mutual assistance, education and training; (3) personnel monitoring; (4) nuclear industry risks and benefits; (5) radiation protection legislation and (6) panel discussions and regional international cooperation in the field of radiation protection. (S.K.K.)

  5. Radiation protection: Principles, recommendations and regulations

    International Nuclear Information System (INIS)

    Reitan, J.B.

    1989-01-01

    Radiation protection is a highly international dicipline with a high degree of international harmonization. Especially within the Nordic countries there is general agreement upon principles and standards, despite the actual practice may differ slightly. The basic recommendations of the International Commission on Radiological Protection (ICRP) are accepted by the regulatory bodies and should be followed by all users of radiation. The users are in principle responsible for the radiation protection standard and activities themselves. Because most companies or hospitals lack sufficient expertise by themselves, they must rely upon recommendations from others. Primarily they should contact the national radiation protection agency. However, due to the international harmonization of radiation protection, information from other national or international agencies may be used with confidence. All users of radiation in the Nordic countries are obliged to act according to recognition and assessment of both risks and benefits, and they are responsible for updating their knowledge

  6. Project Radiation protection, Annual report 1994

    International Nuclear Information System (INIS)

    Ninkovic, M.M.

    1994-12-01

    According to the action plan for the period 1991-1995, the main objective of this project during 1994 was to provide operational basis, methods and procedures for solving the radiation protection problems that might appear under routine working conditions and handling of radiation sources. The aim was also to provide special methods for action in case of accidents that could affect the employed staff and the population. Overall activity was directed to maintaining and providing personnel, instrumentation, and methods for the following special radiation protection measures: operational control of the radiation field and contamination; calibration of the radiation and dosimetry instruments-secondary dosimetry metrology laboratory; instrumentation and measuring systems for radiation protection; control of environmental transfer of radioactive material; medical radiation protection [sr

  7. New Croatian Act on Ionizing Radiation Protection

    International Nuclear Information System (INIS)

    Grgic, S.

    1998-01-01

    According to the new Croatian Act on ionizing radiation protection which is in a final stage of genesis, Ministry of Health of the Republic of Croatia is the governmental body responsible for all aspects relating sources of ionizing radiation in Croatia: practices, licenses, users, transport, in medicine and industry as well, workers with sources of ionizing radiation, emergency preparedness in radiological accidents, storage of radioactive wastes, x-ray machines and other machines producing ionizing radiation and radioactive materials in the environment. Ministry of Health is responsible to the Government of the Republic of Croatia, closely collaborating with the Croatian Radiation Protection Institute, health institution for the performance of scientific and investigation activities in the field of radiation protection. Ministry of Health is also working together with the Croatian Institute for the Occupational Health. More emphasis has been laid on recent discussion among the world leading radiation protection experts on justification of the last recommendations of the ICRP 60 publication. (author)

  8. Sense and purpose of radiation protection training

    International Nuclear Information System (INIS)

    Malasek, A.

    1992-04-01

    Training in radiation protection is of great significance in connection with the activities of the executive, the federal army and emergency organizations in emergency operations for the protection of the population in the case of large-scale radioactive contamination due to diverse causes. The presently valid legal situation of radiation protection training is presented in connection with the expected modification in the amendment to the SSVO. The special situation of radiation protection training for the executive, the federal army and emergency organizations is described and discussed in connection with the new aspects outlined in the draft of the new radiation protection regulation. In conclusion, problems arising in the conveyance of basic knowledge in radiation protection are illustrated by means of a concrete example. (author)

  9. Radiation protection programme for LEU miniature source reactor

    International Nuclear Information System (INIS)

    Beinpuo, Ernest Sanyare Warmann

    2015-02-01

    A radiation protection program has been developed to promote radiation dose reduction. It emphasize radiological protection fundamentals geared at reducing radiation from the application of the research reactor at the reactor center of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission. The objectives of the radiation safety program are both to ensure that nuclear scientists and technicians are exposed to a minimum of ionizing radiation and to protect employees and facility users and surrounding community from any potentially harmful effects of nuclear research reactor at GAEC. The primary purpose of the radiation control program is to assure radiological safety of all personnel and the public to guarantee that ionizing radiation arising out of the operations of the Research Reactor at the Reactor Center does not adversely affect personnel, the general public or the environment. This program sets forth polices, regulations, and procedures approved by the Centers Radiation Control Committee. The regulations and procedures outlined in this program are intended to protect all individuals with a minimum of interference in their activities and are consistent with regulations of the Radiation Protection Board (RPB) applicable to ionizing radioactive producing devices. (au)

  10. An introduction to radiation protection principles

    International Nuclear Information System (INIS)

    White, J.M.

    1983-01-01

    The fundamentals of radiation hazards and their control are outlined. This report is for use by all radiation workers at CRNL and copies are available for all who want one. The purposes of the document are to outline the fundamentals of radiation protection, to describe methods that enable employees to work safely with radiation and to acquaint employees with the CRNL radiation and industrial safety organization

  11. Radiation protection for nurses. Regulations and guidelines

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1992-01-01

    Rules and regulations of federal agencies and state radiation protection programs provide the bases for hospital policy regarding radiation safety for nurses. Nursing administrators should work with the radiation safety officer at their institutions to ensure that radiation exposures to staff nurses will be as low as reasonably achievable and that special consideration will be given to pregnant nurses. Nurses' fears about their exposure to radiation can be greatly reduced through education

  12. Radiation protection in the operating room

    International Nuclear Information System (INIS)

    Kunz, B.; Stargardt, A.

    1978-01-01

    On the basis of legally provided area dose measurements and time records of fluoroscopic examinations during the operation, radiation doses to medical personnel and patients are evaluated. Adequate radiation protection measures and a careful behaviour in the operating room keep the radiation exposure to the personnel below the maximum permissible exposure. Taking into account the continuous personnel radiation monitoring and medical supervision, radiation hazards in the operating room can be considered low

  13. Manual for medical problems of radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The manual deals comprehensively and topically with the theoretical and practical fundamentals of radiation protection of the population considering the present knowledge in the fields of radiobiology and radiation protection medicine. The subject is covered under the following headings: (1) physics of ionizing radiations, (2) biological radiation effects, (3) the acute radiation syndrome, (4) medical treatment of the acute radiation syndrome, (5) combined radiation injuries, and (6) prophylaxis and therapy of injuries caused by fission products of nuclear explosions. The book is of interest to medical doctors, medical scientists, and students in medicine who have to acquire special knowledge in the field of radiation protection and it is of value as a reference book in daily routine

  14. Recommendations of International Commission of Radiation Protection 1990

    International Nuclear Information System (INIS)

    1995-01-01

    The book summarizes the recommendations on radiation protection of International of Radiation Protection. The main chapters are: 1.- Rates in radiation protection 2.- Biological aspects of radiation protection 3.- Framework of radiation protection. 4.- System of protection. 5.- Implantation of commission's recommendations. 6.- Summary of recommendations

  15. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  16. Summary of radiation protection in exploitation

    International Nuclear Information System (INIS)

    Garcier, Yves; Guers, Rene; Bidard, Francoise; Colson, Philippe; Gonin, Michele; Delabre, Herve; Hemidy, Pierre-Yves; Corgnet, Bruno; Perrin, Marie-Claire; Phan Hoang, Long; Abela, Gonzague; Crepieux, Virginie; Guyot, Pierre; Haranger, Didier; Warembourg, Philippe

    2004-01-01

    This document proposes a large and detailed overview of notions and practices regarding radiation protection in relationship with an NPP exploitation framework. It presents the main notions: matter structure, radioactivity, interactions between matter and radiations, types of ionizing radiation, magnitudes and measurement units, exposure modes, main principles of radiation protection, means of protection against internal and external exposures. The second part proposes an overview of the origin of radiological risks in a nuclear power plant. This origin can be found in fission products, activation products, actinides, designed protections, or circuit contaminations. These radiological risks are more precisely identified and described in terms of detection and prevention (internal exposure risk, contamination risk, iodine-related risk, alpha radiation-related risk, access to the reactor building). The next part addresses the medical and radiological follow-up of exposed workers by a special medical control, by an individual exposure control, by a specific control of female personnel, and by attention to exceptional exposures. Measurement means are presented (detection principles, installation continuous control, workspaces control, personnel contamination control, follow-up of individual dose) as well as collective and individual protection means. The management of radiation protection is addressed through a presentation of decision and management structures for radiation protection, and of EDF objectives and ambitions in this domain. The organization of radiation protection during exploitation is described: responsibilities for radiation protection in a nuclear power station, requirements for workers, preparation of interventions in controlled zone, work execution in controlled zone, zone controls and radiological cleanness of installations. The two last chapters address issues and practices of radiation protection in the case of deconstruction or dismantling, and

  17. Radiation Protection Officer certification scheme. Malaysian experience

    International Nuclear Information System (INIS)

    Pungut, Noraishah; Razali, Noraini; Mod Ali, Noriah

    2011-01-01

    In Malaysia, the need for maintaining competency in radiation protection is emerging, focusing on the qualification of Radiation Protection Officers (RPO). Regulation 23 of Malaysian Radiation Protection (Basic Safety Standards) Regulations 1988, requires the applicant to employ an RPO, with the necessary knowledge, skill and training, enabling effective protection of individuals and minimizing danger to life, property and the environment for all activities sought to be licensed. An RPO must demonstrate the knowledge required, by attending RPO courses organised by an accredited agency and pass the RPO certification examination. Maintaining a high level of competency is crucial for future development of safe applications of ionising radiation. The major goal of training is to provide essential knowledge and skills and to foster correct attitudes on radiation protection and safe use of radiation sources. Assessment of the competency is through theoretical and practical examination. A standard criterion on the performance of the individuals evaluated has been established and only those who meet this criterion can be accepted as certified RPO. The National Committee for the Certification of Radiation Protection Officer (NCCRPO), comprising experts in various fields, is responsible to review and update requirements on competency of a certified RPO. With increasing number of candidates (i.e. 701 in 2008) and the international requirement for radioactive source security, it is incumbent upon the NCCRPO to improve the syllabus of the certification scheme. The introduction of a Radiation Protection Advisor (RPA) to provide service and advice to the radiation industry in Malaysia is also seriously considered. (author)

  18. Radiation Protection Institute - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiation Protection Institute (RPI) of the Ghana Atomic Energy Commission was established to provide the scientific and technical support for executing the operational functions of the Radiation Protection Board. The operational activities of the Institute are listed. Also included in the report are the various research projects, training programmes and publications for the year 2015.

  19. The radiation protection infrastructure in Madagascar

    International Nuclear Information System (INIS)

    Andriambololona, R.; Ratovonjanahary, J.F.; Randriantseheno, H.F.; Ramanandraibe, M.J.

    2001-01-01

    Madagascar is participating in the Model Project RAF/9/024 on 'Upgrading Radiation Protection Infrastructure'. Its radiation protection legislation is based on the BSS. The efforts being made to upgrade the country's regulatory infrastructure and the problems encountered are described below, as is the national information and training programme for the authorities, the public, workers and students. (author)

  20. Radiation protection laws in the Nordic countries

    International Nuclear Information System (INIS)

    Persson, Lars

    1991-01-01

    Sweden has since 1988 a totally revised radiation protection law and Finland has recently enacted a new law. The legal situation of the Nordic countries in the radiation protection field is reviewed with the main emphasis on the Swedish law. (author)

  1. General organisation of radiation protection in Senegal

    International Nuclear Information System (INIS)

    Casanova, P.; Ndiaye, M.; Sow, M.L.; Ndao, A.S.

    2015-01-01

    Organization of radiation protection in Senegal is governed by three main texts that define the general principles and implement legal means for their actions. Efficient control of nuclear activities to ensure protection of workers, the environment and patients against ionizing radiation is subject to criminal penalties in case of breach of this legislation. (authors)

  2. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  3. Implantation of inspection and radiation protection plan

    International Nuclear Information System (INIS)

    Cunha, J.L.R. da

    1988-01-01

    Methods, means and procedures adopted by Petrobras engineering service to survey safety radiation protection of the companies that carry out radiographic services of PETROBRAS are showed. The systematic used in certification of personel, procedures, audits and field survey concerning radiation protection, are described. (C.M.) [pt

  4. Radiation protection calculations for diagnostic medical equipment

    International Nuclear Information System (INIS)

    Klueter, R.

    1992-01-01

    The standards DIN 6812 and DIN 6844 define the radiation protection requirements to be met by biomedical radiography equipment or systems for nuclear medicine. The paper explains the use of a specific computer program for radiation protection calculations. The program offers menu-controlled calculation, with free choice of the relevant nuclides. (DG) [de

  5. Standards of radiation protection in Colombia

    International Nuclear Information System (INIS)

    Zamora, H.; Quintero, R.; Barreto, G.

    1988-01-01

    The theoretical information about radiation protection was reviewed; special attention to those principles considered of mayor importance by the international organizations experienced in the subject. Particular consideration is made in today's view on legal aspects, and finally, recommendations are made on the standard that should be taken into account in our country for a more rational application of the radiation protection system

  6. Regional radiation protection initiatives by Australia

    International Nuclear Information System (INIS)

    Grey, J.

    1993-01-01

    Australia both through the auspices of the IAEA and from Government Aid Grants has contributed to the improvement of radiation protection throughout the Asia/Pacific region. The assistance has been in the form of training and improvement to radiation protection infrastructures. The presentation describes the objectives, scope and diversity of the radiation protection infrastructure program and the benefits to the large number of persons included in the program. An outline of the current IAEA program is also discussed together with an explanation of how the program will assist national regulators in the education of radiation workers, in hazardous operations such as industrial radiography

  7. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  8. INES rating of radiation protection related events

    International Nuclear Information System (INIS)

    Hort, M.

    2009-01-01

    In this presentation, based on the draft Manual, a short review of the use of the INES rating of events concerning radiation protection is given, based on a new INES User's Manual edition. The presentation comprises a brief history of the scale development, general description of the scale and the main principles of the INES rating. Several examples of the use of the scale for radiation protection related events are mentioned. In the presentation, the term 'radiation protection related events' is used for radiation source and transport related events outside the nuclear installations. (authors)

  9. Radiation Protection Research Needs Workshop: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Jason [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Hertel, Nolan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abelquist, Eric [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2017-09-01

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  10. Ecological aspects of radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Recht, P [Health Protection Services, Commission of the European Communities, Brussels (Belgium); Free University, Brussels (Belgium)

    1972-07-01

    For the ecologists of the 1960s, the presence in the biosphere of fission products originating from nuclear explosions provided a wealth of opportunity for observation and experiment, for they were able to trace the paths of numerous radioactive substances in the atmosphere, immediate environment and eco-systems, and to determine the way in which these substances were metabolized in living organisms. Moreover, nuclear techniques such as the use of radioactive tracers, autoradiography and neutron activation afforded a means of determining the mechanisms by which the biologically significant radionuclides take effect and the processes by which they are transferred. Because of the comprehensive information that it can provide for analysis, radioecology has risen above its status as a pure science and has become an integral part in the planning of monitoring programmes for nuclear sites- Radioecology is thereby able to make an essential contribution to the attainment of one of the basic objectives of radiation protection, namely the elimination or control of the hazards that human beings and their environment are likely to be face through the peaceful applications of nuclear energy. The headway made in radioecological studies and research has been great; knowledge is being amassed by leaps and bounds despite the difficulties faced and the intricacy of the problems involved. As a consequence, radioactive contamination of the environment is certainly one of the best understood types of pollution, and probably one that it has so far been possible to anticipate and control under optimum conditions and with the most gratifying results.

  11. Ecological aspects of radiation protection

    International Nuclear Information System (INIS)

    Recht, P.

    1972-01-01

    For the ecologists of the 1960s, the presence in the biosphere of fission products originating from nuclear explosions provided a wealth of opportunity for observation and experiment, for they were able to trace the paths of numerous radioactive substances in the atmosphere, immediate environment and eco-systems, and to determine the way in which these substances were metabolized in living organisms. Moreover, nuclear techniques such as the use of radioactive tracers, autoradiography and neutron activation afforded a means of determining the mechanisms by which the biologically significant radionuclides take effect and the processes by which they are transferred. Because of the comprehensive information that it can provide for analysis, radioecology has risen above its status as a pure science and has become an integral part in the planning of monitoring programmes for nuclear sites- Radioecology is thereby able to make an essential contribution to the attainment of one of the basic objectives of radiation protection, namely the elimination or control of the hazards that human beings and their environment are likely to be face through the peaceful applications of nuclear energy. The headway made in radioecological studies and research has been great; knowledge is being amassed by leaps and bounds despite the difficulties faced and the intricacy of the problems involved. As a consequence, radioactive contamination of the environment is certainly one of the best understood types of pollution, and probably one that it has so far been possible to anticipate and control under optimum conditions and with the most gratifying results

  12. Radiation protection for particle accelerators

    International Nuclear Information System (INIS)

    Verdu, G.; Rodenas, J.; Campayo, J.M.

    1992-01-01

    It a a great number of medical installations in spain using particle accelerators for radiotherapy. It is obvious the importance of an accurate estimation of the doses produced in these installations that may be received by health workers, patients or public. The lower values of dose limits established in the new ICRP recommendations imply a recalculation of items concerning such installations. In our country, specific guidelines for radiation protection in particle accelerators facilities have not been yet developed, however two possible guides can be used, NCRP report number 51 and DIN Standard 6847. Both have been analyzed comparatively in the paper, and major remarks have been summarized. Interest has been focused on thickness estimation of shielding barriers in order to verify whether must be modified to comply with the new dose limits. Primary and secondary barriers for a Mevatron used in a Medical Center, have been calculated and the results have been compared with actual data obtained from the installation, to test the adequacy of shielding barriers and radioprotection policies. The results obtained are presented and analyzed in order to state the implications of the new ICRP recommendations. (author)

  13. Melatonin as Protection Against Radiation Injury

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P H; Rosenberg, J.

    2016-01-01

    Introduction: Radiation is widely used in the treatment of various cancers and in radiological imaging procedures. Ionizing radiation causes adverse effects, leading to decreased quality of life in patients, by releasing free radicals that cause oxidative stress and tissue damage. The sleep......-hormone melatonin is a free radical scavenger, and induces several anti-oxidative enzymes. This review investigates the scientific literature on the protective effects of melatonin against exposure to ionizing radiation, and discusses the clinical potential of melatonin as prophylactic treatment against ionizing...... and protected against radiation enteritis. These protective effects were only documented when melatonin was administered prior to exposure to ionizing radiation. Discussion: This review documents that melatonin effectively protects animals against injury to healthy tissues from ionizing radiation. However...

  14. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  15. Radiation protection around high energy proton accelerators

    International Nuclear Information System (INIS)

    Bourgois, L.

    1996-01-01

    Proton accelerators are intense radiation sources because of the particle beam itself, secondary radiation and structure activation. So radiation protection is required around these equipment during running time but even during downtime. This article presents some estimated values about structure and air activation and applies the Moyer model to get dose rate behind shielding. (A.C.)

  16. Rules and regulations of radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    The finality of this legislative text is to guarantee the radiation protection of the exposed personnel, of the people in general and the environment against the ionizing radiations risks. Its scope includes all the natural and juridical persons that work with ionizing radiation sources into the peruvian territory

  17. An outlook to radiation protection development

    International Nuclear Information System (INIS)

    Martincic, R.; Strohal, P.

    1996-01-01

    Radiation protection and safety have developed over many decades as the effects of ionizing radiation have been better and better understood. Some events in the last decade had essential impact on radiation protection policy/philosophy and related safety standards. Among them are available data of some long term radio-epidemiological studies of populations exposed to radiation. Investigations of the survivors of the atomic bombing of Hiroshima and Nagasaki illustrated that exposure to radiation has also a potential for the delayed induction of malignancies. They also showed that irradiation of pregnant women may result with certain mental damage in foetus. Several big radiation accidents which appeared in the last decade also had an impact on developments in radiation protection philosophy and practices. A well known Chernobyl accident showed that limited knowledge was available at the time of the accident on transfer of radionuclides in a specific environment, radioecological effects and pathways of highly radioactive atmospheric precipitation generated during the accident on various components of the environment. New scientific data indicated also that in some parts of human environment there are measurable effects of chronic exposure resulting from natural radiation. UNSCEAR is periodically publishing the most valuable set of data as compilation, and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources. These data are also the best guidelines for the necessary improvements and updating of radiation protection practices and philosophies. The latest ICRP-60 publication and recently issued International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources are reflecting many of the above mentioned findings. On the other hand the use of radiation sources is increasing day by day, and many new facilities applying radiation in radiotherapy

  18. Current Trends in Radiation Protection Recommendations

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2008-01-01

    The third generation of the ICRP recommendations was adopted in April 2007. The recommendations rely on situations (planned, emergency and existing), individual (occupational, public and patient) and radiation protection system (justification, optimization and dose limits). In the present work attention is paid to discuss the new recommendations and role of IAEA in updating its Basic Safety Standards for protection against ionizing radiation and safety of radiation sources and its impact for the national regulations

  19. Justification and optimization in radiation protection

    International Nuclear Information System (INIS)

    Beninson, D.

    1980-01-01

    Two requirements of the system recommended by the ICRP for radiation protection are discussed: 1) justification of practices involving radiation exposures and 2) optimization of the level of protection for such practices. The ICRP recommended the use of cost-benefit analysis in justification and optimization. The application of cost-benefit analysis and the quantification of the radiation detriment are also discussed. (H.K.)

  20. The role of the international radiation protection association in development and implementation of radiation protection standards

    International Nuclear Information System (INIS)

    Metcalf, P.; Lochard, J.; Webb, G.

    2002-01-01

    The International Radiation Protection Association (IRPA) is an affiliation of national and regional professional societies. Its individual membership is approaching some 20 000 professionals from 42 societies and covering 50 countries. Its primary objective is to provide a platform for collaboration between members of its affiliate societies to further radiation protection and safety. The IRPA is mandated to promote and facilitate the establishment of radiation protection societies, support international meetings and to encourage international publications, research and education and the establishment and review of standards. Through its membership base and its observer status on bodies such as the ICRP and the safety standards committees of the IAEA, the IRPA is in a position to provide valuable input to the safety standards development process. This factor has been increasingly recognised more recently within the IRPA and the various organisations involved in the development of safety standards. This paper addresses the mechanisms that have been established to enhance the input of the IRPA into the safety standards development process and for their subsequent implementation. (author)

  1. Radiation protection in occupational health

    International Nuclear Information System (INIS)

    1987-01-01

    The document is a training manual for physicians entering the field of occupational medicine for radiation workers. Part 1 contains the general principles for the practice of occupational health, namely health surveillance and the role of the occupational physician in the workplace, and Part 2 provides the essential facts necessary to understand the basic principles of radiation physics, radiobiology, dosimetry and radiation effects which form the basis for occupational radiation health

  2. Chapter 1: A little of Radiation Physics and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-04-01

    The chapter 1 presents the subjects: 1) quantities and units of radiation physics which includes: the electron volt (eV); Exposure (X); Absorbed dose (D); Dose equivalent (H); Activity (A); Half-life; Radioactive decay; 2) Radiation protection which includes: irradiation and radioactive contamination; irradiation; contamination; background radiation; dose limits for individual occupationally exposed (IOE) and for the general public.

  3. The necessity of radiation protection

    International Nuclear Information System (INIS)

    Van der Merwe, E.J.

    1979-01-01

    The use of ionizing radiation as an aid in dentistry, medicine and industry is still on the increase. Although much research has already been done on the effect of ionizing radiation on living matter much can still be done. The author discusses a few guidelines to be followed in dentistry to keep the radiation dose the patient is exposed to as low as possible

  4. Comments to the German society's for radiation protection (Gesellschaft fur Strahlenschutz) proposed principles for radiation protection

    International Nuclear Information System (INIS)

    Persson, L.

    2002-01-01

    The German Society for Radiation Protection (in German Gesellschaft fur Strahlenschutz) is a separate society for radiation protection in Germany in addition to the leading society named Association of German and Swiss Radiation Protection Specialists (in German Fachverband fur Strahlenschutz). The Society is an international professional society. There are several hundreds members of the German Society for Radiation Protection. The German Society for Radiation Protection is not a member of IRPA (the International Radiation Protection Society). The IRPA member is the Association of German and Swiss Radiation Protection Specialists. According to information given on the web site of the Society for Radiation Protection (www.gfstrahlenschutz.de) the Society was founded in 1990 because in the opinion of the founding members the older professional societies and associations have not adequately considered and implemented the present knowledge of radiation risks and radiation protection. In accordance with its statutes the society pursues besides other aims the best possible protection of humans and the environment from the detrimental action of ionising and non-ionising radiation. The dealing with ionising and non-ionising radiation can according to the Society only be justified on the basis of biological and medical state of the art knowledge

  5. Environmental radiation protection - a brief history

    International Nuclear Information System (INIS)

    Zapantis, A.P.

    2003-01-01

    The effects of ionising radiation on man has been studied intensely for decades, and the system of radiation protection for man has been continually refined in the light of those studies. That system assumes that if man is protected, non-human biota at the species level will also be adequately protected. However, an increasing recognition of the need to protect the environment, and international agreements signed in 1992, have resulted in that paradigm being questioned, with the onus shifting slowly towards demonstrating that the environment is protected. Further, radiation protection agencies and environmental protection agencies around the world have now started considering the issue of developing a system of radiation protection for the environment. The International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) are also active in this area. The purpose of this paper is to briefly outline some of the issues confronting environmental and radiation protection specialists, and to mention some of the initiatives being taken by the international community to resolve those issues

  6. Radiation protection guidelines for the skin

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1990-01-01

    This paper reviews the history of radiation protection standards for the skin with particular reference to past recommendations of the ICRP concerning dose limits to the skin and the work of the ICRP Task Group appointed in 1987. Data are also presented on the effect of radiation on Langerhans cells in the skin, and the effect of interaction of ultraviolet radiation and x-rays and of protraction of radiation on skin cancer induction in mice. (UK)

  7. European activities in radiation protection in medicine

    International Nuclear Information System (INIS)

    Simeonov, Georgi

    2015-01-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/ Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (nonmedical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is

  8. Education in Radiation Protection. What are the future needs?

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Tezak, S.; Poropat, M.; Kubelka, D.

    2000-01-01

    The paper presents the problem of the education in radiation protection. All aspects of education are included started with primary school and lasted with very specialized courses for the experts. In the last few years the lack of interest for education in radiation protection was recognized by many agencies included also IAEA and EU commission. In this paper the reasons for this situation will be presented and the way how to promote this subject again. It is not possible to prevent effects of radiation on environment and population if qualified and well educated experts don't exists. The situation in the field of education in radiation protection in Croatia will be also presented. (author)

  9. The state of radiation protection in Iran

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1988-01-01

    Historically, radiation protection in Iran can be related to when the first x-ray machine was applied for medical diagnosis. However, organized activities were started with the establishment of the Tehran University Nuclear Center (TUNC) in 1959, and within a broader scope when AEOI research reactor went into operation in 1967. In 1974, the Atomic Energy Organization Law of Iran was ascribed the responsibility for radiological safety and protection to the AEOI. Then this responsibility was assigned by AEOI to the Radiation Protection Department (RPD), as the national authority. The RPD's organization and functions have been divided into three main RPD divisions: Radiation Protection Control; Radiation Dosimetry Research and Development and Services; and Radiological Protection of the Environment

  10. The revised German radiation protection ordinance

    International Nuclear Information System (INIS)

    Palm, M.

    2002-01-01

    Since August 2001, German radiation protection law is governed by a new Radiation Protection Ordinance, implementing two new Euratom Directives and taking into account new scientific developments, which provides a comprehensive basis for the protection of man and the environment. The Ordinance has been completely restructured; however, it is still a very complex piece of legislation comprising 118 provisions and 14 annexes, some of them highly technical. Reduced dose limits for occupationally exposed persons and members of the public, a detailed provision on clearance of radioactive substances, a new part aiming at the protection of man and the environment against ionising radiation emanating from natural sources, and regulations dealing with the protection of consumers in connection with the addition of radioactive substances to consumer goods are some of the centre pieces of the new legislation which shall contribute significantly to the further prevention or at least minimisation of the adverse effects of radiation exposure. (orig.) [de

  11. Occupational radiation protection legislation in Israel

    International Nuclear Information System (INIS)

    Tadmor, J.; Schlesinger, T.; Lemesch, C.

    1980-01-01

    A committee of experts appointed by the Minister of Labour and Social Affairs has proposed a comprehensive draft regulation, concerning the legal aspects of occupational radiation protection in Israel. The first section of the proposed regulation sets forth guidelines for control in facilities where workers handle radioactive materials or radiation equipment. This includes the duties of the managers of such places to ensure adequate radiation protection and also the maximum recommended doses (whole body and individual organs) for radiation workers. The second section deals with the monitoring regulations for radiation workers who may be exposed to doses in excess of 500 mRem/y. The third section outlines the nature of the mechanical supervision required, i.e. routine and special examinations. Finally the committee also proposed six miscellaneous recommendations for radiation protection. (UK)

  12. Training aspects contributing to radiation protection

    International Nuclear Information System (INIS)

    Gupta, M.S.

    2001-01-01

    Radiation Protection assumes special significance with increasing use of radioactive materials and processes. Scientific and industrial organisations dealing with radioactive materials have prime responsibility of ensuring effective control of all activities which may lead to radiation exposure. Training of all the persons involved in the work associated with radioactivity is absolutely necessary to develop radiation protection skill, radiation measurement proficiency and special precautions to be taken in abnormal situations. NPCIL having responsibility for design, construction, operation and de-commissioning of nuclear power plants, employs about 10,000 workers on several project/station sites all over the country. NPCIL has developed a good training system to accurately control the exposure of workers to radiation. This paper covers the system and other relevant details of radiation protection training organised by NPCIL. (author)

  13. The International radiation protection association (IRPA) 2010-2011 strategic plan

    International Nuclear Information System (INIS)

    Kase, K.

    2010-01-01

    The membership of IRPA consists of 46 national or regional associate societies, 58 countries and about 17,000 individual members. The goals of IRPA strategic Plan 2008-2012 are: Promote excellence in the conduct of IRPA Promote excellence in national and regional associate societies Promote excellence in radiation protection professionals IRPA is recognized by its members and stakeholders as the international voice of the radiation protection profession. The role of IRPA is to: Provide a medium for communication and advancement of radiation protection throughout the world Encourage the establishment of radiation protection societies Support international meetings Encourage international publications dedicated to radiation protection Encourage the establishment and continuous review of universally acceptable radiation protection standards and recommendations Encourage professional enhancement

  14. External dosimetry - Applications to radiation protection

    International Nuclear Information System (INIS)

    Faussot, Alain

    2011-01-01

    Dosimetry is the essential component of radiation protection. It allows to determine by calculation and measurement the absorbed dose value, i.e. the energy amounts deposited in matter by ionizing radiations. It deals also with the irradiation effects on living organisms and with their biological consequences. This reference book gathers all the necessary information to understand and master the external dosimetry and the metrology of ionizing radiations, from the effects of radiations to the calibration of radiation protection devices. The first part is devoted to physical dosimetry and allows to obtain in a rigorous manner the mathematical formalisms leading to the absorbed dose for different ionizing radiation fields. The second part presents the biological effects of ionizing radiations on living matter and the determination of a set of specific radiation protection concepts and data to express the 'risk' to develop a radio-induced cancer. The third part deals with the metrology of ionizing radiations through the standardized study of the methods used for the calibration of radiation protection equipments. Some practical exercises with their corrections are proposed at the end of each chapter

  15. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  16. Blended learning specialists in radiation protection

    International Nuclear Information System (INIS)

    Mayo, P.; Campayo, J. M.; Verdu, G.

    2011-01-01

    In this paper, we present a blended learning Radiation Protection Technician through an approved degree from the Polytechnic University of Valencia, which covers the knowledge and skills of functions relating to operators and supervisors in various areas and skilled workers to be to perform their work in technical units or Radiation Protection Radiation Protection Services. The benefits of this work are those related to achieving quality training flexible and adapted to follow the check off the person conducting the course, adapted to internal and external training of the applicant companies.

  17. Survey of radiation protection programmes for transport

    International Nuclear Information System (INIS)

    Lizot, M.T.; Perrin, M.L.; Sert, G.; Lange, F.; Schwarz, G.; Feet, H.J.; Christ, R.; Shaw, K.B.; Hughes, J.S.; Gelder, R.

    2001-07-01

    The survey of radiation protection programmes for transport has been jointly performed by three scientific organisations I.P.S.N. (France), G.R.S. ( Germany), and N.R.P.B. (United kingdom) on behalf of the European Commission and the pertaining documentation summarises the findings and conclusions of the work that was undertaken with the principal objectives to provide guidance on the establishment, implementation and application of radiation protection programmes for the transport of radioactive materials by operators and the assessment and evaluation of such programmes by the competent authority and to review currently existing radiation protection programmes for the transport of radioactive materials. (N.C.)

  18. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  19. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  20. Radiation protection and the female worker

    International Nuclear Information System (INIS)

    Folsom, S.C.

    1983-01-01

    An influx of young women into industrial occupations has resulted in a reexamination of policy regarding fetal protection. Each of the Environmental Protection Agency's four alternatives, as listed in Federal Radiation Protection Guidance for Occupational Exposures, is examined and given a critique: voluntary limitation of radiation exposure to the unborn, voluntary sterilization by women, exclusion of child-bearing-age women from occupational tasks resulting in possible fetal exposure, and limiting the mandatory exposure limit for all workers. The author lists employers and women employees responsibilities in considering occupations with radiation risks. 1 reference

  1. SABS helps with radiation protection

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The General Physics Division of the SABS is mainly concerned with two branches of Physics, i.e. ionized radiation and temperature. The branch concerned with ionizing radiation is largely responsible for the provision of a radiation monitoring service for people working with X-ray machines and radioactive material. Dosemeters are regularly sent out to X-ray workers and people working with radioactive materials. The radiation dose to which these workers have been exposed over a period of time can then be determined

  2. RADIATION PROTECTION FOR HUMAN SPACEFLIGHT

    OpenAIRE

    Hellweg, C.E.; Baumstark-Khan, C.; Berger, T.

    2017-01-01

    Space is a special workplace not only because of microgravity and the dependency on life support systems, but also owing to a constant considerable exposure to a natural radiation source, the cosmic radiation. Galactic cosmic rays (GCR) and solar cosmic radiation (SCR) are the primary sources of the radiation field in space. Whereas the GCR component comprises all particles from protons to heavy ions with energies up to 10¹¹ GeV, the SCR component ejected in Solar Energetic Particle events (S...

  3. Biomedical databases: protecting privacy and promoting research.

    Science.gov (United States)

    Wylie, Jean E; Mineau, Geraldine P

    2003-03-01

    When combined with medical information, large electronic databases of information that identify individuals provide superlative resources for genetic, epidemiology and other biomedical research. Such research resources increasingly need to balance the protection of privacy and confidentiality with the promotion of research. Models that do not allow the use of such individual-identifying information constrain research; models that involve commercial interests raise concerns about what type of access is acceptable. Researchers, individuals representing the public interest and those developing regulatory guidelines must be involved in an ongoing dialogue to identify practical models.

  4. Importance of establishing radiation protection culture in Radiology Department.

    Science.gov (United States)

    Ploussi, Agapi; Efstathopoulos, Efstathios P

    2016-02-28

    The increased use of ionization radiation for diagnostic and therapeutic purposes, the rapid advances in computed tomography as well as the high radiation doses delivered by interventional procedures have raised serious safety and health concerns for both patients and medical staff and have necessitated the establishment of a radiation protection culture (RPC) in every Radiology Department. RPC is a newly introduced concept. The term culture describes the combination of attitudes, beliefs, practices and rules among the professionals, staff and patients regarding to radiation protection. Most of the time, the challenge is to improve rather than to build a RPC. The establishment of a RPC requires continuing education of the staff and professional, effective communication among stakeholders of all levels and implementation of quality assurance programs. The RPC creation is being driven from the highest level. Leadership, professionals and associate societies are recognized to play a vital role in the embedding and promotion of RPC in a Medical Unit. The establishment of a RPC enables the reduction of the radiation dose, enhances radiation risk awareness, minimizes unsafe practices, and improves the quality of a radiation protection program. The purpose of this review paper is to describe the role and highlight the importance of establishing a strong RPC in Radiology Departments with an emphasis on promoting RPC in the Interventional Radiology environment.

  5. Web Technologies in Radiation Protection Training

    International Nuclear Information System (INIS)

    Marco Arboli, M.; Hernando Velasco, E.; Rodriguez Suarez, M; Gomez Ros, J. M.; Rodriguez, M.; Villaroel, R.

    2004-01-01

    This paper presents the major advances already done in the educational web site maintained on the CIEMAT server and accessible through the CSN web. This training project attempts to propose the use of a web site as the standardisation of radiation protection training programmes. The main objective of this project is to provide training material for course organisers, trainers and professionals, and to promote the exchange of expertise between workers involved in all activities using radiation sources. The web site is being developed to provide educational material based on a modular design and in Spanish. We present the initial results of this useful tool for practitioners. The user can choose to obtain the information included in the web site by downloading the complete course or by obtaining the individual modules stepwise. Task in each of the training modules has been designed to develop specific competence taking into account different target groups. Complete materials for trainers and trainees will be available in the web site, to ease courses performance. The project also aims to obtain necessary standardisation of the Rp knowledge provided to workers. (Author) 12 refs

  6. Environmental radiation protection. The new ICRP concept

    International Nuclear Information System (INIS)

    Kaps, C.; Lorenz, B.

    2013-01-01

    Protection of the environment regarding radiation protection was so far reduced to the concept: if man is protected the environment is protected well enough. This was derived from the radiosensitivity curve, according to which highly developed organisms are more sensible to radiation than less highly developed. ICRP publication 103 put this simple concept in question. Even before, ICRP set up a committee to discuss this theme. End of 2012 ICRP released a new concept of environmental protection regarding different exposure situations and brought it up for discussion in the internet. This concept is based on Reference Animals and Plants (RAPs) and analogous to the concept of the protection for man. The exposure for representative organisms regarding ionizing radiation shall be estimated and compared with Derived Consideration Reference Levels (DCRLs). If the DCRLs are reached or exceeded there is a need to react. This concept raises several questions. (orig.)

  7. The risk philosophy of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1996-01-01

    The processes of risk assessment and risk evaluation are described. The assumptions behind current radiation risk assessments, which are focused on the probability of attributable death from radiation-induced cancer, are reviewed. These assessments involve projection models to take account of future cancer death in irradiated populations, the transfer of risk estimates between populations and the assumptions necessary to derive risk assessments for low radiation doses from actual observations at high doses. The paper ends with a presentation of the basic radiation protection recommendations of the International Commission on Radiological Protection (ICRP) in the context of a risk philosophy. (author)

  8. Radiation protection at reactors RA and RB

    International Nuclear Information System (INIS)

    Ninkovic, M.

    2003-02-01

    Radiation protection activities at the RA and RB reactors are imposed by the existing legal regulations and international recommendations in this field. This annual report contains five parts which cover the following topics: Radiation safety, dosimetry control and technical radiation protection at reactors RA and RB; Handling of radioactive waste, actions and decontamination; Control of the environment (surroundings of RA and RB reactors) and meteorological measurements; Control of internal contamination and internal exposure; Health control od personnel exposed to radiation. Personnel as well as financial data are part of this report

  9. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  10. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  11. Radiation risk and radiation protection concepts

    International Nuclear Information System (INIS)

    Doerschel, B.

    1989-01-01

    The revised dosimetry for the survivors of Hiroshima and Nagasaki implies an increased risk from low LET radiation compared with that currently used. During its meeting in 1987 the ICRP stated that the new data at present do not require any change in the dose limits. However, two other factors can cause larger changes in the present risk estimates. Firstly, for some types of cancer the relative risk model seems to describe the observed data better than the absolute risk model currently used by the ICRP. Secondly, the shape of the dose-response relationship considerably influences the derived risks. In the present paper the factor causing a substantial increase in radiation risk are analyzed. Conclusions are drawn in how far a change in the currently recommended dose limits seems to be necessary. (author)

  12. Job satisfaction and its relationship to Radiation Protection Knowledge, Attitude and Practice (RPKAP) of Iranian radiation workers.

    Science.gov (United States)

    Alavi, S S; Dabbagh, S T; Abbasi, M; Mehrdad, R

    2017-01-23

    This study aimed to find the association between job satisfaction and radiation protection knowledge, attitude and practice of medical radiation workers occupationally exposed to ionizing radiation. In this crosssectional study, 530 radiation workers affiliated to Tehran University of Medical Sciences completed a knowledge, attitude and practice questionnaire on protecting themselves against radiation and Job Descriptive Index as a job satisfaction measure during May to November 2014. Opportunities for promotion (84.2%) and payment (91.5%) were the most important factors for dissatisfaction. Radiation workers who were married, had more positive attitudes toward protecting themselves against radiation, and had higher level of education accounted for 15.8% of the total variance in predicting job satisfaction. In conclusion, medical radiation workers with a more positive attitude toward self-protection against radiation were more satisfied with their jobs. In radiation environments, improving staff attitudes toward their safety may be considered as a key strategy to increase job satisfaction.

  13. Medical Physics expert and competence in radiation protection

    International Nuclear Information System (INIS)

    Vano, E.; Lamn, I. N.; Guerra, A. del; Van Kleffens, H. J.

    2003-01-01

    situation should be to promote a good training in radiation protection for the Medical Physics Expert and to discourage the promotion of scientists who are not Medical Physics Experts as Qualified Experts in the Medical Area. A good radiation protection of the patient, the staff and the general public in medical practice requires a comprehensive knowledge of physical, technical and organisational aspects of the medical procedures, and extended (and expensive) training programmes are now promoted in most of the European countries for the Medical Physics Experts. (Author)

  14. Radiation protection day - Book of abstracts

    International Nuclear Information System (INIS)

    2000-06-01

    This document brings together the abstracts of all presentations given at the Radiation protection day organised in May 2000 by the French association for radiation protection techniques and sciences (ATSR) on the topic of the new European and French radiation protection regulations and their conditions of application in hospitals. Content: 1 - Presentation of the Office of Protection against Ionizing Radiations (O.P.R.I.), status of texts and evolution, practical implementation of operational dosimetry (Alain Valero, O.P.R.I.); 2 - Presentation of the Radiation Protection Service of the Army (S.P.R.A.) and its role in French army's hospitals (Jean-Baptiste Fleutot, S.P.R.A.); 3 - 96/29 European directive and water quality - transposition in French law (Daniel Robeau, I.P.S.N. Fontenay-Aux-Roses); 4 - Presentation of an automatized active dosimetry system (Michel Deron, G.E.M. System); 5 - Euratom 97/43 Directive from June 30, 1997 - assessment of the existing framework for patients protection in medical environment (Pierre Muglioni, APAVE Nord Ouest); 6 - Specificities of the ionising radiations risk in medical environment - presentation of a ionising radiations risk assessment grid (Marie-Christine Soula, Labour regional direction Ile de France); 7 - Low dose effects (B. Le Guen, E.D.F. G.D.F.); 8 - Operational dosimetry in the medical domain - the Saphydose dosemeter (Frederico Felix - Saphymo); 9 - Positrons and radiation protection (Luc Cinotti - C.E.R.M.E.P.); 10 - Workplace studies in medical environment - areas and personnel classification (Jean-Claude Houy, Sandrine Laugle, Eugene Marquis Cancer Centre Rennes); 11 - Experience feedback after 4 years of active dosimetry in a nuclear medicine service (Albert Lisbona, Centre Rene Gauducheau Nantes/Saint-Herblain); 12 - Operational dosimetry as it is performed today in CNRS laboratories (Helene Dossier - C.N.R.S. Orsay); 13 - Radiation protection in submarine naval forces (Pierre Laroche, Army's health service

  15. Radiation protection program for assistance of victims of radiation accidents

    International Nuclear Information System (INIS)

    Fajardo, P.W.; Costa Silva, L.H. da; Rosa, R.

    1991-11-01

    The principles aspects of a radiological protection program for hospitals in case of medical assistance to external and internal contaminated persons are showed. It is based on the experience obtained at Centro Medico Naval Marcilio Dias during the assistance to the victims of Goiania accident in 1987. This paper describes the basic infrastructure of a nursery and the radiation protection procedures for the access control of people and materials, area and personal monitoring, decontamination and the support activities such as calibration of radiation monitors and waste management. Is is also estimated the necessary radiation protection materials and the daily quantity of waste generated. (author)

  16. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    preparing 90Y-Zevalin were measured. CONCLUSIONS. Good laboratory practice is important to keep radiation doses low. To reduce bremsstrahlung, 90Y should not be shielded by lead but instead perspex (10 mm) or aluminium (5 mm). Bremsstrahlung radiation can be further reduced by adding a millimetre of lead...

  17. Survey of Radiation Protection Education and Training in Finland in 2003

    International Nuclear Information System (INIS)

    Havukainen, R.; Korpela, H.; Vaisala, S.; Piri, A.; Kettunen, E.

    2004-01-01

    The current state and need for radiation protection training in Finland have been surveyed by the Radiation and Nuclear Safety Authority STUK. The survey sought to determine whether the current requirements for radiation protection training had been met, and to promote radiation protection training. Details of the scope and quality of present radiation protection training were requested from all educational institutes and organizations providing radiation protection training. The survey covered both basic and further training, special training of radiation safety officers, and supplementary training. The questionnaire was sent to 77 educational organization units, 66 per cent of which responded. Radiation workers and radiation safety officers were asked about radiation protection knowledge and needs for additional training. The questionnaire was sent to 880 radiation users and 170 radiation safety officers, 70 per cent of whom responded. The survey covered all professional groups and fields of the use of ionizing radiation except nuclear energy. The amount of radiation protection training in basic and further (specialization) training in the same vocational or academic degree varied remarkably by educational organization. The average amounts of radiation protection included in most professional degrees met the requirements. 32 per cent of workers considered their radiation protection training inadequate for their duties, and 48 per cent had completed no supplementary training in radiation protection over the last five years. Nurses working in public sector hospitals and physicians working in health centres had the greatest need for radiation protection training. 78 per cent of radiation workers in industry felt that they had sufficient radiation protection training. Co-operation between educational organizations is necessary to harmonize radiation protection training. Guidance of the Ministry of Education (the competent authority for education) is needed in this

  18. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  19. Radiation and man. From radiology to radiation protection

    International Nuclear Information System (INIS)

    2005-04-01

    Man first became aware of the invisible radiation surrounding him in 1895, when Wilhelm Roentgen showed that a photographic plate could be affected by an invisible radiation capable of passing through matter. He called this radiation 'X-rays' from X, the unknown. Doctors immediately saw the usefulness of this type of radiation and began to use it in medical research. This was the birth of radiology. 'Mankind has been exposed to radiation since his first appearance on Earth. We first became aware of this at the end of the 19. century'. However, it was not long before some of the doctors and radiologists treating their patients with X-rays began to fall ill. It began to be understood that exposure to high doses of radiation was dangerous and protective measures were necessary. From the 1920's onwards, international commissions were established to specify regulations for the use of radiation and for the radiological protection of personnel. (authors)

  20. Gonad protective effect of radiation protective apron in chest radiography

    International Nuclear Information System (INIS)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-01-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28±2% and 39±4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few μGy even without a protector. Thus, the risk of a genetic effect would be as small as 10 -8 . Given that acceptable risk is below 10 -6 , we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography. (author)

  1. [Gonad protective effect of radiation protective apron in chest radiography].

    Science.gov (United States)

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  2. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  3. Radiation Protection and Safety infrastructure in Albania

    International Nuclear Information System (INIS)

    Ylli, F.; Dollani, K.; Paci, R.

    2005-01-01

    On 1995 Albania Parliament approved the Radiation Protection Act, which established the Radiation Protection Commission as Regulatory Body and Radiation Protection Office as an executive office. The licensing of private and public companies is a duty of RPC and the inspections, enforcement, import - export control, safety and security of radioactive materials, are tasks of RPO. Regulations on licence and inspection, safe handling of radioactive sources, radioactive waste management and transport of radioactive materials have been approved. The Codes of practice in diagnostic radiology, radiotherapy and nuclear medicine have been prepared. Institute of Nuclear Physics carry out monitoring of personal dosimetry, response to the radiological emergencies, calibration of dosimetric equipment's, management of radioactive waste, etc. Based in the IAEA documents, a new Radiation Protection Act is under preparation

  4. Radiation protection on nuclear medicine services

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Nuclear medicine is a sector of the medicine that studies and applies radionuclide in diagnosis and therapy. Nuclear medicine is a very specific area of the medicine, making use of non-sealed radioactive sources which are prescribed to the patient orally or are injected. Special procedures in radiation protection are required in nuclear medicine to manipulate these kind of sources and to produce technetium-99m through molybdenum generator. The present paper addresses the them radiation protection in a Nuclear Medicine Department (NMD), showing the main requirements of the CNEN- National Commission of Nuclear Energy and the Public Health. Radiation protection procedures adopted in assembling a NMD, as well the daily techniques for monitoring and for individual dosimetry are discussed. Past and present analyses in a level of radiation protection are presented. (author)

  5. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  6. Current situation of radiation protection in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc

    2008-01-01

    Vietnam was one of the earliest countries, who applied ionizing radiation in medicine, since 1923, Dr. Marie Curie had supplied radium sources to Hanoi cancer hospital for radiotherapy. However, we did not give sufficient attention to radiation protection involving, e.g. technology, legislation, until 1980s. Recently with the strong support from International Atomic Energy Agency (IAEA) and Vietnam government nuclear technology has been strongly and widely developed in different branches and radiation protection situation in Vietnam has been improved step by step. Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the prime minister on January 3th, 2006 confirms that nuclear power plant will be put in operation by 2020. To ensure the implementation of the strategy, the first priority should be given to radiation protection and nuclear safety. This paper presents shortly some activities of radiation safety in Vietnam. The requirements for developing this field in Vietnam are also discussed. (author)

  7. Federal radiation protection regulations: An industry viewpoint

    International Nuclear Information System (INIS)

    Harward, E.D.

    1987-01-01

    Regulations and standards to protect the public and workers from ionizing radiation have been in transition for a number of years, although most of the basic limits in use have remained essentially unchanged over the past 25 years or so. Legislation, political changes, new scientific data, advances in scientific concepts, and finally, public perception and resulting pressures have all been factors in the modifications that have been implemented or considered for radiation protection regulations in recent years. During this period, radiation exposures to both the public and the work force have been reduced through program management and improved technology. Based on activities of the AIF Subcommittee on Radiation Protection, this paper reviews pertinent NRC and EPA regulations, standards and guidance as well as NCRP recommendations and provide some analyses of these in terms of their potential effect on nuclear industry operations. Comments include suggestions where minor changes in Federal agency approaches to radiation regulation might be made for the public benefit

  8. Radiation protection and the laws and regulations

    International Nuclear Information System (INIS)

    Takada, Takuo

    1980-01-01

    In hospitals and clinics, when cobalt remote irradiation apparatuses, betatrons and linear accelerators are installed, the provisions of medical and radiation injury prevention laws and other related laws and regulations must be observed. The following matters are described: the laws and regulations concerning the prevention of radiation injuries, the definitions of the therapeutical equipments, the radiation protection standards for such facilities, radiation exposure dose and permissible dose, the procedures concerning the application before usage, the responsibilities of hospitals and clinics for radiation measurement and management, and shielding and shield calculations. (J.P.N.)

  9. Knowledge plus Attitude in Radiation Protection

    International Nuclear Information System (INIS)

    Velez, G. R.; Sanchez, G. D.

    2003-01-01

    Since the introduction of the Basic Safety Standards recommendations, the scope of the radiation protection was broadening. On behalf of the incorporation of radiation protection of the patient in medical exposures, the different groups of professionals involved: physicians, medical physicists, radiation protection officers, regulators, etc., have to work together. The objective of radiation protection, that is, to reduces doses from practices, to prevent potential exposures, to detect its occurrence as well as to evaluate and spread such abnormal situations, will be obtained only if it were possible to joint two basic conditions: knowledge and attitude. It should be well known the differences between the backgrounds needed to be for example, a medical physicist or an R.P.O., However, their attitude to solve an eventual problem involving radiation protection should be the same; as well as the behavior of the specialized physician and regulators, in order to add towards common goals. In this work, we show as an example the curricula contents about radiation protection of the cancer of medical physics in the Universidad Nacional de San Martin (UNSAM), and the corresponding module on medical exposures from the Post-Graduate course on Radiation Protection and Nuclear Safety, held since the 80s in Buenos Aires by the National Commission of Atomic Energy, ARN, IAEA, and the Universidad de Buenos Aires. On the other hand, we describe different attitudes which leads or could start major radiological accidents, regardless the level of knowledge in radiation protection. We conclude that the larger numbers of accidents are due to problems in the attitude than in the level of knowledge of the person involved. Consequently; we suggest emphasizing the discussion on how to generate positive attitudes in every professional involucrated, independently of its cognitive profile or level. (Author) 2 refs

  10. Radiation protection in the dental profession

    International Nuclear Information System (INIS)

    Holyoak, B.; Overend, J.K.; Gill, J.R.

    1980-01-01

    A survey, conducted by the Health and Safety Executive (HSE), on the standard of radiation protection in the dental profession in the United Kingdom is described. The results are compared with UK advisory standards. The preliminary survey results were reported in the professional press and each participating dental practitioner received comments and advice concerning the basic requirements for radiation protection. The method of survey has been broadened to form the basis of inspection of dental radiography by the HSE. (H.K.)

  11. ALARA in the radiation protection training

    International Nuclear Information System (INIS)

    Nolibe, D.; Lefaure, Ch.

    1998-01-01

    This part treats especially the question of the training in radiation protection. The electro nuclear sector has given an ALARA principle culture and succeeded to sensitize each level of hierarchy, but for small industry, the research and the medical world the same method appears more difficult to use. It seems better to reinforce the importance of the competent person and to include a training in radiation protection on the initial formation in numerous professional categories. (N.C.)

  12. Protection against Ionizing Radiation, No. 1420

    International Nuclear Information System (INIS)

    1978-01-01

    This publication is a compilation of national legislative and regulatory provisions on radiation protection in force on 15 November 1978. In addition to the in extenso texts on the subject, only the relevant provisions in laws and regulations with a more general scope have been reproduced. This comprehensive compilation expands and updates a previous collection by the Official Gazette of the French Republic which covered only decrees and orders on the protection of workers against the hazards of ionizing radiation. (NEA) [fr

  13. Strengthening the radiation protection culture: a priority of EDF radiation protection policy

    International Nuclear Information System (INIS)

    Garcier, Y.

    2006-01-01

    Full text of publication follows: In order to improve the management of radiation protection at EDF nuclear power plants, the Human Factors Group of the Research and Development Division of EDF has performed some studies on the appropriation process of the radiation protection requirements. These studies have notably shown that an efficient application of the radiation protection requirements lies on a comprehension by all workers of the meaning of these requirements. Furthermore, they should not be applied under the constraint or because of the fear of a sanction, but the workers need to perceive and understand the benefits in terms of protection associated with the radiation protection requirements. The strengthening of the radiation protection culture is therefore a key element of the radiation protection policy developed by EDF. This culture lies on an awareness of the health risks potentially associated with low levels of ionising radiations, as well as on the knowledge of tools, techniques and good practices developed to control the level of exposures and improve the radiation protection. Various type of actions have been undertaken to reinforce among the relevant players (exposed and non-exposed workers, contractors, all levels of management,... ) an awareness of radiation protection in order to integrate it in their day to day work: elaboration of a 'radiation protection system of reference' explaining how the radiation protection regulatory requirements are applied at EDF, publication of a 'radiation protection handbook' available for all workers (including contractors), training sessions, creation of networks of specialists from the various nuclear power plants on specific radiation protection issues, organisation of feed-back experience forum, etc. Beyond these specific actions, i t is also important to ensure a support and an assistance on the field by dedicated specialists. In this perspective, the health physicists have to play a key role in order to

  14. Genetic topics in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Traut, H [Muenster Univ. (F.R. Germany). Inst. fuer Strahlenbiologie

    1976-01-01

    The effects of mutations induced by ionizing radiation on human health can be subdivided into decrease of general viability, malformations and embryonic death. Reasons are given for the recommendation why a man whose gonads had been exposed to radiation should refrain from procreation for a couple of months. An analysis of the frequency of chromosome aberrations induced in lymphocytes can provide an estimate of the dose received during an accidental exposure. Radiation induced chronic myeloid leukaemia is probably based on the induction of an aberration involving chromosome 22 in a bone marrow cell (deletion, translocation). The relationship between the frequency of radiation induced point mutations and the DNA content of the genome of the species studied so far is discussed.

  15. Radiation protection in dental practice

    International Nuclear Information System (INIS)

    This guide provides the dentist and dental support personnel with basic information on the safe use of x-rays in dental radiography. Included in this CODE are specific recommendations for eliminating unnecessary radiation exposure of both patients and staff

  16. Radiation protection program of Petrobras

    International Nuclear Information System (INIS)

    Signorini, M.

    1988-01-01

    Risks present in oil industry require specific control programs, specialy when using radioactive sources. Main uses of ionizing radiation in oil industry are in process control systems, industrial radiography and oilwell logging. A comprehensive and sistemic program is presented in order to assure the safe use of ionizing radiation in these activities. Principal subjects of this program are the control of radioactive sources, personel training in order to difuse knowledge at operations level and procedures standardization. (author) [pt

  17. Radiation protection topsy-turvy

    International Nuclear Information System (INIS)

    Sumner, D.

    1991-01-01

    Considerable attention, and money, is directed at reducing public exposure to radiation from nuclear installations, much less attention is paid to the levels of exposure from medical sources. The approximate doses from medical sources are given and ways that the doses can be reduce (eg carbon fibre grids, rare earth screens, better working procedures) are discussed. The case for spending money to reduce levels of radiation exposure in medicine is argued. (author)

  18. Greetings from Austrian Radiation Protection Association

    International Nuclear Information System (INIS)

    Hajek, M.; Brandl, A.

    2015-01-01

    Austrian Radiation Protection Association (OVS) share with others a long-standing tradition of common endeavours and close collaboration. We have been and are able to influence the European radiation protection environment and IRPA initiatives and policies. We are intrigued by the breadth and comprehensive nature of the symposium programme, covering the most important sub-fields in our profession, and spanning topics from radiation dosimetry to radiobiology, from instrumentation and measurement to radioecology, and from radiation protection for workers and in medicine to our professional responsibilities towards the general public. These topics are timeless and current, providing testimony to the fact that the science of radiation protection is not exhausted. Novel applications of ionizing and non-ionizing radiation, including new modalities in the fields of medical therapy and diagnosis, a resurgence of nuclear energy generation in some parts of the globe, combined with increased efforts for decontamination and decommissioning of existing sites and facilities, they are all attest to the continued need for further research and our professional input and discussion. The national radiation protection associations will have a role to play in both, the advocacy of increased efforts to educate and train our future professionals and the retention of those professionals in our field.

  19. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  20. Radiation protection philosophy: time for changes?

    International Nuclear Information System (INIS)

    Jovanovich, J.V.

    1994-01-01

    Radiation protection philosophy, or paradigm, has evolved over a number of decades and it is still evolving. Traditionally, it has dealt only with man-made, planned, in principle avoidable, radiation exposures of workers and general public. This philosophy, as presently accepted around the world, has some deficiencies. The object of this paper is to discuss these deficiencies and propose some changes. (author)

  1. Domestic hygienic legislation concerning population radiation protection

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Problems and principles of domestic sanitary legislation, concerning population radiation protection, are considered. The legislation envisages preventive measures, directed to contamination preventation of the main environmental objects, it regulates their content in the objects, their human intake and ionizing radiation doses, which might affect population. Existing domestic hygienic guides and safety standards for personnel and population are enumerated and characterized

  2. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1992-01-01

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/10 6 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/10 6 ). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/10 6 /0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  3. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  4. Medical aspects of radiation protection law contribution to Austrian radiation protection law

    International Nuclear Information System (INIS)

    Moser, B.

    1977-01-01

    Some medical aspects of the radiation protection law, esp. in conjunction with medical surveillance of persons exposed to radiation, are dealt with. The discussion refers to the countries of the European Community and Austria and Switzerland. (VJ) [de

  5. Protection contre les radiations recommandations

    CERN Document Server

    Claude, A; Kipfer, P; Bacq, Z

    Considérations générales ; mesures de sécurité vis-à-vis des sources de rayonnement externes ; mesures de sécurité vis-à-vis des radioisotopes ; étude spéciale de la protection dans quelques cas particuliers ; mesures de sécurité vis-à-vis des neutrons ; mesures de protection pour les appareils de supervoltage ; appareils physiques de mesure et de contrôle pour la protection.

  6. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  7. Proceedings of the third conference on radiation protection and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Swaja, R.E.; Sims, C.S.; Casson, W.H. [eds.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  8. Proceedings of the third conference on radiation protection and dosimetry

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database

  9. Radiation protection in equine radiography

    International Nuclear Information System (INIS)

    Wood, A.K.W.; Reynolds, K.M.; Leith, I.S.; Burns, P.A.

    1974-01-01

    During radiography of the carpus of horses calcium fluoride thermoluminescent dosemeters were used to measure the radiation exposure to the hand of an assistant positioning the x-ray film. Three portable x-ray machines and a mobile machine were used during the recordings. The effects of x-ray machine, radiographic technique, and lead rubber gloves upon radiation exposure to the hand were investigated. The size of the primary beam of the x-ray machine was found to be the major factor in determining the dose of radiation received by the hand. The highest radiation exposures were recorded when using two portable machines which were fitted with beam limiting devices that permitted only one primary beam size. The lowest exposures were measured when radiographs were taken with the mobile machine that was fitted with a light beam diaphragm. The control of primary beam size with a light beam diaphragm was found to be the most effective method of reducing radiation dosage to the hand. It is strongly recommended that for equine radiography a light beam diaphragm be fitted to and used on all x-ray machines, and a cassette holder be used to keep the hands out of the primary beam. (author)

  10. Proceedings of the Tenth Radiation Physics and Protection Conference

    International Nuclear Information System (INIS)

    2011-01-01

    The publication has been set up as proceedings of the Radiation Physics and Protection Conference.. The conference consists Natural Radiation Sources; Radiation Detection and Measurements; Applied Radiation Physics; Radiation Medical Physics and Biophysics; Radiation Dosimetry; Operational Radiation Protection; Radiation Shielding; Transport of Radioactive Materials; Nuclear and Radiation Physics; Medical Physics and Public Protection Against Radiological Attack. This conference consists of 402 p., figs., tabs., refs.

  11. Setting new protection standards for radiation

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1991-01-01

    The new recommendations of the International Commission on Radiological Protection for dose limits will be published this spring. The recommendations represent a comprehensive review of the state of knowledge of the effects of ionizing radiation, and incorporate this knowledge into a conceptual framework for radiological protection. The background to the recommendations is discussed. (author)

  12. Proposals for changes in radiation protection standards

    International Nuclear Information System (INIS)

    Bowker, K.W.

    1990-01-01

    The International Commission on Radiological Protection has proposed changes to its recommendations on radiation protection standards. The proposed new control regime would distinguish between planned, potential and pre-existing exposure situations and between occupational, medical and public exposures. The proposals are expected to be published formally later this year. (author)

  13. Radiation and heredity: genetic aspects of protection against radiation

    International Nuclear Information System (INIS)

    Mosseh, I.B.

    1990-01-01

    Primary radiogenetic effects and delayed genetic radiation effects are considered. Experimental and published data on possibility to protect organisms and populations against single and long-term (during life of several generations) effect of ionizing radiation are given. Problem concerning population adaptation to low dose irradiation is discussed. 490 refs., 28 figs., 43 tabs

  14. Radiation Protection Ordinance. Preventive Radiation Protection Act. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1990-01-01

    This 3rd edition presents the official explanations of the legislative intent behind the Radiation Protection Ordinance of 1976 and the 2nd amending ordinance, and the commentaries which as usual refer to the legal aspects and the related medical, scientific, and technical aspects. As a consequence of the reactor accident at Chernobyl, the existing radiation protection law has been extended by the Act for Preventive Measures for Pretection of the Population Against the Hazards of Ionizing Radiation (Preventive Radiation Protection Act), establishing preventive legal provisions and measures, so that this new edition has likewise been extended by commentaries on the Protective Radiation Protection Act and an introduction to the new area of law. The material also includes the Act for Establishment of a Federal Office for Radiation Protection, of October 9, 1989, which amended the Atomic Energy Act and the Preventive Radiation Protection Act. The correction of the Radiation Protection Ordinance of October 16, 1989 (BGBl. I p. 1926) has been incorporated into the text of the amended version of the Radiation Protection Ordinance. Court decisions and literature referred to cover material published up to the first months of 1989. (orig.) [de

  15. Radiation protection problems with sealed Pu radiation sources

    International Nuclear Information System (INIS)

    Naumann, M.; Wels, C.

    1982-01-01

    A brief outline of the production methods and most important properties of Pu-238 and Pu-239 is given, followed by an overview of possibilities for utilizing the different types of radiation emitted, a description of problems involved in the safe handling of Pu radiation sources, and an assessment of the design principles for Pu-containing alpha, photon, neutron and energy sources from the radiation protection point of view. (author)

  16. Radiation chemistry and environmental protection

    International Nuclear Information System (INIS)

    Ermakov, A.N.; Tarasova, N.P.; Bugaenko, L.T.

    1992-01-01

    A combination of different technological methods in one plant is usually economically advantageous in industry. Such a general approach is also useful in solving ecological problems by methods of radiation technology. This method of cleaning 'harsh' sufactants and 'mold' products and a stage of subsequent biological purification of these products from the water. Combining radiation and adsorption techniques is also promising. A relatively large number of examples can now be cited. At the same time, purely radiational technologies are also possible. The authors discuss one of these technologies in more detail. This concerns electron-beam scrubbing of sulfur dioxide and nitrogen oxides from the gases from electric power plants. This method can also be used for scrubbing sulfur dioxide from waste gases from sulfuric acid and metallurgical plants

  17. Report on radiation protection in Croatia

    International Nuclear Information System (INIS)

    Dragan, K.; Svilicic, N.; Novakovic, M.; Franic, Z.

    2001-01-01

    The Ministry of Health in the Republic of Croatia is in charge of radiation protection, and the new Ionizing Radiation Protection Act defines the responsibilities of the different organizations and institutions. The report explains the existing national system of notification and registration in Croatia and some of the main provisions of the above referred Act. Reference is made to the national provisions for the management of disused sources, recovery or control of orphan sources, and to the national inventory of radiation sources in the country with the data collected during 1998 and 1999. (author)

  18. Standard radiation protection instructions. Vol. 1

    International Nuclear Information System (INIS)

    Schroeder, F.; Bauer, N.; Haug, T.; Koehler, G.; Poulheim, K.F.

    1992-01-01

    The booklet presents case-specific standard instructions compiled by the Arbeitskreis Ausbildung of the Fachverband Strahlenschutz (Radiation Protection Association) for: (1) work requiring a permit according to section 20 of the Radiation Protection Ordinance, performed by external personnel; (2) the installation, maintenance, transport and storage of ionization smoke detectors; (3) application of gamma-ray and X-ray equipment; (4) the testing of X-ray equipment and equipment emitting stray radiation at the stage of manufacturing; (5) application of Ni-63 electron capture detectors. (HP) [de

  19. The South African Forum for Radiation Protection

    International Nuclear Information System (INIS)

    Basson, J.K.; Le Roux, P.R.

    1993-01-01

    The use of ionising radiation in South Africa since the turn of the century was initially limited to x-rays and radium, with predominant applications in medicine for diagnosis and therapy. Since 1948 artificial radio-isotopes have been increasingly available and such applications have been widely extended to industry, agriculture and science. Initially, the Council for Scientific and Industrial Research developed radiation protection in South Africa. It was later recommended that an independent forum, the South African Forum for Radiation Protection, be established. The activities of the Forum are described

  20. Report on promotion of utilization of radiation

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents results of studies made by the Atomic Energy Commission concerning research and development activities to be carried out in future to promote the utilization of radiation. First, the current state of radiation utilization is described, centering on practical applications, research and development activities (for practical and advanced applications), and international cooperation (with developing and advanced nations). The second part deals with activities required in future to promote practical utilization of radiation, research and development of advanced techniques, and cooperation to be offered to developing countries. Third, specific measures to be carried out for effective radiation utilization are described. For γ-rays and electron beams, which are widely in use at present, there are some economic and social problems remaining to be solved. For advanced utilization of radiation beams, further efforts should be focused on basic research on π-meson and μ-particle beams and their application to canser treatment and nuclear fusion; research on monochromatic neutron beams; application of RI beams to the development of new materials and new analysis techniques, application of epithermal neutron beams to elementary radiography and CT; etc. The utilization, application and development of tracers are also described. (Nogami, K.)

  1. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  2. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela

    2011-01-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  3. Strategies of NSC in radiation protection

    International Nuclear Information System (INIS)

    Lentijo, J. C.; Gil, E.; Rodriguez, M.; Ramos, L. M.

    2004-01-01

    The Spanish radiation protection model is consistent with the recommendations established in the ICRP-60, and it is strongly implemented in all practices and related activities of the country. the practical implementation of that model is assuring a high level of protection of workers, public and environment. The Nuclear Safety Council (CSN), as Spanish regulator, is currently involved in the implementation of a new Strategic Plan, which contains, among others, strategic and operational objectives to improve the national system of radiation protection, so they will drive the activities of the CSN in this field during the coming years. A summary of those objectives and the related action plan are described. (Author)

  4. Radiation protection in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    1978-01-01

    The tasks of radiation protection and nuclear safety to be looked after by the land Baden-Wuerttemberg consist essentially in licensing and control activities carried out by the Federal Government. With regard to radiation protection the focal points of the second medium-term programme of the Laender Government Baden-Wuerttemberg are: 1. the technical development plan 'power plant sites', 2. construction of nuclear power plants in the borderline areas of neighbouring foreign countries, 3. disposal of radioactive waste, 4. pollution protection measures against nuclear power plants, 5. safety measures when dealing with radioactive materials outside nuclear power plants. (GL) [de

  5. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  6. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  7. Radiation protection. Basic concepts of ICRP

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2014-01-01

    The title subject is easily explained. Main international organizations for radiation protection are United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), International Commission on Radiological Protection (ICRP) and International Atomic Energy Agency (IAEA). The UNSCEAR objectively summarizes and publishes scientific findings; ICRP, an NGO, takes part in recommending the radiological protection from the expertized aspect; and IAEA, a UN autonomy, aims at peaceful usage of atomic power. These organizations support the legal regulation and standard of nations. The purpose of the ICRP recommendation (Pub. 103, 2007) is to contribute to the appropriate protection of radiation hazardous effects, which are assumed to be linearly proportional (the model of linear no-threshold, LNT) that radiation risk exists even at the lowest dose. When a change in the single cell results in hazardous alteration, the causative effects are called stochastic effects, which include the mutation leading to cancer formation and genetic effect in offspring (not observed in man). ICRP says the validity of LNT for the stochastic effects essentially from the protective aspect, although epidemiological data support it at >100 mSv exposure. The deterministic effects are caused by loss of cell itself or of its function, where the threshold is defined to be the dose causing >1% of disorder or death. Radiation protective system against exposure is on the situation (programmed, emergent and natural), category (occupational, public and medical) and 3 principles of justification, optimization and application of dose limit. (T.T.)

  8. Reflections concerning radiation protection philosophy

    International Nuclear Information System (INIS)

    Seelentag, W.

    1981-01-01

    Critical philosophy also includes observations of the technical amplified senses make, i.e. the application of accessory instruments, measuring instruments and statistic methods. The application of this philosophy is, among other things, referred to when taking the linear dose response relationship for stochastic radiation effects as an example. (DG) [de

  9. Radiation protection 1/87

    International Nuclear Information System (INIS)

    Holeczke, F.; Kaercher, K.H.; Kainberger, F.; Mader, H.; Seyss, R.

    1987-01-01

    There is a paper on medical first aid after radiation accidents and another on positive effects of low-dose irradiation which are treated separately. In addition there are four contributions on question of conventional X-ray diagnosis. (G.Q.)

  10. Radiation protection against radon in workplaces other than mines

    International Nuclear Information System (INIS)

    2003-01-01

    The radioactive gases radon and thoron and their decay products are ubiquitous in the open atmosphere.They are found in higher concentrations in the confined atmospheres of buildings and underground workplaces where workers are exposed to these radionuclides. Exposures to radon and thoron and their decay products may be extremely variable.The main radon source in most above ground workplaces with high radon concentrations is the soil, but there can also be significant contributions from building materials, groundwater, and the storage and processing of large amounts of materials with elevated concentrations of radium. Underground workplaces can accumulate high radon levels, as can natural caves and abandoned mines. In some instances, members of the public may be exposed to radon and thoron and their decay products at workplaces. The establishment of safety requirements and the provision of guidance on occupational radiation protection form a major part of the IAEA's support for radiation safety in Member States. The objective of the IAEA's occupational radiation protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on conducting dose assessments and recommendations concerning dose limitation are given in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, issued as IAEA Safety Series No. 115 in 1996. Recommendations on the fulfilment of requirements are also given in three interrelated Safety Guides, Occupational Radiation Protection (IAEA Safety Standards Series No. RS-G-1.1), Assessment of Occupational Exposure due to Intakes of Radionuclides (No. RS-G-1.2), and Assessment of Occupational Exposure due to External Sources of Radiation (No. RS-G-1

  11. A European handbook for teachers on radiation and radiation protection

    International Nuclear Information System (INIS)

    Teunen, D.

    1994-01-01

    The Commission of the European Communities (Directorate General XI) has taken several initiatives to assist Member States, one of them being the development of a handbook for teachers on radiation and radiation protection, in order to give teachers a clear, scientifically valid and objective set of materials to enable those who so wish to includes courses on radiation protection in their teaching programmes. The draft handbook has been tested in five countries and is to be published in English and French in 1993. Translations in all Community languages are envisaged

  12. Perception of radiological technicians on radiation protection

    International Nuclear Information System (INIS)

    Viana, E.; Borges, L.M.; Camozzato, T.S.C.

    2017-01-01

    The objective of this study was to know the professionals' perception of radiological techniques about radiation protection in the work process in Nuclear Medicine. The research was carried out with nine professionals of the radiological techniques of two private institutions located in the South of Brazil. An interview was applied through recording and transcription. The analysis of the data took place through a thematic analysis. The professionals' perception of radiological techniques regarding the radiological protection in the work process is evidenced when professionals mention the basic rules of radiation protection: time, shielding and distance as attitudes used to minimize the exposure to ionizing radiation. However, it was verified the fragility in the knowledge about the norms and legislation of the radiological protection

  13. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  14. Second Ordinance amending the Radiation Protection Ordinance

    International Nuclear Information System (INIS)

    1989-01-01

    The amendment of the Radiation Protection Ordinance brings about the following changes: (1) Introduction of the concept of effective dose, reduction of limits for partial body dose, adoption of the radiotoxicity values of radionuclides as established by the EC Basis Standards; (2) introduction of a working-life-related dose limit of 400 mSv; (3) supplementing provisions for the protection of the population, particularly by the standard procedure for radioecological impact assessment and determination of dose factors; (4) supplementing provisions on the use of radioactive substances in medicine and medical research; (5) supplementing provisions on health physics monitoring; (6) provisions for improving the supervision and controls in the transport of radioactive substances; (7) definition of activities and their assignment to the provisions of the Radiation Protection Ordinance; (8) revision of the waste management provisions of the Radiation Protection Ordinance. (HP) [de

  15. Chemical Protection Against Ionizing Radiation.

    Science.gov (United States)

    1984-08-01

    cystathionine [3763. Exogen- ous sources of cysteine such as - acetylcysteine and L-2-oxothiazolldine-4 carboxylate promote glutathione synthesis. Whereas the...tubular epithelium and catalyzes the oxidation of extracellular thfols only. Substrates include GSH, cysteine, N- acetylcysteine and dithiothreitol [328,329...extracellular C&2+ . These studies have demonstrated the depression of Ca 2+ sequestration in liver microsomes and mitochondrta after treatment with

  16. Radiation Protection Elephants in the Room

    International Nuclear Information System (INIS)

    Vetter, R. J.

    2004-01-01

    As our system of radiological protection evolves, several significant issues loom within radiation protection discussions and publications. These issues influence the nature of epidemiological and radiobiological research and the establishment of radiation protection recommendations, standards, and regulations. These issues are like the proverbial e lephants in the room . They are large, and it is unwise to ignore them. This paper discusses the impact of three young elephants as they make their presence increasingly obvious: increased cancer susceptibility from early-life exposure to radiation, terrorism and fear of radiation, and patient safety. Increased cancer susceptibility from early-life exposure to radiation is emerging as a discussion topic related to the safety of computed tomography (CT) and other medical modalities. Shortly after publication of CT dose data, manufacturers were helping to reduce doses to children by increasing flexibility for adjustment of technique factors. Also, radiation epidemiological data are being used in the development of guidance on exposure to chemical carcinogens during early life. Re-emergence of public fear of radiation has been fueled by threats of radiological dispersion devises and confusing messages about personal decontamination, emergency room acceptance or rejection of contaminated victims, and environmental clean-up. Finally, several professional publications have characterized risk of medical radiation exposure in terms of patient deaths even though epidemiological data do not support such conclusions. All three of these elephants require excellent science and sophisticated data analysis to coax them from the room. Anecdotal communications that confuse the public should be avoided. These are not the only elephants in the room, but these three are making their presence increasingly obvious. This paper discusses the need for radiation protection professionals to rely on good science in the evolution of the system of

  17. Radiation protection by medicinal plants

    International Nuclear Information System (INIS)

    Jagetia, Ganesh Chandra

    2002-01-01

    The development of effective non-toxic radioprotective agents is of considerable interest in the improvement of radiotherapy of cancer and protection against unplanned exposures. The synthetic drugs developed in post-world war II have had serious constrains in clinical applicable due to their toxicity at the optimal protective dose. Search for non-toxic protectors from natural sources have indicated that some of the commonly used medicinal plants and the poly herbal formulation could prove to be valuable sources of clinically useful radioprotectors as their ratio of effective dose to toxic dose is very high

  18. Is radiation protection for the unborn child guaranteed by radiation protection for female workers?

    International Nuclear Information System (INIS)

    Nosske, C.; Karcher, K.

    2003-01-01

    ICRP Publication 88 recommends doses to embryo and fetus from intakes of radionuclides by the mother for various intake scenarios. Mainly by answering the question 'Is radiation protection for the unborn child guaranteed by radiation protection for female workers?' it has been assessed if the intake scenarios given in ICRP Publication 88 are adequate for radiation protection purposes. This is generally the case, but the consideration of an additional chronic intake scenario for early pregnancy would be helpful. It is demonstrated that following chronic intake by inhalation, for most radionuclides radiation protection for (female) workers is also adequate for protection of the unborn child, considered as a member of the public. However, there are a number of radionuclides for which possible intakes in routine operations should be more restricted (up to 1% of the annual limits on intake for workers in the case of nickel isotopes) to ensure radiation protection for the unborn child. (author)

  19. Radiation protection training for users of ionizing radiation in Hungary

    International Nuclear Information System (INIS)

    Pellet, S.; Giczi, F.; Elek, R.; Temesi, A.; Csizmadia, H.; Sera, E.

    2012-01-01

    According to the current and previous regulation related to the safety use of ionizing radiation, the personnel involved must obtain special qualification in radiation protection. In Hungary the radiation protection training are performed by appropriately certified training centers on basic, advanced and comprehensive levels. Certification of the training centers is given by the competent radiological health/radiation protection authority. The office of the Chief Medical Officer is the certifying authority for advanced and comprehensive levels training, as well as competent Regional Radiological Health Authority is responsible for basic level courses. The content and length of courses are specified in the regulation for all three levels of industrial, laboratory and medical users, in general. Some of the universities, technical and medical oriented are certified for advanced training for students as gradual course. Recently in Hungary there are 47 certified training centers for advanced and comprehensive courses, where the trainers should have a five years job experience in radiation protection and successful completion of comprehensive level course in radiation protection. (authors)

  20. Radiation protection in the application of ionizing radiation in industry

    International Nuclear Information System (INIS)

    Mohamad Yusof Mohamad Ali

    1987-01-01

    There is a substantial increase in the use of ionizing radiation in industry throughout the country especially in the last five years or so. With this growth in the number of users and activity of sources used, and together with the introduction of the new Atomic Energy Licensing Act (AELA) in 1984, the question of radiation safety and protection of workers and members of the public in general, can no longer be taken lightly. It has to be dealt with effectively. In this paper, a general discussion and clarification on certain practical aspects of radiation protection as recommended by the International Atomic Energy Agency (IAEA) is presented. Amongst the topics chosen are those on area monitoring, personnel monitoring, leak testing of sealed sources and training of personnel. Also presented in the paper is a brief discussion about UTN's experience in giving out radiation protection services to various agencies throughout the country. (author)

  1. Policy support on Radiation Protection

    International Nuclear Information System (INIS)

    Hardeman, F.

    1998-01-01

    The objective of SCK-CEN's R and D programme on decision strategy research are: (1) to support and advise the Belgian authorities on specific problems concerning existing and potential hazards from exposure to ionising radiation, both in normal and emergency situations; (2) to improve and support nuclear emergency response decisions in industrial areas from an economic point of view. Main achievements in this area in 1997 are described

  2. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  3. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  4. Regulatory System of Radiation Protection in Taiwan

    International Nuclear Information System (INIS)

    Tang, F. T.; Huang, C. C.

    2004-01-01

    After the radioactive contaminated buildings incident occurred in Taiwan in 1993, the competent authority for radiation protection the Atomic Energy Council (AEC) started to review the structured problem of radiation protection regulatory system. Through several years' investigation and study, the AEC has improved two important tools in radiation protection regulatory system, i.e., control regulations and actual practice, and made them more rigorous and efficient. This paper will make a brief introduction of the efforts that Taiwan has made in this respect. Taiwan's radiation protection control was based on the Atomic Energy Law promulgated in 1968, but the control idea and authorization scope were not sufficient to appropriately respond to the highly developed economy and democracy in Taiwan. After several years' legislative process, the Ionizing Radiation Protection Law (IRP Law) was promulgated and entered into force on February 1, 2003. This IRP Law specifically emphasizes categorized risk management of radiation sources, establishment of personnel licenses and training system, enhancement of public safety control, and implementation of quality assurance program for medical exposure. The Legislative Yuan (Congress) fully authorized the competent authority to establish various technological control regulations according to control necessity without prior review by the Legislative Yuan in advance. As to the penalties of the violations of the IRP Law, the AEC adopts high-rated administrative fines and applies the Criminal Law to those who seriously contaminate the environment. In actual practice, the AEC has constructed a Radiation Protection Control Information System compatible with the IRP Law that fully combines the functions of computers and Internet. The information of facility operators who own radiation sources, radiation protection specialists, and operating personnel are entered into this system, starting from the submission of application of the

  5. Radiation in perspective applications, risks and protection

    International Nuclear Information System (INIS)

    1997-01-01

    Everyone on earth is exposed to natural radiation. Radiation produced artificially is no different, either in kind or in effect, from that originating naturally. Although radiation has many beneficial applications, throughout medicine, industry and research, it can be harmful to human beings who must be adequately protected from unnecessary or excessive exposures. For this purpose, a thorough system of international principles and standards and stringent national legislations have been put in place. Yet radiation continues to be the subject of much public fear and controversy. This clearly written report, intended for the nonspecialist reader, aims to contribute to an enlightened debate on this subject by presenting the most up-to-date and authoritative material on sources, uses and affects of radiation, and ways in which people are protected from its risks. It discusses the development of radiation protection measures, its internationally agreed principles, and also addresses social and economic issues such as ethical questions, risk perceptions, risk comparisons, public participation in decision-making and the cost of protection. (author)

  6. Radiation protection in nuclear energy. V.2

    International Nuclear Information System (INIS)

    1988-01-01

    The conference was convened to provide a forum for the exchange of international views on the principles of radiation protection for regulators and practitioners, to highlight issues of current importance, to examine the problems encountered in applying the principles of radiation protection, and, where possible, to identify generic solutions. The highlights of the conference were the sessions on the interface between nuclear safety and radiation protection, the evolution of radiation protection principles, exemption rules and accident experiences. The special session on the practical implications of the linear dose-response relationships also provoked particular interest. Although the session on optimization and decision aiding did not reveal any new developments, it did indicate an increasing emphasis on the optimization of radiation protection. A clear trend towards attaining lower collective doses per unit practice over a given time period, despite the increase in nuclear power plant capacity, is also apparent, although very few data on job-related worker doses have been published to date in the open literature. From the regulators' viewpoint, a very strong desire was expressed for a move towards regulatory strategies that exempt practices and sources causing insignificant individual and collective doses. Refs, figs and tabs

  7. Public understanding of radiation protection concepts

    International Nuclear Information System (INIS)

    1988-01-01

    The Chernobyl accident in April 1986 clearly showed that communication with the public was one of the areas where there was a strong need for improvement, particularly concerning the nature and extent of the information provided by national authorities. The countermeasures adopted by public health authorities also raised difficulties in terms of public understanding and acceptance due, in part, to the perception of discrepancies in national, regional or local response to the accident, but also to a more basic lack of comprehension of the complex radiation protection considerations involved. In an attempt to help improve the situation, the NEA Committee on Radiation Protection and Public Health decided to organise a Workshop on public communication in the event of a nuclear accident, centered on radiation protection issues. The purpose of this Workshop was to analyse appropriate methods and language to be used when explaining to the public the scientific concepts underlying radiation risks and radiation protection, and the technical rationale for the choice of protective actions in an emergency. Separate abstracts were prepared for individual papers presented at the meeting

  8. Assuring the quality of practical radiation protection

    International Nuclear Information System (INIS)

    Neuburger, E.; Schroeder, H.J.

    1993-01-01

    There is no possibility in Germany to serve an apprenticeship in practical radiation protection in nuclear facilities. However, the scope of knowledge required for such activities is defined in a binding 'Directive about Ensuring the Knowledge Required in Persons otherwise Engaged in the Operation of Nuclear Power Plants'. That Directive by far exceeds the scope, in terms of safety, normally applied to a vocation or activity. The Directive implicitly contains three important provisions: Plant operators must ensure that radiation protection workers have all the knowledge they need to do their job safely; that radiation protection workers are autonomous, within certain limits, as a consequence of the depth of knowledge they have; that radiation protection workers are given formal advanced training possibilities. An examination to be taken by radiation protection workers before a Chamber of Industry and Commerce was introduced in 1982 in order to make available personnel trained in the whole range of possible activities as defined in the Directive referred to above. However, persons who have passed the exam before a Chamber of Commerce and Industry no longer automatically fulfill the criteria under the Directive after three years, but must undergo advanced training in a formal program. (orig.) [de

  9. The new German radiation protection ordinance

    International Nuclear Information System (INIS)

    Pfeffer, W.; Weimer, G.

    2003-01-01

    According to European law, the Basic Safety Standards (BSS) published by the European Council in 1996 and the Council Directive on health protection of individuals against dangers of ionising radiation in relation to medical exposure had to be transferred into national law within due time. In 2001 the new Ordinance for the Implementation of the Euratom Guidelines on Radiation Protection] was published, which replaces the old Radiation Protection Ordinance. The new German Ordinance adapts the European Directive to German law, covering the general principles but even giving more details in many fields of radiation protection. The BSS scope certainly is much broader than the prescriptions important for the field of radiation protection in nuclear power plants. According to the scope of this workshop on occupational exposure in nuclear power plants - and as the BSS most probably will be quite familiar to all of you - after a short general overview on relevant contents of the German Ordinance, this presentation will focus on the main issues important in the operation of NPP and especially on some areas which may give rise to necessary changes caused by the new Ordinance. (A.L.B.)

  10. Establishment of a national radiation protection infrastructure. The Philippine experience

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E.M. [Philippine Nuclear Research Institute, Department of Science and Technology (Philippines)

    2000-05-01

    Radiation and radioactive materials have been used widely in the Philippines for the last four decades and have made substantial contributions to the improvement of the life and welfare of the Filipino people. In spite of the unsuccessful attempt to operate a nuclear power, plant, the country, through the Philippine Nuclear Research Institute has consistently pursued an active small nuclear applications program to promote the peaceful applications of nuclear energy while also mandated to ensure radiation safety through nuclear regulations and radioactive materials licensing. Another government agency, the Radiation Health Services (RHS) of the Department of Health was created much later to address the growing concern on radiation hazards from electrically generated radiation devices and machines. The RHS has been strengthened later to include non-ionizing radiation health hazards and has expanded to include a biomedical engineering and non-radiation related medical equipment. The paper will describe the historical perspective highlighting the basis of the national regulatory framework to ensure that only qualified individuals are authorized to use radioactive materials and radiation emitting machines/devices. The development of national training programs in radiation protection and experiences in implementing these programs will be presented. National efforts to strengthen the radiation protection infrastructure through the establishment, improvement and upgrading of a number of facilities and capabilities in radiation protection related work activities will be discussed including participation in national, regional and international intercomparison programs to ensure accuracy, reliability, reproducibility and comparability of dose measurements. Lastly, data on the status of small nuclear applications and related activities in the country will be presented including a number of current issues related to the adoption of the new international basic safety standards

  11. Establishment of a national radiation protection infrastructure. The Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.

    2000-01-01

    Radiation and radioactive materials have been used widely in the Philippines for the last four decades and have made substantial contributions to the improvement of the life and welfare of the Filipino people. In spite of the unsuccessful attempt to operate a nuclear power, plant, the country, through the Philippine Nuclear Research Institute has consistently pursued an active small nuclear applications program to promote the peaceful applications of nuclear energy while also mandated to ensure radiation safety through nuclear regulations and radioactive materials licensing. Another government agency, the Radiation Health Services (RHS) of the Department of Health was created much later to address the growing concern on radiation hazards from electrically generated radiation devices and machines. The RHS has been strengthened later to include non-ionizing radiation health hazards and has expanded to include a biomedical engineering and non-radiation related medical equipment. The paper will describe the historical perspective highlighting the basis of the national regulatory framework to ensure that only qualified individuals are authorized to use radioactive materials and radiation emitting machines/devices. The development of national training programs in radiation protection and experiences in implementing these programs will be presented. National efforts to strengthen the radiation protection infrastructure through the establishment, improvement and upgrading of a number of facilities and capabilities in radiation protection related work activities will be discussed including participation in national, regional and international intercomparison programs to ensure accuracy, reliability, reproducibility and comparability of dose measurements. Lastly, data on the status of small nuclear applications and related activities in the country will be presented including a number of current issues related to the adoption of the new international basic safety standards

  12. Research priorities for occupational radiation protection

    International Nuclear Information System (INIS)

    1994-02-01

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided open-quotes smartclose quotes instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines

  13. Characteristics of radiation protection legislation

    International Nuclear Information System (INIS)

    Puig Cardozo, Diva E.

    2001-01-01

    The laws on radiological protection have special characteristics. They can exist laws that regulate dangerous activities that will be also applicable, if it corresponds to the activities that involve radioactive materials. But a law of radiological protection should exist. It foresees the existence of an appropriate regulatory body and specialized institutions, definitions, infractions and sanctions then the respective regulations will be elaborated for the different applications. The objective is to contribute to the development of the nuclear energy in the country and to provide the regulatory basis that assures a reasonable security for radioactive installations. The essential objectives of these laws are: 1. to establish the legislative framework for the development and employment of nuclear energy, without risks, according with treaties and conventions that the countries have approved. 2. To fix the fundamental principles and the conditions of their setting in practice allowing to a specific regulation determining application procedures. 3. To create a structure of regulation of enough authority to be able to control and to watch over in an effective way the authorized activities 4. To guarantee an appropriate financial protection against the derived damages of accidents or nuclear incidents. (author)

  14. Consequences of the new Slovenian legislation on radiation protection and nuclear safety for radiation protection training

    International Nuclear Information System (INIS)

    Kozelj, M.

    2004-01-01

    The paper presents brief description of the old Slovenian regulations and an overview of the new, harmonised regulations in the field of radiation protection training. The most important novelties were pointed out with possible consequences for the implementation of radiation protection training. Some suggestions on how to overcome transitional problems and how to improve training were also given. (author)

  15. On ethical issues in radiation protection. Radiation protection recommendations and standards seen from an ethical perspective

    International Nuclear Information System (INIS)

    Corbett, R.H.; Persson, L.

    2004-01-01

    International radiation protection recommendations and standards of the ICRP, the IAEA, the European Union and the ILO are surveyed from an ethical perspective. The authors come to the conclusion that the insights of ethical theories provide a number of ways in which current recommendations and standards for radiation protection could improve. (orig.) [de

  16. A controversy in radiation protection

    International Nuclear Information System (INIS)

    Grenier, E.

    1999-01-01

    Different surveys show that the workers of nuclear industry enjoy a better health than other workers. New investigations about the biological effects of radiation show the importance and the varieties of cellular remedial processes in case of low dose irradiation. These facts question the justification of new European standards that might be applied after may 2000. The decision of lowering the limit of individual dose from 5 mSv/year to 1 mSv/year, appears to be more political than scientific. (A.C.)

  17. Abstracts of 20. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1988-01-01

    51 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, international activities in radiation protection, solid state dosimetry, models and calculation methods in radiation protection, and measuring techniques in radiation protection

  18. National congress of radiation protection; Congres national de radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The congress of radiation protection tackled different areas of radiation protection. The impact of ionizing radiations on environment coming from radioactive activities. The biological radiation effects, the dosimetry, the different ways of doing relative to radiation protection,the risks analysis and the communications with populations, information about accidents and the lessons learned from them are included in this congress. (N.C.)

  19. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  20. Workplace analysis and radiation protection

    International Nuclear Information System (INIS)

    Le Guen, B.; Bosquet, Ph.; Chevillard, S.; Gauron, Ch.; Lallemand, J.; Lombard, J.; Menetrier, F.; Feuardent, J.; Maccia, C.; Donadille, L.; Rehel, J.L.; Donnarieix, D.; Garrigou, A.; Gauthereau, V.; Truchi, F.; Chardin, J.; Debouck, F.; Clairand, I.; Amabile, J.Ch.; Vrigneaud, J.M.; Roussille, F.; Witschger, O.; Feuardent, J.; Scanff, P.; Rannou, A.

    2010-01-01

    This document gathers the slides of the available presentations given during this conference day. Fifteen presentations out of 16 are assembled in the document and deal with: 1 - the evolution of doses received by workers (J. Feuardent); 2 - evaluation of extremities dosimetry among interventional radiology practitioners (L. Donadille); 3 - practical guide for the realisation of workplace dosimetry studies presenting a ionizing radiation exposure risk: and example in nuclear medicine (J.L. Rehel); 4 - workplace studies in radiotherapy-curietherapy (D. Donnarieix); 5 - from dosimetry to physical intensity: the case of heat insulation activities (A. Garrigou and C. Piccadaci); 6 - the consideration of human factor during facility modifications (V. Gauthereau); 7 - how to carry out a workplace analysis in gamma-graphy? (F. Truchi); 8 - workplace studies in the framework of dismantling activities (J. Chardin); 9 - team synergy (F. Debouck); 10 - adaptation of individual dosimetry to the workplace: the case of external exposure (I. Clairand); 11 - technical aspects of the evaluation of ionizing radiations exposure induced by a new interventional radiology procedure (J.C. Amabile); 12 - the point of view of a radioprotection skilled person in a nuclear medicine service (J.M. Vrigneaud); 13 - workplace studies for the unique document (F. Roussille); 14 - occupational exposure to manufactured nano-particles: issues and knowledge status (O. Witschger); 15 - toxicological risk of nano-particles: 'health impact'? (S. Chevillard). (J.S.)

  1. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  2. An evaluation of radiation protection in Norway

    International Nuclear Information System (INIS)

    Berteig, L.; Flatby, J.

    1979-01-01

    A survey of radiation protection in Norway is presented. Statens Institutt for Straalehygiene is the organization which performs the radiation protection functions on a national basis, and the laws upon which its activities are based are cited. The relevant parts of the ILO Convention nr.115 are also cited. The tasks of the institute are divided in the following programmes:- (i)radiation protection regulations and inspection, (ii) training and information (iii) emergency planning and provisions (iv) development of methods and, (v) administration. These programmes are defined and briefly described. The organisational structure and tasks are described. Analysis in tabular form of the status of the tasks leads to the conclusion that, while the institute's laboratories and equipment are satisfactory shortage of personnel restricts the adequate performance of its tasks. (JIW)

  3. Radiation protection of the environment - new trends

    International Nuclear Information System (INIS)

    Povinec, P. P.

    2006-01-01

    Recent trends in the radiation protection of the environment focusing on basic changes of the protection philosophy from the egocentric to ecocentric approach are presented and discussed. The globalization of the economy is accompanied by global contamination of the environment that requires changes in the attitude of the protection of the total environment, i.e. protection of humans, fauna and flora, all ecosystems and the Earth in general, as well as the cosmic space. This complex approach is illustrated on the radiation protection of the environment that has always been in the forefront in developing protection philosophy, methodology and standards, which later has also been applied to the protection of the environment caused by non-radioactive contaminants, such as heavy metals and organic compounds. High radiation doses delivered to biota are illustrated on shellfish and fish collected in the Mururoa and Fangataufa lagoons (affected by series of nuclear weapons tests), and on fish in Novaya Zemlya bays (affected by dumping of nuclear reactors and radioactive wastes). On the methodological site an example is discussed focusing on the in situ sea-bed radionuclide mapping and seawater monitoring using submersible gamma-ray spectrometers operating with NaI(Tl) and HPGe detectors which has proved to be important pre-requisite for estimation of the spatial distribution of radionuclides in the water column and on the sea floor, as well as for optimisation of sediment sampling for studying the radionuclide distribution with depth

  4. Medical students' knowledge of ionizing radiation and radiation protection.

    Science.gov (United States)

    Hagi, Sarah K; Khafaji, Mawya A

    2011-05-01

    To assess the knowledge of fourth-year medical students in ionizing radiation, and to study the effect of a 3-hour lecture in correcting their misconceptions. A cohort study was conducted on fourth-year medical students at King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia during the academic year 2009-2010. A 7-question multiple choice test-type questionnaire administered before, and after a 3-hour didactic lecture was used to assess their knowledge. The data was collected from December 2009 to February 2010. The lecture was given to 333 (72%) participants, out of the total of 459 fourth-year medical students. It covered topics in ionizing radiation and radiation protection. The questionnaire was validated and analyzed by 6 content experts. Of the 333 who attended the lecture, only 253 (76%) students completed the pre- and post questionnaire, and were included in this study. The average student score improved from 47-78% representing a gain of 31% in knowledge (p=0.01). The results indicated that the fourth-year medical students' knowledge regarding ionizing radiation and radiation protection is inadequate. Additional lectures in radiation protection significantly improved their knowledge of the topic, and correct their current misunderstanding. This study has shown that even with one dedicated lecture, students can learn, and absorb general principles regarding ionizing radiation.

  5. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  6. Current Challenges in Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    KASE, K.R.

    2008-01-01

    Radiation protection professionals in medical facilities and practices are being challenged by new imaging technologies that use x-rays or radioactive materials. These include faster computerized tomography (CT) scanners, new interventional techniques that use extended fluoroscopy time, increased use of positron emission tomography (PET), and digital imaging techniques. More frequently these technologies are being fused into a single procedure, such as combined CT and PET scanning. Radiation Protection professionals are challenged to (1) be aware of developing technologies and clinical techniques, (2) analyze the potential radiation risks to patients and staff, (3) initiate necessary radiation safety training for medical staff, and (4) be involved in planning, dose measurement and optimization of the procedure to achieve appropriate dose control and ALARA

  7. Radiation protection in the sand pit

    International Nuclear Information System (INIS)

    Hewson, Greg

    1997-01-01

    Radiation protection in the Western Australian minerals sands industry has attracted considerable controversy over the last 20 years: firstly, in relation to environmental and public health issues associated with the indiscriminate disposal of radioactive tailings as landfill in the mid to late 1970s and, secondly, in relation to occupational health issues associated with excessive radiation exposures to some workers at some plants in the mid to late 1980s. The industry also attracts attention through its proximity to coastal regions and population centres and consequent land use conflicts. Owing to intense political and societal scrutiny, and the emotional responses evoked by radiation, the industry's survival depends on a continuing high level of environmental and safety performance. This article summarises the successes and failures of the mineral sands industry in managing radiation protection and highlights some future issues and challenges for the industry. (Author)

  8. Neutron Spectrometry for Radiation Protection Purposes

    International Nuclear Information System (INIS)

    McDonald, Joseph C.

    2001-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is necessary to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here

  9. Neutron spectrometry for radiation protection purposes

    CERN Document Server

    McDonald, J C; Alberts, W G

    2002-01-01

    Determination of the dose equivalent is required for radiation protection purposes, however such a determination is quite difficult for neutron radiation. In order to perform accurate dosimetric determinations, it is advantageous to acquire information about the neutron fluence spectrum in the workplace as well as the reference radiations used to calibrate dosimetric instruments. This information can then be used to select the appropriate dosimetric instrument, the optimum calibration condition or to establish correction factors that account for the differences in calibration and workplace conditions. For quite some time, neutron spectrometry has been used for these purposes. A brief review of the applications of spectrometers in radiation protection and some recommendations for further development are given here.

  10. Abstracts of 21. International Symposium Radiation Protection Physics

    International Nuclear Information System (INIS)

    1989-01-01

    45 papers are presented as titles with abstracts which are processed individually for the INIS data base. They deal with general aspects of radiation protection physics, chiefly problems of radiation detection and measuring techniques in radiation protection

  11. Establish radiation protection programme for diagnostic radiology

    International Nuclear Information System (INIS)

    Mboya, G.

    2014-01-01

    Mammography is an effective method used for breast diagnostics and screening. The aim of this project is to review the literature on how to establish radiation protection programme for mammography in order to protect the patients, the occupationally exposed workers and the members of the public from harmful effects of ionizing radiation. It reviews some of the trends in mammography doses and dosimetric principles such as average glandular dose in the glandular tissue which is used for description of radiation risk, also the factors affecting patient doses are discussed. However, the average glandular dose should not be used directly to estimate the radiation risk from mammography. Risk is calculated under certain assumptions from determined entrance surface air kerma. Given the increase in population dose, emphasis is placed on the justification and optimization of the mammographic procedures. Protection is optimized by the radiation dose being appropriate with the purpose of the mammographic examination. The need to establish diagnostic reference levels as an optimization is also discussed. In order to obtain high quality mammograms at low dose to the breast, it is necessary to use the correct equipment and perform periodic quality control tests on mammography equipment. It is noted that in order to achieve the goal of this project, the application of radiation protection should begin at the time of requesting for mammography examination, positioning of the patient, irradiation, image processing and interpretation of mammogram. It is recommended that close cooperation between radiology technologists, radiologist, medical physicists, regulatory authority and other support workers be required and established to obtain a consistent and effective level of radiation protection in a mammography facility. (author)

  12. Radiation protection optimization and work management

    International Nuclear Information System (INIS)

    Schieber, C.

    1994-09-01

    The influence quantification of bound factors to work management, and the obtained results when you apply the dosimetric economical evaluation model of the radiation protection experiments, prove that ALARA principle application musn't bound to actions on the radiation sources, but that you can find a wide act field in the irradiation work volume management topics. 53 refs., 5 tabs., 10 figs., 4 appendixes

  13. Radiation Protection and Civil defence Department

    International Nuclear Information System (INIS)

    Gomaa, M.A.; Elshinawy, R.M.K.; Abdelfattah, A.T.

    1991-01-01

    This conference involves subjects of radiation protection, programming of civil defence, on the implementation of 1990 ICRP recommendation, thermoluminescence properties of bone equivalent calcium phosphate ceramics, potassium body burdens in occupational users of egyptian nuclear research centre, transport of radionuclides in fresh water stream, water treatment process for nuclear reactor, research activities related to internal contamination and bioassay and experience and environmental radiation monitoring in inshass. it contains of figures and tables

  14. Radiation protection in BNCT patients

    International Nuclear Information System (INIS)

    Blaumann, Hernan R.; Scharnichia, E.; Levanon, I.; Fernandez, C.; Facchini, Guillermo; Longhino, J.; Calzetta, Osvaldo; Pereira, M.

    2008-01-01

    Full text: Boron Neutron Capture Therapy (BNCT) is a technique that selectively targets cancer cells while sparing normal tissues by virtue of the differential uptake of a 10 B carrier compound in tumor. The National Atomic Energy Commission (CNEA) and the Oncology Institute 'Angel H. Roffo' (IOAR) began a BNCT programme in 2003 for treating cutaneous skin melanomas in extremities. The neutron beam used is the hyperthermal one developed at the RA-6 Reactor of the Bariloche Atomic Centre (CAB). The prescribed dose is delivered in one fraction and therefore patient positioning and knowledge of the dose received by normal tissue are crucial. 10 irradiations have been done since 2003, all of them in legs and feet and the dose prescription was determined by the maximum tolerable skin dose. Due to the characteristics of this treatment the patient body might be exposed not only to the primary beam but also to the secondary photon beam produced by neutron capture at the target itself. Thus a patient radiation-monitoring plan was implemented in order to evaluate the gamma dose delivered to sensible organs of each patient. An acrylic water-filled whole body phantom was used for preliminary gamma dose and thermal neutron flux measurements at positions related to patient's body sensible organs considering tentative patient positions. The beam port shielding was, in this way, optimized. TLD-700 and Manganese foils were used for gamma and thermal neutron detection. The TLD-700 thermal neutron response was previously evaluated by using the in-phantom beam dosimetry characterization. In-vivo dosimetry with TLD is routinely implemented in order to evaluate gamma dose to sensible organs of each patient. These organs are chosen depending on its distance from the zone to be irradiated and its radio-sensibility. All TLDs have been positioned well outside the irradiation field. Maximum gamma dose received outside the radiation field in healthy tissues was well below tolerance dose for

  15. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  16. Evolution of Radiation Protection System in Kenya

    International Nuclear Information System (INIS)

    Maina, J. A. W.

    2004-01-01

    Promulgation of radiation protection legislation in Kenya dates back to 1982, was revised in 1985 and became operational in 1986. This law, the Radiation Protection Act, establishes the Radiation Protection Board as the National Regulatory Authority, with an executive Inspectorate headed by the Secretary to the Board. Subsidiary legislation on radiological practices and standards were subsequently published. The Inspectorate carries out the National programme for notification, authorization, inspection and enforcement. Nuclear applications for peaceful purposes in Kenya are on the increase in all major fields of socio-economic development. Provision of regulatory services, guidance and enforcement procedures, has had a net growth over the last fifteen years. However, staff retention has been declining over the years in a market where job opportunities, with relatively high incentives, are high either inside or outside the country. Human and equipment resource development has therefore not kept pace and this has hampered effective and efficient provision of services. The poor status of the economy has had its impact on delivery of quality, effective and efficient radiation protection services. Provision of radiation services and acquisition of radiation detection and measurement equipment in the country has been generally lacking dating as far back as 1995. During the period 1989 to present, Kenya's Regulatory Authority, the Radiation Protection Board, undertook to provide personal monitoring, quality assurance, radioanalysis, and equipment calibration. Over the years these services have stalled due to outdated equipment most of which have broken down. A maintenance and calibration service for nuclear equipment is an expensive cross-boarder issue. Budgetary constraints, insufficient human and equipment resources, and a perennial 'brain drain' has placed limitations to the effectiveness and efficiency of implementation of the National programmes and slowed the

  17. International Society of Radiographers and Radiological Technologists and radiation protection

    International Nuclear Information System (INIS)

    Yule, A.

    2001-01-01

    The ISRRT was formed in 1962 with 15 national societies and by the year 2000 has grown to comprise more than 70 member societies. The main objects of the organization are to: Improve the education of radiographers; Support the development of medical radiation technology worldwide; Promote a better understanding and implementation of radiation protection standards. The ISRRT has been a non-governmental organization in official relations with the World Health Organization (WHO) since 1967. It is the only international radiographic organization that represents radiation medicine technology and has more than 200 000 members within its 70 member countries. Representatives of the ISRRT have addressed a number of assemblies of WHO regional committees on matters relating to radiation protection and radiation medicine technology. In this way, the expertise of radiographers worldwide contributes to the establishment of international standards in vital areas, such as: Quality control; Legislation for radiation protection; Good practice in radiographic procedures; Basic radiological services. The ISRRT believes that good and consistent standards of practice throughout the world are essential

  18. Radiation protection monitoring in tropical, developing countries

    International Nuclear Information System (INIS)

    Becker, K.; Drexler, G.

    1979-01-01

    Almost all radiation protection standards, manuals and textbooks have been written in and for industrialized countries in temperate climates, and most research effort and instrument manufacturers are also located there. There has been relatively little interest in the completely different socio-economic and climatic conditions in many developing countries. Some of the important differences in conditions, such as high temperatures and relative humidities, electric-power failures and voltage fluctuations, shortage of trained manpower, etc., are discussed, and suggestions are made how to minimize their impacts. Other important matters that are considered are recruitment and training, optimized organizational structures, and the proper choice of research topics in the radiation protection field. (author)

  19. Radiation protection measurement. Philosophy and implementation

    International Nuclear Information System (INIS)

    Recht, P.; Lakey, J.R.A.

    1975-01-01

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  20. Updating radiation protection regulations in Egypt

    International Nuclear Information System (INIS)

    Gomaa, M.A.; El-Naggar, A.M.

    1996-01-01

    The aim of this treatise is to present -the rational steps taken in the process of updating the Radiation Protection Regulations in Egypt. The contents of the review will include a historical synopsis, and the current state of art regarding competent authorities. Furthermore, the various committees formed with responsibilities for specific issues are indicated, including the role of the Ministry of Health (MOH), and that of the Atomic Energy Authority (AEA). Finally, the efforts made towards updating the radiation Protection Regulations in Egypt are highlighted. (author)